JP7263319B2 - Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置 - Google Patents

Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置 Download PDF

Info

Publication number
JP7263319B2
JP7263319B2 JP2020510440A JP2020510440A JP7263319B2 JP 7263319 B2 JP7263319 B2 JP 7263319B2 JP 2020510440 A JP2020510440 A JP 2020510440A JP 2020510440 A JP2020510440 A JP 2020510440A JP 7263319 B2 JP7263319 B2 JP 7263319B2
Authority
JP
Japan
Prior art keywords
substrate
silicon
silicon layer
actuator
mems device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510440A
Other languages
English (en)
Other versions
JPWO2019187844A1 (ja
Inventor
元 松岡
万里夫 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Publication of JPWO2019187844A1 publication Critical patent/JPWO2019187844A1/ja
Application granted granted Critical
Publication of JP7263319B2 publication Critical patent/JP7263319B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00682Treatments for improving mechanical properties, not provided for in B81C1/00658 - B81C1/0065
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00777Preserve existing structures from alteration, e.g. temporary protection during manufacturing
    • B81C1/00825Protect against mechanical threats, e.g. against shocks, or residues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/031Thermal actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/047Optical MEMS not provided for in B81B2201/042 - B81B2201/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0161Controlling physical properties of the material
    • B81C2201/0163Controlling internal stress of deposited layers
    • B81C2201/017Methods for controlling internal stress of deposited layers not provided for in B81C2201/0164 - B81C2201/0169

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

本発明は、MEMSデバイスの製造方法、MEMSデバイス及びそれを用いたシャッタ装置に関する。
従来、MEMSデバイス(Micro Electro Mechanical Systems)を用いて光路を変更する光学装置が知られている。特許文献1には、基板表面において、離間して固定された光導波路の間に、熱式アクチュエータに連結され基板表面と平行な方向に移動可能な別の光導波路を配置し、熱式アクチュエータの駆動により、固定して配置された光導波路間の光路を切り替える技術が開示されている。なお、上記のMEMSデバイスは、2つのシリコン単結晶層の間にシリコン酸化膜層を有するSOI(Silicon on Insulator)基板を用いて製造されている。
米国特許第7,298,954号明細書
ところで、一般に、MEMSデバイスの製造に用いられるSOI基板として、製造コスト等の観点から、シリコン基板の表面に形成された酸化層に別のシリコン基板を貼り合わせて形成される、いわゆる貼り合わせSOI基板が多用されている。また、同様に、製造コスト等の観点から、これらのシリコン基板はチョクラルスキー(CZ)法を用いて製造される。
しかし、このようなSOI基板を出発基材として特許文献1に示されるようなMEMSデバイスを作製すると、シリコン層に含有される酸素濃度及びSOI基板作製時あるいはMEMSデバイスの製造時の熱処理条件によっては、シリコン層内に高密度で析出酸化物が形成され、この析出酸化物に起因した転位が発生することがある。この転位がシリコン層内に高密度で発生することにより、熱式アクチュエータを長期間使用した場合に塑性変形を生じるおそれがあった。また、このような塑性変形に起因して、MEMSデバイス、ひいてはシャッタ装置の動作信頼性が低下するおそれがあった。
本発明はかかる点に鑑みてなされたものであり、その目的とするところは、シリコン層内での析出酸化物に起因した転位の形成が抑制された高信頼性のMEMSデバイス及びそのようなMEMSデバイスを備えたシャッタ装置を提供することにある。
上記の目的を達成するために、本発明に係るMEMSデバイスの製造方法は、シリコン層を有する基板を準備する基板準備工程と、シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい第1の温度で前記基板を熱処理する熱処理工程と、前記熱処理工程の後に前記基板準備工程で準備された前記基板を加工してMEMSデバイスを得る加工工程と、を少なくとも備えている。前記基板は、ハンドル層と絶縁層とデバイス層とがこの順に積層された貼り合わせ基板であり、前記デバイス層は前記シリコン層であり、チョクラルスキー(CZ)法により製造されたシリコン基板を用いて形成されている。前記シリコン層は、析出酸化物密度が5×10 個/cm 以下であるか、または、積層欠陥密度が1×10 個/cm 以上であるか、あるいはその両方の条件を満たしている。
この方法によれば、シリコン層での析出酸化物の生成を抑制して、その密度を低下することができる。このことにより、析出酸化物に起因した転位の発生を抑制して、MEMSデバイスの動作信頼性を高めることができる。
また、本発明に係るMEMSデバイスは、シリコン層を有する基板と、前記基板に形成された固定部と、前記固定部に連結される一方、電流が流れることで発熱し、所定の方向に発熱温度に応じて変位する熱式アクチュエータと、前記熱式アクチュエータに連結された被駆動部材と、を少なくとも備え、前記熱式アクチュエータを構成する部材が前記シリコン層である。前記基板は、ハンドル層と絶縁層とデバイス層とがこの順に積層された貼り合わせ基板であり、前記デバイス層は前記シリコン層であり、チョクラルスキー(CZ)法により製造されたシリコン基板を用いて形成されている。前記シリコン層は、析出酸化物密度が5×10 個/cm 以下であるか、または、積層欠陥密度が1×10 個/cm 以上であるか、あるいはその両方の条件を満たしている。
この構成によれば、シリコン層を構成部材とする熱式アクチュエータの長期間使用時の塑性変形を抑制して、MEMSデバイスの動作信頼性を高めることができる。
本発明に係るシャッタ装置は、上記のMEMSデバイスと、前記固定部上に配設され、前記熱式アクチュエータの両端部にそれぞれ電気的に接続された第1及び第2電極と、を備え、前記被駆動部材で光路を遮断及び開通させる。
この構成によれば、MEMSデバイスの動作信頼性を高められるため、それを有するシャッタ装置自体の動作信頼性を高めることができる。
以上説明したように、本発明によれば、シリコン層における転位の発生を抑制して、MEMSデバイスの動作信頼性を高めることができる。
本発明の一実施形態に係るシャッタ装置の平面図である。 シャッタ装置の、図1のII-II線における断面図である。 駆動状態のシャッタ装置の平面図である。 SOI基板の製造方法の一工程を示す断面図である。 SOI基板の製造方法の一工程を示す断面図である。 SOI基板の製造方法の一工程を示す断面図である。 シャッタ装置の製造方法の一工程を示す断面図である。 シャッタ装置の製造方法の一工程を示す断面図である。 シャッタ装置の製造方法の一工程を示す断面図である。 シャッタ装置の製造方法の一工程を示す断面図である。 熱酸化工程での熱処理温度を変えた場合の析出酸化物密度、積層欠陥密度及びHTOL試験結果を示す図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
(実施形態)
[シャッタ装置の構成]
図1は、本発明の一実施形態に係るシャッタ装置1の平面図を、図2は、シャッタ装置1の、図1のII-II線における断面図を示す。なお、図面に描かれた各部材の寸法、厚さ、細部の詳細形状などは実際のものとは異なることがある。
シャッタ装置1は、固定部2と、固定部2に連結された第1アクチュエータ3及び第2アクチュエータ4と、第1端部5a及び第2端部5bを有し、第1端部5aが第1アクチュエータ3に連結された第1ビーム5と、第3端部6b及び第4端部6cを有し、第3端部6bが第2アクチュエータ4に連結された第2ビーム6と、第1ビーム5の第2端部5bと第2ビーム6の第4端部6cとに連結された被駆動部材7と、第1電極101と、第2電極102とを備えている。
以下、説明の便宜上、第1ビーム5の長手方向をX方向、第1アクチュエータ3及び第2アクチュエータ4の長手方向をY方向、シャッタ装置1の厚さ方向をZ方向と称する。なお、X方向において、図1における左側を単に左側、図1における右側を単に右側と称することもある。Y方向において、図1における上側を単に上側、図1における下側を単に下側と称することもある。Z方向において、図2における上側を上面、図2における下側を下面と称することもある。また、第1ビーム5の第1端部5aや第2ビーム6の第3端部6bを基端、第1ビーム5の第2端部5bや第2ビーム6の第4端部6cを先端と称することもある。
シャッタ装置1は、いわゆるMEMSシャッタであって、半導体微細加工技術を応用したマイクロマシニング技術で製造されている。シャッタ装置1は、SOI基板200を用いて製造されている。SOI基板200は、単結晶シリコンで形成された第1シリコン層210と、SiOで形成された酸化膜層220と、単結晶シリコンで形成された第2シリコン層230とがこの順で積層されて構成されている。
このように、シャッタ装置1において、固定部2、第1アクチュエータ3、第2アクチュエータ4、第1ビーム5、第2ビーム6、及び被駆動部材7は、シリコン素材で一体成形され、変位拡大機構10(MEMSデバイス)を構成している。なお、酸化膜層220及び第2シリコン層230は固定部2を構成する第1ベース部材21及び第2ベース部材22の下面にのみ残され、可動部材である第1アクチュエータ3、第2アクチュエータ4、第1ビーム5、第2ビーム6、及び被駆動部材7の下面の酸化膜層220及び第2シリコン層230は後述する製造過程において除去される。
図1に示すように、例えば、シャッタ装置1は平面視で矩形の全体形状を有している。固定部2は、そのような平面視矩形のシャッタ装置1の全体形状を形成するフレームである。固定部2は、Y方向に対向して配置された第1ベース部材21及び第2ベース部材22を備えている。
なお、固定部2は、第1シリコン層210において第1ベース部材21及び第2ベース部材22の2つのパーツに分かれているが、酸化膜層220及び第2シリコン層230では1つに繋がっている。このため、第1ベース部材21及び第2ベース部材22の相対位置は固定されており、第1ベース部材21及び第2ベース部材22で可動部材を支持することができる。
さらに、第1ベース部材21の第1凹部21aと第2ベース部材22の第3凹部22aとは開口が互いに対向する位置に配置され、第1アクチュエータ3を配置するためのY方向に長い概略矩形の開口部20Lを形成している。同様に、第1ベース部材21の第2凹部21bと第2ベース部材22の第4凹部22bとは開口が互いに対向する位置に配置され、第2アクチュエータ4を配置するためのY方向に長い概略矩形の開口部20Rを形成している。
このように、固定部2は、可動部材の可動域を確保しつつできるだけ広い面積を占めるような形状にされていることで、第1アクチュエータ3及び第2アクチュエータ4を支持するフレームとして必要な高い剛性を確保している。
第1アクチュエータ3は、並列配置された2つのアクチュエータ31,31を備えている。2つのアクチュエータ31,31は、Y方向に伸びた棒状の熱式アクチュエータである。後述するように、アクチュエータ31,31は、第1シリコン層210をパターニングするとともに、その下方に位置する酸化膜層220と第2シリコン層230を除去することで得られている。また、アクチュエータ31,31自体に電流を流すことで発生するジュール熱により自身の温度が上昇し、この温度上昇に応じて所定の方向にアクチュエータ31,31が湾曲する。また、第1アクチュエータ3の第1端部3bから第2端部3cへの長手方向の略中央の中間部3aにおいて互いに連結されている。このように、2つのアクチュエータ31,31が中間部3aにおいて連結されていることで、2つのアクチュエータ31,31の各駆動力が結合されて第1アクチュエータ3は大きな駆動力を発揮することができる。後述するように、第1アクチュエータ3は通電による加熱で熱膨張して駆動力を発生させる。
2つのアクチュエータ31,31の第1端部3b,3bは、第1ベース部材21の第1凹部21aの底面部分において第1ベース部材21に連結されている。2つのアクチュエータ31,31の第2端部3c,3cは、第2ベース部材22の第3凹部22aの底面部分において第2ベース部材22に連結されている。
厳密に言うと、第1アクチュエータ3は、Y方向に一直線に伸びているわけではなく、中間部3aがその駆動方向であるX方向左側に突出するようにわずかに屈曲、あるいは全体的にX方向左側に膨らむようにわずかに湾曲している。
第2アクチュエータ4は、並列配置された2つのアクチュエータ41,41を備えている。2つのアクチュエータ41,41は、Y方向に伸びた棒状の部材であり、第1アクチュエータ31,31と同様の熱式アクチュエータである。第2アクチュエータ4の第1端部4bから第2端部4cへの長手方向の略中央の中間部4aにおいて互いに連結されている。このように、2つのアクチュエータ41,41が中間部4aにおいて連結されていることで、2つのアクチュエータ41,41の各駆動力が結合されて第2アクチュエータ4は大きな駆動力を発揮することができる。後述するように、第2アクチュエータ4は通電による加熱で熱膨張して駆動力を発生させる。
2つのアクチュエータ41,41の第1端部4b,4bは、第1ベース部材21の第2凹部21bの底面部分において第1ベース部材21に連結されている。2つのアクチュエータ41,41の第2端部4c,4cは、第2ベース部材22の第4凹部22bの底面部分において第2ベース部材22に連結されている。
厳密に言うと、第2アクチュエータ4は、Y方向に一直線に伸びているわけではなく、中間部4aがその駆動方向であるX方向右側に突出するようにわずかに屈曲、あるいは全体的にX方向右側に膨らむようにわずかに湾曲している。また、上記のように、第1アクチュエータ3及び第2アクチュエータ4がその駆動方向に対して屈曲あるいは湾曲していることにより、加熱による熱膨張時に、第1アクチュエータ3及び第2アクチュエータ4が駆動方向と反対側に屈曲あるいは湾曲することがない。従って、駆動方向に向かって第1アクチュエータ3及び第2アクチュエータ4を確実に屈曲あるいは湾曲させることができる。
このように、第1アクチュエータ3はシャッタ装置1においてX方向左側に配置され、第2アクチュエータ4はシャッタ装置1においてX方向右側に配置され、第1アクチュエータ3と第2アクチュエータ4とは平面視で対向している。
対向し合う第1アクチュエータ3と第2アクチュエータ4との間に被駆動部材7が配置されている。また、被駆動部材7には第1ビーム5及び第2ビーム6が連結されている。被駆動部材7は、MEMSデバイス10を構成する他の部材よりも薄く形成されている。これにより、被駆動部材7の質量を小さくして共振周波数を高くしている。また、被駆動部材7の表面全体に金属膜71、例えば、Au/Ti膜が形成されている。当該シャッタ装置1において、被駆動部材7は、図略の光路を遮断及び開通させるシャッタとして機能する。したがって、被駆動部材7は、当該光路の断面よりも一回り大きい平面形状、具体的は円形に形成されている。また、第1ビーム5及び第2ビーム6と被駆動部材7との連結部分には図示しない放熱部が形成されており、第1アクチュエータ3の駆動時に第1アクチュエータ3で発生して第1アクチュエータ3から第1ビーム5を経由して伝わってくる熱、及び/又は、第2アクチュエータ4の駆動時に第2アクチュエータ4で発生して第2アクチュエータ4から第2ビーム6を経由して伝わってくる熱を放熱する役割をする。
第1ビーム5は、X方向に伸びた棒状の部材である。第1ビーム5の第1端部5aは、第1アクチュエータ3の中間部3aに連結されている。第1ビーム5の第2端部5bは、被駆動部材7に連結されている。
第2ビーム6は、折り返し構造を有する部材であり、第2アクチュエータ4の中間部4aから第1アクチュエータ3の中間部3aの近傍まで伸びる第1部材61と、該第1部材61の端部6aから第2アクチュエータ4の方へ折り返された第2部材62とを備えている。第2ビーム6の第3端部6b(すなわち、第1部材61側の基端)は、第2アクチュエータ4の中間部4aに連結されている。第2ビーム6の第4端部6c(すなわち、第2部材62側の先端)は、被駆動部材7に連結されている。
第2部材62は、第1部材61の端部6aからX方向に伸びた、第1ビーム5とほぼ同じ細さの棒状の部材である。第2部材62は、第1ビーム5に対してY方向のわずかに下側において第1ビーム5と並列に配置されている。なお、以降の説明も含めて「第1ビーム5と第2ビームの第2部材62とが並列(に)配置されている」とは、第1ビーム5と第2ビームの第2部材62とが略平行関係を保って配置されているということである。また、第1ビーム5と第2ビーム6の第2部材62とが互いに並列に配置された部分56を並列配置部56と称することがある。すなわち、第1ビーム5と第2ビーム6の第2部材62とは並列して同じ方向から被駆動部材7に連結されている。言いかえると、第1ビーム5の先端側が図示しない放熱部で折り返されることにより、第1ビーム5及び第2ビーム6と被駆動部材7との連結部分において、第1ビーム5と第2ビーム6の第2部材62とが並列に配置される。
第1部材61は、被駆動部材7を迂回するような例えば鈎状の形状を有する部材である。また、第1部材61は、第2部材62よりも弾性率が高くなるように高弾性領域を少なくとも一部に有し、例えば幅広に形成されている。後述するように、第2ビーム6が第2アクチュエータ4により駆動されても、第1部材61はほとんど弾性変形せずに鈎状の形状を留めて第2アクチュエータ4の駆動力を第2部材62へと伝達する。その他、当該高弾性領域は、第1部材61の一部を第2部材62よりも厚くしたり、第1部材61の一部に金属膜を成膜するなどしてもよい。なお、本実施形態の第2アクチュエータ4をなくし、第2ビーム6が固定部2に直接連結されていてもよく、具体的には、第2ビーム6を第2部材62のみで構成し、当該第2部材62の第4端部6cとは反対側の端部が固定部2(第1ベース部材21又は第2ベース部材22)に直接連結されていてもよい。その場合、当該第2部材62が略直線の状態又は若干の曲率を有した状態で固定部2に直接連結されていてもよいし、当該第2部材62の第4端部6cとは反対側の端部付近が折り曲げられたのち固定部2と連結されていてもよい。
第1電極101は、第1ベース部材21の上面に形成された金属膜、例えば、Au/Ti膜である。
第2電極102は、第2ベース部材22の上面に形成された金属膜、例えば、Au/Ti膜である。
[シャッタ装置の動作]
続いて、このように構成されたシャッタ装置1の動作について説明する。図3は、駆動状態のシャッタ装置1の平面図を示す。
シャッタ装置1は、第1電極101と第2電極102との間に電圧を印加することで駆動される。第1電極101と第2電極102との間に電圧が印加されると、第1ベース部材21及び第2ベース部材22を通じて第1アクチュエータ3及び第2アクチュエータ4に電流が流れる。このとき、シリコン素材でできた第1アクチュエータ3及び第2アクチュエータ4にジュール熱が発生し、第1アクチュエータ3及び第2アクチュエータ4は一瞬のうちに400~500℃に加熱される。
第1アクチュエータ3は、加熱されることにより全長が伸びるように熱膨張する。第1アクチュエータ3の第1端部3b及び第2端部3cは固定部2により位置が固定されているため、中間部3aはあらかじめ突出している方向であるX方向左側へ押し出される。
第2アクチュエータ4もまた、加熱されることにより全長が伸びるように熱膨張する。第2アクチュエータ4の第1端部4b及び第2端部4cは固定部2により位置が固定されているため、中間部4aはあらかじめ突出している方向であるX方向右側へ押し出される。
第1アクチュエータ3の中間部3aがX方向左側へ押し出されると、それに連結されている第1ビーム5が全体的にX方向左側へ引っ張られる。また、第2アクチュエータ4の中間部4aがX方向右側へ押し出されると、それに連結されている第2ビーム6が全体的にX方向右側へ引っ張られる。
すなわち、第1ビーム5の第1端部5a及び第2ビーム6の第2端部6bは、互いに遠ざかる方向に相対位置が変化する。
第2ビーム6が全体的にX方向右側へ引っ張られても、第2ビーム6の第1部材61はほとんど弾性変形しないため、第2ビーム6による引っ張り力のほとんどは端部6aに集中して第2部材62をX方向右側へ押し出す力に変化する。この結果、並列配置された第1ビーム5及び第2ビーム6の第2部材62において、第1ビーム5がX方向左側へ引っ張られ、第2ビーム6の第2部材62がX方向右側へ押し出されることで、第1ビーム5の第2端部5b及び第2ビーム6の第4端部6cがXY平面上で左斜め上へ駆動され、第1ビーム5及び第2ビーム6の第2部材62はそれぞれ異なる曲率で大きく湾曲又は屈曲し、第2ビーム6の第4端部6cが被駆動部材7を押す一方、第1ビーム5の第2端部5bが被駆動部材7を引くことで、第2ビーム6の第1部材61は第3端部6bを軸としてXY平面上で反時計回りに若干回転して、被駆動部材7は、図5に示したようなXY平面上の位置へ押し出される。また、本実施形態のように、第2アクチュエータ4を複数のアクチュエータを連結して構成することで、第2アクチュエータ4を1つのアクチュエータで構成する場合と比較して、第2ビーム6の第1部材61が第3端部6bを軸としたXY平面上での反時計回りの回転剛性を高めることができる。
一方、第1電極101と第2電極102との間で電圧が印加されなくなると、第1アクチュエータ3及び第2アクチュエータ4に電流が流れなくなり、第1アクチュエータ3及び第2アクチュエータ4は急速に自然冷却され、それまで伸びていた全長が元に戻る。このとき、X方向左側へ押し出されていた第1アクチュエータ3の中間部3aはX方向右側へ引き戻され、また、X方向右側へ押し出されていた第2アクチュエータ4の中間部4aはX方向左側へ引き戻される。
第1アクチュエータ3の中間部3aがX方向右側へ引き戻されると、それに連結されている第1ビーム5が全体的にX方向右側へ引き戻される。また、第2アクチュエータ4の中間部4aがX方向左側へ引き戻されると、それに連結されている第2ビーム6が全体的にX方向左側へ引き戻される。
すなわち、第1ビーム5の第1端部5a及び第2ビーム6の第2端部6bは、互いに近づく方向に相対位置が変化する。
第2ビーム6が全体的にX方向左側へ引き戻されても、第2ビーム6の第1部材61はほとんど弾性変形しないため、第2ビーム6による引き込み力のほとんどは端部6aに集中して第2部材62をX方向左側へ引っ張る力に変化する。この結果、並列配置された第1ビーム5及び第2ビーム6の第2部材62において、第1ビーム5がX方向右側へ押し込まれ、第2ビーム6の第2部材62がX方向左側へ引っ張られることで、第1ビーム5の第2端部5b及び第2ビーム6の第4端部6cがXY平面上で右斜め下へ押し戻され、湾曲又は屈曲していた第1ビーム5及び第2ビーム6の第2部材62は元の略直線状に戻り、第2ビーム6の第1部材61は第3端部6bを軸としてXY平面上で時計回りに若干回転して元の位置に戻り、被駆動部材7は、図1に示したようなXY平面上の位置に戻る。
なお、第1ビーム5が被駆動部材7を押す一方、第2ビーム6が被駆動部材7を引くようにしてもよい。
上記のように、電極101及び電極102への電圧印加(シャッタ装置1の駆動状態)及び解除(シャッタ装置1の被駆動状態)を切り替えることで、XY平面上における被駆動部材7の位置が図5及び図1に示したように切り替わる。図1に示した被駆動部材7又は図5に示した被駆動部材7に重なるように図略の光路が配置されており、被駆動部材7の位置が図5及び図1に示したように切り替わることで、被駆動部材7は、図略の光路を遮断及び開通させるシャッタとして機能する。被駆動部材7が第1アクチュエータ3及び第2アクチュエータ4によって駆動されていない位置で図略の光路を遮断し、駆動された位置で当該光路を開通させてもよいし、逆に、被駆動部材7が第1アクチュエータ3及び第2アクチュエータ4によって駆動されていない状態で図略の光路を開通し、駆動された位置で当該光路を遮断させてもよい。また、シャッタは、光路を遮断及び開通させる以外にも光路の一部を遮断及び開通させる光減衰器を含む概念である。
[本願発明に到った知見]
図1,2に示すシャッタ装置1に関して高温動作寿命試験(High Temperature Operating Life Test;以下、HTOL試験という)を行った場合に、不良となる頻度が製品ロットによって大きくばらつき、その場合の主たる不良モードが第1及び/または第2アクチュエータ3,4の動作不良であることを本願発明者等は突き止めた。
さらに解析を進めていくと、不良と判定されたシャッタ装置1において、第1及び/または第2アクチュエータ3,4が塑性変形していることが分かった。また、この場合、第1シリコン層210にシリコン酸化物が高密度で析出していることがわかった。このことから、SOI基板200の製造工程またはシャッタ装置1の製造工程において、SOI基板200の熱処理時に、第1及び/または第2アクチュエータ3,4を構成する第1シリコン層210中にシリコン酸化物の析出物(以下、析出酸化物という)が生成されていると推定された。また、同数のシリコン原子を含む場合、シリコン酸化物の体積はシリコン単結晶の体積よりも大きくなる。析出酸化物生成時の体積膨張に起因して第1シリコン層210中に転位が発生し、転位密度が一定値以上に高くなることで、第1及び/または第2アクチュエータ3,4の塑性変形が引き起されていると推定された。
一般に、固体結晶での塑性変形は、結晶内に存在する転位、特にその密度やサイズに大きく依存することが分かっている。熱膨張によって第1及び/または第2アクチュエータ3,4が変形した状態が長時間保持される状態では、第1及び/または第2アクチュエータ3,4を構成する第1シリコン層210に応力が加わった状態が維持される。また、第1及び/または第2アクチュエータ3,4の加熱と冷却とが頻繁に繰り返される状態であると、第1及び/または第2アクチュエータ3,4を構成する第1シリコン層210に加わる応力の変化が大きくなる。いずれの場合にも、第1シリコン層210に高密度で転位が形成されていると、応力による結晶内での転位の移動が促進され、第1及び/または第2アクチュエータ3,4の塑性変形が引き起こされると考えられた。
そこで、本願発明者等は、まず第1に、第1シリコン層210中の酸素濃度を低減することで不良発生を低減できないかを検討した。酸素濃度を低くできれば、当然に析出酸化物密度を低減できる。しかし、製造コストの観点から、第1シリコン層は、CZ法により作製されたシリコン基板(以下、CZ-シリコン基板という)を用いて形成されるのが一般的であり、CZ法では、石英製のるつぼ等から酸素がシリコン融液中に取り込まれてシリコン単結晶中に格子間酸素元素として残存してしまうことが知られている。一般的なCZ-シリコン基板中の酸素濃度は、5×1017/cm~1×1018/cm程度である。シリコン基板中の酸素濃度を、この値以下、例えば、1×1017/cm以下に低減するためには、フローティングゾーン法によりシリコン基板を作製するか、あるいは、CZ-シリコン基板上にエピタキシャル成長法によってシリコン単結晶層を成長させ、このシリコン単結晶層を第1シリコン層210として用いる等の方法が考えられる。
しかし、いずれの方法もCZ法に比べてシリコン基板の製造コストが高価であり、安価に作製することが求められるMEMSデバイスに適用するのは難しい。
そこで、析出酸化物に起因した転位の発生密度が低減できないかを検討した。析出酸化物は、シリコン単結晶中に含まれる格子間酸素原子とシリコン原子とが化学結合して発生し、シリコン単結晶に加えられる温度によって、析出酸化物の密度や形状やサイズが変化することがわかっている。例えば、末岡氏第1論文(Journal of Applied Physics, 1993, vol.74, p.5437-5444)にその挙動が詳述されている。
不良と判定されたシャッタ装置1においては、SOI基板200の製造工程またはシャッタ装置1の製造工程において、SOI基板200の熱処理時に、析出酸化物の密度が高くなるとともに、そのサイズが大きくなり、析出酸化物の周囲での体積が大きく変化していると考えられる。これに起因して、高密度の転位発生を引き起こしていると考えられる。
一方、上記の末岡氏第1論文には、シリコン単結晶中の格子間酸素原子の挙動に関する知見も記述されており、この点に本願発明者等は着目した。当該知見によれば、1000℃を境にシリコン単結晶中の格子間酸素原子と格子間シリコン原子の拡散係数が逆転することがわかっている。このことに鑑みると、1000℃以下では、格子間酸素原子の拡散流速が格子間シリコン原子の拡散流速よりも大きくなる一方、1000℃を超えると、格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きくなると推定される。ここで、拡散流速とは、単位時間に単位面積を通過する原子の量を示し、単位は、例えば、mol/cm・sで表わされる。
この知見をもとに、変位拡大機構(MEMSデバイス)10を含むシャッタ装置1の製造工程における熱処理温度を適切に制御することにより、析出酸化物及びそれに起因する転位の発生を抑制し、変位拡大機構(MEMSデバイス)10及びシャッタ装置1の信頼性不良が低減できることを本願発明者等は見いだした。以下に詳述する。
[SOI基板の製造方法及びシャッタ装置の製造方法]
図4A~4Cは、本実施形態に係るSOI基板の製造方法の各工程での断面図を示し図5A~5Dは、シャッタ装置の製造方法の一工程の各工程での断面図を示す。
まず、シャッタ装置1の基材となるSOI基板200の製造方法について述べる。前述したように、MEMSデバイス10を作製するにあたって、コスト抑制の観点から貼り合わせSOI基板が一般に用いられる。
図4Aに示すように、デバイス基板110とベース基板130とを準備する。デバイス基板110、ベース基板130ともにCZ法で作製されており、所定の濃度、例えば、前述した5×1017/cm~1×1018/cm程度の濃度の酸素を含有している。デバイス基板110は表面に酸化膜層120が形成されている。酸化膜層120は、水蒸気を含む雰囲気中でデバイス基板110を熱酸化(以下、ウェット酸化という)して形成されている。酸化膜層120の膜厚は1μm以上であり、ウェット酸化時の熱処理温度は1050℃程度である。さらに、デバイス基板110とベース基板130とを洗浄して各々の表面を清浄にする。
次に、図4Bに示すように、デバイス基板110の主面とベース基板130の主面とを室温で貼り合わせて両者を接合させる。さらに、この状態で、所定の温度での熱処理を行う。この熱処理によりデバイス基板110とベース基板130との接合が強固なものとなる。熱処理は非酸化性雰囲気中で行われ、熱処理温度は、例えば、990℃程度である。
図4Cに示すように、ベース基板130に貼り合わされたデバイス基板110を厚さ方向で分割し、ベース基板130上にデバイス基板110の一部140が残るようにする。デバイス基板110の一部140を研磨し、そのうちのシリコン単結晶層が所望の厚さになるように調整する。デバイス基板110を厚さ方向で分割せずに研磨してシリコン単結晶層が所望の厚さになるように調整してもよい。
このようにして、SOI基板200が得られる。デバイス基板110の一部140のうちのシリコン単結晶層がデバイス層である第1シリコン層210に、酸化膜層120がBox層である酸化膜層220に、ベース基板130がハンドル層である第2シリコン層230にそれぞれ相当する。
続いて、シャッタ装置1の製造方法について説明する。なお、図5A~5Eに示す各製造工程の断面図は、図1のII-II線における断面図に対応する。
図4A~4Cに示す方法により作製したSOI基板200を用意する。例えば、デバイス層210の厚さは30μm、Box層220の厚さは1μm、ハンドル層230の厚さは250μmである。図5Aに示すように、SOI基板200をウェット酸化して、第1シリコン層210の表面に酸化膜層240を形成する。熱酸化時の処理温度は1000℃よりも高くなるようにし、例えば、1050℃で熱酸化処理を行う。また、酸化膜層240の厚さが数十nm~数百nm程度になるように熱酸化が行われる。なお、酸化膜層240は、後述する第1シリコン層210のエッチング時にエッチングマスクとして必要な厚さがあればよい。なお、以降の説明において、図5Aに示す工程、すなわち、SOI基板200を用意し、ウェット酸化するまでの工程を基板準備工程と呼ぶことがある。
図5Bに示すように、フォトリソグラフィー法により、図示しないレジストパターンを酸化膜層240の表面に形成し、レジストパターンをマスクとして酸化膜層240をエッチングし、マスクパターン241を得る。
次に、図5Cに示すように、マスクパターン241をエッチングマスクとして、デバイス層である第1シリコン層210をエッチングして、第1シリコン層210に、固定部2、第1アクチュエータ3、第2アクチュエータ4、第1ビーム5、第2ビーム6、及び被駆動部材7からなる変位拡大機構(MEMSデバイス)10の原型を一体形成する。なお、図5Cでは、便宜上、変位拡大機構(MEMSデバイス)10の一部のみ描かれている。また、変位拡大機構(MEMSデバイス)10を一体形成した後に、マスクパターン241は除去される。
特に、被駆動部材7は、他の部材よりもエッチング回数を1回多くして、厚さが7μm程度になるように薄く形成される。つまり、図示しないが、被駆動部材7の厚さは第1アクチュエータ3、第2アクチュエータ4、第1ビーム5及び第2ビーム6の厚さよりも薄い。さらに、第1ベース部材21の表面に第1電極101が形成され、第2ベース部材22の表面に第2電極102が形成され、被駆動部材7の表面に金属膜71が形成される。電極101,102及び金属膜71は、例えば、厚さ20nmのTi及び厚さ300nmのAuからなるAu/Ti膜である。
図5Dに示すように デバイス層である第1シリコン層210にシャッタ装置1の原形が形成されると、次に、デバイス層210にワックス(図示せず)でダミーウエハー(図示せず)を貼り合わせてシャッタ装置1の裏面の層、すなわち、Box層220及びハンドル層230をエッチング処理する。このエッチング処理により、固定部2にはSOI基板200、この場合、デバイス層210とBox層220とハンドル層230との積層構造が残され、変位拡大機構(MEMSデバイス)10における可動部材である第1アクチュエータ3、第2アクチュエータ4、第1ビーム5、第2ビーム6、及び被駆動部材7にはデバイス層である第1シリコン層210のみが残される。
最後に、ワックス(図示せず)及びダミーウエハー(図示せず)を除去してシャッタ装置1が完成する。
[熱処理温度と析出酸化物等の密度及び不良発生頻度との関係]
本願発明者等は、前述の末岡氏第1論文に開示された知見から、下記の仮説を導き出した。
まず、CZ-シリコン基板を1000℃以下の温度で熱処理すると、シリコン中の格子間酸素原子が、近傍のシリコン原子と化学結合して微小なシリコン酸化物の核が生成される。また、この温度域では、格子間酸素原子のほうが格子間シリコン原子よりも動きやすくなるため、格子間酸素原子が熱拡散して上記の核と結合、成長して析出酸化物となり、さらにそのサイズが大きくなる。また、析出酸化物の成長により、その周囲での格子歪みも大きくなる。この格子歪みに起因してシリコン単結晶中に転位が生成される。また、析出酸化物の発生密度に応じて転位密度も高くなり、前述したように、シリコン単結晶層である第1シリコン層210からなる第1及び/または第2アクチュエータ3,4の塑性変形、ひいてはシャッタ装置1の信頼性不良を引き起こす。
一方、CZ-シリコン基板を1000℃よりも高温で熱処理すると、析出酸化物が生成されるのは上記の場合と同じであるが、この温度域では、格子間シリコン原子のほうが格子間酸素原子よりも動きやすくなるため、析出酸化物は上記に比べてあまり成長せず、また発生密度も低くなる。このため、析出酸化物に起因した転位の発生密度も低く抑えられ、第1及び/または第2アクチュエータ3,4の塑性変形を防止し、シャッタ装置1の信頼性不良を低減できると考えた。
そこで、本願発明者等は、図5A~図5Dに示すシャッタ装置1の製造工程において、図5Aに示す熱酸化工程に注目し、この処理温度を変えて、析出酸化物密度やシャッタ装置1の不良発生頻度を確認することとした。その結果、積層欠陥密度が1×10個/cm以上の場合、シャッタ装置1の不良の発生頻度が低く、積層欠陥密度が1×10個/cm以上、5×10個/cm以下の場合、より不良の発生頻度が低い傾向にあった。また、析出酸化物密度が5×10個/cm以下の場合、不良の発生頻度が低く、析出酸化物密度が1×10個/cm以下の場合、より不良の発生頻度が低い傾向にあった。さらに、積層欠陥密度および析出酸化物密度に関して上記の条件の両方を満たす場合には、いずれか一方の条件を満たす場合よりも不良の発生頻度が低い傾向にあり、これらの条件は任意に組合せが可能である。
図6は、図5Aに示す熱酸化工程での熱処理温度を変えた場合の析出酸化物密度及び積層欠陥密度、さらにシャッタ装置1のHTOL試験結果の一例を示す。なお、図6において、析出酸化物及び積層欠陥の観察及び密度の導出は、SOI基板200を熱酸化した後の状態で行っており、シャッタ装置1を直接解析したものではない。また、図6において、Wrightエッチング液に含浸して形成した第1シリコン層210中のエッチピットの形状を観察し、析出酸化物起因の欠陥に対応するエッチピットの個数を光学顕微鏡の所定の面積の視野内で求めて析出酸化物密度を導出した。また、実際の欠陥の種類や形状、サイズは光学顕微鏡または走査型電子顕微鏡(SEM)にて確認した。同様に、積層欠陥の有無や密度及びサイズは光学顕微鏡または走査型電子顕微鏡(SEM)にて確認した。また、HTOL試験で不良と判定された製品個数の割合が所定値以下であれば合格(O.K.)と判定し、その割合が所定値を越えていれば不合格(N.G.)と判定している。
図6に示すように、一方、熱処理温度が1000℃と低い場合(条件A)には、析出酸化物密度が1×10個/cmを超えており、HTOL試験での評価結果はN.G.であった。また、熱処理温度が1100℃と1000℃を超える場合(条件B)では、析出酸化物密度が5×10個/cm以下であり、HTOL試験での評価結果はO.K.であった。熱処理温度が1200℃と1000℃を超える場合(条件C~E)には、析出酸化物密度が5×10個/cmよりも小さく、HTOL試験での評価結果はO.K.であった。
末岡氏第2論文(末岡浩治「CZ-Si単結晶中の酸化物析出と酸化誘起積層欠陥に関する研究」、京都大学博士論文、1997年、p.2)によれば、低温(650℃-1050℃)でシリコン単結晶中に析出する析出酸化物の形状は板状となり、高温(1000℃-1250℃)でシリコン単結晶中に析出する析出酸化物の形状は孤立多面体となる。また、末岡氏第2論文に開示されたこれら析出酸化物のTEM明視野像を比較すると、板状の析出酸化物の周囲では、シリコン単結晶中に歪みが生じているのに対し、孤立多面体形状の析出酸化物の周囲ではこのような歪みは確認されていない。この知見から推測すると、条件Aでの熱処理によって発生する析出酸化物は条件B~Eに比べて高密度であるだけでなく、その形状も異なっており、板状であると考えられる。前述したとおり、板状の析出酸化物が発生すると、その周囲の格子歪みが大きくなるため転位が発生しやすくなる。一方、条件B~Eでの熱処理では、孤立多面体形状の析出酸化物は発生するが、その周囲の格子歪みは小さく、条件Aに比べて転位の密度が小さくなるものと推測された。
また、析出酸化物とは別に、第1シリコン層210中には積層欠陥が存在しており、熱処理温度が1000℃である条件Aでは、積層欠陥が所定の視野内での顕微鏡観察では見られていないのに対し、熱処理温度が1100℃である条件Bでは、積層欠陥密度は5×10個/cmよりも大きく、熱処理温度が1200℃である条件C~Eでは、積層欠陥密度は1×10個/cmよりも大きい値となっていた。
一般に知られるように、積層欠陥は、単結晶中の結晶格子面において原子の周期的配列が一部乱れて生じる欠陥である。一方、転位は、結晶格子の原子配列のずれが線状になっている欠陥である。条件Aにおいては、熱酸化中に、析出酸化物の周囲に存在するシリコン原子と、熱拡散により移動してきた格子間酸素原子とが結合し、析出酸化物の成長と第1シリコン層210中での転位の発生が進行するのに対し、格子間シリコン原子は主に析出酸化物の発生と成長に消費されるため、積層欠陥はほとんど増えないと考えられる。
一方、条件B~Eにおいては、格子間シリコン原子が格子間酸素原子よりも移動しやすい温度であるため、格子間シリコン原子は格子間酸素原子と結合して析出酸化物に取り込まれることなく、その周囲を移動する。降温過程において、格子間シリコン原子が結晶格子面間の不規則な位置に配置されることで、熱処理温度が1000℃の場合(条件A)よりも積層欠陥の発生数が増加したものと考えられる。また、積層欠陥は転位と相互作用し、結晶中での転位の移動を抑制することが知られている。条件B~Eにおいて、条件AよりもHTOL試験での評価結果が良好であったのは、条件Aよりも高密度で発生した積層欠陥も影響していると考えられる。以上の結果を総合すると、前述の仮説が正しいことが検証された。
[効果等]
以上説明したように、本実施形態において、変位拡大機構(MEMSデバイス)10を含むシャッタ装置1を製造するために、1000℃よりも高温、すなわち、シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい温度で第1シリコン層210を有するSOI基板200を熱酸化する熱酸化工程と、熱酸化工程の後にSOI基板200を加工する加工工程と、が少なくとも行われる。
また、析出酸化物密度に着目して言えば、変位拡大機構(MEMSデバイス)10を含むシャッタ装置1を製造するために、析出酸化物密度が5×10個/cm以下である第1シリコン層210を有するSOI基板200を準備する基板準備工程と、当該基板準備工程の後にSOI基板200を加工する加工工程と、が少なくとも行われる。
別の見方をすると、変位拡大機構(MEMSデバイス)10を含むシャッタ装置1を製造するために、積層欠陥密度が1×10個/cm以上である第1シリコン層210を有するSOI基板200を準備する基板準備工程と、当該基板準備工程の後にSOI基板200を加工する加工工程と、が少なくとも行われる。また、析出酸化物密度が5×10個/cm以下で、かつ積層欠陥密度が1×10個/cm以上である第1シリコン層210を有するSOI基板200を準備する基板準備工程と、当該基板準備工程の後にSOI基板200を加工する加工工程と、が少なくとも行われるとも言える。
1000℃よりも高温でSOI基板200を熱酸化することにより、デバイス層である第1シリコン層210内での析出酸化物の生成を抑制して、その密度を低下することができる。このことにより、析出酸化物に起因した転位の発生を抑制して、変位拡大機構(MEMSデバイス)10中の可動部である第1及び第2アクチュエータ3,4を長期間使用したときの塑性変形を抑制できる。その結果、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。なお、析出酸化物の生成抑制及び発生密度低下のみを鑑みれば、この熱処理温度は、1000℃を越えていればシリコンの融点である1410℃近傍でもよいが、実際には、1300℃を越えると基板の反りが増大したり、新たな結晶欠陥が発生したりするため、1270℃以下にするのが好ましい。
また別の言い方をすると、析出酸化物密度が5×10個/cm以下か、積層欠陥密度が1×10個/cm以上か、あるいはその両方の条件を満たす第1シリコン層210を有するSOI基板200を準備し、これを加工して変位拡大機構(MEMSデバイス)10を得ることで、析出酸化物に起因した転位の発生及び/または転位の移動を抑制して、変位拡大機構(MEMSデバイス)10における可動部である第1及び第2アクチュエータ3,4の塑性変形を抑制できる。その結果、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。
また、近年、貼り合わせ法によりSOI基板200を作製するにあたって、貼り合わせ強度を確保しつつ、基板の反りや金属不純物の拡散を低減するため、貼り合わせ後の熱処理温度を低温化する傾向にある。この時に選択される温度域は、1000℃近傍で、かつ1000℃よりも低温であることが多くなってきている。
しかし、貼り合わせ温度を1000℃よりも低くすると、第2シリコン層210内での析出酸化物密度が高くなり、析出酸化物に起因した転位の発生密度も高くなることは、前述した通りである。従って、本実施形態に示す熱酸化工程または基板準備工程を経ることで、1000℃以下の温度で最終的な熱処理がなされて作製されたSOI基板200を用いてシャッタ装置1を製造しても、第1及び第2アクチュエータ3,4の長期間使用時の塑性変形を抑制して、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。
また、図5Aに示すウェット酸化工程後に、言いかえると、基板準備工程後に、析出酸化物が高密度で発生したり、それに起因した転位が高密度で発生したりすると、第1及び第2アクチュエータ3,4の塑性変形を抑制できず、シャッタ装置1の動作信頼性は低下してしまう。そのため、ウェット酸化工程の後で行われる工程において、析出酸化物が実質的に成長しないようにする必要がある。具体的には、ウェット酸化工程の後(基板準備工程の後)で行われる工程において、第1シリコン層210を含むSOI基板200に加えられる温度は、1000℃よりも低い温度、つまり、シリコン単結晶中における格子間酸素原子の拡散流速が格子間シリコン原子の拡散流速よりも大きい温度であり、かつ第1シリコン層210に含まれる析出酸化物が実質的に成長しない温度以下にする必要があり、前述の末岡氏第1及び第2論文を参照すると、600℃以下にする必要がある。ただし、同論文に開示された知見によれば、SOI基板200に加えられる温度が700℃であっても、析出酸化物が成長するには数十時間~数百時間かかるため、700℃以下の処理であれば、処理時間に留意しつつ、シャッタ装置1の製造工程に組み込むことができる。
デバイス層である第1シリコン層210が、CZ-シリコン基板を用いて形成されていることにより、SOI基板210のコストを低減でき、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の製造コストを低減することができる。
また、第1シリコン層210をウェット酸化して酸化膜層240を形成する場合、前述の加工工程は、第1シリコン層210を加工するためのマスクパターン241を形成するマスクパターン形成工程と、マスクパターン241を用いて第1シリコン層210をパターニングするシリコン層加工工程と、を少なくとも含むことになる。
半導体微細加工技術において、シリコン酸化膜のパターニングは技術的に確立しており、また、低コストで行うことのできる工程でもある。このように、酸化膜層240を用いることで、後に続く第1シリコン層210のエッチングにおいて、十分なエッチング耐性を有するマスクパターン241を形成することができる。前述したように、第1シリコン層210の厚さは30μm程度あり、レジストからなるマスクパターンでは、第1シリコン層210のエッチング時にマスクパターンの形状が変化するか、パターン自体が消失してしまい、所望の形状に第1シリコン層210を加工できなくなることがあるからである。なお、第1シリコン層210の厚さが上記の値よりも薄ければ、例えば、数μm程度であれば、レジストからなるマスクパターン用いて第1シリコン層210をパターニングしてもよい。
また、SOI基板200に対して上記の熱酸化工程の代わりに、非酸化性雰囲気中あるいは微量の酸化性気体を含む雰囲気中で熱処理を行う場合もあり得る。例えば、第1シリコン層210中にp型あるいはn型不純物が高濃度に含まれており、熱処理によってこれら不純物を活性化し、第1シリコン層210の電気抵抗率を下げたい場合等がこれにあたる。この場合も、シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい温度で熱処理を行うことで、第1及び第2アクチュエータ3,4の塑性変形を抑制して、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。
また、本実施形態に係るMEMSデバイス10は、第1シリコン層210を有するSOI基板200と、SOI基板200に形成された固定部2と、固定部2に連結される一方、電流が流れることで発熱し、所定の方向に発熱温度に応じて変位する熱式アクチュエータである第1及び第2アクチュエータ3,4と、第1及び第2アクチュエータ3,4に連結された第1及び第2ビーム5,6と被駆動部材7と、を少なくとも備えている。また、第1シリコン層210の析出酸化物密度が5×10個/cm以下であるか、第1シリコン層210の積層欠陥密度が1×10個/cm以上であるか、あるいはその両方の条件を満たしている。
MEMSデバイス10を上記の構成とすることで、第1シリコン層210を構成部材とする熱式アクチュエータである第1及び第2アクチュエータ3,4の塑性変形を抑制して、変位拡大機構(MEMSデバイス)10の動作信頼性を高めることができる。
また、本実施形態に係るシャッタ装置1は、上記の特徴を有する変位拡大機構(MEMSデバイス)10と、固定部2上に配設され、第1及び第2アクチュエータ3,4のそれぞれの両端部3b,3c,4b,4cに電気的に接続された第1及び第2電極101,102と、を備え、被駆動部材7で光路を遮断及び開通させている。
シャッタ装置1を上記の構成とすることで、変位拡大機構(MEMSデバイス)10の動作信頼性を高め、ひいてはシャッタ装置1自体の動作信頼性を高めることができる。
なお、図3に示すように、シャッタ装置1の動作中に、第1及び第2アクチュエータ3,4だけでなく、第1及び第2ビーム5,6も大きく湾曲し、応力が加わっている。また、前述したように、第1及び第2アクチュエータ3,4の駆動時には、これらから第1及び第2ビーム5,6にそれぞれ熱が伝搬している。さらに、第1及び第2ビーム5,6も、第1及び第2アクチュエータ3,4と同様に第1シリコン層210で構成されている。
つまり、前述した本実施形態の製造方法を行うことで、第1及び第2アクチュエータ3,4だけでなく、第1及び第2ビーム5,6の塑性変形も抑制でき、その結果、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。また、本実施形態に係る変位拡大機構(MEMSデバイス)10及びシャッタ装置1において、第1及び第2ビーム5,6の塑性変形を抑制して、変位拡大機構(MEMSデバイス)10、ひいてはシャッタ装置1の動作信頼性を高めることができる。
また、本実施形態に係る変位拡大機構(MEMSデバイス)10によれば、第1アクチュエータ3及び第2アクチュエータ4が固定部2に連結されており、第1ビーム5の第1端部5aが第1アクチュエータ3に連結されており、第2ビーム6の第3端部6bが第2アクチュエータ4に連結されており、被駆動部材7が第1ビーム5の第2端部5bと第2ビーム6の第4端部6cとに連結されており、第1ビーム5が第2端部5bから第1ビーム5の延在方向に被駆動部材7を引く一方、第2ビーム6が第4端部6cから第2ビーム6の延在方向に被駆動部材7を押すことでこれら2つのビーム5,6に連結された被駆動部材7が駆動される。すなわち、第1アクチュエータ3及び第2アクチュエータ4にそれぞれ駆動される第1ビーム5及び第2ビーム6の駆動力が足し合わされて被駆動部材7が駆動される。したがって、駆動部材である第1アクチュエータ3及び第2アクチュエータ4のわずかな変位で被駆動部材7を大きく変位させることができる。
また、前記シャッタ装置1は、第1電極101と第2電極102との間に電圧が印加されると第1アクチュエータ3及び第2アクチュエータ4に電流が流れ、第1アクチュエータ3及び第2アクチュエータ4が加熱されて熱変形することで第1ビーム5及び第2ビーム6が駆動されてこれら2つのビーム5,6に連結された被駆動部材7が駆動される。したがって、第1電極101と第2電極102との間に低い電圧の印加で被駆動部材7を大きく変位させることができる。
(その他の実施形態)
以上のように、本出願において開示する技術の例示として、上記の実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。また、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるべきとの認定をするべきではない。
なお、第1アクチュエータ3及び第2アクチュエータ4をそれぞれ1つのアクチュエータから構成してもよい。また、第1アクチュエータ3及び第2アクチュエータ4の大きさや構造は同じである必要はなく互いに違えてもよい。例えば、第1アクチュエータ3を1つのアクチュエータから構成し、第2アクチュエータ4を2つのアクチュエータから構成するなど、第1アクチュエータ3および第2アクチュエータ4を構成するアクチュエータの数が異なっていてもよい。また、第1アクチュエータ3を構成する部材の長さと第2アクチュエータ4を構成する部材の長さが異なっていてもよい。また、第1アクチュエータ3および第2アクチュエータ4のうちいずれか一方のみを駆動させることで被駆動部材7を駆動させてもよい。また、第1アクチュエータ3及び第2アクチュエータ4のいずれか一方を省略してもよい。その場合は、省略されていないアクチュエータに連結されたビームのみに放熱構造を有するようにしてもよい。
また、上記実施形態において、シャッタ装置1に含まれる変位拡大機構10をMEMSデバイスの一例として説明したが、本発明に係るMEMSデバイスはこれに特に限定されず、自身に電流が流れることでジュール熱により発熱し、発熱温度に応じて所定の方向に変位する熱式アクチュエータと、この熱式アクチュエータに連結された被駆動部材とを備えていればよい。また、上記の「熱式アクチュエータに連結された被駆動部材」には、図1~3に示す被駆動部材7だけでなく、第1及び第2ビーム5,6が含まれていることは言うまでもない。
また、本発明に係るMEMSデバイスは、上記実施形態に示したシャッタ装置1以外についても適用可能である。例えば、熱式アクチュエータによってミラーを傾動させ、ミラーに入射する光の向きを変更する光路変更装置や、ミラーの代わりに波長選択フィルタを設けて、熱式アクチュエータによってこれを傾動させることで、フィルタの上面に入射した光を変調して所定の波長の光をフィルタの下面から出射させる波長選択フィルタ装置に適用してもよい。
本発明に係るMEMSデバイスの製造方法によれば、MEMSデバイスを構成するシリコン層での転位の発生を抑制できるため、MEMSデバイスの動作信頼性を高められ、可動部を有するMEMSデバイスに適用する上で特に有用である。
1 シャッタ装置
2 固定部
10 変位拡大機構(MEMSデバイス)
21 第1ベース部材
22 第2ベース部材
23 第3ベース部材
3 第1アクチュエータ
3a 中間部
3b 第1端部
3c 第2端部
4 第2アクチュエータ
4a 中間部
4b 第1端部
4c 第2端部
5 第1ビーム
56 並列配置部
5a 第1端部
5b 第2端部
6 第2ビーム
6b 第3端部
6c 第4端部
7 被駆動部材
8 連結部材
101 第1電極
102 第2電極
200 SOI基板(基板)
210 第1シリコン層
220 酸化膜層
230 第2シリコン層

Claims (7)

  1. 積層欠陥密度が1×10個/cm以上であるシリコン層を有する基板を準備する基板準備工程と、
    シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい第1の温度で前記基板を熱処理する熱処理工程と、
    前記熱処理工程の後に前記基板準備工程で準備された前記基板を加工してMEMSデバイスを得る加工工程と、を少なくとも備え
    前記基板は、ハンドル層と絶縁層とデバイス層とがこの順に積層された貼り合わせ基板であり、
    前記デバイス層は前記シリコン層であり、チョクラルスキー(CZ)法により製造されたシリコン基板を用いて形成されている、MEMSデバイスの製造方法。
  2. 析出酸化物密度が5×10個/cm以下であるシリコン層を有する基板を準備する基板準備工程と、
    シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい第1の温度で前記基板を熱処理する熱処理工程と、
    前記熱処理工程の後に前記基板準備工程で準備された前記基板を加工してMEMSデバイスを得る加工工程と、を少なくとも備え
    前記基板は、ハンドル層と絶縁層とデバイス層とがこの順に積層された貼り合わせ基板であり、
    前記デバイス層は前記シリコン層であり、チョクラルスキー(CZ)法により製造されたシリコン基板を用いて形成されている、MEMSデバイスの製造方法。
  3. 析出酸化物密度が5×10個/cm以下で、かつ積層欠陥密度が1×10個/cm以上であるシリコン層を有する基板を準備する基板準備工程と、
    シリコン単結晶中における格子間シリコン原子の拡散流速が格子間酸素原子の拡散流速よりも大きい第1の温度で前記基板を熱処理する熱処理工程と、
    前記熱処理工程の後に前記基板準備工程で準備された前記基板を加工してMEMSデバイスを得る加工工程と、を少なくとも備え
    前記基板は、ハンドル層と絶縁層とデバイス層とがこの順に積層された貼り合わせ基板であり、
    前記デバイス層は前記シリコン層であり、チョクラルスキー(CZ)法により製造されたシリコン基板を用いて形成されている、MEMSデバイスの製造方法。
  4. 前記基板準備工程の後に行われる工程において、前記シリコン層に加えられる温度は、シリコン単結晶中における格子間酸素原子の拡散流速が格子間シリコン原子の拡散流速よりも大きく、かつ前記シリコン層に含まれる析出酸化物が実質的に成長しない第2の温度以下である、請求項1ないし3のいずれか1項に記載のMEMSデバイスの製造方法。
  5. 前記シリコン層は、所定の濃度の酸素を含有しており、前記所定の濃度は、5×1017/cm~1×1018/cmの範囲である、請求項1ないし4のいずれか1項に記載のMEMSデバイスの製造方法。
  6. 前記加工工程は、
    前記シリコン層を加工するためのマスクパターンを形成するマスクパターン形成工程と、
    前記マスクパターンを用いて前記シリコン層をパターニングするシリコン層加工工程と、を少なくとも含み、
    前記マスクパターンには、前記熱処理工程で前記基板の表面に形成された熱酸化膜が含まれる、請求項1ないし5のいずれか1項に記載のMEMSデバイスの製造方法。
  7. 前記MEMSデバイスは、電流が流れることで発熱し、所定の方向に発熱温度に応じて変位する熱式アクチュエータと、該熱式アクチュエータに連結された被駆動部材と、を少なくとも備える、請求項1ないし6のいずれか1項に記載のMEMSデバイスの製造方法。
JP2020510440A 2018-03-28 2019-02-22 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置 Active JP7263319B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018061103 2018-03-28
JP2018061103 2018-03-28
PCT/JP2019/006735 WO2019187844A1 (ja) 2018-03-28 2019-02-22 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置

Publications (2)

Publication Number Publication Date
JPWO2019187844A1 JPWO2019187844A1 (ja) 2021-04-01
JP7263319B2 true JP7263319B2 (ja) 2023-04-24

Family

ID=68061136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510440A Active JP7263319B2 (ja) 2018-03-28 2019-02-22 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置

Country Status (3)

Country Link
US (1) US11932535B2 (ja)
JP (1) JP7263319B2 (ja)
WO (1) WO2019187844A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515633A (ja) 2001-12-21 2005-05-26 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 窒素/炭素安定化された酸素析出核形成中心を有する理想的酸素析出を行ったシリコンウエハおよびその製造方法
WO2005117122A1 (ja) 2004-05-25 2005-12-08 Sumitomo Mitsubishi Silicon Corporation Simox基板の製造方法及び該方法により得られるsimox基板
JP2017529683A (ja) 2014-07-14 2017-10-05 バタフライ ネットワーク,インコーポレイテッド 微細加工超音波変換器ならびに関連する装置および方法
JP2018025804A (ja) 2016-03-23 2018-02-15 住友精密工業株式会社 変位拡大機構及びシャッタ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757603A (ja) 1993-08-09 1995-03-03 Sharp Corp マイクロリレー
JPH0964319A (ja) * 1995-08-28 1997-03-07 Toshiba Corp Soi基板およびその製造方法
US6808781B2 (en) 2001-12-21 2004-10-26 Memc Electronic Materials, Inc. Silicon wafers with stabilized oxygen precipitate nucleation centers and process for making the same
US7201800B2 (en) * 2001-12-21 2007-04-10 Memc Electronic Materials, Inc. Process for making silicon wafers with stabilized oxygen precipitate nucleation centers
JP4147578B2 (ja) * 2002-07-30 2008-09-10 信越半導体株式会社 Soiウエーハの製造方法
US7442992B2 (en) * 2004-05-19 2008-10-28 Sumco Corporation Bonded SOI substrate, and method for manufacturing the same
US7298954B2 (en) 2005-06-16 2007-11-20 Xerox Corporation Waveguide shuttle MEMS variable optical attenuator
JP2008016534A (ja) * 2006-07-04 2008-01-24 Sumco Corp 貼り合わせウェーハの製造方法
FR2972564B1 (fr) * 2011-03-08 2016-11-04 S O I Tec Silicon On Insulator Tech Procédé de traitement d'une structure de type semi-conducteur sur isolant
JP5776232B2 (ja) * 2011-03-10 2015-09-09 富士通株式会社 電子デバイスの製造方法
JP6260100B2 (ja) * 2013-04-03 2018-01-17 株式会社Sumco エピタキシャルシリコンウェーハの製造方法
WO2015153179A1 (en) * 2014-04-01 2015-10-08 Agiltron, Inc. Microelectromechanical displacement structure and method for controlling displacement
JP6569382B2 (ja) * 2015-08-19 2019-09-04 セイコーエプソン株式会社 電子デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515633A (ja) 2001-12-21 2005-05-26 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 窒素/炭素安定化された酸素析出核形成中心を有する理想的酸素析出を行ったシリコンウエハおよびその製造方法
WO2005117122A1 (ja) 2004-05-25 2005-12-08 Sumitomo Mitsubishi Silicon Corporation Simox基板の製造方法及び該方法により得られるsimox基板
JP2017529683A (ja) 2014-07-14 2017-10-05 バタフライ ネットワーク,インコーポレイテッド 微細加工超音波変換器ならびに関連する装置および方法
JP2018025804A (ja) 2016-03-23 2018-02-15 住友精密工業株式会社 変位拡大機構及びシャッタ装置

Also Published As

Publication number Publication date
US20210024352A1 (en) 2021-01-28
US11932535B2 (en) 2024-03-19
JPWO2019187844A1 (ja) 2021-04-01
WO2019187844A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
KR100702019B1 (ko) 마이크로 미러 소자
EP0878013B1 (en) Micromachined magnetic actuator and method of making the same
JP4676496B2 (ja) 微小電気機械システムにおけるアモルファス屈曲部
US7688167B2 (en) Contact electrode for microdevices and etch method of manufacture
JP5140041B2 (ja) シリコン構造熱分離のためのシステム及び方法
JP2004151722A (ja) スタブチューナーを用いたフォトニック結晶のチューナブル共振空洞の方法及び構造
US8155492B2 (en) Photonic crystal and method of fabrication
US6013573A (en) Method of manufacturing an air bridge type structure for supporting a micro-structure
EP3676427A1 (en) Single crystalline diamond diffractive optical elements and method of fabricating the same
US7687304B2 (en) Current-driven device using NiMn alloy and method of manufacture
JP7263319B2 (ja) Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置
CN101597021A (zh) 构造基片的器件层的方法
JP5118546B2 (ja) 電気式微小機械スイッチ
US10831017B2 (en) Displacement increasing mechanism and shutter device
US20070222004A1 (en) MEMS device using NiMn alloy and method of manufacture
KR101001123B1 (ko) 입체구조소자 및 그의 제조방법, 광스위치, 마이크로디바이스
JP2009302381A (ja) 圧電薄膜デバイスおよびその製造方法
JP4046175B2 (ja) 微細構造素子の作製方法
JP6087752B2 (ja) 微細機械構造の作製方法
JP2004347788A (ja) 3次元構造体の製造方法
WO2006124901A2 (en) Integration of buried oxide layers with crystalline layers
JP2004207625A (ja) 多層構造体およびその製造方法ならびに機能構造体およびその製造方法ならびに電子線露光用マスクおよびその製造方法
Hu et al. Tunable guided mode resonant gratings for passive and active devices: Si subwavelength MEMS structures and the combination with GaN film
JP2005161464A (ja) 半導体装置およびその製造方法
JP2014024173A (ja) マイクロメカニカル構造体の作製方法

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20200914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7263319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150