JP2014024173A - マイクロメカニカル構造体の作製方法 - Google Patents

マイクロメカニカル構造体の作製方法 Download PDF

Info

Publication number
JP2014024173A
JP2014024173A JP2012168073A JP2012168073A JP2014024173A JP 2014024173 A JP2014024173 A JP 2014024173A JP 2012168073 A JP2012168073 A JP 2012168073A JP 2012168073 A JP2012168073 A JP 2012168073A JP 2014024173 A JP2014024173 A JP 2014024173A
Authority
JP
Japan
Prior art keywords
movable
manufacturing
micromechanical
layer
micromechanical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168073A
Other languages
English (en)
Inventor
Tomomi Sakata
知巳 阪田
Nobuhiro Shimoyama
展弘 下山
Mitsuo Usui
光男 碓氷
Kazuyoshi Ono
一善 小野
Keita Yamaguchi
慶太 山口
Shigeru Nemoto
成 根本
Yoshito Jin
好人 神
Nobuyuki Kondo
信行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2012168073A priority Critical patent/JP2014024173A/ja
Publication of JP2014024173A publication Critical patent/JP2014024173A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

【課題】マイクロメカニカル構造体の製造工程において可動構造体を動作可能にした後で発生する可動構造体の変形を抑制する。
【解決手段】SOI層103の表面の保護に用いていた保護層105を、例えば、酸素プラズマやUV/オゾン等の活性酸素に暴露を行うことで灰化させて除去する。また、保護膜105の灰化処理によってSOI層103の表面が酸化され、薄い表面酸化層が形成されるため、この表面酸化層を、アルゴンプラズマ等の不活性ガス種によるプラズマ暴露により除去する。次に、可動構造体134などを動作可能な状態に分離したチップ(マイクロメカニカル構造体)全体を加熱処理する。
【選択図】 図1H

Description

本発明は、基体部の表面上に埋め込み絶縁層を介して形成された表面シリコン層を備えるSOI基板の表面シリコン層をパターニングすることで、可動構造体を形成するマイクロメカニカル構造体の作製方法に関する。
近年、半導体微細加工技術の高度化の延長線上に、微小電気機械システム(MEMS)が開発されている。MEMSにおける三次元加工技術は、加速度センサ,角速度センサ,インクジェットプリンタヘッド,可動マイクロミラーを用いたディスプレイなどの情報の入出力機器に展開され、ユビキタスセンシングおよびユビキタスネットワークを構築する素子の基幹技術として期待されるに至っている。
この技術を用いて作製されるMEMSデバイスは、機械要素(可動構造体)と、機械要素を制御する電気要素とが、シリコン基板上にコンパクトに集積化されたものである。このようなMEMSデバイスの駆動方式としては、可動構造体と駆動電極などの電気要素との間に発生する静電引力を用いて可動部をメカニカルに動作させることで種々の機能を発現させる「静電駆動型」が主流となっている。このようなMEMSデバイスにおいては、可動構造体と電気要素の間のギャップを精密に制御することが重要となるため、可動構造体が平坦な状態に形成されることが望ましい。
また、特に、可動構造体をマイクロミラーとする通信用デバイスや光学デバイスにおいては、可動構造体であるマイクロミラーの変形は、挿入損失やクロストークなどの光学特性の劣化を引き起こすことに直結するため、可動構造体であるマイクロミラーの平坦化制御は重要な技術となる。
特許第03827977号公報 米国特許第6369931号公報
しかしながら、現状では、以下に説明するように、可動構造体を対向する面から分離した段階で、可動構造体が湾曲しているという問題がある。
例えば、SOI(Silicon On Insulator)基板を用いてミラーなどを備えるMEMS(Micro Electro Mechanical Systems)を作製する技術がある(特許文献1,特許文献2参照)。この技術では、基体部の上に埋め込み絶縁層を介して配置されるSOI層をパターニングしてミラー構造体を形成し、形成したミラー構造体に対応する領域の基体部に開口を形成し、ミラー構造体が回動などの動作を行えるようにしている。
具体的には、図5Aの断面図に示すように、基体部501、埋め込み絶縁層502、およびSOI層503を備えるSOI基板の、SOI層503をフォトリソグラフィ技術とエッチング技術を用いてパターニングする。このパターニングにより、枠部531,第1可動梁532a,第2可動梁532b,ミラー構造体534,第1連結部533a,および第2連結部533bを形成する。
第1可動梁532aおよび第2可動梁532bは、枠部531に一端が固定されて他端が変位可能とされ、他端の側で対向して所定の距離離間して1列に配置されている。また、ミラー構造体534は、第1可動梁532aおよび第2可動梁532bと1列に配列されて第1可動梁532aおよび第2可動梁532bの間に配置されている。また、1対の第1連結部533aおよび第2連結部533bにより、第1可動梁532aおよび第2可動梁532Bの各々の他端とミラー構造体534とが連結されている。
後述するようにこれらの各部分を分離した状態では、第1可動梁532aおよび第2可動梁532bは、片持ち梁として機能し、第1連結部533aおよび第2連結部533bの側の他端が、SOI層503の平面の法線方向に変位可能となる。また、ミラー構造体534は、一対の第1連結部533aおよび第2連結部533bを通る軸を中心に、回動可能となる。
次に、図5Bに示すように、上述した各部分を形成したSOI層503の表面に、有機樹脂からなる保護層505を形成する。
次に、第1可動梁532a,第2可動梁532b,ミラー構造体534,第1連結部533a,および第2連結部533bを含む領域に対応する基体部501に、フォトリソグラフィ技術とエッチング技術とを用いて、埋め込み絶縁層502に到達する開口部501aを形成する。次いで、開口部501aに露出している埋め込み絶縁層502をエッチング除去し、開口部501aに続く開口部502aを形成する。開口部502aの形成により、SOI基板の裏面側からSOI層503の裏面に到達する開口部を形成する。
次いで、ダイシングを行いチップ化する。
次に、チップ化した後、SOI層503の表面の保護に用いていた保護層505を、除去する。この除去では、酸素プラズマやUV/オゾンなどの活性酸素に保護層505を暴露することで灰化させて除去する。また、SOI層503による各構造体の表面に形成されている上記プラズマを用いた灰化処理によって酸化した層を、アルゴンプラズマなどの不活性ガス種によるプラズマ暴露を行うことで除去する。これらのことにより、第1可動梁532a,第2可動梁532b,ミラー構造体534,第1連結部533a,および第2連結部533bが、各々分離されて動作可能な状態のマイクロメカニカル構造体が作製される。
ところが、上述した製造工程で作製されるマイクロメカニカル構造体の可動構造体534は、シリコン層(SOI層)単体で構成されており、2種類以上の層から構成した多層構造とはなっていないにも関わらず、図5Dに例示するように、湾曲(変形)した状態となることが判明している。この原因は明らかではないが、有機材料からなる保護層505を灰化させ、続いて、不活性ガス種によるプラズマ暴露を行うことで、可動構造体534を動作可能に分離するマイクロメカニカル構造体の製造工程においては、避けることのできない問題となっている。
本発明は、以上のような問題点を解消するためになされたものであり、マイクロメカニカル構造体の製造工程において可動構造体を動作可能にした後で発生する可動構造体の変形を抑制することを目的とする。
本発明に係るマイクロメカニカル構造体の作製方法は、基体部の表面上に埋め込み絶縁層を介して形成された表面シリコン層を備えるSOI基板の表面シリコン層をパターニングして素子形成領域に可動構造体を形成する第1工程と、素子形成領域の基体部の裏面より基体部および埋め込み絶縁層を貫通する開口部を形成し、開口部の周囲の埋め込み絶縁層を支持構造体として支持されて動作可能とされた可動構造体を備えるマイクロメカニカル構造体を形成する第2工程と、動作可能とされた可動構造体を備えるマイクロメカニカル構造体を形成した後で、マイクロメカニカル構造体を加熱する第3工程とを少なくとも備える。
上記マイクロメカニカル構造体の作製方法において、第3工程では、雰囲気が不活性ガスまたは真空の状態でマイクロメカニカル構造体を加熱すればよい。
上記マイクロメカニカル構造体の作製方法において、加熱時間=4×10-5×exp(8340.7/絶対温度)の関係が満たされる加熱時間および絶対温度で示される加熱温度で、マイクロメカニカル構造体を加熱するとよい。
上記マイクロメカニカル構造体の作製方法において、第3工程では、温度条件500℃でマイクロメカニカル構造体を加熱すればよい。また、第3工程では、マイクロメカニカル構造体を2時間加熱すればよい。
上記マイクロメカニカル構造体の作製方法において、第1工程の後で、表面シリコン層の少なくとも素子形成領域を覆う有機樹脂からなる保護層を形成してから開口部を形成し、開口部を形成した後で、有機材料の灰化処理により保護層を除去し、保護層を除去した後の可動構造体の表面の酸化層をプラズマ処理により除去することで、動作可能とされた可動構造体を備えるマイクロメカニカル構造体を形成するとよい。
以上説明したことにより、本発明によれば、マイクロメカニカル構造体の製造工程において可動構造体を動作可能にした後で発生する可動構造体の変形が抑制できるようになるという優れた効果が得られる。
図1Aは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Bは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Cは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Dは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Eは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Fは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Gは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図1Hは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。 図2は、加熱時間と可動構造体134の曲率との関係を示す特性図である。 図3は、縦軸を「加熱処理前後における可動構造体134の曲率の変動量について自然対数をとった値」とし、横軸を「絶対温度の逆数」とするアレニウスプロットである。 図4は、曲率緩和現象の飽和時間と加熱処理温度における絶対温度の逆数の関係を示す特性図である。 図5Aは、従来のマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための断面図である。 図5Bは、従来のマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための断面図である。 図5Cは、従来のマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための断面図である。 図5Dは、従来のマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための断面図である。
以下、本発明の実施の形態について図を参照して説明する。図1A〜図1Hは、本発明の実施の形態におけるマイクロメカニカル構造体の作製方法を説明するための各工程における状態を説明するための構成図である。ここで、図1A,図1B,図1D〜図1Hは、断面を模式的に示している。また、図1Cは、平面図であり、aa’線の断面が、図1A,図1B,図1D〜図1Hに示されている。
まず、図1Aに示すように、例えば、単結晶シリコンからなる基体部101、埋め込み絶縁層102、および単結晶シリコンからなる表面シリコン層(SOI層)103を備えるSOI基板を用意する。例えば、基体部101の板厚は400μm、埋め込み絶縁層102の層厚は1.0μm、SOI層103の層厚は4.7μmである。
次に、SOI層103を公知のフォトリソグラフィ技術とエッチング技術とによりパターニングし、図1B,図1Cに示すように、枠部131,第1可動梁132a,第2可動梁132b,可動構造体134,第1連結部133a,および第2連結部133bを形成する。
第1可動梁132aおよび第2可動梁132bは、枠部131に一端が固定されて他端が変位可能とされ、他端の側で対向して所定の距離離間して1列に配置されている。また、可動構造体134は、第1可動梁132aおよび第2可動梁132bと1列に配列されて第1可動梁132aおよび第2可動梁132bの間に配置されている。また、1対の第1連結部133aおよび第2連結部133bにより、第1可動梁132aおよび第2可動梁132Bの各々の他端と可動構造体134とが連結されている。可動構造体134は、第1連結部133aおよび第2連結部133bを介して第1可動梁132aおよび第2可動梁132Bに支持されている。
後述するようにこれらの各構造体を絶縁層102などから分離した状態では、第1可動梁132aおよび第2可動梁132bは、片持ち梁として機能し、第1連結部133aおよび第2連結部133bの側の他端が、SOI層503の平面の法線方向に変位可能となる。また、可動構造体134は、一対の第1連結部133aおよび第2連結部133bを通る軸を中心に、回動可能となる。なお、この段階では、各構造体は、埋め込み絶縁層102の上に固定されており、埋め込み絶縁層102の平面上で、隙間135により分離している状態である。
これらの構造体のパターニングでは、公知のフォトリソグラフィ技術により形成したレジストパターンをマスクとしたRIE(Reactive Ion Etching)を用い、SOI層103のエッチング加工を行えば良い。また、このエッチング加工では、埋め込み絶縁層102をエッチングストップ層として用いることができる。また、これらの構造体は、素子形成領域に形成する。
次に、図1Dに示すように、SOI層103の上に、有機樹脂からなる保護層105を形成する。保護層105は、SOI層103の、少なくとも上述した各構造体を備える素子形成領域を覆う状態に形成すればよい。保護層105は、例えば、レジストを塗布し、これを加熱処理(熱硬化)することで形成すればよい。また、この加熱処理は、窒素雰囲気下、温度250℃で30分間の条件で行えば良い。
次に、図1Eに示すように、基体部101に、埋め込み絶縁層102が露出する開口部101aを形成する。開口部101aは、第1可動梁532a,第2可動梁532b,ミラー構造体534,第1連結部533a,および第2連結部533bを含む素子形成領域に対応して形成する。例えば、公知のフォトリソグラフィ技術とエッチング技術とにより、開口部101aを形成すればよい。また、このエッチング処理は、ドライエッチングにより行い、また、埋め込み絶縁層102をエッチングストップ層として用いれば良い。
次に、開口部101aに露出している埋め込み絶縁層102をエッチング除去し、図1Fに示すように、開口部101aに続く開口部102aを形成する。開口部102aの形成により、SOI基板の裏側面よりSOI層103の裏面に到達する開口部が形成されたことになる。埋め込み絶縁層102のエッチングでは、例えば、フッ化水素酸緩衝液(BHF)を用いたウエットエッチングにより行えば良い。また、埋め込み絶縁層102のエッチングは、大気中におけるフッ化水素ガスの暴露を用いたドライエッチングでも行えることを確認している。
次に、ダイシングを行い、チップ化する。ダイシングには、ダイシングソーを用いる公知のブレードダイシングを用いれば良い。なお、図1Cは、1つのチップの領域を例示している。
次に、SOI層103の表面の保護に用いていた保護層105を、例えば、酸素プラズマやUV/オゾンなどの活性酸素に暴露を行うことで灰化させて除去する。また、保護膜105の灰化処理によってSOI層103の表面が酸化され、薄い表面酸化層が形成されるため、この表面酸化層を、アルゴンプラズマなどの不活性ガス種によるプラズマ暴露により除去する。これらの保護層105の除去により、図1Gに示すように、可動構造体134,第1連結部133a,および第2連結部133bを、各々が動作可能な状態に分離する。この状態では、可動構造体134が変形(湾曲)している。
次に、可動構造体134などを動作可能な状態に分離したチップ(マイクロメカニカル構造体)全体を加熱処理し、変形していた可動構造体134を、図1Hに示すように、所望とする曲率未満(<1m-1)に抑制した平坦な状態の可動構造体134とする。適宜に加熱処理を行うことで、可動構造体134を、所望とする曲率未満(<1m-1)に抑制できる。
ここで、上述した分離後の加熱処理の時間(加熱時間)と、可動構造体134の曲率との関係の測定結果について図2を用いて説明する。図2は、加熱時間と可動構造体134の曲率との関係を示す特性図である。加熱処理の温度は500℃とした。加熱時間2時間において、曲率の変化が飽和している。従って、加熱処理は、例えば、窒素雰囲気下で、温度500℃(T=773K)で2時間の条件で行えば良い。
また、可動構造体134の変形抑制のための加熱処理は、マイクロメカニカル構造体の酸化を避けるために、不活性な雰囲気で行うとよい、例えば、窒素,ヘリウム,ネオン,アルゴン,クリプトン,キセノンなどの不活性ガス、または、これらの混合ガスの雰囲気で加熱処理を行えばよい。また、加熱処理は、真空で行えばよいことは言うまでもない。
加熱処理条件(加熱処理温度と加熱処理時間)を定量的に求めるために、窒素雰囲気下で、加熱処理時間を2時間に固定し、処理温度をパラメータとした際の可動構造体134の曲率を計測した結果を図3に示す。図3は、縦軸を「加熱処理前後における可動構造体134の曲率の変動量について自然対数をとった値」とし、横軸を「絶対温度の逆数」とするアレニウスプロットである。ここで、可動構造体134は、第1可動梁132a,第2可動梁132bなどの配列方向に対して垂直な幅は、100μm〜140μmとし、配列方向の長さは、450μm〜600μmとし、厚さは、4μm〜10μmとした。
加熱処理温度500℃以上(絶対温度の逆数:1/T≦0.0129K-1)で曲率緩和の効果が温度によらず一定となるプラトー領域が現れる。これは、500℃以上の加熱処理温度では、2時間より短時間に曲率緩和に関する反応が終了することを意味する。また、500℃においてアレニウスプロットが変曲点を有することから、500℃の加熱処理温度では、2時間で曲率緩和現象が終了することも示している。言い換えれば、「500℃の加熱処理温度での曲率緩和における飽和時間は2時間である」となる。
従って、曲率緩和現象の活性化エネルギーは、2時間の加熱処理時間で曲率緩和が飽和に達しない500℃以下(絶対温度の逆数:1/T≧0.0129K−1)における図3のアレニウスプロットの傾きから算出され、この値は、0.74eVと求められる。
また、求められる活性化エネルギーから、各温度に対する加速係数がアレニウスの式から一意に求められ、図4に示す「曲率緩和現象の飽和時間と加熱処理温度における絶対温度の逆数」の関係が得られる。
この関係は、「曲率緩和現象の飽和時間(時間;h)=4×10-5×exp(8340.7/絶対温度)」という式で近似される。また、曲率緩和現象の飽和時間を加熱処理時間と置き換え、「加熱処理時間(時間;h)=4×10-5×exp(8340.7/絶対温度)」の式を満足する加熱処理温度と加熱処理時間が、加熱処理条件の必要条件となる。なお、加熱処理条件は、上記関係式を含む図4の斜線領域でも良いことは言うまでもない。
可動構造体134のサイズに関し、幅100μm〜140μmとしたが、この値が長さと同じ600μmまでは曲率緩和の効果が得られる。厚さに関しては、ストーニーの式より厚くなるほど加熱処理前の曲率は小さくなるため、厚さが厚くなった場合でも曲率緩和の効果が得られる。
プロセス時間の短縮化の観点から、加熱処理温度は可能な限り高い方が良い。一方で、まず、高温になる程、曲率緩和現象以外に想定外の副反応が起こり得る。また、500℃を超える温度での加熱処理が実施できるイナートオーブンを製造可能なメーカーは限定され、イナートオーブン自体が高価になるなどのデメリットがある。これらのことを総合的に判断すると、「加熱処理温度:500℃、加熱処理温度時間:2時間」は適切な加熱処理条件と言える。
以上に説明したように、本発明によれば、保護層などを除去して可動構造体を分離した後に加熱処理するようにしたので、マイクロメカニカル構造体の製造工程において可動構造体を動作可能にした後で発生する可動構造体の変形を抑制し、可動構造体の変形を所望とする曲率未満(<1m-1)に抑制できるようになる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、可動構造体の平面に反射構造が形成されていてもよい。
101…基体部、101a…開口部、102…埋め込み絶縁層、102a…開口部、103…表面シリコン層(SOI層)、105…保護層、131…枠部、132a…第1可動梁、132b…第2可動梁、133a…第1連結部、133b…第2連結部、134…可動構造体、135…隙間。

Claims (6)

  1. 基体部の表面上に埋め込み絶縁層を介して形成された表面シリコン層を備えるSOI基板の前記表面シリコン層をパターニングして素子形成領域に可動構造体を形成する第1工程と、
    前記素子形成領域の前記基体部の裏面より前記基体部および前記埋め込み絶縁層を貫通する開口部を形成し、開口部の周囲の前記埋め込み絶縁層を支持構造体として支持されて動作可能とされた前記可動構造体を備えるマイクロメカニカル構造体を形成する第2工程と、
    動作可能とされた前記可動構造体を備えるマイクロメカニカル構造体を形成した後で、前記マイクロメカニカル構造体を加熱する第3工程と
    を少なくとも備えることを特徴とするマイクロメカニカル構造体の作製方法。
  2. 請求項1記載のマイクロメカニカル構造体の作製方法において、
    前記第3工程では、雰囲気が不活性ガスまたは真空の状態で前記マイクロメカニカル構造体を加熱することを特徴とするマイクロメカニカル構造体の作製方法。
  3. 請求項2記載のマイクロメカニカル構造体の作製方法において、
    加熱時間=4×10-5×exp(8340.7/絶対温度)の関係が満たされる加熱時間および前記絶対温度で示される加熱温度で、前記マイクロメカニカル構造体を加熱することを特徴とするマイクロメカニカル構造体の作製方法。
  4. 請求項2記載のマイクロメカニカル構造体の作製方法において、
    前記第3工程では、温度条件500℃で前記マイクロメカニカル構造体を加熱することを特徴とするマイクロメカニカル構造体の作製方法。
  5. 請求項4記載のマイクロメカニカル構造体の作製方法において、
    前記第3工程では、前記マイクロメカニカル構造体を2時間加熱することを特徴とするマイクロメカニカル構造体の作製方法。
  6. 請求項1〜5のいずれか1項に記載のマイクロメカニカル構造体の作製方法において、
    前記第1工程の後で、前記表面シリコン層の少なくとも前記素子形成領域を覆う有機樹脂からなる保護層を形成してから前記開口部を形成し、
    前記開口部を形成した後で、有機材料の灰化処理により前記保護層を除去し、前記保護層を除去した後の前記可動構造体の表面の酸化層をプラズマ処理により除去することで、動作可能とされた前記可動構造体を備えるマイクロメカニカル構造体を形成することを特徴とするマイクロメカニカル構造体の作製方法。
JP2012168073A 2012-07-30 2012-07-30 マイクロメカニカル構造体の作製方法 Pending JP2014024173A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168073A JP2014024173A (ja) 2012-07-30 2012-07-30 マイクロメカニカル構造体の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168073A JP2014024173A (ja) 2012-07-30 2012-07-30 マイクロメカニカル構造体の作製方法

Publications (1)

Publication Number Publication Date
JP2014024173A true JP2014024173A (ja) 2014-02-06

Family

ID=50198319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168073A Pending JP2014024173A (ja) 2012-07-30 2012-07-30 マイクロメカニカル構造体の作製方法

Country Status (1)

Country Link
JP (1) JP2014024173A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878352A (ja) * 1994-09-06 1996-03-22 Sanyo Electric Co Ltd 基板の処理方法
JP2000216249A (ja) * 1998-11-16 2000-08-04 Sony Corp 電子装置の製造方法及びその装置
JP2004066379A (ja) * 2002-08-05 2004-03-04 Denso Corp マイクロ構造体の製造方法
US20060208608A1 (en) * 2003-06-06 2006-09-21 The Regents Of The University Of California Microfabricated vertical comb actuator using plastic deformation
JP2010256452A (ja) * 2009-04-22 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> マイクロメカニカル構造体の作製方法
JP2011112806A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Mems光スキャナおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878352A (ja) * 1994-09-06 1996-03-22 Sanyo Electric Co Ltd 基板の処理方法
JP2000216249A (ja) * 1998-11-16 2000-08-04 Sony Corp 電子装置の製造方法及びその装置
JP2004066379A (ja) * 2002-08-05 2004-03-04 Denso Corp マイクロ構造体の製造方法
US20060208608A1 (en) * 2003-06-06 2006-09-21 The Regents Of The University Of California Microfabricated vertical comb actuator using plastic deformation
JP2010256452A (ja) * 2009-04-22 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> マイクロメカニカル構造体の作製方法
JP2011112806A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Mems光スキャナおよびその製造方法

Similar Documents

Publication Publication Date Title
US7130099B2 (en) Micromirror unit with torsion connector having nonconstant width
US6887396B2 (en) Micromirror unit and method of making the same
TWI248525B (en) Wavelength-tunable filter and method of manufacturing the same
JP4544880B2 (ja) 微小電気機械式装置の封止方法
JP5441371B2 (ja) 微小電気機械システムに使用するためのウェーハを製造する方法
JP5127181B2 (ja) 微小電気機械式装置の作製方法
JP2014024173A (ja) マイクロメカニカル構造体の作製方法
JP4546491B2 (ja) マイクロミラー素子およびその製造方法
JP2010214480A (ja) 微細構造体の製造方法
US7348535B2 (en) Metal line structure of optical scanner and method of fabricating the same
JP2014168819A (ja) マイクロメカニカル構造体の作製方法
JP2010131731A (ja) Memsの製造方法
JP2010256452A (ja) マイクロメカニカル構造体の作製方法
JP2005118943A (ja) マイクロマシンの製造方法およびマイクロマシン
JP6077830B2 (ja) 可変形状ミラーの製造方法
KR101959334B1 (ko) 레이저 간섭 리소그래피를 이용한 나노 공진기 제작 장치 및 방법
JP2005164861A (ja) 光制御素子およびその製造方法
JP2007290073A (ja) 絶縁分離構造の形成方法
JP5294733B2 (ja) 機械部品と微細機械部品を製造する方法
JP2015199179A (ja) Memsデバイス及びmemsデバイス製造方法
JP2007111831A (ja) Mems素子の製造方法およびmems素子
JP4016739B2 (ja) マイクロマシンおよびその製造方法
JP4559273B2 (ja) アクチュエータの製造方法
JP2007253304A (ja) 絶縁分離構造の形成方法
JP2007093816A (ja) バーティカルコムアクチュエータの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308