JPH0195409A - Superconducting wire - Google Patents

Superconducting wire

Info

Publication number
JPH0195409A
JPH0195409A JP62251037A JP25103787A JPH0195409A JP H0195409 A JPH0195409 A JP H0195409A JP 62251037 A JP62251037 A JP 62251037A JP 25103787 A JP25103787 A JP 25103787A JP H0195409 A JPH0195409 A JP H0195409A
Authority
JP
Japan
Prior art keywords
superconductor
metal body
superconducting wire
oxide
perovskite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251037A
Other languages
Japanese (ja)
Inventor
Akira Kaneko
彰 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62251037A priority Critical patent/JPH0195409A/en
Publication of JPH0195409A publication Critical patent/JPH0195409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the stability of a superconductor expressed by MBa2Cu3 O7-delta and enhance the characteristics thereof by enclosing the outside of the superconductor with the perovskite oxide of ABO3 type and enclosing the outside thereof with a metal body. CONSTITUTION:A superconducting wire 1 is so constituted that the perovskite oxide 3 of ABO3 type surrounds the external surface of an oxide superconductor 2 having the composition expressed by MBa2Cu3O7-delta (0<delta<1), the external surface thereof is surrounded by a metal body 4 in cross section, and the whole structure is formed into a wire material. In this case, M stands for at least one of Y, La, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Sr. According to the aforesaid constitution, the oxide superconductor of MBa2Cu3O7-delta type that is conventionally difficult to be formed into a wire material, is used and can be easily formed into a wire material with the a-b axis plane for embodying the superconductivity thereof aligned with an axial direction. And the stability of the superconductor is improved and the characteristics thereof can be enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導磁石、核融合、エネルギー蓄積、医療
用NMR−CTおよび磁石浮上列車等の分野で利用する
超電導線に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superconducting wire used in fields such as superconducting magnets, nuclear fusion, energy storage, medical NMR-CT, and magnetically levitated trains.

従来の技術 超電導性を示す物質は非常に多く、大半の元素。Conventional technology There are many substances that exhibit superconductivity, including most elements.

合金、化合物、それに金属酸化物等を加えると数百種類
に及ぶ。このうち、高磁界を発生する超電導コイル用と
して線材化が試みられ、Nb−Ti。
When alloys, compounds, and metal oxides are added, there are hundreds of types. Among these, attempts have been made to make Nb-Ti into wire for use in superconducting coils that generate high magnetic fields.

Nb3Sn、V3Ga、Nb5A11’等cc ヨー)
−c作製すftt、−超電導線が実用に供されている。
Nb3Sn, V3Ga, Nb5A11' etc.cc yaw)
-c-fabricated ftt, -superconducting wires are in practical use.

しかし、これらの線材は臨界温度(Tc)がそれぞれ1
0K。
However, each of these wires has a critical temperature (Tc) of 1
0K.

18.3K 、 16.5K 、 18.8にと非常に
低く、実際に使用する場合、高価な液体ヘリウムで冷却
する必要があった。
The temperature was very low at 18.3K, 16.5K, and 18.8K, and when it was actually used, it was necessary to cool it with expensive liquid helium.

このような状況において、最近、酸化物の高温超電導体
が発見され、その臨界温度が飛躍的に上昇し、液体窒素
温度77Kを越える100K近くを示すものが現われた
。この物質は化学式YBa2Cu 3O7−δで表わさ
れることが明らかになっており、YをLu、Yb、Tm
、Er、Ha、Dy、Gdなどの希土類元素に替えても
殆ど同等の臨界温度(Tc)を示すことが確認されてい
る。その結晶構造はCu○6八面体を含むペロブスカイ
ト類似構造を持ち、酸素欠損が超電導に重要な役割を果
たすことが知られているが、酸素欠損の位置、欠損量C
)に関してはいまだ完全には解明されておらず、不明な
点も多い。また、このYBa2 Cu3O7−δを用い
た線材化の試みもいくつか報告されているが、いまだ特
性の安定性に問題があり、実用に十分供するまでのもの
はいまだ報告されていない。
Under these circumstances, high-temperature oxide superconductors have recently been discovered, and their critical temperature has increased dramatically, with some showing a critical temperature of nearly 100K, exceeding the liquid nitrogen temperature of 77K. It has been revealed that this substance has the chemical formula YBa2Cu3O7-δ, where Y is replaced by Lu, Yb, and Tm.
It has been confirmed that almost the same critical temperature (Tc) is exhibited even when rare earth elements such as , Er, Ha, Dy, and Gd are used. Its crystal structure has a perovskite-like structure containing Cu○6 octahedrons, and it is known that oxygen vacancies play an important role in superconductivity.
) has not yet been fully elucidated, and there are many unknown points. In addition, several attempts have been made to produce wire rods using this YBa2 Cu3O7-δ, but there are still problems with the stability of the characteristics, and no wire rods have yet been reported that are suitable for practical use.

発明が解決しようとする問題点 液体窒素温度77Kを越える臨界温度を示し、化学式M
Ba2Cu3O7−δで示される酸化物超電導体の線材
化の試みは緒についたばかりであり、しかも酸化物超電
導体に関する線材化は従来殆ど行われていなかったため
、試作された超電導線はいまだ不安定で、十分にその特
性が引き出されていなかった。また、このMBa2 C
u3O7−δ型酸化物超電導体の超電導性の発現には異
方性があり、その超電導性が結晶構造のa軸とb軸とで
成す平面方向にのみ出現し、この面に垂直なC軸方向に
は出現しないため、線材化において、超電導性の発現す
るa−b軸平面と超電導線の軸方向が一致するように作
製する必要があった。
Problem to be solved by the invention The chemical formula M
Attempts to make wires from the oxide superconductor represented by Ba2Cu3O7-δ have just begun, and since there has been little work on making oxide superconductors into wires, the prototype superconducting wires are still unstable. Its characteristics were not fully brought out. Also, this MBa2 C
There is anisotropy in the expression of superconductivity of the u3O7-δ type oxide superconductor, and the superconductivity appears only in the plane direction formed by the a-axis and b-axis of the crystal structure, and the superconductivity appears only in the direction of the plane formed by the a-axis and b-axis of the crystal structure, and the superconductivity appears only in the direction of the plane formed by the a-axis and b-axis of the crystal structure, and the superconductivity appears only in the direction of the plane formed by the a-axis and b-axis of the crystal structure, and Therefore, when making a wire, it was necessary to make the superconducting wire so that the a-b axis plane where superconductivity is expressed coincides with the axial direction of the superconducting wire.

本発明は、上記のような従来の問題点を解決するもので
、超電導性の発現するa−b軸平面を超電導線の軸方向
に一致させ、安定性を改善し、その特性を向上させるこ
とができるようにした超電導線を提供することを目的と
するものである。
The present invention solves the above-mentioned conventional problems by aligning the a-b axis plane where superconductivity occurs with the axial direction of the superconducting wire, improving stability and improving its characteristics. The purpose of this invention is to provide a superconducting wire that can perform the following steps.

問題点を解決するための手段 上記問題点を解決するための本発明の第1番目の技術的
な手段は、化学式MBa2 Cu3O7−δ(0<δ〈
1)で示される超電導体の外側をABO3型のペロブス
カイト酸化物が囲み、このペロブスカイト酸化物の外側
を金属体が囲む断面形状に形成されたものである。また
、本発明の第2番目の技術的な手段は、化学式MBa2
 Cu3O7−δ(0<δ〈1)で示される超電導体の
外側をABO3型のペロブスカイト酸化物が囲み、この
ペロブスカイト酸化物の外側を金属が囲む断面形状を有
する超電導素体が形成され、この複数本に束ねた超電導
素体の外側を金属体が囲む断面形状に形成されたもので
ある。
Means for Solving the Problems The first technical means of the present invention for solving the above problems is based on the chemical formula MBa2 Cu3O7-δ (0<δ<
A superconductor shown in 1) is surrounded by an ABO3 type perovskite oxide, and a metal body surrounds the outside of the perovskite oxide. Moreover, the second technical means of the present invention is the chemical formula MBa2
A superconducting element having a cross-sectional shape in which an ABO3 type perovskite oxide surrounds the outside of a superconductor represented by Cu3O7-δ (0 < δ < 1), and a metal surrounds the outside of this perovskite oxide is formed. It has a cross-sectional shape in which a metal body surrounds the outside of a superconducting element bundled into a book.

作  用 本発明は、上記技術的手段により次のような作用を有す
る。
Effects The present invention has the following effects through the above technical means.

すなわち、A B 035のペロブスカイト酸化物を介
在させることにより、従来線材化が困難であった酸化物
超電導体、特に化学式MBa2Cu3o7−δで示され
る酸化物超電導体を用い、その超電導性の発現するa−
b軸平面を軸方向に一致させて容易に線材化することが
できる。
That is, by interposing the perovskite oxide of A B 035, an oxide superconductor, which has conventionally been difficult to make into a wire, especially an oxide superconductor represented by the chemical formula MBa2Cu3o7-δ, can be used to develop its superconductivity. −
By aligning the b-axis plane with the axial direction, it can be easily made into a wire rod.

実施例 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

まず、本発明の第1の実施例について説明する。First, a first embodiment of the present invention will be described.

第1図および第2図は本発明の第1の実施例における超
電導線を示し、第1図は横断面図、第2図は作製途中の
一部斜視図である。
FIGS. 1 and 2 show a superconducting wire according to a first embodiment of the present invention, with FIG. 1 being a cross-sectional view and FIG. 2 being a partial perspective view during manufacture.

第1図に示すように本実施例の超電導線1は化学式MB
a2 Cu3O7−δ(0<δく1)で示される組成の
物質からなる酸化物超電導体2の外周をABO3型のペ
ロブスカイト酸化物aが囲み、このペロブスカイト酸化
物3の外周を金属体4が囲む断面形状に形成され、線材
化されている。
As shown in FIG. 1, the superconducting wire 1 of this embodiment has the chemical formula MB.
ABO3 type perovskite oxide a surrounds the outer periphery of an oxide superconductor 2 made of a substance with a composition represented by a2 Cu3O7-δ (0<δ×1), and a metal body 4 surrounds the outer periphery of this perovskite oxide 3. It is formed into a cross-sectional shape and made into a wire rod.

次に本実施例の超電導線1の作製方法について説明する
Next, a method for manufacturing the superconducting wire 1 of this example will be explained.

まず、第2図に示すように、例えばCu、若しくはAg
からなる平板状の金属体4上にA B o3型ペロブス
カイト酸化物3をスパッタ法によって形成り、た。この
A B o3型ペロブスカイト酸化物3はAがLa 、
Pr 、Nd 、Sm 、Gd 、Dy 、Ho 、E
rの少なくとも1種か、もしくはこれらの一部がCa。
First, as shown in FIG. 2, for example, Cu or Ag
A Bo3 type perovskite oxide 3 was formed by sputtering on a flat metal body 4 consisting of the following. In this A Bo3 type perovskite oxide 3, A is La,
Pr, Nd, Sm, Gd, Dy, Ho, E
At least one kind of r or a part thereof is Ca.

Sr、Baの少なくとも1種で置換されたもの、BがM
n、Fe、Co、Tiの少なくとも1種で構成された場
合、その結晶系は立方晶系か、正方晶系に属し、その格
子定数は3.80λから3.90λの間の値となる。例
えばL a O,5Sr 0.5Co03 は立方晶に
属し、a = 3.83λであり、これらはMBa2C
u3O7−δ型の酸化物超電導体2のa軸、あるいはb
軸の格子定数にほぼ一致したもので、例えば、Y Ba
2 Cu3O7−δはa = 3.82λ、b−3,8
9λ、Sm11.68λであり、上記ペロブスカイト酸
化物3の上に酸化物超電導体2を形成すると、C軸方向
に成長した酸化物超電導体2が得やすく、特に配向した
ペロブスカイト酸化物2の上では非常に容易にC軸配向
をさせることができる。
Substituted with at least one of Sr and Ba, B is M
When it is composed of at least one of n, Fe, Co, and Ti, its crystal system belongs to a cubic system or a tetragonal system, and its lattice constant has a value between 3.80λ and 3.90λ. For example, L a O,5Sr 0.5Co03 belongs to the cubic crystal, a = 3.83λ, and these are MBa2C
The a-axis or b of the u3O7-δ type oxide superconductor 2
It almost matches the lattice constant of the axis, for example, Y Ba
2 Cu3O7-δ is a = 3.82λ, b-3,8
9λ, Sm 11.68λ, and when the oxide superconductor 2 is formed on the perovskite oxide 3, it is easy to obtain the oxide superconductor 2 grown in the C-axis direction, especially on the oriented perovskite oxide 2. C-axis orientation can be achieved very easily.

上記A B 03型ベロプヌカイト酸化物3のスパッタ
条件として、例えばLa0.5Sr0.5Co○3の場
合、基板温度3O0°C〜2 X 10 ’tor r
 、Ar :02比3:1.入力電力400Wで基板で
ある金属体4上にスパッタを行って(100)配向した
ペロブスカイト酸化物3の膜を得た。この薄膜は、入力
電力を増すに伴い、アモルファス状から(110)配向
膜、(110)と′(100)の混合膜、(100)配
向膜と変化する。また配向膜条件としては、ガス圧、基
板温度の要因もあり、その(100)配向膜形成範囲は
それぞれ10−〜10  ’  torr、200〜6
00°Cの間である。
For example, in the case of La0.5Sr0.5Co○3, the sputtering conditions for the A B 03 type belopnukite oxide 3 are as follows: the substrate temperature is 300°C to 2 x 10'torr;
, Ar:02 ratio 3:1. Sputtering was performed on the metal body 4 as a substrate with an input power of 400 W to obtain a film of (100) oriented perovskite oxide 3. As the input power increases, this thin film changes from an amorphous state to a (110) oriented film, a mixed film of (110) and '(100), and a (100) oriented film. In addition, the alignment film conditions include gas pressure and substrate temperature, and the (100) alignment film formation ranges are 10-10' torr and 200-6 torr, respectively.
00°C.

上記のようにペロブスカイト酸化物3を形成した平板状
の金属体4をペロブスカイト酸化物3の面を内側にして
、長尺端側が軸方向に沿うようにして管状にし、長尺端
同志を溶接することにより、管状体を形成した。そして
、この管状体の中空部に、900〜1000°Cで仮焼
し、粉砕したMBa2Cu3O7−δの粉末を充填し、
管状体の両端を密封した後、これを減面加工してl 1
 mmの線材とし、その後800〜1000°Cで熱処
理を行い、第1図に示す断面形状の超電導線1を作製し
た。この超電導線1を液体窒素によって冷却した結果、
94にで抵抗の低下が始まり、87にで抵抗0となった
。そして、液体窒素温度77にでの電流密度、600 
A / Sm2を得た。
The flat metal body 4 on which perovskite oxide 3 is formed as described above is made into a tube shape with the surface of perovskite oxide 3 facing inside and the long end side along the axial direction, and the long ends are welded together. A tubular body was thereby formed. Then, the hollow part of this tubular body is filled with MBa2Cu3O7-δ powder that has been calcined at 900 to 1000°C and crushed.
After sealing both ends of the tubular body, it is processed to reduce its surface area.
mm wire, and then heat-treated at 800 to 1000°C to produce a superconducting wire 1 having the cross-sectional shape shown in FIG. As a result of cooling this superconducting wire 1 with liquid nitrogen,
The resistance started to decrease at 94, and reached 0 at 87. And the current density at liquid nitrogen temperature of 77, 600
A/Sm2 was obtained.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第3図は本発明の第2の実施例を示す横断面図である。FIG. 3 is a cross-sectional view showing a second embodiment of the invention.

第3図に示すように本実施例の超電導線1は化学式M 
Ba2 Cu3O7−δ(0<δ〈1)で示される組成
の物質からなる超電導体2の外周をABO3型のペロブ
スカイト酸化物3が囲み、このペロブスカイト酸化物3
の外周を金属体4が囲み、超電導体2がその内周に金属
体5を有する断面形状に形成され、線材化されている。
As shown in FIG. 3, the superconducting wire 1 of this embodiment has the chemical formula M
An ABO3 type perovskite oxide 3 surrounds the outer periphery of a superconductor 2 made of a substance having a composition represented by Ba2Cu3O7-δ (0<δ<1), and this perovskite oxide 3
The outer periphery of the superconductor 2 is surrounded by a metal body 4, and the superconductor 2 is formed into a cross-sectional shape having a metal body 5 on its inner periphery, and is made into a wire.

次に本実施例の超電導線1の作製方法について説明する
Next, a method for manufacturing the superconducting wire 1 of this example will be explained.

まず、金属体4の内壁にペロブスカイト酸化物3を上記
第1の実施例の場合と同様に形成するか、あるいはペロ
ブスカイト酸化物3の溶融物を管状の金属体4に流し込
むことにより、内壁部にペロブスカイト酸化物12の薄
膜層を形成した。次に、上記管状体の中心に金属体5を
配置し、金属体5とペロブスカイト酸化物3との間に、
900〜1000’Cで仮焼し、粉砕したM Ba 2
 Cu3O7−δの粉末を充填し、管状体の両端を密封
した。
First, a perovskite oxide 3 is formed on the inner wall of the metal body 4 in the same manner as in the first embodiment, or a melt of the perovskite oxide 3 is poured into the tubular metal body 4. A thin film layer of perovskite oxide 12 was formed. Next, a metal body 5 is placed in the center of the tubular body, and between the metal body 5 and the perovskite oxide 3,
M Ba 2 calcined at 900-1000'C and crushed
The tubular body was filled with powder of Cu3O7-δ and both ends of the tubular body were sealed.

そして、減面加工を施し、線材化して800〜1000
°Cで熱処理を行い、超電2gm1を作製した。この超
電導線1を液体窒素によって冷却した結果、上記第1の
実施例と同様の特性が得られた。
Then, it is processed to reduce the area and made into a wire rod with a diameter of 800 to 1000.
Heat treatment was performed at °C to produce superelectric 2gm1. As a result of cooling this superconducting wire 1 with liquid nitrogen, characteristics similar to those of the first example were obtained.

次に本発明の第3の実施例について説明する。Next, a third embodiment of the present invention will be described.

第4図は本発明の第3の実施例を示す横断面図である。FIG. 4 is a cross-sectional view showing a third embodiment of the present invention.

第4図に示すように本実施例の超電導線1は化学式MB
a2Cu3O7−δで示される組成の物質からなる超電
導体2の外周をABO3型のペロブスカイト酸化物3が
囲み、このペロブヌカイト酸化物3の外周を金属体4が
囲み、超電導体2がその内周に金属体5と、この金属体
5を囲むAB O3型ベロゲスカイト酸化物6とを有す
る断面形状に形成され、線材化されている。
As shown in FIG. 4, the superconducting wire 1 of this embodiment has the chemical formula MB.
ABO3 type perovskite oxide 3 surrounds the outer periphery of superconductor 2 made of a substance with a composition represented by a2Cu3O7-δ, a metal body 4 surrounds the outer periphery of this perovnukite oxide 3, and superconductor 2 has metal on its inner periphery. The metal body 5 is formed into a cross-sectional shape having an AB O3 type vergeskite oxide 6 surrounding the metal body 5, and is made into a wire.

次に本実施例の超電導線1の炸裂方法について説明する
Next, a method of exploding the superconducting wire 1 of this embodiment will be explained.

まず、金属体4の内壁にペロブスカイト酸化物3を上記
第1.第2の実施例の場合と同様に形成した。次に金属
体5の周囲にスパッタ法によりベロゲスカイト酸化物6
を形成するか、あるいはベロゲスカイト酸化物溶融液中
に金属体5を浸すことにより、金属体5の外周にペロブ
スカイト酸化物6を形成した。そして、金属体4とその
内周のベロゲスカイト酸化物3とからなる管状体の中心
にベロゲスカイト酸化物6を外周に形成した金属体5を
配置し、ペロブスカイト酸化物aと6の間に、900〜
1000°Cで仮焼し、粉砕したMBa2 Cu3O7
−δの粉末を充填し、管状体の両端を密封して減面加工
を施した。そして、線材化したものを800〜1000
°Cで熱処理を行って超電導線1を作製した。この超電
導線1を液体窒素によって冷却した結果、93にで抵抗
の低下が見られ、88にで抵抗0となった。そして、液
体窒素温度、77にでの電流密度、1000 A/cm
2と良好な結果を得た。
First, the perovskite oxide 3 is placed on the inner wall of the metal body 4 as described above. It was formed in the same manner as in the second example. Next, a vergeskite oxide 6 is applied around the metal body 5 by sputtering.
A perovskite oxide 6 was formed on the outer periphery of the metal body 5 by forming a perovskite oxide or by immersing the metal body 5 in a velgeskite oxide melt. Then, a metal body 5 having a vergeskite oxide 6 formed on its outer periphery is placed in the center of a tubular body consisting of a metal body 4 and a vergeskite oxide 3 on its inner periphery.
MBa2 Cu3O7 calcined at 1000°C and crushed
-δ powder was filled, both ends of the tubular body were sealed, and surface reduction processing was performed. Then, 800 to 1000 wire rods are made.
Superconducting wire 1 was produced by heat treatment at °C. As a result of cooling this superconducting wire 1 with liquid nitrogen, a decrease in resistance was observed at 93, and the resistance became 0 at 88. and liquid nitrogen temperature, current density at 77, 1000 A/cm
A good result of 2 was obtained.

次に本発明の第4の実施例について説明する。Next, a fourth embodiment of the present invention will be described.

第5図は本発明の第4の実施例を示す横断面図である。FIG. 5 is a cross-sectional view showing a fourth embodiment of the present invention.

第5図に示すように本実施例の超電導線1は上記第1〜
第3の実施例に示すように作製し、減面加工を施す前の
状態の超電導素体11(図示例は第1の実施例のもの)
を複数本(図示例では7本)束ね、これらの外側を金属
体12により囲み、この全体に減面加工を施し、800
〜1000°Cで熱処理を行うことにより、複合化した
超電導線1を作製した。この複合超電導線1を液体窒素
によって冷却した結果、94にで抵抗の低下が見られ、
88にで抵抗0となった。そして、液体窒素温度、77
にでの電流密度、900A/cm2を得た。
As shown in FIG. 5, the superconducting wire 1 of this embodiment is
Superconducting element 11 manufactured as shown in the third embodiment and before surface reduction processing (the illustrated example is that of the first embodiment)
A plurality of (7 in the illustrated example) are bundled, their outsides are surrounded by a metal body 12, and the entire surface is subjected to surface reduction processing,
Composite superconducting wire 1 was produced by performing heat treatment at ~1000°C. As a result of cooling this composite superconducting wire 1 with liquid nitrogen, a decrease in resistance was observed at 94.
At 88, the resistance became 0. and liquid nitrogen temperature, 77
A current density of 900 A/cm2 was obtained.

発明の効果 以上述べたように本発明によれば、化学式MBa2 C
u3O7−δ(0<δ<1)で示される酸化物超電導体
に隣接してA B 03型のベロゲスカイト酸化物を介
在させているので、従来、線材化が困難であったMBa
2 Cu3O7−δ型酸化物超電導体を用い、その超電
導性の発現するa−b軸平面を軸方向に一致させて容易
に線材化することができ、したがって安定性を改善し、
その特性を向上させることができる。
Effects of the Invention As described above, according to the present invention, the chemical formula MBa2C
Since A B 03 type vergeskite oxide is interposed adjacent to the oxide superconductor represented by u3O7-δ (0<δ<1), MBa, which has conventionally been difficult to make into a wire,
2. Using a Cu3O7-δ type oxide superconductor, the a-b axis plane where its superconductivity is expressed can be aligned with the axial direction, and it can be easily made into a wire, thus improving stability,
Its characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1の実施例における超
電導線を示し、第1図は横断面図、第2図は作成途中の
一部斜視図、第3図は本発明の第2の実施例を示す横断
面図、第4図は本発明の第3の実施例を示す横断面図、
第5図は本発明の第4の実施例を示す横断面図である。 1・・・・・・超電導線、2・・・・・・超電導体、3
・・・・・・ペロブスカイト酸化物、4・・・・・・金
属体、5・・・・・・金属体、6・・・・・・ペロブス
カイト酸化物、11・・・・・・超電導素体、12・・
・・・・金属体。 第1図 第 2 図
1 and 2 show a superconducting wire according to a first embodiment of the present invention, with FIG. 1 being a cross-sectional view, FIG. FIG. 4 is a cross-sectional view showing the third embodiment of the present invention,
FIG. 5 is a cross-sectional view showing a fourth embodiment of the present invention. 1...Superconducting wire, 2...Superconductor, 3
... Perovskite oxide, 4 ... Metal body, 5 ... Metal body, 6 ... Perovskite oxide, 11 ... Superconducting element Body, 12...
...Metal body. Figure 1 Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)化学式MBa_2Cu_3O_7_−_δ(0<
δ<1)で示される超電導体の外側をABO_3型のペ
ロブスカイト酸化物が囲み、このペロブスカイト酸化物
の外側を金属体が囲む断面形状を有することを特徴とす
る超電導線。
(1) Chemical formula MBa_2Cu_3O_7_-_δ(0<
A superconducting wire characterized in that it has a cross-sectional shape in which an ABO_3 type perovskite oxide surrounds the outside of a superconductor represented by δ<1), and a metal body surrounds the outside of the perovskite oxide.
(2)超電導体がその内部に金属体を有することを特徴
とする特許請求の範囲第1項記載の超電導線。
(2) The superconducting wire according to claim 1, wherein the superconductor has a metal body inside thereof.
(3)超電導体がその内部に金属体と、この金属体の外
周を囲んだABO_3型のペロブスカイト酸化物とを有
することを特徴とする特許請求の範囲第1項記載の超電
導線。
(3) The superconducting wire according to claim 1, wherein the superconductor has a metal body therein and an ABO_3 type perovskite oxide surrounding the outer periphery of the metal body.
(4)超電導体が化学式MBa_2Cu_3O_7_−
_δで示され、MがY、La、Nd、Pm、Sm、Eu
、Gd、Dy、Ho、Er、Tm、Yb、Lu、Sc、
Srのうち、少なくとも1種類であることを特徴とする
特許請求の範囲第1項ないし第3項のいずれかに記載の
超電導線。
(4) The chemical formula of superconductor is MBa_2Cu_3O_7_-
_δ, M is Y, La, Nd, Pm, Sm, Eu
, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc,
The superconducting wire according to any one of claims 1 to 3, characterized in that it is at least one type of Sr.
(5)化学式MBa_2Cu_3O_7_−_δ(0<
δ<1)で示される超電導体の外側をABO_3型のペ
ロブスカイト酸化物が囲み、このペロブスカイト酸化物
の外側を金属体が囲む断面形状を有する超電導素体が形
成され、この複数本に束ねた超電導素体の外側を金属体
が囲む断面形状を有することを特徴とする超電導線。
(5) Chemical formula MBa_2Cu_3O_7_-_δ(0<
A superconducting element having a cross-sectional shape in which an ABO_3 type perovskite oxide surrounds the outside of the superconductor represented by δ < 1) and a metal body surrounds the outside of this perovskite oxide is formed, and the superconducting element bundled into multiple pieces A superconducting wire characterized in that it has a cross-sectional shape in which a metal body surrounds the outside of an element body.
(6)超電導体が化学式MBa_2Cu_3O_7_−
_δで示された、MがY、La、Nd、Pm、Sm、E
u、Gd、Dy、Ho、Er、Tm、Yb、Lu、Sc
、Srのうち、少なくとも1種類であることを特徴とす
る特許請求の範囲第5項記載の超電導線。
(6) Superconductor has chemical formula MBa_2Cu_3O_7_-
M is Y, La, Nd, Pm, Sm, E, denoted by _δ
u, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc
, Sr, the superconducting wire according to claim 5.
JP62251037A 1987-10-05 1987-10-05 Superconducting wire Pending JPH0195409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251037A JPH0195409A (en) 1987-10-05 1987-10-05 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251037A JPH0195409A (en) 1987-10-05 1987-10-05 Superconducting wire

Publications (1)

Publication Number Publication Date
JPH0195409A true JPH0195409A (en) 1989-04-13

Family

ID=17216676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251037A Pending JPH0195409A (en) 1987-10-05 1987-10-05 Superconducting wire

Country Status (1)

Country Link
JP (1) JPH0195409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162287B2 (en) 2000-08-29 2007-01-09 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same
JP4709455B2 (en) * 1999-11-08 2011-06-22 住友電気工業株式会社 Oxide high-temperature superconducting wire and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709455B2 (en) * 1999-11-08 2011-06-22 住友電気工業株式会社 Oxide high-temperature superconducting wire and manufacturing method
US7162287B2 (en) 2000-08-29 2007-01-09 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same

Similar Documents

Publication Publication Date Title
US6949490B2 (en) High-TC superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
JPH0643268B2 (en) Oxide high temperature superconductor
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
EP0292436A2 (en) High current conductors and high field magnets using anisotropic superconductors
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JP2584990B2 (en) Manufacturing method of pipe using superconducting ceramic material
JPH0195409A (en) Superconducting wire
US5756427A (en) High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
JP3522306B2 (en) Bi-based oxide superconducting wire and method for producing the same
US5474975A (en) Method for manufacturing an elongated member from a superconducting ceramic material
JPH065414A (en) Superconducting magnet
JPH02207420A (en) Manufacture of superconducting wire rod
JP2585880B2 (en) Superconducting device
JP2584989B2 (en) Pipe made of superconducting ceramic material
JP2584993B2 (en) Manufacturing method of superconducting ceramic material
JP2585882B2 (en) Superconducting ceramic wire drawing method
JPH09115356A (en) Tape form oxide superconducting wire material and superconducting magnet and current lead using the same
JPH0395806A (en) Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor
JP2835069B2 (en) Superconducting coil
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2644245B2 (en) Oxide superconducting wire
JPS63232215A (en) Manufacture of superconductive wire
JPH04324209A (en) Oxide superconductive wire and its manufacture
KR0159487B1 (en) Oxide superconductor and method of producing the same