JPH01220307A - High strength superconductive wire having high critical current density and its manufacture - Google Patents

High strength superconductive wire having high critical current density and its manufacture

Info

Publication number
JPH01220307A
JPH01220307A JP63043530A JP4353088A JPH01220307A JP H01220307 A JPH01220307 A JP H01220307A JP 63043530 A JP63043530 A JP 63043530A JP 4353088 A JP4353088 A JP 4353088A JP H01220307 A JPH01220307 A JP H01220307A
Authority
JP
Japan
Prior art keywords
wire
superconducting
filled
ceramic powder
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043530A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Genichi Suzuki
鈴木 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63043530A priority Critical patent/JPH01220307A/en
Priority to EP89902962A priority patent/EP0358779B1/en
Priority to DE89902962T priority patent/DE68905980T2/en
Priority to US07/445,639 priority patent/US5068219A/en
Priority to KR1019890701967A priority patent/KR900701019A/en
Priority to PCT/JP1989/000198 priority patent/WO1989008317A1/en
Publication of JPH01220307A publication Critical patent/JPH01220307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title wire having high critical conductive density by filling the compound, having the perovskite structure composed of the rare earth element including Y, alkaline earth metal, copper, and oxygen, to a multiunit tube. CONSTITUTION:Individual powder of Y2O3, BaCO3, and CuO having a mean particle diameter of 6mum is blended and mixed at the rate of 15.13%:52.89%:31.98% (weight%), this mixed powder is burned at 910 deg. for 10 hours in the atmosphere to be ground to a mean particle diameter of 2.5mum, and thereby superconductive ceramics powder 3 of a perovskite structure having the composition of YBa2Cu5O7 are made. The powder 3 is filled to the multiunit tube composed of a metallic part 1 in which an inner layer 4 consists of Ag and an outer layer consists of Ag and SUS 304 steel, and having the circle in which the layer 4 has a 0.5mm thickness and a 5.0mm inner diameter and the Ag part of the outer layer has a 1.8mm outer diameter, the both ends are vacuously sealed, then the diameter is made to 3.0mm by swaging, and finally the wire of 2.0mm diameter is made by a roll processing. The Ag part 2 of the outer layer 5 becomes an ellipse, then the wire is made to a belt-state wire having a 0.4mm thickness and a flat cross section with a flat roll, and finally a heat treatment is conducted at 920 deg.C for 15 hours in the atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Yを含む希土類元素(以下、これらの元素
をRで示す)、アルカリ土類金属(以下Aで示す)、鋼
(Cu )および酸素(0)からなるイロブスカイト構
造を有する化合物(以下、この化合物なMi電導セラミ
ックスという)を、複合管に充填してなる高強度と高臨
界電流密度を有する超電導ワイヤおよびその製造法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to rare earth elements including Y (hereinafter these elements will be referred to as R), alkaline earth metals (hereinafter referred to as A), and steel (Cu). and a superconducting wire having high strength and high critical current density obtained by filling a composite tube with a compound having an ilovskite structure consisting of oxygen (0) (hereinafter referred to as the compound Mi conductive ceramic), and a method for manufacturing the same. It is.

〔従来の技術〕[Conventional technology]

一般に、超電導セラミックスを用いたワイヤの加工方法
としては。
Generally, as a method for processing wire using superconducting ceramics.

(a)  原料粉末として、いずれも平均粒径:lOμ
寓以下のR2O3粉末、Aの炭酸塩粉末、CuO粉末を
用意し、これら原料粉末を所定の配合組成に配合し、混
合して大気中または酸素雰囲気中で温度=850〜95
0℃にて焼成し、イロブスカイト構造を有する超電導セ
ラミックスを作製し、これを平均粒径:lOμ冨以下に
粉砕する。
(a) As raw material powder, average particle size: lOμ
Prepare the following R2O3 powder, A carbonate powder, and CuO powder, blend these raw material powders to a predetermined composition, mix and heat in air or oxygen atmosphere at a temperature of 850 to 95.
A superconducting ceramic having an ilovskite structure is produced by firing at 0° C., and this is pulverized to an average particle size of 10 μm or less.

(b)  上記粉砕した粉末を銀(Ag)W管内に充填
し1両端を真空密封し、この充填Ag管材にスェージラ
ダ加工や溝ロール加工まなはダイス加工等の伸線加工を
施し、直径25M以下の充填ワイヤとし。
(b) The above-mentioned pulverized powder is filled into a silver (Ag) W tube, both ends are vacuum-sealed, and this filled Ag tube material is subjected to wire drawing processing such as swage ladder processing, groove roll processing, or die processing, and has a diameter of 25M or less. Filled with wire.

(C)  最終的に、充填線材に充填されている超電導
セラミックスを焼結し、その後、酸素吸収のために、上
記伸線加工された充填Agワイヤを、大気中または酸素
雰囲気中で、温度=900〜950℃にて熱処理し、製
品としている。
(C) Finally, the superconducting ceramics filled in the filled wire is sintered, and then, in order to absorb oxygen, the drawn filled Ag wire is placed in the air or in an oxygen atmosphere at a temperature of The product is heat-treated at 900-950°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術1c)の工程において、超電導セラミッ
クスワイヤを熱処理することKよシ超[4セラミツクス
粉末の焼結とその後の酸素吸収を行なうのであるが、上
記伸線加工した直径:5鵡以下の充填Agワイヤの熱処
理温度は900〜950℃であり、この熱処理温度はA
gの融点(960,8℃)k近いために、超電導セラミ
ックスを被覆しているAgワイヤは軟化し1曲が)やす
くなシ、不注意な白けは、充填されている超電導セラミ
ックスに不連続または切断を生じせしめ、^温熱処理の
ためKAgワイヤ自身の強度も極めて低下しているので
断線することもあつな。
In the process of conventional technology 1c), the superconducting ceramic wire is heat-treated to sinter the superconducting ceramic powder and then absorb oxygen. The heat treatment temperature of the filled Ag wire is 900-950℃, and this heat treatment temperature is A
Since the melting point of g (960.8°C) is close to k, the Ag wire covering the superconducting ceramics is easily softened (1 bend), and inadvertent whitening may cause discontinuities or Since the strength of the KAg wire itself is extremely reduced due to the high temperature treatment, it is likely that the wire will break.

上記超電導セラミックスを被覆する材料としてAg以外
の金属5例えばN1合金、ステンレス鍋などの高温強度
がすぐれた材料が考えられるが、上記Ag以外の金属は
、酸素の拡散浸透および排出を行うことができないため
、上記Ag以外の金属によシ超電導ワイヤを作製すると
、加工中または加工後に超電導セラミックスより放出さ
れた酸素によりワイヤに膨らみが生じ、また上記大気中
または酸素雰囲気中にて行なわれる最終熱処理により、
充填されている超電導セラミックスに酸素を吸収させる
仁とができない。
As a material for coating the above-mentioned superconducting ceramics, metals other than Ag5 such as materials with excellent high-temperature strength such as N1 alloy and stainless steel pots can be considered, but metals other than the above-mentioned Ag are incapable of diffusing and permeating oxygen and discharging it. Therefore, if a superconducting wire is made from a metal other than the above-mentioned Ag, the wire will bulge due to oxygen released from the superconducting ceramic during or after processing, and the final heat treatment performed in the air or oxygen atmosphere will cause bulges in the wire. ,
The superconducting ceramics filled with oxygen cannot be absorbed.

したがって、現在のところ、超電導セラミックス粉末の
被覆材としてAg以外の金属は考えられない。ところが
、上記Agは高価であるとともに、高温熱処理中での扱
いが難しく、高温および常温における強度も弱いために
上述の如きトラブルを生じることが毎々あった。
Therefore, at present, metals other than Ag cannot be considered as coating materials for superconducting ceramic powder. However, the above-mentioned Ag is expensive, difficult to handle during high-temperature heat treatment, and has low strength at both high and normal temperatures, which often causes the above-mentioned troubles.

さらに、上記従来の技術で述べた方法によt)H造した
超電導ワイヤの臨界電流密度Jcは、10sA/cII
L2のオーダーであシ、実用に供する超電導ワイヤの臨
界電流密度は、少くともlOA/cIL2を必要として
いる。上記4oプスカイト構造を有する超電導セラミッ
クスの結晶は、結晶異方性が大きく、結晶のC軸方向に
は電流が流れにくく、C軸方向に垂直な方向には電流が
流れやすいため、上記超電導ワイヤに充填されている超
電導セラミックス粉末の結晶のC軸方向がワイヤの長手
方向に対して垂直に配向するように充填し、その配向層
が十分な厚さを有すると、  10  A/ca2以上
の高臨界電流密度を有する超電導ワイヤが得られるはず
であるけれども、上記超電導ワイヤ中の超電導セラミッ
クス粉末のC軸方向がワイヤの長手方向に対して垂直に
配向している十分な厚さの配向層を得るための手段につ
いても知られてはいなかった。
Furthermore, the critical current density Jc of the superconducting wire produced by the method described in the prior art section is 10 sA/cII.
On the order of L2, the critical current density of a superconducting wire for practical use requires at least lOA/cIL2. The superconducting ceramic crystal having the above-mentioned 4o-skite structure has a large crystal anisotropy, and it is difficult for current to flow in the direction of the C-axis of the crystal, but it is easy to flow in the direction perpendicular to the C-axis direction. If the packed superconducting ceramic powder is filled so that the C-axis direction of the crystals is oriented perpendicular to the longitudinal direction of the wire, and the oriented layer has a sufficient thickness, a high criticality of 10 A/ca2 or more can be achieved. Although a superconducting wire with a current density should be obtained, in order to obtain a sufficiently thick oriented layer in which the C-axis direction of the superconducting ceramic powder in the superconducting wire is oriented perpendicular to the longitudinal direction of the wire. The means of doing so were not known.

〔課題を解決するための手段〕[Means to solve the problem]

そこで1本発明者等は、高価なAgの使用を減らし、さ
らに高温および室温強直がすぐれるとともに少なくとも
10 A/Cl12のオーダーの鍋臨界−流密度の電流
を流すことのできる超電導ワイヤを開発すべく研究を行
なったところ。
Therefore, the present inventors have developed a superconducting wire that reduces the use of expensive Ag, has excellent high-temperature and room-temperature stiffness, and is capable of passing a current with a pot critical current density of the order of at least 10 A/Cl12. I did a lot of research.

超′Rt導セラミックス粉末を、内層がAgで外層がA
g部分とAg以外の金属部分からなり、上記外層のAg
部分は上記内層のAgと一体であり、外面に露出してい
る複合管に充填し。
The ultra'Rt conductive ceramic powder has an inner layer of Ag and an outer layer of A.
It consists of a g part and a metal part other than Ag, and the Ag of the above outer layer
The part is integral with the inner layer of Ag and is filled into the composite tube exposed to the outside.

上記超電導セラミックス粉末を充填した複合管を伸線加
工して超14を導セラミックス粉末充填ワイヤとし。
The composite tube filled with the above-mentioned superconducting ceramic powder was wire-drawn to make Super 14 a conductive ceramic powder-filled wire.

上記伸線加工した超電導セラミックス粉末充填ワイヤを
、1パスの圧下率が50%以上の平ロール圧延を行ない
The drawn superconducting ceramic powder-filled wire is subjected to flat roll rolling with a rolling reduction of 50% or more in one pass.

ついで、上記平ロール圧延した超を専セラミックス粉末
充填ワイヤを、温度:900〜950℃にて熱処理する
と。
Then, the flat-rolled ultrasonic ceramic powder-filled wire is heat-treated at a temperature of 900 to 950°C.

上記高温および常温強度にすぐれるとともに高臨界電流
密度を有する超電導ワイヤが得られるという知見を得た
のである。
It was discovered that a superconducting wire having excellent high-temperature and room-temperature strength as well as a high critical current density can be obtained.

この発明は、かかる知見にもとづいてなされたものであ
って1次のような作用がある。
This invention was made based on this knowledge and has the following effects.

(1)上記複合管の外層のrAg以外の金属部分」K高
温および常温強度のすぐれた金属1例えばインコネル、
ハステロイ等のNi基合金、8US304等のオーステ
ナイトステンレス鋼などを用いると。
(1) Metal parts other than rAg in the outer layer of the composite pipe 1 Metals with excellent high-temperature and room-temperature strength 1 For example, Inconel,
When using Ni-based alloys such as Hastelloy, austenitic stainless steels such as 8US304, etc.

熱処理中の強度不足によるトラブルは解消され。Problems caused by insufficient strength during heat treatment have been resolved.

高温および常温強度のすぐれた超電導ワイヤを得ること
ができ、上記複合管の外層にrAg部分」を設けること
Kより、加工中または加工後に超電導セラミックス粉末
から放出された酸素によるワイヤの膨らみの発生が防止
され、大気または酸素雰囲気熱処理中の酸素の吸収も行
なわれる。
A superconducting wire with excellent high-temperature and room-temperature strength can be obtained, and by providing the "rAg part" on the outer layer of the composite tube, bulging of the wire due to oxygen released from the superconducting ceramic powder during or after processing can be prevented. Oxygen absorption during air or oxygen atmosphere heat treatment is also prevented.

(2)  上記伸線加工した超電導セラミックス粉末充
填ワイヤを1パスの圧下率が50チ以上の平ロール圧延
を行なうと、ワイヤに充填されている超電導セラミック
ス粉末の結晶のC軸方向がワイヤの長手方向に対して垂
直に揃った配向層(以下。
(2) When the drawn wire filled with superconducting ceramic powder is flat-rolled with a rolling reduction of 50 inches or more in one pass, the C-axis direction of the crystals of the superconducting ceramic powder filled in the wire is aligned with the longitudinal direction of the wire. Orientation layer aligned perpendicular to the direction (hereinafter referred to as

圧縮配向l−という)が形成され、しかも上記圧縮配向
層の厚さは5μ冨以上となシ、臨界電流密反を10  
A/cX2以上にすることができる。
A compression-oriented layer (referred to as 1-) is formed, and the thickness of the compression-oriented layer is 5 μm or more, and the critical current density is 10
A/cX2 or more can be achieved.

ここで圧下率とは、伸線加工した平ロール圧延前の超を
導セラミックス粉末充填ワイヤの外径なho、平ロール
圧延後の断面偏平な超電導セラミックス粉末充填ワイヤ
の厚さをhとすると。
Here, the rolling reduction is defined as ho, the outer diameter of the superconducting ceramic powder-filled wire before flat roll rolling, and h the thickness of the superconducting ceramic powder-filled wire with a flat cross section after flat roll rolling.

ho−h 圧下率−−X I OO(@ O で表わすことができる。ho-h Rolling reduction rate--X I OO (@ O It can be expressed as

この圧下率:50−以上の平ロールによる圧延はlバス
で行ない、しかも縁材の塑性加工工程の最終段階で行な
う必要がある。かかるl/々ス圧延は可及的に急激に行
なうことが望ましい。
This rolling with flat rolls having a rolling reduction ratio of 50 or more is carried out in an 1-bath and must be carried out at the final stage of the plastic working process of the edge material. It is desirable that such l/mth rolling be performed as rapidly as possible.

上記圧縮配向層の層厚を5〜150μ諷に定めた理由#
i、5μm未満では、従来の超電導ワイヤのように臨界
ta密&JCは10A/cWL2のオーダーにしかなら
ないために実用にならず、上記圧縮配向層の層厚は大き
いほど^臨界寛流密反が得られるが、普通の圧延または
プレスによシ得られる圧動配向層の層厚は150μ票が
限界でるる。したがって、上記圧縮配向層の層厚は5〜
150μ風に定めた。
Reason for setting the layer thickness of the compression alignment layer to 5 to 150 μm #
i, less than 5 μm, the critical ta density & JC is only on the order of 10 A/cWL2 like in conventional superconducting wires, so it is not practical, and the larger the layer thickness of the compressive alignment layer, the more the critical relaxation density becomes. However, the thickness of the pressure-aligned layer obtained by ordinary rolling or pressing is limited to 150 μm. Therefore, the layer thickness of the compressed alignment layer is 5~
The wind was set at 150μ.

(3)上記方法によシ形成された圧縮配向層を有する超
電導セラミックス粉末充填ワイヤを、最後に大気中また
は酸素雰囲気中で熱処理しても圧縮配向層のC軸方向お
よび厚さに何ら変化は認められない。
(3) Even when the superconducting ceramic powder-filled wire having the compressed oriented layer formed by the above method is finally heat-treated in air or oxygen atmosphere, there is no change in the C-axis direction and thickness of the compressed oriented layer. unacceptable.

(4)  複合管の内層をAg層とした理由はs Ag
以外の例えばN1基合金ま九はオーステナイト系ステン
レス鋼と超電導セラきツクス粉末が接触した状態で処理
されると、化学反応を起し、 NiO、FeO。
(4) The reason why the inner layer of the composite pipe is made of Ag is sAg
For example, when other N1-based alloys are treated with austenitic stainless steel and superconducting ceramic powder in contact with each other, a chemical reaction occurs, forming NiO and FeO.

Fe2O3、Cr2O5等の酸化物が生成し、超電導特
性が大幅に劣化することによるものである。
This is due to the formation of oxides such as Fe2O3 and Cr2O5, which significantly deteriorates superconducting properties.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、いずれも平均粒径:6μ重のY2O3
粉末、 !3acO3粉末、およびCuO粉末を用意し
As raw material powder, average particle size: 6 μ weight Y2O3
Powder,! Prepare 3acO3 powder and CuO powder.

これら粉末をY2O3: l 5. l 3 転BaC
0,: 52.89% 、  CuO: 31.98 
’lk (以上重量s)の割合で配合し、混合し、この
混合粉末を、大気中、温度=910℃、lO時間保持の
条件で焼成し、平均粒径:2,5/JIIK粉砕して5
YBa2Cu307の組成を有しはロブスカイト構造を
有する超電廊セラミツクス粉末を作製した。     
′ 第1図は、この実施例で用いる複合管の概略図である。
These powders are Y2O3: l5. l 3 BaC
0,: 52.89%, CuO: 31.98
'lk (or more weight s) and mix, and this mixed powder is fired in the air at a temperature of 910°C and held for 10 hours, and the average particle size is 2,5/JIIK pulverized. 5
A superconductor ceramic powder having a composition of YBa2Cu307 and a lobskite structure was prepared.
' Figure 1 is a schematic diagram of the composite tube used in this example.

上記複合管は、内層4がAgからなり、外層はAg部分
2とSUS 304のオーステナイトステンレス銅から
なるAg以外の金属部分lから構成されており、上記内
層4は肉厚:0.5mX内径:5、 ’Otxを有し、
上記外層は肉厚=0.5朋×外径ニア、0躊を有し、上
記外層のAg部分2は直径:1.8騙の円形で構成され
ている。
The above composite tube has an inner layer 4 made of Ag, an outer layer made of an Ag part 2 and a non-Ag metal part 1 made of SUS 304 austenitic stainless copper, and the inner layer 4 has a wall thickness of 0.5 m and an inner diameter: 5, has 'Otx;
The outer layer has a wall thickness of 0.5 mm×outer diameter near and 0 hardness, and the Ag portion 2 of the outer layer has a circular shape with a diameter of 1.8 mm.

かかる複合管に上記超1!感セラミックス粉末3を充填
し1両端部を真空密封した後、ロータリースェージング
加工にて直径:3.Omとし、引き続いて溝ロール加工
により直径:2.0驕超電尋セラミツクス粉末充填ワイ
ヤとした。
The above-mentioned super 1 for such a composite pipe! After filling with sensitive ceramic powder 3 and vacuum-sealing both ends of 1, a rotary swaging process was performed to reduce the diameter to 3. 0m, and then grooved roll processing was performed to obtain a 2.0 diameter superelectroceramic powder-filled wire.

第2図は、上記超電導セラミックス粉末充填ワイヤの概
略図である。上記超電導セラミックス充填ワイヤの外層
5のAg部分2は長円形になっていた。
FIG. 2 is a schematic diagram of the superconducting ceramic powder-filled wire. The Ag portion 2 of the outer layer 5 of the superconducting ceramic filled wire had an oval shape.

上記第2図に示される超1!導セラミックス粉末充填ワ
イヤを2個の平ロールにより圧下率=80% 0) l
パス圧延し、厚さ:0.41cmの断面偏平な帯状超電
導セラミックス粉末充填ワイヤを作製した。
Super 1 shown in Figure 2 above! Rolling down of conductive ceramic powder-filled wire with two flat rolls = 80% 0) l
Pass rolling was performed to produce a strip-shaped superconducting ceramic powder-filled wire with a flat cross section and a thickness of 0.41 cm.

第3図には、上記帯状超電導セラミックス粉末充填ワイ
ヤの概略図を示し、第4図(a)および(1))には、
上記帯状超電導セラミックス粉末充填ワイヤの断面拡大
概略図を示す。
FIG. 3 shows a schematic diagram of the band-shaped superconducting ceramic powder-filled wire, and FIG. 4 (a) and (1)) show the following:
An enlarged cross-sectional schematic diagram of the above-mentioned strip-shaped superconducting ceramic powder-filled wire is shown.

上記乎ロール圧延後の帯状超電導セラミックス粉末充填
ワイヤの充填粉末3には第4図(a)およびlb)に示
されるように圧縮配向層5が形成されており、第4図(
a)に示されるように、Ag内層番に沿って厚さ:5μ
寓以上の圧扁配向層5が形成されていることもあり、第
4図(b) K示されるように、コア全体が厚さ:5μ
観以上の圧動配向層5となっている場pもある。
As shown in FIGS. 4(a) and lb), a compressed orientation layer 5 is formed on the filling powder 3 of the strip-shaped superconducting ceramic powder-filled wire after rolling.
Thickness: 5μ along the Ag inner layer number as shown in a)
Because the compressed orientation layer 5 is formed in a thickness larger than 100 mm, the entire core has a thickness of 5 μm, as shown in FIG. 4(b).
There is also a case where the pressure-dynamic alignment layer 5 is larger than that of the image.

上記帯状超電導セラミックス粉末充填ワイヤを。Above is the strip-shaped superconducting ceramic powder-filled wire.

大気中、温度=920℃、15時間保持の条件にて熱処
理を行ない、帯状超電導ワイヤを作製し。
Heat treatment was performed in the atmosphere at a temperature of 920° C. for 15 hours to produce a strip-shaped superconducting wire.

この帯状超電導ワイヤの臨界電流密度を測定したところ
、 Jc : 1.6Xlo A/c!It2であった
When the critical current density of this strip-shaped superconducting wire was measured, it was found that Jc: 1.6Xlo A/c! It was It2.

上記帯状超電導ワイヤを切断し、超電導セラミックス粉
末充填層をX@回折により配向テストを行なったところ
、超電導セラミックス粉末の結晶のC軸方向が帯状超電
導ワイヤの長手方向に対して垂直に配向している圧縮配
向層が存在しておシ上記圧縮配向層の層厚は80μ諺で
あった。
When the above band-shaped superconducting wire was cut and the superconducting ceramic powder filled layer was subjected to an orientation test using X@ diffraction, it was found that the C-axis direction of the crystals of the superconducting ceramic powder was oriented perpendicular to the longitudinal direction of the band-shaped superconducting wire. A compressed orientation layer was present, and the layer thickness of the compressed orientation layer was approximately 80 μm.

なお、この実施例では、複合管として断面円形の複合円
筒管を用いたが、断面形状は円形に限定されることなく
長円またはその他の多角形であってもよく、さらに、伸
線力り工された超電導セラミックス粉末充填ワイヤの断
面は円形に限定されるものではない。
In this example, a composite cylindrical pipe with a circular cross section was used as the composite pipe, but the cross-sectional shape is not limited to a circular shape, but may be an ellipse or other polygon. The cross section of the fabricated superconducting ceramic powder-filled wire is not limited to a circular shape.

〔発明の効果〕〔Effect of the invention〕

この発明によると、従来のAg被覆超msワイヤよ)も
Agの使用量が少なく、A温および常温における強度が
優れるとともに高臨界電流密度を有する超vL導ワイヤ
を簡単に製造することができるというすぐれた効果があ
る。
According to this invention, it is possible to easily produce an ultra-vL conductive wire that uses less Ag than the conventional Ag-coated ultra-ms wire, has excellent strength at A temperature and room temperature, and has a high critical current density. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、超を導セラミックス粉末を充填するための複
合管の概略図。 第2図は、超電導セラミックス粉末を充填した複合管を
伸縮加工した超電導セラミックス粉末充填複合ワイヤの
概略図。 第3図は、平ロール圧延後の断面偏平な帯状超電導セラ
ミックス粉末充填ワイヤの概略図。 第4図(a)および(b)は、?!F状超電導セラミッ
クス粉末充填ワイヤの断面拡大概略図を示す。 1・・・外層のAg以外の金属部分。 2・・・外層のAg部分。 3・・・超電導セラミックス粉末。 4・・・内層。 5・・・圧縮配向J餉。
FIG. 1 is a schematic diagram of a composite tube for filling superconducting ceramic powder. FIG. 2 is a schematic diagram of a superconducting ceramic powder-filled composite wire obtained by expanding and contracting a composite tube filled with superconducting ceramic powder. FIG. 3 is a schematic diagram of a strip-shaped superconducting ceramic powder-filled wire with a flat cross section after flat roll rolling. FIGS. 4(a) and (b) are? ! An enlarged cross-sectional schematic diagram of an F-shaped superconducting ceramic powder-filled wire is shown. 1...Metal part other than Ag in the outer layer. 2...Ag part of the outer layer. 3...Superconducting ceramic powder. 4...Inner layer. 5... Compression orientation J-kei.

Claims (2)

【特許請求の範囲】[Claims] (1)内層が銀で、外層が銀部分と銀以外の金属部分か
らなり、上記外層の銀部分は、上記内層の銀と一体であ
りかつ外面に露出している断面偏平な複合管と、 上記断面偏平な複合管に充填されているYを含む希土類
元素、アルカリ土類金属、銅および酸素からなるペロブ
スカイト構造を有する化合物(以下、超電導セラミック
スという)粉末とからなる超電導ワイヤであつて、 上記超電導セラミックス粉末は、上記ペロブスカイト構
造のC軸方向が上記超電導ワイヤの長手方向に対して垂
直に配向している配向層を有するように充填されており
、上記配向層の厚さは、5〜150μmであることを特
徴とする高臨界電流密度を有する高強度超電導ワイヤ。
(1) A composite tube with a flat cross-section, the inner layer of which is silver, the outer layer of which is composed of a silver portion and a metal portion other than silver, the silver portion of the outer layer being integral with the silver of the inner layer and exposed to the outside; A superconducting wire made of powder of a compound having a perovskite structure (hereinafter referred to as superconducting ceramics) made of rare earth elements including Y, alkaline earth metals, copper and oxygen (hereinafter referred to as superconducting ceramics), which is filled in the composite tube with a flat cross section, The superconducting ceramic powder is filled so as to have an orientation layer in which the C-axis direction of the perovskite structure is oriented perpendicularly to the longitudinal direction of the superconducting wire, and the thickness of the orientation layer is 5 to 150 μm. A high-strength superconducting wire having a high critical current density.
(2)上記超電導セラミックス粉末を、内層が銀で外層
が銀部分と銀以外の金属部分からなり上記外層の銀部分
は上記内層の銀と一体でありかつ外面に露出している複
合管に充填し、 上記超電導セラミックス粉末を充填した複合管を伸線加
工して超電導セラミックス粉末充填ワイヤとし、 上記伸線加工した超電導セラミックス粉末充填ワイヤを
、1パスの圧下率が50%以上の平ロール圧延を行なつ
て、断面偏平な超電導セラミックス粉末充填ワイヤとし
、 ついで、上記断面偏平な超電導セラミックス粉末充填ワ
イヤを、温度:900〜950℃にて熱処理することを
特徴とする高臨界電流密度を有する高強度超電導ワイヤ
の製造方法。
(2) The above superconducting ceramic powder is packed into a composite tube in which the inner layer is silver, the outer layer is composed of a silver part and a metal part other than silver, and the silver part of the outer layer is integrated with the silver of the inner layer and is exposed on the outside. The composite tube filled with the superconducting ceramic powder is wire-drawn to obtain a superconducting ceramic powder-filled wire, and the wire-drawn superconducting ceramic powder-filled wire is flat-rolled with a rolling reduction of 50% or more in one pass. to obtain a wire filled with superconducting ceramic powder having a flat cross section, and then heat-treating the wire filled with superconducting ceramic powder having a flat cross section at a temperature of 900 to 950°C. Method for manufacturing superconducting wire.
JP63043530A 1988-02-26 1988-02-26 High strength superconductive wire having high critical current density and its manufacture Pending JPH01220307A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63043530A JPH01220307A (en) 1988-02-26 1988-02-26 High strength superconductive wire having high critical current density and its manufacture
EP89902962A EP0358779B1 (en) 1988-02-26 1989-02-27 High-strength superconductive wire and cable having high current density, and method of producing them
DE89902962T DE68905980T2 (en) 1988-02-26 1989-02-27 HIGH-STRENGTH SUPER-CONDUCTIVE WIRES AND CABLES WITH HIGH CURRENT DENSITY AND METHOD FOR THE PRODUCTION THEREOF.
US07/445,639 US5068219A (en) 1988-02-26 1989-02-27 High strength superconducting wires and cables each having high current density, and a process for fabricating them
KR1019890701967A KR900701019A (en) 1988-02-26 1989-02-27 High strength superconducting wires and cables with high current density and manufacturing method
PCT/JP1989/000198 WO1989008317A1 (en) 1988-02-26 1989-02-27 High-strength superconductive wire and cable having high current density, and method of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043530A JPH01220307A (en) 1988-02-26 1988-02-26 High strength superconductive wire having high critical current density and its manufacture

Publications (1)

Publication Number Publication Date
JPH01220307A true JPH01220307A (en) 1989-09-04

Family

ID=12666300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043530A Pending JPH01220307A (en) 1988-02-26 1988-02-26 High strength superconductive wire having high critical current density and its manufacture

Country Status (1)

Country Link
JP (1) JPH01220307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539208A (en) * 2006-06-02 2009-11-12 デンマークス テクニスケ ウニヴェルシテト High critical temperature superconducting article with improved mechanical strength
US10844479B2 (en) 2014-02-21 2020-11-24 Ut-Battelle, Llc Transparent omniphobic thin film articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539208A (en) * 2006-06-02 2009-11-12 デンマークス テクニスケ ウニヴェルシテト High critical temperature superconducting article with improved mechanical strength
US10844479B2 (en) 2014-02-21 2020-11-24 Ut-Battelle, Llc Transparent omniphobic thin film articles

Similar Documents

Publication Publication Date Title
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
WO1989008317A1 (en) High-strength superconductive wire and cable having high current density, and method of producing them
US5063200A (en) Ceramic superconductor article
US5663528A (en) Oxide superconductive wire and process for manufacturing the same
JPH01220307A (en) High strength superconductive wire having high critical current density and its manufacture
JPH02207420A (en) Manufacture of superconducting wire rod
JPH01167911A (en) Superconducting complex wire and manufacture thereof
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2644245B2 (en) Oxide superconducting wire
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH01167914A (en) Superconducting complex cable
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH04196015A (en) Ceramic superconductive wire
JPH01220308A (en) Superconductive composite cable having high critical current density and high strength, and its manufacture
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH0195409A (en) Superconducting wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH01241709A (en) Manufacture of oxide superconductor wire