JPS63276819A - Manufacture of ceramic superconductive filament - Google Patents

Manufacture of ceramic superconductive filament

Info

Publication number
JPS63276819A
JPS63276819A JP62109823A JP10982387A JPS63276819A JP S63276819 A JPS63276819 A JP S63276819A JP 62109823 A JP62109823 A JP 62109823A JP 10982387 A JP10982387 A JP 10982387A JP S63276819 A JPS63276819 A JP S63276819A
Authority
JP
Japan
Prior art keywords
oxygen
powder
prepared
sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62109823A
Other languages
Japanese (ja)
Inventor
Masahito Murakami
雅人 村上
Hidekazu Tejima
英一 手嶋
Mitsuru Morita
充 森田
Shoichi Matsuda
松田 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62109823A priority Critical patent/JPS63276819A/en
Publication of JPS63276819A publication Critical patent/JPS63276819A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve superconductivity by filling a metallic pipe with rare earth element oxide, alkaline earth metal carbonate, CuO mixed powder, together with oxygen supply powder and sintering this pipe. CONSTITUTION:Rare earth element oxide, alkaline earth metal carbonate, a mixture or pellets of CuO are calcined (at 700 to 1000 deg.C and for several hours) in the air or the oxygen atmosphere and then pulverized. Metal oxide such as AgO, PtO, AuO, or the like is added to this powder, and a metallic pipe made of copper, Pt, or the like is filled with the metal oxide and provided with rolling and drawing processing to form a wire, and next this wire is sintered. This sintered matter is high and uniform in its concentration of oxygen and excellent in its superconductivity.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は酸化物セラミックスよりなり、線状あるいは
帯状をした超伝導線条体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a linear or band-shaped superconducting filament made of oxide ceramics.

セラミックス系超伝導線条体は発電機、変圧器その他の
電気機器やジョセフソン素子などの電子デバイスなどに
用いられる。
Ceramic superconducting filaments are used in generators, transformers, and other electrical equipment, as well as in electronic devices such as Josephson elements.

(従来の技術〉 超伝導材料として、金属元素、これら金属の合金や金属
間化合物、有機材料、セラミックスなどが知られている
!近では、特にLa、Sr、Cu酸化物やY、Ha、C
u酸化物などのセラミックス系超伝導材料の開発が盛ん
に行われている。
(Prior art) Metal elements, alloys and intermetallic compounds of these metals, organic materials, ceramics, etc. are known as superconducting materials! Recently, La, Sr, Cu oxides, Y, Ha, C
Ceramic superconducting materials such as u-oxide are being actively developed.

これらセラミックス系超伝導線条体の製造では、一般に
La、0. 、Y、0.などの希土類元素の酸化物、5
rCO,、、BaCO5などのアルカリ土類金属の炭酸
塩およびCuOなどの原料粉末を加圧成形したのち、焼
結する。成形体は、焼結により微小な結晶粒が集った多
結晶体となる。また、焼結中に上記炭酸塩からC02が
放出され、また酸化物および雰囲気中の酸素が結晶中に
取り込まれ、超伝導性を示す結晶構造を形成する。酸化
物の結晶構造は酸素イオンの充填状態により決るので、
焼結中における酸素と上記酸化物や炭酸塩との反応は超
伝導性に大きく影響する。
In the production of these ceramic superconducting strands, generally La is 0. , Y, 0. Rare earth element oxides such as 5
Carbonates of alkaline earth metals such as rCO, . . . BaCO5 and raw material powders such as CuO are press-molded and then sintered. The molded body becomes a polycrystalline body made up of fine crystal grains by sintering. Further, during sintering, C02 is released from the carbonate, and oxides and oxygen in the atmosphere are incorporated into the crystal, forming a crystal structure exhibiting superconductivity. The crystal structure of an oxide is determined by the filling state of oxygen ions, so
The reaction between oxygen and the above oxides and carbonates during sintering greatly affects superconductivity.

(発明が解決しようとする問題点) しかし、上記従来の製造方法では、原料粉末を大気ある
いは酸素雰囲気中で焼結せずに、たとえば金属管内に封
入した状態で焼結すると、酸素との未反応部分、すなわ
ち酸素濃度が不十分な部分が焼結を終えた成品中にかな
り残っていた。未反応部分は超伝導性を示す結晶構造を
形成しないので、このことが臨界温度Tc、臨界電流密
度Jcあるいは臨界磁場Hcの向上の一つの障害となっ
ていた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional manufacturing method, if the raw material powder is sintered in a metal tube, for example, instead of being sintered in the air or an oxygen atmosphere, it is difficult to sinter the raw material powder with oxygen. A considerable amount of reactive parts, ie, parts with insufficient oxygen concentration, remained in the finished product after sintering. Since the unreacted portion does not form a crystal structure exhibiting superconductivity, this has been an obstacle to improving the critical temperature Tc, critical current density Jc, or critical magnetic field Hc.

そこで、この発明は焼結体の殆どが超伝導性を示す結晶
構造からなり、高い超伝導性を示すセラミックス系超伝
導線条体を製造することができる方法を提供しようとす
るものである。
Therefore, the present invention aims to provide a method for manufacturing a ceramic superconducting wire body in which most of the sintered body has a crystal structure exhibiting superconductivity and exhibits high superconductivity.

(問題点を解決するための手段) この発明のセラミックス系超伝導線条体の製造方法は、
希土類元素の酸化物、アルカリ土類金属の炭酸塩および
CuOの粉末を調製し、調製粉末を金属管に充填し、調
製粉末入り金属管を伸線したのちに焼結して超伝導線条
体を製造する方法において、前記調製粉末を酸素供給粉
末材とともに金属管内に充填し、焼結を行う。
(Means for solving the problem) The method for manufacturing a ceramic superconducting wire of the present invention includes:
Powders of rare earth element oxides, alkaline earth metal carbonates, and CuO are prepared, the prepared powders are filled into a metal tube, the metal tube containing the prepared powders is drawn, and then sintered to form a superconducting wire. In the method for manufacturing, the prepared powder is filled into a metal tube together with an oxygen-supplying powder material and sintered.

製造するセラミックス系超伝導線条体の種類に応じて、
希土類元素およびアルカリ土類金属から所要の金属が選
ばれる。希土類から選ばれるものは、たとえばLa、E
u、Dy、llo、Er、Tm、YbまたはYであり、
アルカリ土類金属から選ばれるものはCa。
Depending on the type of ceramic superconducting wire to be manufactured,
The required metal is selected from rare earth elements and alkaline earth metals. Those selected from rare earths include, for example, La, E
u, Dy, lo, Er, Tm, Yb or Y,
Ca is selected from the alkaline earth metals.

Sr、RaまたはBaである。Sr, Ra or Ba.

粉末の調製は原料粉末の混合あるいは混合後、熱処理だ
けでもよいが、これにベレット状成形、仮焼および粉砕
の工程を加えてもよい。この場合の成形は、簡単な加圧
成形が用いられる。仮焼は常圧で、空気あるいは酸素雰
囲気中で行い、仮焼温度は700〜1000℃程度、ま
た仮焼時間は数時間程度である。仮焼により原料粉末中
の水分、揮発分その他の不純物を分離する。さらには、
上記仮焼、粉砕に続いてベレット状成形、焼結および粉
砕の工程を加えてもよい。粉末を成形するには、通常の
成形方法たとえばCIP、 HIP%ホットプレスなど
が用いられる。焼結は常圧あるいは加圧のもとで、空気
あるいは酸素雰囲気中で行う。焼結温度は900〜11
00℃程度であり、焼結時間は2〜64hr程度である
The powder may be prepared simply by mixing the raw material powders or by heat treatment after mixing, but the steps of pellet-forming, calcining, and pulverization may also be added. In this case, simple pressure molding is used for the molding. The calcination is performed at normal pressure in an air or oxygen atmosphere, the calcination temperature is about 700 to 1000°C, and the calcination time is about several hours. Moisture, volatile matter, and other impurities in the raw material powder are separated by calcining. Furthermore,
Following the above-mentioned calcination and pulverization, steps of pellet-forming, sintering, and pulverization may be added. To mold the powder, conventional molding methods such as CIP, HIP% hot press, etc. are used. Sintering is performed under normal pressure or increased pressure in an air or oxygen atmosphere. Sintering temperature is 900-11
The temperature is about 00°C, and the sintering time is about 2 to 64 hours.

酸素供給粉末材として、Age、 PLOあるいは^u
Oなどの金属酸化物粉末が用いられる。成形前の粉末お
よび酸素供給粉末材を充填する金属管は鋼管、ステンレ
ス鋼管、Pt管などが用いられる。原料粉末とある程度
反応するステンレス鋼等の金属管の内面は不活性金属、
たとえばAuあるいはptなどによりコーティングして
おくことが望ましい。
As an oxygen supply powder material, Age, PLO or ^u
Metal oxide powder such as O is used. A steel pipe, a stainless steel pipe, a Pt pipe, or the like is used as the metal pipe to be filled with the powder before molding and the oxygen-supplying powder material. The inner surface of the metal tube, such as stainless steel, which reacts to some extent with the raw material powder, is an inert metal,
For example, it is desirable to coat it with Au or PT.

調製粉末および酸素供給粉末材を充填した金属管を伸線
するには、通常の圧延、引抜き加工あるいは両者の組合
せが用いられる。
Conventional rolling, drawing, or a combination of both may be used to draw the metal tube filled with the prepared powder and the oxygen-supplying powder material.

伸線後の焼結は、上記焼結と同様に行う。Sintering after wire drawing is performed in the same manner as the above sintering.

(作用) この発明の方法では、焼結中に加熱により酸素供給粉末
材から酸素が放出されるので、調製粉末は酸素濃度の高
い雰囲気中におかれることになる。このため、酸素は焼
結体内部から供給されることになり、酸素との反応が促
進される。これより、焼結体は酸素濃度が高くなり、超
伝導特性にすぐれた焼結体となる。
(Function) In the method of the present invention, oxygen is released from the oxygen-supplying powder material by heating during sintering, so the prepared powder is placed in an atmosphere with a high oxygen concentration. Therefore, oxygen is supplied from inside the sintered body, and the reaction with oxygen is promoted. This increases the oxygen concentration in the sintered body, resulting in a sintered body with excellent superconducting properties.

(実施例) 第1図はこの発明によるセラミックス系超伝導線条体製
造法の作業工程の一例を示すフローチャートである。
(Example) FIG. 1 is a flowchart showing an example of the working steps of the method for manufacturing a ceramic superconducting wire body according to the present invention.

図面に示すように、まず酸化イツトリウム、炭酸バリウ
ムおよび酸化鋼の微細粉末を混合し、ベレットに加圧成
形した。ベレットを900℃で、2時間仮焼したのち、
これを粉砕した。
As shown in the drawing, first, fine powders of yttrium oxide, barium carbonate, and oxidized steel were mixed and pressure-formed into a pellet. After calcining the pellet at 900℃ for 2 hours,
This was crushed.

上記粉砕により得られた粉末を酸化銀粉末とともに、外
径20mmの白金に充填した。
The powder obtained by the above pulverization was filled together with silver oxide powder into a platinum chamber having an outer diameter of 20 mm.

粉末を充填した白金管を圧延および引抜きにより外径2
 armの線材に延伸加工した。そして、得られた線材
を圧力2000kgf/c+m2のもとで950℃に加
熱して8時間保持し、炉冷した。
A platinum tube filled with powder is rolled and drawn to an outer diameter of 2.
The wire rod of the arm was stretched. Then, the obtained wire rod was heated to 950°C under a pressure of 2000 kgf/c+m2, held for 8 hours, and then cooled in a furnace.

このようにして得られた線材の電流密度Jcは450 
A/cm2であった。これに対し、従来法 (鋼管に酸
化銀は充填しない)により作られた線材の臨界電流密度
Jcは30 A/cm”であった。
The current density Jc of the wire obtained in this way is 450
It was A/cm2. On the other hand, the critical current density Jc of the wire made by the conventional method (in which the steel tube was not filled with silver oxide) was 30 A/cm''.

以上、YBa2(:u、0.−、の製造について説明し
たが、他の材料たとえばLa5rCuOについても同様
に製造することができる。
Although the production of YBa2(:u, 0.-) has been described above, other materials such as La5rCuO can be similarly produced.

(発明の効果) この発明によれば、焼結中に加熱により酸素供給粉末材
から酸素が放出されるので、調製粉末は酸素濃度の高い
雰囲気中で反応する。したがって、焼結体は酸素濃度が
高くかつ均一となり、超伝導特性にすぐれたものが得ら
れる。こわより、臨界温度、臨界電流密度および臨界磁
場は高くなり、電気機器および電子デバイスの性能向上
を図ることが可能である。
(Effects of the Invention) According to the present invention, since oxygen is released from the oxygen-supplying powder material by heating during sintering, the prepared powder reacts in an atmosphere with a high oxygen concentration. Therefore, the sintered body has a high and uniform oxygen concentration, and has excellent superconducting properties. Because of stiffness, the critical temperature, critical current density, and critical magnetic field become higher, and it is possible to improve the performance of electrical equipment and electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるセラミックス系超伝導線条体製
造法の一例を示す作業工程図である。
FIG. 1 is a work process diagram showing an example of the method for manufacturing a ceramic superconducting wire body according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素の酸化物、アルカリ土類金属の炭酸塩および
CuOの粉末を調製し、調製粉末を金属管に充填し、調
製粉末入り金属管を伸線したのちに空気または酸素雰囲
気中で焼結して超伝導線条体を製造する方法において、
前記調製粉末を酸素供給粉末材とともに金属管内に充填
し、焼結を行うことを特徴とするセラミックス系超伝導
線条体の製造方法。
Powders of rare earth element oxides, alkaline earth metal carbonates, and CuO are prepared, the prepared powders are filled into a metal tube, the metal tubes containing the prepared powders are drawn, and then sintered in an air or oxygen atmosphere. In a method for manufacturing a superconducting striatum,
A method for manufacturing a ceramic superconducting filament, comprising filling the prepared powder together with an oxygen-supplying powder material into a metal tube and sintering it.
JP62109823A 1987-05-07 1987-05-07 Manufacture of ceramic superconductive filament Pending JPS63276819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109823A JPS63276819A (en) 1987-05-07 1987-05-07 Manufacture of ceramic superconductive filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109823A JPS63276819A (en) 1987-05-07 1987-05-07 Manufacture of ceramic superconductive filament

Publications (1)

Publication Number Publication Date
JPS63276819A true JPS63276819A (en) 1988-11-15

Family

ID=14520113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109823A Pending JPS63276819A (en) 1987-05-07 1987-05-07 Manufacture of ceramic superconductive filament

Country Status (1)

Country Link
JP (1) JPS63276819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448327A (en) * 1987-07-24 1989-02-22 Asea Brown Boveri Manufacture of ceramic high temperature superconductor sheathed wire
JPH01304618A (en) * 1988-05-31 1989-12-08 Furukawa Electric Co Ltd:The Manufacture of oxide superconductive filament
JPH02160317A (en) * 1988-12-12 1990-06-20 Mitsubishi Cable Ind Ltd Manufacture of superconducting wire
EP0426164A2 (en) * 1989-11-02 1991-05-08 International Superconductivity Technology Center Process for preparing oxide superconductor
EP0427209A2 (en) * 1989-11-08 1991-05-15 International Superconductivity Technology Center Process for producing oxide superconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448327A (en) * 1987-07-24 1989-02-22 Asea Brown Boveri Manufacture of ceramic high temperature superconductor sheathed wire
JPH01304618A (en) * 1988-05-31 1989-12-08 Furukawa Electric Co Ltd:The Manufacture of oxide superconductive filament
JPH02160317A (en) * 1988-12-12 1990-06-20 Mitsubishi Cable Ind Ltd Manufacture of superconducting wire
EP0426164A2 (en) * 1989-11-02 1991-05-08 International Superconductivity Technology Center Process for preparing oxide superconductor
EP0427209A2 (en) * 1989-11-08 1991-05-15 International Superconductivity Technology Center Process for producing oxide superconductor

Similar Documents

Publication Publication Date Title
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
JPS63276819A (en) Manufacture of ceramic superconductive filament
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2592838B2 (en) Method for manufacturing compound superconducting wire
JPH01241713A (en) Manufacture of oxide superconductor wire
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP2590157B2 (en) Manufacturing method of superconductor wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPS63270342A (en) Production of oxide superconductor
JPH01167289A (en) Production of oxide superconductor
JP2574173B2 (en) Superconducting wire manufacturing method
JPS63232210A (en) Manufacture of superconductive wire
JP3073798B2 (en) Superconducting wire manufacturing method
JPS63270343A (en) Production of oxide superconductor
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH01226703A (en) Production of oxide superconductor
JPH01241714A (en) Manufacture of oxide superconductor wire
JPH01241712A (en) Manufacture of oxide superconductor wire
JPH01163915A (en) Manufacture of oxide superconductive wire
JPS63270344A (en) Production of oxide superconductor
JPH01115015A (en) Manufacture of superconductor wire material
JPH01241716A (en) Manufacture of oxide superconductor wire
JPS63277550A (en) Synthesis of superconductive ceramic