JPH0279310A - Manufacture of oxide superconductive wire - Google Patents

Manufacture of oxide superconductive wire

Info

Publication number
JPH0279310A
JPH0279310A JP63231084A JP23108488A JPH0279310A JP H0279310 A JPH0279310 A JP H0279310A JP 63231084 A JP63231084 A JP 63231084A JP 23108488 A JP23108488 A JP 23108488A JP H0279310 A JPH0279310 A JP H0279310A
Authority
JP
Japan
Prior art keywords
oxide
plate
flake
powder
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63231084A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kiyoshi Okaniwa
岡庭 潔
Hiroo Takahashi
高橋 宏郎
Hiromi Murakami
裕美 村上
Masashi Yasuda
正史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63231084A priority Critical patent/JPH0279310A/en
Publication of JPH0279310A publication Critical patent/JPH0279310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase critical current density by forming, under pressure, flake- type powder made of an oxide superconductor having a orientation, and rolling the resultant complex in such a way that an oxide layer made of desired pieces of plate-type compacts have a specific percent or more of total degressiveness, followed by heat treatment. CONSTITUTION:Flake-type powder made of an oxide superconductor having orientation is rolled into a plate-type compact having 1.5mm or less in thickness. Desired pieces of the plate-type compacts in a laminated state are inserted in a metallic tube, thereby obtaining a complex. The resultant complex is rolled, followed by heat treatment, thereby obtaining an oxide superconductive wire having crystal orientation. The oxide layer made of one or plural pieces of the plate-type compacts is rolled in such a way as to have 50% or more of total degressiveness, thereby enhancing density of the oxide layer so as to increase critical current density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物系超電導線条体の製造方法に関するもの
であり、特に結晶配向性を有していて、臨界電流密度(
J、)が高い、主としてテープ状の酸化物系超電導線条
体の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing an oxide-based superconducting wire, and in particular, the present invention relates to a method for manufacturing an oxide-based superconducting wire, which has crystal orientation and has a critical current density (
The present invention relates to a method for producing a mainly tape-shaped oxide-based superconducting wire body having a high J,).

〔従来の技術〕[Conventional technology]

希土類元素又はBiと、アルカリ土金属、銅及び酸素か
らなる酸化物系超電導体は臨界温度(TC)が高く、そ
の応用が期待されているが、該酸化物系超電導体は一般
に線条体に加工する事が困難であり、通常超電導体とな
る原料酸化物の粉末材料を銀、銀合金或いは銅、銅合金
等の金属管内に充填し、これを伸線、スウェージング、
溝ロール等により所望寸法の複合線条体に冷間加工し、
これに酸素含有雰囲気中で熱処理を施して酸化物系超電
導線条体としていた。
Oxide-based superconductors made of rare earth elements or Bi, alkaline earth metals, copper, and oxygen have high critical temperatures (TC) and are expected to be used for this purpose. Difficult to process, the raw material oxide powder that normally becomes a superconductor is filled into a metal tube made of silver, silver alloy, copper, copper alloy, etc., and then wire drawn, swaged,
Cold-worked into composite filaments of desired dimensions using grooved rolls, etc.
This was heat-treated in an oxygen-containing atmosphere to obtain an oxide-based superconducting wire.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これら酸化物系超電導物質に対する要求特性の一つとし
て、臨界電流密度(Jc)が大きい事が挙げられるが、
該酸化物系超電導物質は一般に層状の結晶構造を有して
いて、電流の流れる方向に異方性があり、結晶軸のa軸
とb軸によって作られる面内では電流がよく流れるが、
C軸方向には殆ど流れないという性質を持っている。臨
界電流密度(Jc)についても同じ様な異方性があり、
a、b軸面内のJ、はC軸方向のJcに比べて極めて大
きい。従って酸化物系超電導成形体のJ。
One of the characteristics required for these oxide-based superconducting materials is a large critical current density (Jc).
The oxide-based superconducting materials generally have a layered crystal structure, and there is anisotropy in the direction of current flow, and current flows well in the plane formed by the a-axis and b-axis of the crystal axes.
It has the property of almost no flow in the C-axis direction. There is a similar anisotropy regarding critical current density (Jc),
J in the a- and b-axis planes is extremely large compared to Jc in the C-axis direction. Therefore, J of the oxide-based superconducting molded body.

を大きくする為には、該酸化物系超電導成形体の電流を
流そうとする方向がa軸とb軸を含む面内に含まれる様
に、結晶の配向性を制御する必要がある。
In order to increase the crystal orientation, it is necessary to control the orientation of the crystals so that the direction in which a current is to flow through the oxide-based superconducting molded body is included in a plane including the a-axis and the b-axis.

然しなから、前記従来の酸化物系超電導成形体の製造方
法においては、得られた酸化物系超電導成形体は通常結
晶方位がランダムであり、従って低い臨界電流密度(J
C)の値しか得られないと言う問題点があった。
However, in the conventional method for producing an oxide-based superconducting compact, the obtained oxide-based superconducting compact usually has a random crystal orientation, and therefore has a low critical current density (J
There was a problem that only the value of C) could be obtained.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、結晶配向性を有してい
て、臨界電流密度(J、)が高い酸化物系超電導線条体
の製造方法を提供する事である。
The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to provide an oxide-based superconducting wire having crystal orientation and a high critical current density (J). The purpose is to provide a manufacturing method.

即ち本発明は、フレークの厚さ方向が結晶のa軸となっ
ており、フレークの面内方向にa軸とb軸を含む様な配
向性を持った酸化物系超電導体のフレーク状粉体を圧粉
成形して、厚さ1.5mm以下の板状成形体とし、該板
状成形体の所望数枚重ねて金属管内に挿入して複合化し
、この様にして得られた複合体を前記所望数枚の板状成
形体からなる酸化物層の総減面率が50%以上となる様
に圧延加工した後、熱処理する事を特徴とする酸化物系
超電導線条体の製造方法である。
That is, the present invention provides flaky powder of an oxide superconductor having an orientation such that the thickness direction of the flake is the a-axis of the crystal, and the in-plane direction of the flake includes the a-axis and the b-axis. is powder-molded to form a plate-shaped compact with a thickness of 1.5 mm or less, a desired number of plate-shaped compacts are stacked and inserted into a metal tube to form a composite, and the composite thus obtained is A method for producing an oxide-based superconducting wire body, which comprises rolling the oxide layer made of the desired number of plate-shaped compacts so that the total area reduction rate is 50% or more, and then heat-treating the oxide layer. be.

本発明方法におけるフレーク状で結晶軸が配向している
酸化物系超電導物質は、例えば下記■或いは■の方法に
より得る事が出来る。
The flaky oxide superconducting material with oriented crystal axes in the method of the present invention can be obtained, for example, by the method (1) or (2) below.

■原料粉(例えばY B a 2 Cu x O7−X
の組成ではY2O3、B a COx及びCuO粉末)
を所望組成となる様配合、混合する。この混合粉末を加
熱し、軟化又は溶融せしめた後、急冷凝固する。この急
冷凝固の速度は102°C/sec以下では、その後の
熱処理に極めて長時間を必要とし、又104”(: /
 s e c以上にする事は困難である為、102〜1
04°C/secとする事が望ましい。この様にして得
られた急冷凝固材(板状)に酸素雰囲気中で熱処理を施
す。その温度は500〜1000°C程度とし、降温は
ゆ一つくり行なうとよい。この様にして得られた酸化物
材料を粉砕すると、配向性を持つ厚さ1〜13μm、長
さ5〜20μm程度のフレーク状の酸化物系超電導体を
得る事が出来る。
■Raw material powder (e.g. YB a 2 Cu x O7-X
With the composition of Y2O3, B a COx and CuO powder)
are blended and mixed to obtain the desired composition. This mixed powder is heated to soften or melt, and then rapidly solidified. If the rapid solidification rate is below 102°C/sec, the subsequent heat treatment will require an extremely long time, and the
Since it is difficult to increase s e c or higher, 102 to 1
It is desirable to set the temperature to 04°C/sec. The rapidly solidified material (plate-shaped) thus obtained is subjected to heat treatment in an oxygen atmosphere. The temperature should be approximately 500 to 1000°C, and the temperature should be lowered gradually. By pulverizing the oxide material thus obtained, it is possible to obtain an oxide-based superconductor in the form of flakes having orientation properties and having a thickness of about 1 to 13 μm and a length of about 5 to 20 μm.

■前記■と同様な超電導体組成の混合粉末を、例えばP
t、等のポート或いは板に乗せて加熱して、半溶融また
は溶融状態とした後、その長さ方向に温度勾配を与えな
がら、酸素含有雰囲気中で一方向に冷却凝固させる。し
かる後この様にして得られた酸化物材料を粉砕すると、
前記■と同様なフレーク状の酸化物系超電導体を得る事
が出来る。
■ Mixed powder with the same superconductor composition as in ■ above, for example, P
The material is placed on a port or plate such as T, and heated to a semi-molten or molten state, and then cooled and solidified in one direction in an oxygen-containing atmosphere while giving a temperature gradient in the length direction. After that, when the oxide material obtained in this way is crushed,
It is possible to obtain a flaky oxide superconductor similar to that described in (2) above.

この様にして得られた、第1図に示す様にフレークの厚
さ方向が結晶のa軸となっており、フレークめ面内方向
にa軸とb軸を含む様な配向性を持ったフレーク状粉体
1を圧粉成形して、例えば第2図に示す様な形状の、フ
レーク面が板表面に平行になる様に該フレーク状粉体1
が配列した板状成形体2とする。この際該板状成形体2
の板厚が1.5mmを超えると、圧粉時の成形圧力が板
厚方向中心部迄充分に伝わらなく、第3図に示す様に中
心部付近ではフレーク状粉体1のフレーク面が板表面に
平行にならなく、ランダムな方向を向く様になり、充分
な配向性が得られないので、前記板状成形体2の板厚は
1.5mm以下にする必要がある。
As shown in Figure 1, the obtained flake has an orientation in which the thickness direction of the flake is the a-axis of the crystal, and the in-plane direction of the flake includes the a-axis and the b-axis. The flake-like powder 1 is compacted into a shape as shown in FIG. 2, for example, so that the flake surface is parallel to the plate surface.
A plate-shaped molded body 2 is formed in which . At this time, the plate-shaped molded body 2
If the plate thickness exceeds 1.5 mm, the compacting pressure during powder compaction will not be sufficiently transmitted to the center in the plate thickness direction, and as shown in Fig. Since the plate is not parallel to the surface and is oriented in a random direction, and sufficient orientation cannot be obtained, the plate thickness of the plate-shaped molded body 2 must be 1.5 mm or less.

次に前記板状成形体2を例えば第4図(a)、(b)に
示す様に金属管3に挿入し、該金属管3の両端部に金属
製の栓4を接合して密封し、複合体とする。前記金属管
3及び金属栓4の材質としては、Ag、Ag合金、Cu
、Cu合金等を適宜使用する事が出来る。又板状成形体
2は複数枚重ねて積層した状態で、金属管3内に挿入し
ても差し支えない。又金属管3と金属栓4との接合は、
例えば電子ビーム溶接の様に真空中で行い、得られる複
合体の内部を真空状態にしても良く、或いは溶接、ハン
ダ付は等により大気中で接合しても差し支えない。
Next, the plate-shaped molded body 2 is inserted into a metal tube 3 as shown in FIGS. 4(a) and 4(b), and metal plugs 4 are joined to both ends of the metal tube 3 to seal it. , a complex. The materials of the metal tube 3 and metal plug 4 include Ag, Ag alloy, and Cu.
, Cu alloy, etc. can be used as appropriate. Further, a plurality of plate-shaped molded bodies 2 may be inserted into the metal tube 3 in a stacked state. Moreover, the joining of the metal pipe 3 and the metal stopper 4 is as follows.
For example, electron beam welding may be performed in a vacuum and the interior of the resulting composite may be in a vacuum state, or joining may be performed by welding, soldering, etc. in the atmosphere.

次にこの様にして得られた複合体を例えば第5図に示す
様な方法で、ロール5により所望厚さ迄圧延加工する。
Next, the composite thus obtained is rolled to a desired thickness using rolls 5, for example, as shown in FIG.

当初板状成形体2の密度は真密度の65%程度であるが
、前記圧延加工によりフレーク状粉体2の向きは変える
事無く(即ち配向性は変化させずに)、板状成形体2の
密度を向上させる事が出来る。この際1枚又は複数枚の
板状成形体2からなる酸化物層の総滅面率が50%未満
であると、圧延加工による板状成形体2の密度向上が不
充分であって、熱処理後のJcの値が低くなるので、前
記酸化y4IJ層の総滅面率は50%以上にする必要が
ある。
Initially, the density of the plate-shaped compact 2 is about 65% of the true density, but the rolling process does not change the direction of the flake-shaped powder 2 (that is, without changing the orientation). It is possible to improve the density of At this time, if the total surface destruction rate of the oxide layer consisting of one or more plate-shaped molded bodies 2 is less than 50%, the density of the plate-shaped molded body 2 by rolling will be insufficiently improved, and the heat treatment Since the subsequent Jc value becomes low, the total surface destruction rate of the oxidized y4IJ layer needs to be 50% or more.

前記圧延加工後、最後に熱処理を行なって酸化物系超電
導線条体が得られる。尚本発明方法によれば、前記板状
成形体2と金属管3との複合体の寸法を適宜選定する事
により、幅の狭いテープから広幅テープ迄所望の形状の
酸化物系超電導線条体を得る事が出来る。
After the rolling process, a final heat treatment is performed to obtain an oxide-based superconducting wire. According to the method of the present invention, by appropriately selecting the dimensions of the composite body of the plate-shaped molded body 2 and the metal tube 3, the oxide-based superconducting wire can be formed into a desired shape from a narrow tape to a wide tape. can be obtained.

〔作用〕[Effect]

本発明方法においては、配向性を持った酸化物系超電導
体のフレーク状粉体を圧粉成形して、厚さ1.5 m 
m以下の板状成形体とし、該板状成形体を所望数枚重ね
て金属管内に挿入して複合化し、この様にして得られた
複合体を圧延加工した後、熱処理して酸化物系超電導線
条体としているので、結晶配向性を有する酸化物系超電
導線条体が得られ、しかも前記1枚又は複数枚の板状成
形体からなる酸化物層の総減面率が50%以上となる様
に圧延加工しているので、該酸化物層の密度も向上し、
従ってJcの値が大きい酸化物系超電導線条体が得られ
る。
In the method of the present invention, flaky powder of oriented oxide superconductor is compacted to a thickness of 1.5 m.
The desired number of plate-shaped compacts are stacked and inserted into a metal tube to form a composite, and the composite thus obtained is rolled and heat-treated to form an oxide-based material. Since the superconducting wire is used as a superconducting wire, an oxide-based superconducting wire having crystal orientation can be obtained, and the total area reduction rate of the oxide layer made of the one or more plate-shaped compacts is 50% or more. Since it is rolled so that the density of the oxide layer is improved,
Therefore, an oxide-based superconducting wire having a large Jc value can be obtained.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。原料
酸化物粉体としてY2O3、BaC0,及びCuOを用
い、モル比で’Y:Ba :Cu=1 :2:3となる
様に秤量し、自動乳鉢で混合した。
[Example 1] Next, the present invention will be explained in more detail with reference to Examples. Y2O3, BaC0, and CuO were used as raw material oxide powders, weighed so that the molar ratio was 'Y:Ba:Cu=1:2:3, and mixed in an automatic mortar.

これを02気流中で950℃xlohr仮焼成した。而
して得た仮焼成物を粉砕して得られた2次仮焼原料粉体
を、Ptルツボ中で1300℃に加熱して溶融させた後
急冷して厚さ約1mmの板を作り、この板状物を0.気
流中で950℃×50hr熱処理した後、自動乳鉢で粉
砕して、厚さ約4〜6μm、長さ10〜30μmのフレ
ーク状酸化物系超電導粉体を作った。このフレーク状粉
体のX、l191回折試験を行なった結果、第1図に示
す様にフレークの厚さ方向が結晶のa軸となっており、
フレークの面内方向にa軸とb軸を含む様な配向性を持
っている事が確認された。
This was calcined at 950° C. x lohr in a 02 air flow. The secondary calcined raw material powder obtained by pulverizing the calcined product thus obtained was heated to 1300°C in a Pt crucible to melt it, and then rapidly cooled to make a plate with a thickness of about 1 mm. This plate-like material is 0. After heat treatment at 950° C. for 50 hours in an air stream, it was crushed in an automatic mortar to produce flaky oxide-based superconducting powder with a thickness of about 4 to 6 μm and a length of 10 to 30 μm. As a result of performing an X, l191 diffraction test on this flake-like powder, the thickness direction of the flake was the a-axis of the crystal, as shown in Figure 1.
It was confirmed that the flakes had an orientation that included the a-axis and the b-axis in the in-plane direction.

このフレーク状粉体を4tOnプレスを用いて圧粉成形
し、厚さtmm、幅3mm、長さ20mmの板状成形体
を作った。而して得た板状成形体を1〜5枚積層して、
第4図に示す様にAg製角型パイプ3内に挿入し、該A
g製角型パイプ3の両端部にAg製の栓4をハンダ付け
により接合して密封し、複合体とし、この複合体を種々
の総減面率で圧延加工してテープ状複合線とした。而し
て得たテープ状複合線を02気流中で900°C×20
hr熱処理して、酸化物系超電導体テープを得た。而し
て得た酸化物系超電導体テープについて、酸化物層の密
度及びJ、を測定した。
This flake-like powder was compacted using a 4tOn press to produce a plate-like molded product with a thickness of tmm, a width of 3mm, and a length of 20mm. 1 to 5 of the obtained plate-shaped molded bodies are laminated,
As shown in Fig. 4, insert it into the Ag square pipe 3, and
A plug 4 made of Ag was soldered to both ends of the square pipe 3 made of g to form a composite body, and this composite was rolled at various total area reduction ratios to form a tape-shaped composite wire. . The tape-shaped composite wire thus obtained was heated at 900°C x 20 in 02 airflow.
An oxide superconductor tape was obtained by heat treatment for hr. The density and J of the oxide layer of the thus obtained oxide-based superconductor tape were measured.

圧粉成形した板状成形体の厚さt、Ag製角型パイプ3
内に挿入する際の積層数、積層された酸化物層の総減面
率等の製造条件並びに得られた酸化物系超電導体テープ
における酸化物層の密度及びJcを第1表にまとめて示
した。尚密度は真密度に対する比(%)で示した。
Thickness t of powder-formed plate-shaped compact, Ag square pipe 3
Table 1 summarizes the manufacturing conditions such as the number of laminated layers when inserted into the oxide layer, the total area reduction rate of the laminated oxide layers, and the density and Jc of the oxide layer in the obtained oxide-based superconductor tape. Ta. The density is expressed as a ratio (%) to the true density.

第1表から明らかな様に、本発明方法により製造した本
発明測高1〜9はいずれも高密度で、臨界電流密度(J
C)も大きな値が得られている。
As is clear from Table 1, all of the height measurements 1 to 9 of the present invention manufactured by the method of the present invention have high density, and the critical current density (J
C) also has a large value.

一方前記複合体における酸化物層の総減面率が本発明の
範囲内よりも低い゛比較例品1は密度が低くて、Jcの
値が小さくなっており、又板状成形体の厚さが本発明の
範囲内よりも厚い比較測高2は、充分な結晶配向性が得
られない為やはりJcの値が小さくなっている。
On the other hand, the total area reduction rate of the oxide layer in the composite is lower than the range of the present invention.Comparative Example 1 has a low density, a small Jc value, and a small thickness of the plate-shaped molded body. Comparative height measurement 2, in which the thickness is thicker than the range of the present invention, also has a small Jc value because sufficient crystal orientation cannot be obtained.

〔実施例2〕 原料酸化物粉体としてBizO3,5rCO+、CaC
0,及びCuOを用い、モル比でBiasr : Ca
 : Cu=2 : 2 : 2 : 3となる様に秤
量し、自動乳鉢で混合した。これを大気中で850”C
X 10 h r仮焼成した。而して得られた仮焼成物
を粉砕して得られた21次仮焼原料粉体を、Ptルツボ
中で1100°Cに加熱して溶融させた後急冷して厚さ
約1mmの板状体を作り、これを大気中で870℃X5
0 h r熱処理した後、自動乳鉢で粉砕して、厚さ約
4〜6μm、長さ10〜30μmのフレーク状酸化物系
超電導粉体を作った。
[Example 2] BizO3,5rCO+, CaC as raw material oxide powder
0, and CuO, with a molar ratio of Biasr: Ca
: Cu=2:2:2:3 and mixed in an automatic mortar. This was heated to 850"C in the atmosphere.
Temporary firing was performed for X 10 hours. The 21st calcined raw material powder obtained by pulverizing the calcined product thus obtained was heated to 1100°C in a Pt crucible to melt it, and then rapidly cooled to form a plate shape with a thickness of about 1 mm. Make a body and heat it in the atmosphere at 870℃ x 5
After being heat-treated for 0 hr, it was crushed in an automatic mortar to produce flaky oxide-based superconducting powder with a thickness of about 4 to 6 μm and a length of 10 to 30 μm.

このフレーク状粉体を4tonプレスを用いて圧粉成形
し、厚さtmm、幅3mm、長さ20mmの板状成形体
を作った。前記板状成形体を1〜3枚積層して、実施例
1と同様な方法で複合体とし、該複合体を種々の総滅面
率で圧延加工してテープ状複合線とした。而して得たテ
ープ状複合線を大気中で870°CX2 Oh r熱処
理して、酸化物系超電導体テープを得た。而して得た酸
化物系超電導体テープについて、酸化物層の密度及びJ
cを測定した。
This flake-like powder was compacted using a 4-ton press to produce a plate-like molded product with a thickness of tmm, a width of 3mm, and a length of 20mm. One to three of the plate-shaped molded bodies were laminated to form a composite in the same manner as in Example 1, and the composite was rolled at various total area loss ratios to form a tape-shaped composite wire. The thus obtained tape-shaped composite wire was heat-treated at 870°CX2 Ohr in the atmosphere to obtain an oxide-based superconductor tape. Regarding the oxide-based superconductor tape thus obtained, the density of the oxide layer and J
c was measured.

圧粉成形した板状成形体の厚さt、Ag製角型パイプ3
内に挿入する際の積層数、積層された酸化物層の総滅面
率等の製造条件並びに得られた酸化物系超電導テープに
おける酸化物層の密度及びJcを第2表にまとめて示し
た。尚密度は真密度に対する比(%)で示した。
Thickness t of powder-formed plate-shaped compact, Ag square pipe 3
Table 2 summarizes the manufacturing conditions such as the number of laminated layers when inserted into the tape, the total surface area reduction rate of the laminated oxide layers, and the density and Jc of the oxide layers in the obtained oxide-based superconducting tape. . The density is expressed as a ratio (%) to the true density.

第2表から明らかな様に、本発明方法により製造した本
発明別品10〜14はいずれも高密度で、臨界型@密度
(J、)も大きな値が得られている。
As is clear from Table 2, all of the products 10 to 14 according to the present invention manufactured by the method of the present invention have high densities, and a large value of the critical @density (J,) is obtained.

一方前記複合体における酸化物層の総減面率が本発明の
範囲内よりも低い比較測高3は密度が低くて、JCの値
が小さくなっており、又板状成形体の厚さが本発明の範
囲内よりも厚い比較測高4は、充分な結晶配向性が得ら
れない為やはりJcの値が小さくなっている。
On the other hand, Comparative Measurement 3, in which the total area reduction rate of the oxide layer in the composite is lower than the range of the present invention, has a low density and a small JC value, and the thickness of the plate-shaped molded body is small. Comparative measurement 4, which is thicker than the range of the present invention, also has a small Jc value because sufficient crystal orientation cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により製造された酸化物系超電導線条体は
、その酸化物超電導体層が結晶配向性を有していて、且
つ高密度であり、従って臨界電流密度(JC)の値が高
くなる等工業上顕著な効果を奏するものである。
The oxide superconducting wire produced by the method of the present invention has an oxide superconductor layer having crystal orientation and high density, and therefore has a high critical current density (JC) value. It has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配向性を有するフレーク状粉体の一例を示す斜
視図、第2図は板状成形体の一例を示す斜視図、第3図
は板状成形体の厚さが厚すぎた場合の該板状成形体にお
けるフレーク状粉体の配列の仕方の一例を示す断面図、
第4図(a)は板状成形体を金属管に挿入して得られる
複合体の一例を示す断面図、第4図(b)は第4図(a
)のA−A断面図、第5図は前記複合体の圧延加工法を
示す断面図である。 1−フレーク状粉体、2−板状成形体、3・−金属管、
4−金属栓、5・・−ロール。 特許出願人 代理人 弁理士 銘木雄−八 rつ 憾
Figure 1 is a perspective view showing an example of flaky powder with orientation, Figure 2 is a perspective view showing an example of a plate-shaped molded body, and Figure 3 is a case where the thickness of the plate-shaped molded body is too thick. A sectional view showing an example of how flaky powder is arranged in the plate-shaped molded body,
FIG. 4(a) is a sectional view showing an example of a composite obtained by inserting a plate-shaped molded body into a metal tube, and FIG.
), and FIG. 5 is a cross-sectional view showing a method of rolling the composite. 1-flake-like powder, 2-plate-like molded body, 3-metal tube,
4-metal stopper, 5...-roll. Patent applicant agent patent attorney

Claims (1)

【特許請求の範囲】[Claims] フレークの厚さ方向が結晶のc軸となっており、フレー
クの面内方向にa軸とb軸を含む様な配向性を持った酸
化物系超電導体のフレーク状粉体を圧粉成形して、厚さ
1.5mm以下の板状成形体とし、該板状成形体の所望
数枚重ねて金属管内に挿入して複合化し、得られた複合
体を前記所望数枚の板状成形体からなる酸化物層の総減
面率が50%以上となる様に圧延加工した後、熱処理す
る事を特徴とする酸化物系超電導線条体の製造方法。
The flake-like powder of an oxide superconductor is powder-molded with an orientation such that the thickness direction of the flake is the c-axis of the crystal, and the in-plane direction of the flake includes the a-axis and the b-axis. A desired number of plate-shaped molded bodies are stacked and inserted into a metal tube to form a composite body, and the resulting composite is formed into a plate-shaped molded body having a thickness of 1.5 mm or less. A method for manufacturing an oxide-based superconducting wire, which comprises rolling the oxide layer so that the total area reduction rate is 50% or more, and then heat-treating the oxide layer.
JP63231084A 1988-09-14 1988-09-14 Manufacture of oxide superconductive wire Pending JPH0279310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231084A JPH0279310A (en) 1988-09-14 1988-09-14 Manufacture of oxide superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231084A JPH0279310A (en) 1988-09-14 1988-09-14 Manufacture of oxide superconductive wire

Publications (1)

Publication Number Publication Date
JPH0279310A true JPH0279310A (en) 1990-03-19

Family

ID=16918035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231084A Pending JPH0279310A (en) 1988-09-14 1988-09-14 Manufacture of oxide superconductive wire

Country Status (1)

Country Link
JP (1) JPH0279310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260330A (en) * 1989-03-31 1990-10-23 Mitsubishi Metal Corp Manufacture of bi oxide superconductive wire material having excellent critical current density
JP2006216379A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Bismuth based oxide superconducting wire rod and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260330A (en) * 1989-03-31 1990-10-23 Mitsubishi Metal Corp Manufacture of bi oxide superconductive wire material having excellent critical current density
JP2006216379A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Bismuth based oxide superconducting wire rod and its manufacturing method
JP4507899B2 (en) * 2005-02-03 2010-07-21 住友電気工業株式会社 Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire

Similar Documents

Publication Publication Date Title
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
US6170147B1 (en) Superconducting wire and method of manufacturing the same
EP0308892A2 (en) Flaky oxide superconductor and method of manufacturing the same
JPH07506800A (en) Strongly coupled oxide superconductor and its manufacturing method
US5470821A (en) Superconductors having continuous ceramic and elemental metal matrices
JPH0279310A (en) Manufacture of oxide superconductive wire
US5627141A (en) Method of producing ceramics system superconducting wire
JP2622123B2 (en) Method for producing flake-like oxide superconductor
JP2554659B2 (en) Composite oxide superconductor wire connection
JPS63285155A (en) Oxide type superconductive material and production thereof
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2554658B2 (en) How to connect complex oxide superconductors
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2611778B2 (en) Superconducting wire manufacturing method
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH01169813A (en) Superconductive wire with high critical current density and its manufacture
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JPH0589730A (en) Manufacture of multilayer ceramic superconductive conductor
JPH04317415A (en) Production of bi-based oxide superconductor
JPH05166426A (en) Manufacture for ceramics superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH02263606A (en) Manufacture of oxide superconductor
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH01320711A (en) Manufacture of superconductive compact in oxide line