JPH02207420A - Manufacture of superconducting wire rod - Google Patents

Manufacture of superconducting wire rod

Info

Publication number
JPH02207420A
JPH02207420A JP1027194A JP2719489A JPH02207420A JP H02207420 A JPH02207420 A JP H02207420A JP 1027194 A JP1027194 A JP 1027194A JP 2719489 A JP2719489 A JP 2719489A JP H02207420 A JPH02207420 A JP H02207420A
Authority
JP
Japan
Prior art keywords
wire
tape
wire rod
heat treatment
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027194A
Other languages
Japanese (ja)
Inventor
Shunichi Nishikida
錦田 俊一
Kazuyuki Nakasuji
中筋 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1027194A priority Critical patent/JPH02207420A/en
Publication of JPH02207420A publication Critical patent/JPH02207420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting wire rod having a high critical current density by filling a temporarily sintered powder of Bi oxide having a composition for producing a superconducting phase to make it fine, followed by a heat treatment, further rolling or pressing it, and applying it to another heat treatment. CONSTITUTION:A temporarily sintered powder of Bi oxide having a composition for producing a superconducting phase is filled into a silver pipe and machined by rolling, drawing or the combination thereof, thereby obtaining a wire rod. The wire rod is applied with a heat treatment so as to be come into a superconducting state. The wire rod in the superconducting state is further rolled or pressed, thus obtaining a tape like wire rod, and then, another heat treatment is applied to the tape like wire rod. A structure can become finer with the heat treatment as well as the orientation of a crystal can be further enhanced so that a critical current density can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、臨界温度(Tc)が液体窒素温度以上で、
しかも臨界電流密度(Jc)も高いBt系酸化物の超伝
導線材を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention is characterized in that the critical temperature (Tc) is equal to or higher than the liquid nitrogen temperature;
Furthermore, the present invention relates to a method for manufacturing a Bt-based oxide superconducting wire having a high critical current density (Jc).

(従来の技術) 酸化物系の超伝導物質は多数発見されているが、最近新
たにBii酸化物の超伝導物質が注目を集めている。こ
のBii酸化物超伝導体は液体窒素温度以上で超伝導状
態になるため、これを線材化するとロスのない送電が可
能であり、コイルを作ると液体窒素温度で作動する超伝
導マグネットに利用できるなど、これまでの液体ヘリウ
ム温度で利用されてきた超伝導線に比較して、その実用
的な価値は格段に大きい。
(Prior Art) Although many oxide-based superconducting materials have been discovered, recently, a new superconducting material of Bii oxide has been attracting attention. This Bii oxide superconductor becomes superconductive at temperatures above liquid nitrogen temperature, so if it is made into a wire, it can transmit power without loss, and if it is made into a coil, it can be used for superconducting magnets that operate at liquid nitrogen temperature. Compared to the superconducting wires that have been used so far at liquid helium temperatures, their practical value is much greater.

BII酸化物には、Tcが80にの相と110にの相の
2相が存在するため、抵抗が0Ωとなる温度が低かった
が、PbOを添加することでTcが110にの単相とな
ることが見出されている。この系統の酸化物で高臨界電
流密度を有する線材の作製も試みられており、例えば「
日経超電導J 1988.10.17号には、Jcが最
高693OA/dのテープ状線材が得られた報じられて
いる。これらの研究の詳細は不明であるが、Bt系と同
じ結晶構造を有し、TcがBi系よりも更に高いTI系
超超伝導体線材化に関する第49回応用物理学会学術講
演会の講演予稿集によると、TI系超超伝導体粉末銀パ
イプ中に充填し、線引したのち圧延してテープ状とし、
その後酸素中で焼結熱処理して、Jcが300OA/c
d以上の線材を得たとされているから、上記の高臨界電
流密度at系超伝導線材の製造方法もこのTl系線材の
製法と類似のものと思われる。
BII oxide has two phases, one with Tc of 80 and one with Tc of 110, so the temperature at which the resistance becomes 0Ω was low, but by adding PbO, it becomes a single phase with Tc of 110. It has been found that Attempts have also been made to create wire rods with high critical current density using this type of oxide; for example,
Nikkei Superconductivity J No. 17 October 1988 reports that a tape-shaped wire rod with a maximum Jc of 693 OA/d was obtained. The details of these studies are unknown, but a preliminary lecture at the 49th Japan Society of Applied Physics Academic Conference on the production of TI-based superconducting wires that have the same crystal structure as Bt-based materials and a higher Tc than Bi-based materials. According to the collection, TI-based superconductor powder is filled into a silver pipe, drawn into a wire, and then rolled into a tape shape.
After that, it is sintered and heat treated in oxygen, and the Jc is 300OA/c.
Since it is said that a wire with a density of d or more was obtained, it is thought that the method for manufacturing the above-mentioned high critical current density AT-based superconducting wire is similar to the method for manufacturing this Tl-based wire.

(発明が解決しようとする課題) 上記のように、これまでに報告された高い臨界電流密度
をもつBi系超伝導線材の製法についての詳細は、今の
ところ不明であるが、最高のJcが約700OA/d程
度では、超伝導線材としては未だ不十分であり、超伝導
コイルの実用化には少な(とも10000 A/cm”
以上のJcが必要である。
(Problems to be Solved by the Invention) As mentioned above, the details of the manufacturing method of Bi-based superconducting wires with high critical current densities that have been reported so far are currently unknown, but the highest Jc Approximately 700 OA/d is still insufficient for superconducting wires, and is too low for practical use in superconducting coils (both 10,000 A/cm"
The above Jc is required.

本発明の目的は、Bii酸化物超伝導体を用いて、10
000 A/cm”以上のJcを有する線材を製造する
方法を提供することにある。
The purpose of the present invention is to use a Bii oxide superconductor to
The object of the present invention is to provide a method for manufacturing a wire having a Jc of 000 A/cm" or more.

(課題を解決するための手段) 酸化物系超伝導体の線材化は、金属系材料のように、こ
れ自身を線引や圧延で線材化する方法では酸化物が脆い
ため不可能である。そこで、一般には酸化物粉末を金属
パイプ中に充填して線材化する方法が採用的されている
。金属パイプの材料としては、線材にしたのち酸化雰囲
気中での熱処理が必要であるため、酸化されず、しかも
酸化物と反応しない銀が最も適している。線材の形状と
しては、断面が丸い線材とテープ状の線材が考えられる
が、テープ状の線材の方がJcが高いものが得られる。
(Means for Solving the Problem) It is impossible to make an oxide-based superconductor into a wire rod by drawing or rolling the superconductor itself, as with metal-based materials, because the oxide is brittle. Therefore, a method is generally adopted in which oxide powder is filled into a metal pipe and made into a wire rod. Silver, which is not oxidized and does not react with oxides, is most suitable as a material for metal pipes because it requires heat treatment in an oxidizing atmosphere after being made into a wire. As for the shape of the wire, a wire with a round cross section and a tape-shaped wire can be considered, but the tape-shaped wire has a higher Jc.

その原因は明らかではないが、この事実はこれまでの多
くの発表で裏付けられており、本発明者らの実験でも、
Jcが3000^/C−以上のテープ状線材が安定して
得られている0通常の方法で作った焼結体のJcは30
0 A/cm”度であるが、線材にすると3000^/
cdを超えるJcになる理由は、線材にすると緻密な酸
化物が得られることと、この種の酸化物の特徴である異
方性に関係し、線材にすると電流を流す方向(圧延方向
)に結晶のa−b面が配向することによると思われる。
Although the cause is not clear, this fact has been supported by many previous publications, and the inventors' experiments also showed that
A tape-shaped wire rod with a Jc of 3000^/C- or more is stably obtained.0 The Jc of a sintered body made by a normal method is 30.
0 A/cm" degree, but when made into a wire, it is 3000^/
The reason why Jc exceeds cd is related to the fact that a dense oxide is obtained when made into a wire rod, and the anisotropy that is a characteristic of this type of oxide. This is thought to be due to the orientation of the a-b plane of the crystal.

本発明者は、上記のような既知の事実に加えて、つぎの
ような新しい知見を得た。即ち、従来の方法で線材とし
たのち熱処理を施して得た超伝導線材を更に圧延または
プレスして熱処理を施すことによって、Jcが飛躍的に
高められた超伝導線材が得られることである。この知見
に基づいてなされた本発明は、下記の点を要旨とする。
In addition to the above-mentioned known facts, the inventors have obtained the following new findings. That is, by further rolling or pressing a superconducting wire obtained by heat-treating the wire by a conventional method, a superconducting wire with a dramatically increased Jc can be obtained. The present invention, which was made based on this knowledge, has the following points.

r超伝導相を生成する組成のBi系酸化物の仮焼粉末を
銀パイプに詰め、圧延および/または線引により線材と
したのち熱処理を施し、二〇熱処理後の線材を更に圧延
またはプレスしてテープ状線材としたのち再度熱処理す
ることを特徴とする臨界電流密度の高いBi系超伝導線
材の製造方法j上記の本発明において、Bii酸化物と
は、一般に知られているPb−B1−5r−Ca−0系
で、その組成比は、例えばPba、 asBi+、 y
+sr+、 q+cat、 +4CusOyである。
(r) Fill a silver pipe with calcined powder of Bi-based oxide having a composition that produces a superconducting phase, and heat-treat the wire after rolling and/or drawing. A method for producing a Bi-based superconducting wire with a high critical current density, which is characterized by forming a tape-shaped wire into a tape-like wire and then heat-treating it again. 5r-Ca-0 system, the composition ratio of which is, for example, Pba, asBi+, y
+sr+, q+cat, +4CusOy.

上記のような組成となるように配合された原料を仮焼し
て得た粉末を恨パイプに詰め、圧延、線引あるいはその
組合せで加工して線材とする。この時の線材の形状は、
断面が円形のものでも、テープ状のものでも差し支えな
い、線材には適当な熱処理を施して超伝導状態とする。
The powder obtained by calcining the raw materials blended to have the above-mentioned composition is packed into a pipe and processed by rolling, wire drawing, or a combination thereof to form a wire rod. The shape of the wire at this time is
The wire, which may have a circular cross section or a tape shape, is subjected to an appropriate heat treatment to make it superconducting.

粉末を詰めるパイプを根とする理由は既述のとおりであ
る。
The reason why it is based on a pipe that is filled with powder is as described above.

本発明方法の特徴は、上記の方法で作製した線材を更に
圧延またはプレスして、丸い線材をテープ状に、または
テープ状線材をより薄いテープにしたのち熱処理を加え
ることにある。この二回目の圧延またはプレス(再加工
)と再熱処理により組織が更に緻密化し、且つ結晶の配
向性が更に向上することによってJcが著しく高くなる
のである。
The feature of the method of the present invention is that the wire produced by the above method is further rolled or pressed to make a round wire into a tape shape or a tape-shaped wire into a thinner tape, and then heat treatment is applied. This second rolling or pressing (reworking) and reheat treatment further densify the structure and further improve crystal orientation, resulting in a significantly higher Jc.

なお、上記の再加工と再熱処理は、−回に限らず、必要
に応じて二回以上繰り返してもよい。
Note that the reprocessing and reheat treatment described above are not limited to - times, but may be repeated two or more times as necessary.

(作用) 以下、本発明方法の各工程について、詳しく説明する。(effect) Each step of the method of the present invention will be explained in detail below.

第1図は、仮焼粉末を銀パイプに詰めた状態以降の加工
工程を示す図である。
FIG. 1 is a diagram showing the processing steps after the calcined powder is packed into a silver pipe.

まず、前記のPb  Bi  5r−Ca−0系の組成
となるように構成元素の酸化物、硝酸塩、シュウ酸塩な
どの混合粉末を700〜825°Cで3〜12hr、酸
化雰囲気中で仮焼する。仮焼は原料粉の混合状態により
1〜6回繰り返す、こうして得た仮焼粉を銀のパイプに
充填する。なお、このパイプは必ずしも円形断面のもの
に限られず、楕円もしくは矩形断面のものでもよい。
First, a mixed powder of constituent elements such as oxides, nitrates, and oxalates is calcined in an oxidizing atmosphere at 700 to 825°C for 3 to 12 hours so as to have the composition of the Pb Bi 5r-Ca-0 system. do. Calcination is repeated 1 to 6 times depending on the mixed state of the raw material powder, and the thus obtained calcined powder is filled into a silver pipe. Note that this pipe is not necessarily limited to a circular cross section, but may be an elliptical or rectangular cross section.

仮焼粉末を詰めたパイプは、圧延、ダイス伸線、或いは
それらを組合せた加工で、第1図に示すようにテープ状
または円形断面の線材とする(第1図では、便宜的にこ
れらを「テープ」、「線」と書き分けているが、本発明
の定義ではいずれも「線材」である、以下、これらを、
−次線材と記す)。
The pipe filled with calcined powder is processed by rolling, die wire drawing, or a combination thereof into a tape-shaped or circular cross-section wire as shown in Figure 1 (in Figure 1, these are shown for convenience). Although they are written as "tape" and "wire," both are "wire rods" according to the definition of the present invention.Hereinafter, these will be referred to as
- written as next wire).

上記によって得られた一次線材を、熱処理して超伝導状
態にする。熱処理温度は、本発明者の実験結果によれば
、837℃前後が最適である。この系の酸化物の最適熱
処理温度の許容範囲は±2〜3°Cであるから、炉の温
度管理は適切に行わなければならない。
The primary wire obtained as described above is heat treated to make it superconductive. According to the inventor's experimental results, the optimum heat treatment temperature is around 837°C. Since the allowable range of the optimum heat treatment temperature for this type of oxide is ±2 to 3°C, the temperature of the furnace must be appropriately controlled.

熱処理時間は、24時間以上、望ましくは80時間以上
とするのがよい。
The heat treatment time is preferably 24 hours or more, preferably 80 hours or more.

このようにして、−旦製造した超伝導線材を更に圧延ま
たはプレスして、線材はテープ状に、テープはさらに薄
いテープとする(第1図の第2工程)、圧延またはプレ
ス後のテープは薄い方が望ましい、なお、−次線材の径
または厚みが大きい場合には、第2工程の加工によって
幅の広いシート状になることもあるが、これも本発明の
テープ状線材の範晴に含むものとする。
In this way, the superconducting wire produced once is further rolled or pressed to make the wire into a tape and the tape into a thinner tape (second step in Figure 1).The tape after rolling or pressing is The thinner the wire, the better. However, if the diameter or thickness of the -order wire is large, it may be formed into a wide sheet by processing in the second step, but this also falls within the scope of the tape-shaped wire of the present invention. shall be included.

第2工程の加工を施した線材を、再度、先に述べたと同
じ温度で熱処理する。この時は24時間以上、例えば、
48時間程度で十分である。こうして得られたテープ状
線材は、液体窒素温度でのJcが1000OA/cm”
を超えるきわめて高いものとなる。
The wire rod processed in the second step is heat treated again at the same temperature as described above. At this time, for more than 24 hours, for example,
About 48 hours is sufficient. The thus obtained tape-shaped wire has a Jc of 1000OA/cm at liquid nitrogen temperature.
It will be extremely high, exceeding .

(実施例1) 化学組成がPb61Ji+、 tlsrl、 t+ca
t、 + aCu30 yとなるように、PbO、Bi
zOs 、5rCOs 、CaCO5、CuOの粒径1
0μ−以下の粉末を混合し、大気中、800°CX12
hrの仮焼を3回繰り返した。仮焼粉末を10μm以下
に粉砕し、外径11m++w、内径91、長さ150+
usの銀パイプに充填した。これをダイス伸線し1.0
+a+*φ、0.51111φ、0.31φの線材(−
次線材)を作った。これらの線材を837°C×96時
間、大気中で熱処理した後、ロール圧延でO,1ma+
厚のテープ状線材に圧延し、再度837°C×12〜9
6時間、大気中で熱処理した。これらの試料を20国の
長さに切断し、液体窒素中でJcを測定した。
(Example 1) Chemical composition is Pb61Ji+, tlsrl, t+ca
PbO, Bi so that t, + aCu30 y
Particle size of zOs, 5rCOs, CaCO5, CuO 1
Mix powders of 0μ or less and heat at 800°CX12 in the atmosphere.
Calcination for hr was repeated three times. Calcined powder is crushed to 10 μm or less, outer diameter 11 m++w, inner diameter 91, length 150+
Filled US silver pipe. This was drawn with a die to 1.0
+a+*φ, 0.51111φ, 0.31φ wire (-
Next, I made a wire rod. After heat-treating these wire rods in the atmosphere at 837°C for 96 hours, they were rolled to O, 1 ma+
Roll it into a thick tape-shaped wire rod and heat it again at 837°C x 12~9
Heat treatment was performed in the air for 6 hours. These samples were cut into 20 mm lengths and Jc was measured in liquid nitrogen.

第2図は、得られたテープ状線材のJcと2回目の熱処
理時間との関係を、−次線材の径ごとに示したものであ
る。いずれの線材でも、24時間以上の熱処理で100
0OA/cm”以上のJCが得られている。
FIG. 2 shows the relationship between Jc of the obtained tape-shaped wire rod and the second heat treatment time for each diameter of the -order wire rod. Either wire rod can be heated to 100% by heat treatment for 24 hours or more.
A JC of 0OA/cm" or more was obtained.

(実施例2) 実施例1と同様にダイス伸線して作った1、0mmφの
線材を圧延して0.5m+*厚と0.3Il+s厚と0
.2mm厚のテープ状の一次線材とし、837℃X 9
6hr大気中で熱処理した。
(Example 2) A wire rod of 1.0 mmφ made by die wire drawing in the same manner as in Example 1 was rolled to obtain 0.5 m + * thickness, 0.3 Il + s thickness and 0.
.. 2mm thick tape-shaped primary wire material, 837°C x 9
Heat treatment was performed in the atmosphere for 6 hours.

これらを再度圧延により0.1mm厚まで圧延し、83
7°C×24時間熱処理した。これらの試料について実
施例1と同じようにJcを測定したところ、いずれのテ
ープも12000〜13500A/clIl!の範囲の
Jcを示した。
These were rolled again to a thickness of 0.1 mm, and
Heat treatment was performed at 7°C for 24 hours. When the Jc of these samples was measured in the same manner as in Example 1, the Jc of each tape was 12,000 to 13,500 A/clIl! It showed Jc in the range of .

(実施例3) 実施例1と同様にダイス伸線して1.0mmφの線材を
作り、これを圧延して0.12mm、 0.15mmお
よび0.20fi+w厚のテープ状の一次線材′とし、
837°c×96hr大気中で熱処理した。
(Example 3) In the same manner as in Example 1, a wire rod of 1.0 mmφ was made by die wire drawing, and this was rolled into a tape-shaped primary wire rod with a thickness of 0.12 mm, 0.15 mm, and 0.20 fi + w,
Heat treatment was performed in the atmosphere for 837°C x 96hr.

上記熱処理後の一次線材を3000〜25000kgf
/c++”の圧力で下記のようにプレス圧縮した。
The primary wire rod after the above heat treatment is 3000 to 25000 kgf.
/c++'' pressure as described below.

■ 0.12mm厚テープ→O,11mm厚、O,l0
RIII厚、O,Ohm厚の3種類のテープに ■ 0.15mm厚テープ→0.13N11厚、0.1
2m−厚、0.10mm厚の3種類のテープに ■ 0.20mm厚テープ→0.18m+*厚、0.1
5mm厚、0.12mm厚の3種類のテープに これらのテープを大気中で837°(:X24hr熱処
理して、Jcを測定した。その結果をテープ厚みと関係
づけて第3図に示す0図示のとおり、プレスする前の元
のテープが薄い程、また、最終のテープが薄い程、Jc
は大きくなっている。特に、上記■の0.12a+m厚
から0.09+am厚にプレスした線材では、1400
0 A/cm”をこえる極めて高いJcが得られている
■ 0.12mm thick tape → O, 11mm thick, O, l0
Three types of tape: RIII thickness, O, Ohm thickness ■ 0.15mm thick tape → 0.13N11 thickness, 0.1
Three types of tape: 2m-thickness and 0.10mm thickness■ 0.20mm thick tape → 0.18m+*thickness, 0.1
Three types of tapes, 5 mm thick and 0.12 mm thick, were heat treated in the atmosphere for 837° (:X24 hr) and Jc was measured. As shown in the figure, the thinner the original tape is before pressing, and the thinner the final tape, the Jc
is getting bigger. In particular, the wire rod pressed from the above 0.12a+m thickness to 0.09+am thickness has a thickness of 1400
An extremely high Jc exceeding 0 A/cm" was obtained.

上記の■で得られた3種類のテープを、下記のように更
にプレスし熱処理する試験も実施した。
A test was also conducted in which the three types of tapes obtained in the above (1) were further pressed and heat treated as described below.

■ 0.1ha厚テープ→0.15m−厚テーブ0、1
5I1m厚テープー0.12mm厚テープ0.12m−
厚テーブ→0.10m11厚テープ第3図中に口で示す
のがこれらのテープのJc測定値である。■の口と対比
してみれば、再度のプレスと熱処理によってJcが一段
と高くなることがわかる。
■ 0.1ha thick tape → 0.15m-thick tape 0, 1
5I 1m thick tape - 0.12mm thick tape 0.12m -
Thick tape → 0.10 m 11 thick tape The Jc measurement values of these tapes are indicated by the opening in FIG. If we compare it with the opening of (2), we can see that Jc becomes even higher due to the second pressing and heat treatment.

(発明の効果) 本発明の方法によれば、臨界温度の高いBi系超超伝導
体よって、高い臨界電流密度を有する線材を製造するこ
とが可能となり、この種の酸化物系超伝導物質の実用化
が大きく促進される。
(Effects of the Invention) According to the method of the present invention, it is possible to manufacture a wire having a high critical current density using a Bi-based superconductor having a high critical temperature, and Practical application will be greatly promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の工程略図、 第2図は、本発明方法により丸径線材から作製したテー
プ状線材の熱処理時間とJcとの関係を示す図、 第3図は、本発明方法により3種類の厚さのテープ状線
材をプレスし熱処理して得たテープ状線材の最終厚さと
Jcとの関係を示す図、である。
Fig. 1 is a schematic process diagram of the method of the present invention, Fig. 2 is a diagram showing the relationship between Jc and the heat treatment time of a tape-shaped wire produced from a round diameter wire by the method of the present invention, and Fig. 3 is a diagram showing the relationship between Jc and the method of the present invention. FIG. 2 is a diagram showing the relationship between Jc and the final thickness of tape-shaped wire rods obtained by pressing and heat-treating tape-shaped wire rods of three different thicknesses.

Claims (1)

【特許請求の範囲】[Claims] 超伝導相を生成する組成のBi系酸化物の仮焼粉末を銀
パイプに詰め、圧延および/または線引により線材とし
たのち熱処理を施し、この熱処理後の線材を更に圧延ま
たはプレスしてテープ状線材としたのち再度熱処理する
ことを特徴とする臨界電流密度の高いBi系超伝導線材
の製造方法。
Calcined powder of Bi-based oxide with a composition that produces a superconducting phase is packed into a silver pipe, rolled and/or drawn to form a wire, then heat treated, and the heat-treated wire is further rolled or pressed to form a tape. A method for producing a Bi-based superconducting wire having a high critical current density, which comprises forming the wire into a shaped wire and then heat-treating it again.
JP1027194A 1989-02-06 1989-02-06 Manufacture of superconducting wire rod Pending JPH02207420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027194A JPH02207420A (en) 1989-02-06 1989-02-06 Manufacture of superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027194A JPH02207420A (en) 1989-02-06 1989-02-06 Manufacture of superconducting wire rod

Publications (1)

Publication Number Publication Date
JPH02207420A true JPH02207420A (en) 1990-08-17

Family

ID=12214282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027194A Pending JPH02207420A (en) 1989-02-06 1989-02-06 Manufacture of superconducting wire rod

Country Status (1)

Country Link
JP (1) JPH02207420A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105809A (en) * 1989-09-20 1991-05-02 Sumitomo Heavy Ind Ltd Manufacture of oxide superconductive wire material
JPH04223010A (en) * 1990-04-02 1992-08-12 General Electric Co <Ge> Manufacture of tape consisting of bi-pb-ca-sr- cu-o groupe polycrystaline superconductor in silver-covered arrangement state
JPH04292819A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive wire
JPH05342931A (en) * 1991-08-28 1993-12-24 Ind Technol Res Inst Manufacture of flexible superconducting tape
US5830828A (en) * 1994-09-09 1998-11-03 Martin Marietta Energy Systems, Inc. Process for fabricating continuous lengths of superconductor
US6311384B1 (en) * 1989-12-28 2001-11-06 Hidehito Mukai Method of manufacturing oxide superconducting wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105809A (en) * 1989-09-20 1991-05-02 Sumitomo Heavy Ind Ltd Manufacture of oxide superconductive wire material
US6311384B1 (en) * 1989-12-28 2001-11-06 Hidehito Mukai Method of manufacturing oxide superconducting wire
JPH04223010A (en) * 1990-04-02 1992-08-12 General Electric Co <Ge> Manufacture of tape consisting of bi-pb-ca-sr- cu-o groupe polycrystaline superconductor in silver-covered arrangement state
JPH04292819A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive wire
JPH05342931A (en) * 1991-08-28 1993-12-24 Ind Technol Res Inst Manufacture of flexible superconducting tape
US5830828A (en) * 1994-09-09 1998-11-03 Martin Marietta Energy Systems, Inc. Process for fabricating continuous lengths of superconductor
US6055446A (en) * 1994-09-09 2000-04-25 Martin Marietta Energy Systems, Inc. Continuous lengths of oxide superconductors
US6385835B1 (en) 1994-09-09 2002-05-14 Ut Battelle Apparatus for fabricating continuous lengths of superconductor

Similar Documents

Publication Publication Date Title
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JPH02207420A (en) Manufacture of superconducting wire rod
US5550103A (en) Superconductor tapes and coils and method of manufacture
JP2644245B2 (en) Oxide superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH03199124A (en) Bi-based oxide superconductor powder and production of wire thereof
JPH04317415A (en) Production of bi-based oxide superconductor
JPH0471113A (en) Manufacture of oxide superconducting wire
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH0195409A (en) Superconducting wire
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH02160317A (en) Manufacture of superconducting wire
JPH02192619A (en) Manufacture of oxide superconductor
JPH05274933A (en) Manufacture of oxide superconducting wire material
JPH04317416A (en) Production of bi-based oxide superconductor
JPH01304618A (en) Manufacture of oxide superconductive filament
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state
JPH06223649A (en) Manufacture of bi oxide superconducting wire
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH04269407A (en) Manufacture of ceramic superconductive conductor
JPH06131928A (en) Manufacture of oxide superconductor
JPH0298017A (en) Manufacture of oxide superconductive wire material