WO2005117122A1 - Simox基板の製造方法及び該方法により得られるsimox基板 - Google Patents

Simox基板の製造方法及び該方法により得られるsimox基板 Download PDF

Info

Publication number
WO2005117122A1
WO2005117122A1 PCT/JP2005/009166 JP2005009166W WO2005117122A1 WO 2005117122 A1 WO2005117122 A1 WO 2005117122A1 JP 2005009166 W JP2005009166 W JP 2005009166W WO 2005117122 A1 WO2005117122 A1 WO 2005117122A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
oxygen
wafer
layer
treatment step
Prior art date
Application number
PCT/JP2005/009166
Other languages
English (en)
French (fr)
Inventor
Naoshi Adachi
Original Assignee
Sumitomo Mitsubishi Silicon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corporation filed Critical Sumitomo Mitsubishi Silicon Corporation
Priority to EP05741161.3A priority Critical patent/EP1768185A4/en
Priority to US11/597,798 priority patent/US20080044669A1/en
Publication of WO2005117122A1 publication Critical patent/WO2005117122A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Definitions

  • the present invention relates to an SOI (Silicon-On-Insulator) substrate in which a single-crystal silicon layer (hereinafter, referred to as an SOI layer) is formed on a silicon single-crystal main body via a buried oxide layer (Buried Oxide).
  • SOI Silicon-On-Insulator
  • the present invention relates to a method for manufacturing a SIMOX substrate by SIMOX (Separation by Implanted Oxygen) technology and a SIMOX substrate obtained by the method. More specifically, the present invention relates to a method for manufacturing a SIMOX substrate capable of efficiently capturing heavy metal contamination due to ion implantation or high-temperature heat treatment inside the substrate, and a SIMOX substrate obtained by the method.
  • An SOI substrate can (1) reduce the parasitic capacitance between an element and a substrate, so that device operation can be performed at high speed, (2) it is excellent in radiation withstand voltage, and (3) it is easy to separate a dielectric. Therefore, it has very excellent features such as high integration density and (4) improvement of latch-up resistance.
  • SOI substrate manufacturing methods can be broadly classified into two types.
  • One method is a laminating method in which an active wafer to be thinned is bonded to a supporting wafer, and the other method is to implant oxygen ions from the wafer surface to form a wafer surface force.
  • This is a SIMOX method in which a buried oxide layer is formed in a region of a predetermined depth.
  • the SIMOX method is expected to be an effective method in the future because of the small number of manufacturing steps!
  • an oxygen ion implantation step of, after mirror polishing one main surface of a silicon single crystal substrate, implanting this mirror-finished surface force oxygen ions to a predetermined depth in the substrate by implantation,
  • a high-temperature heat treatment step for forming a buried oxide layer inside the substrate by performing a high-temperature heat treatment on the substrate into which oxygen ions have been implanted under an oxidizing atmosphere is also configured.
  • the silicon single crystal substrate is maintained at a temperature of 500 ° C to 650 ° C, and the surface force of the substrate is about 10 17 to 10 18 atoms / cm 2 , and oxygen atom ions or oxygen molecule ions at a predetermined depth. inject.
  • the silicon substrate into which oxygen ions have been implanted is put into a heat treatment furnace maintained at a temperature of 500 ° C to 700 ° C, and the temperature is gradually increased so as not to cause a slip, and is about 1300 ° C to 1390 ° C A heat treatment is performed at a temperature of about 10 hours.
  • This high temperature Oxygen ions implanted into the substrate by the heat treatment react with silicon to form a buried oxide layer inside the substrate.
  • a gettering technique for removing a metal having a direct adverse effect on device characteristics from a substrate surface force includes a method in which the back surface of the substrate is distorted by sandblasting, and a method in which the back surface of the substrate is frequently used.
  • There are external gettering methods such as a method of depositing a crystalline silicon film and a method of injecting high-concentration phosphorus into the backside of the substrate.
  • distortion of crystal defects caused by oxygen precipitates deposited inside the silicon substrate is known.
  • An internal gettering method using a field is used for mass production as a clean gettering method with excellent mass productivity and in part.
  • SIMOX substrates require high-temperature heat treatment at about 1300 ° C after oxygen ion implantation to form a buried oxide layer inside the substrate. It was said that it was difficult to form oxygen precipitates as internal gettering sinks inside.
  • silicon single crystal wafers have point defects, i.e., interstitial point defects in which an S element penetrates between lattices, and vacancy type point defects in which the S element forming the lattice is missing. However, this point defect exists in thermal equilibrium.
  • interstitial point defects 1 ⁇ 10 17 Zcm 3
  • vacancy type point defects 1 ⁇ 10 15 Zcm 3
  • interstitial point defects 1 ⁇ 10 16 Zcm 3
  • vacancy type point defects 1 ⁇ 10 5 Zcm 3
  • point defects exist in a thermo-equilibrium manner and at 1200 ° C. It is known that the point defect concentration is higher than the point defect concentration at 600 ° C.
  • a high-temperature heat treatment at about 1300 ° C is performed after forming an oxygen precipitate at a predetermined temperature lower than the high-temperature heat treatment temperature and in the Balta layer. If applied, the oxygen precipitates formed in the Balta layer were thought to disappear by this high temperature heat treatment.
  • the substrate is heated at a temperature of 1200 to 1300C in a hydrogen atmosphere or a nitrogen atmosphere containing a small amount of oxygen.
  • a method of manufacturing a semiconductor substrate has been proposed in which a buried oxide layer is formed by performing heat treatment for 6 to 12 hours, and then the temperature is increased stepwise or continuously from low temperature to high temperature and then heat treatment is performed (for example, Patent See Reference 2.) 0 Specific heat shown in Patent Reference 2
  • a stepwise heat treatment method is started at 500 ° C, and it is gradually increased at 50 to 100 ° C to a final temperature of 850 ° C, and a continuous heat treatment method is 500 ° C. Starting from this, a method is described in which the final temperature is 850 ° C with a gradient of 0.2-1.0 ° CZ.
  • a SIMOX having a region in which a buried oxide layer is not formed partially and having a structure in which gettering means due to crystal defects or crystal distortion is provided on the back surface of a silicon single crystal substrate balta or a silicon single crystal substrate substrate and a manufacturing method thereof have been proposed (e.g., see Patent Document 3.)
  • a buried oxide layer is formed on piecemeal near the surface, the heat treatment condition for gettering 500 form to 900 ° C oxygen precipitate nuclei in the range of the density is in the range of 10 5 / cm 3 to 10 9 pieces / cm 3, the deposition in the range of 1000 to 1150 ° C as a second heat treatment It also states that nuclei can be grown and formed into precipitates.
  • the amount of crystal defects generated on the substrate surface due to the quantitative contamination of heavy metals is evaluated using the conventional SIMOX, that is, SIMOX in which an oxidized film grown on the entire surface of the wafer is used as a reference sample.
  • SIMOX SIMOX in which an oxidized film grown on the entire surface of the wafer is used as a reference sample.
  • partial embedding whereas surface defects are hardly observed in the embodiment of Sani ⁇ , pits and stacking faults of the conventional in SIMOX 10 5 to 10 6 pieces / cm 2 was observed Ru.
  • Patent Document 2 means that a complete gettering technique has not been established.
  • Patent Document 1 Japanese Patent Publication No. 3-9078 (Page 2, column 3, lines 6 to 13)
  • Patent Document 2 JP-A-7-193072 (Claims 1 to 3)
  • Patent Document 3 JP-A-5-82525 (Claims 1, 2, 4, and 5, paragraphs [0019] to [0023])
  • Non-Patent Document 1 J. Electrochem. Soc., 142, 2059, (1995)
  • An object of the present invention is to form a gettering sink inside a Balta layer before a high-temperature heat treatment for forming a buried oxide layer and an SOI layer, thereby preventing heavy metal contamination caused by ion implantation and high-temperature heat treatment from occurring.
  • An object of the present invention is to provide a method for manufacturing a SIMOX substrate, which can be efficiently captured inside, and a SIMOX substrate obtained by the method.
  • Another object of the present invention is to provide a method for manufacturing a SIMOX substrate and a SIMOX substrate obtained by the method, in which the concentration of heavy metals in the defect accumulating layer can be reduced and heavy metals can be efficiently captured inside the metal layer. It is in.
  • the present inventors have performed a high-temperature heat treatment for forming a buried oxide layer inside a substrate and an SOI layer thereon after performing a heat treatment for forming oxygen precipitates.
  • a high-temperature heat treatment for forming a buried oxide layer inside a substrate and an SOI layer thereon after performing a heat treatment for forming oxygen precipitates.
  • oxygen ions are implanted into the silicon wafer 11 as shown in FIGS. 1 (a) to 1 (f) or 2 (a) to 2 (f).
  • Oxygen ion implantation process and wafer 11 Is subjected to a first heat treatment at 1300 to 1390 ° C. in a mixed gas atmosphere of oxygen and an inert gas, thereby forming an embedded oxide layer 12 in a region where the surface force of the wafer 11 has a predetermined depth and an embedded oxide layer.
  • This is an improvement in the method for manufacturing a SIMOX substrate, including a first heat treatment step of forming an SOI layer 13 on the surface of the wafer on the dangling layer 12.
  • the characteristic configuration is that the silicon wafer 11 before oxygen ion implantation has an oxygen concentration of 9 ⁇ 10 17 to 1.8 ⁇ 10 18 atoms / cm 3 (former ASTM) and the buried oxide layer 12 has a A second heat treatment step for forming oxygen precipitation nuclei 14b inside the wafer 11 before or after the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step; The third heat treatment step for growing the oxygen precipitate nuclei 14b formed inside the wafer 11 into the oxygen precipitates 14c following the heat treatment step.
  • the second and third heat treatments for growing the oxygen precipitates 14c are performed before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step. Heavy metal contamination caused by the high-temperature heat treatment can be efficiently captured inside the Balta layer 14 by the oxygen precipitates 14c formed by the second and third heat treatments.
  • the gettering source consisting of oxygen precipitates 14c is provided in the Balta layer 14 below the defect accumulating layer 14a, and the density of the oxygen precipitates 14c is 1 ⁇ 10 8 to 1 ⁇ 10 12 / It is possible to obtain a SIMOX substrate having a size of cm 3 and a size of the oxygen precipitate 14c of 50 nm or more.
  • the invention according to claim 2 is the invention according to claim 1, wherein the second heat treatment in the second heat treatment step is performed by subjecting the wafer to hydrogen, argon, nitrogen, oxygen gas, or a mixed gas atmosphere thereof.
  • the third heat treatment in the third heat treatment step is performed by holding the wafer at the temperature of 500 to 900 ° C for 1 to 96 hours, using hydrogen, argon, nitrogen, oxygen gas, or a mixed gas thereof. This is a production method carried out by maintaining at a temperature of 900 to 1250 ° C. higher than the second heat treatment temperature for 1 to 96 hours in an atmosphere.
  • the invention according to claim 3 is the invention according to claim 1, wherein the embedded silicon wafer is subjected to the fourth heat treatment in which the first heat-treated wafer is held at 500 to 1200 ° C for 1 to 96 hours.
  • This is a production method further including a fourth heat treatment step of regrowing the oxygen precipitates 14c formed inside the warta layer 14 below the dangling layer 12.
  • the size of the oxygen precipitate 14c can be regrown by performing the fourth heat treatment.
  • the invention according to claim 4 is the invention according to claim 1 or 2, wherein the second heat treatment in the second heat treatment step is partially or entirely in the range of 500 ° C to 900 ° C.
  • the third heat treatment in the third heat treatment step is performed at a temperature of 900 ° C to 1250 ° C by raising the temperature at a rate of 0.1 to 20.0 ° CZ. This is a production method performed in the range of 1 to 96 hours by raising the temperature at a rate of 0.1 to 20 ° CZ in all or part of the range.
  • oxygen ions are implanted inside the silicon wafer 11.
  • This is an improvement in the method of manufacturing a SIMOX substrate, including a first heat treatment step of forming the SOI layer 13 on the surface of the wafer on the embedded oxide layer 12 while forming the buried oxide layer 12.
  • the characteristic configuration is that the silicon wafer 11 before oxygen ion implantation has an oxygen concentration of 9 ⁇ 10 17 to 1.8 ⁇ 10 18 atoms / cm 3 (former ASTM) and the buried oxide layer 12 has a A rapid heat treatment step for implanting vacancies 15 inside the wafer 11 before or after the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step; A second heat treatment step for forming oxygen precipitate nuclei 14b inside the wafer 11 following the second heat treatment step and growing the oxygen precipitate nuclei 14b formed inside the wafer 11 following the second heat treatment step into oxygen precipitates 14c And a third heat treatment step.
  • a rapid heat treatment step for implanting vacancies 15 inside the wafer 11 before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step, and growing the oxygen precipitates 14c By performing the second and third heat treatments, heavy metal contamination caused by ion implantation and high-temperature heat treatment can be efficiently captured inside the Balta layer 14 by the oxygen precipitates 14 c formed by the second and third heat treatments. . In addition, by performing the rapid heat treatment step, in-plane uniformity of the oxygen precipitate density distribution in the wafer 11 plane is ensured, and Even with a silicon wafer having an elemental concentration, the reliability of growth of oxygen precipitates is improved.
  • the gettering source consisting of oxygen precipitates 14c is provided in the Balta layer 14 below the defect accumulating layer 14a, and the density of the oxygen precipitates 14c is 1 ⁇ 10 8 to 1 ⁇ 10 12 / It is possible to obtain a SIMOX substrate having a size of cm 3 and a size of the oxygen precipitate 14c of 50 nm or more.
  • the invention according to claim 6 is the invention according to claim 5, wherein the rapid heat treatment in the rapid heat treatment step is performed under a mixed gas atmosphere of a non-oxidizing gas or an ammonia gas at 1050 to 1050. After maintaining the temperature at 1350 ° C for 1 to 900 seconds, the temperature is reduced at a rate of 10 ° C / sec or more, and the second heat treatment in the second heat treatment step is performed by rapidly heating the wafer with hydrogen, argon, and nitrogen. In an atmosphere of oxygen gas or a mixed gas thereof, the temperature is maintained at 500 to 1000 ° C. for 1 to 96 hours. This is a production method performed by maintaining the atmosphere at a temperature of 900 to 1250 ° C, which is higher than the second heat treatment temperature, for 1 to 96 hours in an atmosphere of nitrogen or oxygen gas or a mixed gas thereof.
  • the invention according to claim 7 is the invention according to claim 5, wherein the buried oxide layer is formed by subjecting the first heat-treated wafer to a fourth heat treatment at 500 to 1200 ° C for 1 to 96 hours.
  • This is a production method further comprising the step of re-growing the oxygen precipitates 14c formed inside the Balta layer 14 below 12.
  • the size of the oxygen precipitate 14c can be regrown by performing the fourth heat treatment.
  • the invention according to claim 8 is the invention according to claim 5 or 6, wherein the second heat treatment in the second heat treatment step is partially or entirely in the range of 500 ° C to 1000 ° C.
  • the third heat treatment is performed at a temperature of 1000 to 1250 ° C by raising the temperature at a rate of 0.1 to 20.0 ° CZ. This is a production method performed in a range of 1 to 96 hours by raising the temperature at a rate of 0.1 to 20 ° CZ in part or all of the range.
  • An invention according to claim 9 is the SIMOX substrate manufactured by the method according to any one of claims 1 to 8, wherein the embedded oxide layer is formed in a region having a predetermined surface depth of the wafer. 12 and an SOI layer 13 formed on the surface of the wafer on the buried oxide layer.
  • a defect collecting layer 14a formed immediately below the oxide layer 12 and a barta layer 14 below the buried oxide layer 12, and the gettering comprising oxygen precipitates 14c is formed on the barta layer 14 below the defect collecting layer 14a.
  • the gettering source composed of oxygen precipitates 14c is provided in the Balta layer 14 below the defect accumulating layer 14a, and the density of the oxygen precipitates 14c is 1 ⁇ 10 8 to 1 ⁇ 10 12. / cm3, and the size of the oxygen precipitate 14c is 50 nm or more, so it is a stronger gettering source than the defect accumulating layer 14a, so most of the heavy metal contaminants conventionally trapped in the defect accumulating layer 14a Can be gettered to the oxygen precipitates 14c of the Balta layer 14 without being trapped in the defect accumulating layer.
  • the method for producing a SIMOX substrate of the present invention includes a method including a second heat treatment step and a third heat treatment step before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step, or a rapid method.
  • a method including a second heat treatment step and a third heat treatment step before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step or a rapid method.
  • the SIM OX substrate of the present invention has a gettering source that also has an oxygen precipitate force in the Balta layer below the defect accumulating layer, and the density of the oxygen precipitate is 1 ⁇ 10 8 to 1 ⁇ 10 12 / cm 3 Since the size of the oxygen precipitate is 50 nm or more, it becomes a stronger gettering source than the defect accumulating layer, so that the heavy metal trapping concentration in the defect accumulating layer can be reduced, and heavy metal is contained inside the balta layer. It is possible to capture efficiently.
  • FIG. 1 is a process chart showing a method for manufacturing a SIMOX substrate according to a first embodiment of the present invention.
  • FIG. 2 is a process chart showing another method for manufacturing a SIMOX substrate according to the first embodiment of the present invention.
  • FIG. 3 is a process chart showing a method for manufacturing a SIMOX substrate according to a second embodiment of the present invention.
  • FIG. 4 is a process chart showing another method for manufacturing a SIMOX substrate according to the second embodiment of the present invention.
  • the first heat treatment is performed at 1300 ° C. and 1390 ° C. in a mixed gas atmosphere of oxygen and an inert gas, so that the surface force is embedded in a region having a predetermined depth.
  • the present invention relates to a SIMOX substrate having an oxide layer formed thereon and an SOI layer formed on the surface of the oxide layer.
  • a characteristic configuration of the method for manufacturing a SIM OX substrate according to the present invention is that the oxygen precipitation inside the substrate 11 before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step.
  • a method of performing a second heat treatment step before oxygen ion implantation and a third heat treatment step following the second heat treatment step in this order will be described in detail.
  • a silicon wafer 11 is prepared.
  • the prepared silicon layer 11 has an oxygen concentration of 9 ⁇ 10 17 1.8 ⁇ 10 18 atoms / cm 3 (former ASTM).
  • This prepared silicon is epitaxy or a Norreja may be used.
  • the prepared silicon wafer 11 is subjected to a second heat treatment.
  • oxygen precipitation nuclei 14b are formed inside the wafer 11.
  • the second heat treatment in the second heat treatment step is preferably performed by maintaining the wafer at a temperature of 500 to 900 ° C for 1 to 96 hours in an atmosphere of hydrogen, argon, nitrogen, oxygen gas or a mixed gas thereof.
  • the gas atmosphere of the second heat treatment is more preferably performed in an argon or trace oxygen (nitrogen or argon gas base) gas atmosphere.
  • the reason why the second heat treatment temperature is specified in the range of 500 to 900 ° C is that if the temperature is lower than the lower limit, the nucleation temperature is too low and a long heat treatment is required, and if the temperature exceeds the upper limit, oxygen precipitation nucleation does not occur. That's why.
  • the reason why the second heat treatment time is specified in the range of 1 to 96 hours is that if the time is less than the lower limit, the time for forming oxygen precipitation nuclei is too short, and if the time exceeds the upper limit, the productivity is reduced. This is because This second heat treatment is more preferably performed at a temperature of 500 to 800 ° C. for 4 to 35 hours.
  • the temperature is raised at a rate of 0.1 to 20.0 ° CZ, preferably at a rate of 0.1 to 5.0 ° CZ, in a partial range or a whole range from 500 ° C to 900 ° C. Depending on the case, it may be performed within a range of 1 to 96 hours, preferably 4 to 35 hours.
  • the wafer 11 subjected to the second heat treatment is subjected to a third heat treatment.
  • the oxygen precipitate nuclei 14b formed inside the wafer 11 can be grown into oxygen precipitates 14c.
  • the wafer subjected to the second heat treatment is heated to 900 to 1250 ° C. higher than the second heat treatment temperature in an atmosphere of hydrogen, argon, nitrogen, oxygen gas or a mixed gas atmosphere thereof. It is preferably carried out by holding for 1 to 96 hours.
  • the gas atmosphere of the third heat treatment is more preferably performed in an argon or trace oxygen (nitrogen or argon gas base) gas atmosphere.
  • the reason why the third heat treatment temperature is specified in the range of 900 to 1250 ° C is that if the temperature is less than the lower limit value, the growth of oxygen precipitates is difficult to occur sufficiently. is there.
  • the reason why the third heat treatment time is specified within the range of 1 to 96 hours is that if the growth is less than the lower limit and the growth of oxygen precipitates is insufficient, the productivity is reduced if the upper limit is exceeded. This is because a combination occurs.
  • the third heat treatment is more preferably performed at 1000 to 1200 ° C. for 8 to 24 hours.
  • the third heat treatment is carried out by increasing the temperature at a rate of 0.1 to 20 ° CZ, preferably at a rate of 1 to 5 ° CZ, in a part or all of the range from 900 ° C to 1250 ° C.
  • the reaction may be carried out for a period of up to 96 hours, preferably 8 to 24 hours.
  • oxygen ions are implanted into the inside of the wafer 11 subjected to the third heat treatment.
  • This implantation of oxygen ions is also performed conventionally, and is performed by the same means.
  • oxygen ions are implanted into the region 11a having a predetermined depth from the surface of the wafer 11 so that the thickness of the SOI layer 13 in the finally obtained SIMOX substrate becomes 10 to 200 nm, preferably 20 to LOOnm. You. If the thickness of the SOI layer 13 is less than 10 nm, it is difficult to control the thickness of the SOI layer 13, and if the thickness of the SOI layer 13 exceeds 200 nm, it is difficult due to the acceleration voltage of the oxygen ion implanter.
  • a mask or the like is partially formed at a desired position on the surface of the silicon wafer 11 and oxygen ions are implanted into the inside of the silicon wafer 11 so that a mask is not formed. Since oxygen ions are implanted and oxygen ions are not implanted into the inside of the wafer below the portion where the mask is formed, the subsequent first heat treatment is performed to bury the oxide only below the portion where the mask is not formed. Layer 12 is partially formed. Note that even if heavy metal contamination due to the ion implantation process occurs, the heavy metal, which is a contaminant, is reduced by the oxygen precipitates 14c formed by performing the second heat treatment step and the third heat treatment step. It can be efficiently captured inside.
  • the wafer 11 into which oxygen ions have been implanted is subjected to a first heat treatment at a temperature of 1300 to 1390 ° C. in a mixed gas atmosphere of oxygen and an inert gas.
  • the inert gas include an argon gas and a nitrogen gas. Therefore, the gas atmosphere of the first heat treatment is preferably a mixed gas of oxygen and argon or a mixed gas of oxygen and nitrogen.
  • the heat treatment time of the first heat treatment is preferably 1 to 20 hours, more preferably 10 to 20 hours.
  • an oxidized film l ib, 11c is formed on the front and back surfaces of the wafer 11.
  • the embedded oxide layer 12 is formed over the entire surface of the wafer 11 or in the area 1 la of the wafer 11 having a predetermined surface depth.
  • an SOI layer 13 is formed between the front-side oxidized film l ib and the buried oxidized film 12.
  • a defect accumulating layer 14a is inevitably formed immediately below the buried oxide layer 12.
  • the oxygen precipitate near the surface layer is dissolved by the first heat treatment, and becomes a DZ layer (denuded zone) in which no oxygen precipitate exists.
  • the oxygen precipitates 14c existing in the defect accumulating layer 14a immediately below the buried oxide layer 12 and the Balta layer 14 located therebelow are further grown by increasing the temperature in the early stage of the first heat treatment step, and the oxygen precipitates 14c
  • the size of the precipitate increases, the melting starts when the temperature in the middle stage is maintained at 1300-1390 ° C, and the size decreases to a certain size.
  • the growth starts again by lowering the temperature at the end of the first heat treatment step. Therefore, even if the first heat treatment step is performed, it is presumed that the oxygen precipitate 14c formed in advance remains in the Balta 14.
  • the heavy metal that is the contaminant is removed by the oxygen precipitate 14c formed by performing the second heat treatment step and the third heat treatment step. 14Can be efficiently captured inside.
  • the first heat treatment may be followed by a fourth heat treatment in which the wafer subjected to the first heat treatment is kept at 500 to 1200 ° C. for 1 to 96 hours.
  • oxygen precipitates 14c formed in the inside of notch layer 14 below buried oxide layer 12 can be regrown.
  • the gas atmosphere of the fourth heat treatment is preferably performed in an argon or trace oxygen (nitrogen or argon gas base) gas atmosphere.
  • the reason why the fourth heat treatment temperature is specified within the range of 500 to 1200 ° C is that the growth of oxygen precipitates 14 c is less likely to occur sufficiently below the lower limit, and slipping occurs if the upper limit is exceeded. That's why.
  • the reason why the fourth heat treatment time is specified in the range of 1 to 96 hours is that if the growth is less than the lower limit, the growth of the oxygen precipitates 14c is not sufficient, and if the upper limit is exceeded, productivity may be reduced. is there.
  • the fourth heat treatment is preferably performed at 1000 to 1200 ° C. for 8 to 24 hours.
  • the oxide films lib and 11c formed on the front and back surfaces of the wafer 11 subjected to the first heat treatment are removed with hydrofluoric acid or the like.
  • a predetermined A buried oxide layer 12 formed in the depth region, an SOI layer 13 formed on the surface of the wafer above the buried oxide layer, a defect accumulating layer 14a formed immediately below the buried oxide layer 12, and a buried oxide layer are formed in the depth region.
  • a gettering source composed of oxygen precipitates 14c in the barta layer 14 below the defect accumulating layer 14a, wherein the density of the oxygen precipitates 14c is 1 ⁇ 10 8 to 1 X10 12 / cm 3 , and the size of the oxygen precipitate 14c is 50 nm or more, whereby a SIMOX substrate is obtained.
  • the Balta layer 14 below the defect accumulating layer 14a has an oxygen precipitate 14c having a density of 1 ⁇ 10 8 to 1 ⁇ 10 12 / cm 3 and a size of 50 nm or more.
  • sudden heavy metal contamination during the device process can be efficiently captured by the oxide precipitate 14c.
  • the silicon oxide precipitate 14c is a stronger gettering source than the defect accumulation layer 14a, the heavy metal contaminant is trapped by the conventional defect accumulation layer 14a, and the heavy metal contaminant is gettered by the oxygen precipitate 14c of the warta layer 14. Can be ring.
  • the present invention can be applied to a SIMOX substrate in which a buried oxide layer is partially formed.
  • a SIMOX substrate similar to the SIMOX substrate shown in FIG. 1 can be obtained by performing the second heat treatment step and the third heat treatment step between the oxygen ion implantation step and the first heat treatment step.
  • the first heat treatment is performed at 1300 to 1390 ° C. in a mixed gas atmosphere of oxygen and an inert gas, so that the surface force of the wafer becomes a region having a predetermined depth.
  • the present invention relates to a SIMOX substrate having a buried oxide layer formed thereon and an SOI layer formed on the surface of the wafer.
  • a characteristic configuration of the method for manufacturing a SIM OX substrate according to the present invention is that a hole 15 is formed inside the wafer 11 before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step.
  • Rapid heat treatment step for implanting oxygen and oxygen precipitate nuclei 14b formed inside wafer 11 following this rapid heat treatment step And a third heat treatment step following the second heat treatment step for growing the oxygen precipitate nuclei 14b formed inside the wafer 11 into oxygen precipitates 14c.
  • a method of performing a rapid heat treatment step before oxygen ion implantation, a second heat treatment step following the rapid heat treatment step, and a third heat treatment step following the second heat treatment step, respectively, is described. , Will be described in detail.
  • a silicon wafer 11 is prepared.
  • the prepared silicon layer 11 has an oxygen concentration of 8 ⁇ 10 17 1.8 ⁇ 10 18 atoms / cm 3 (former ASTM).
  • the silicon to be prepared may be epitaxy or anoreja.
  • the prepared silicon wafer 11 is subjected to rapid heat treatment.
  • the holes 15 are injected into the inside of the hole 11.
  • the rapid heat treatment the in-plane uniformity of the oxygen precipitate density distribution in the wafer surface is ensured, and the reliability of the growth of oxygen precipitates is improved even for silicon wafers having a low oxygen concentration. If the rapid heat treatment is not performed, even if a subsequent process is performed, the oxygen precipitate density distribution in the wafer surface may not be uniform.
  • the temperature is kept at 1,050 ° C, 1,350 ° C for 1,900 seconds in a mixed gas atmosphere with non-oxidizing gas or ammonia gas, and then the temperature is reduced at a rate of 10 ° CZ seconds or more. It is preferable to be performed by doing.
  • the reason why the rapid heat treatment temperature is specified within the range of 1050 ° C and 1350 ° C is that if the lower limit is less than the lower limit, a sufficient amount of vacancies to promote the formation of oxygen precipitation nuclei cannot be injected into the wafer. If the upper limit value is exceeded, slip dislocations are easily generated during the heat treatment, which causes a problem in device fabrication, which is not preferable.
  • the preferred heat treatment temperature is 1100-1300 ° C.
  • the reason for setting the holding time to 1 second to 900 seconds is that if the holding time is less than the lower limit, the time required to reach the desired heat treatment attainment temperature differs in the plane of the wafer and in the depth direction, which may cause variations in quality. This is because there is a concern that The upper limit is specified because slip reduction and productivity are taken into account.
  • the preferred holding time is 10 60 seconds.
  • the injected vacancies disappear when reaching the wafer surface, the concentration decreases near the outermost surface, and the resulting concentration difference causes outward diffusion of the vacancies toward the internal force surface . For this reason, if the cooling rate is low, the dwell time in the temperature drop will be prolonged, and the outdiffusion will proceed to that extent, and the vacancies once injected by the high-temperature RTA heat treatment will decrease, and oxygen precipitation nucleation will occur. It is thought that it will not be possible to secure a sufficient amount for the project.
  • the temperature is lowered at a temperature lowering rate of 10 ° CZ seconds or more.
  • the reason why the cooling rate is set to 10 ° CZ seconds or more is that if it is less than the lower limit, the effect of suppressing the disappearance of vacancies cannot be obtained.
  • the reason why the upper limit was not set is that the effect hardly changes if it exceeds 10 ° CZ seconds.
  • the cooling rate should be controlled to 10 to 100 ° C / sec in consideration of productivity. desirable. More preferably, the cooling rate is 15 to 50 ° CZ seconds.
  • the wafer 11 subjected to the rapid heat treatment is subjected to a second heat treatment.
  • oxygen precipitation nuclei 14b are formed inside the wafer 11.
  • the second heat treatment in the second heat treatment step is performed by maintaining the rapidly heat-treated wafer at 500 to 1000 ° C for 1 to 96 hours in an atmosphere of hydrogen, argon, nitrogen, oxygen gas or a mixed gas thereof. Is preferred.
  • the gas atmosphere of the second heat treatment is more preferably performed under an atmosphere of argon or a small amount of oxygen (based on nitrogen or argon gas).
  • the reason why the second heat treatment temperature is specified in the range of 500 to 1000 ° C is that if it is less than the lower limit, the nucleation temperature is too low and a long heat treatment is required, and if it exceeds the upper limit, oxygen precipitation nucleation will occur. Because there is no. Also, the reason why the second heat treatment time is specified within the range of 1 to 96 hours is that if the time is less than the lower limit, the time for forming the oxygen precipitation nuclei 14b is too short, and if the time exceeds the upper limit, the productivity is reduced. This is because This second heat treatment is more preferably performed at a temperature of 500 to 800 ° C. for 4 to 35 hours.
  • the second heat treatment is performed at a rate of 0.1 to 20.0 ° C.Z in a partial range or a whole range from 500 ° C. to 1
  • the reaction may be performed within a range of 1 to 96 hours, preferably 4 to 35 hours by raising the temperature by 0.1 to 5.0 ° CZ.
  • the wafer 11 subjected to the second heat treatment is subjected to a third heat treatment.
  • the oxygen precipitate nuclei 14b formed inside the wafer 11 can be grown into oxygen precipitates 14c.
  • the wafer subjected to the second heat treatment is heated to 900 to 1250 ° C, which is higher than the second heat treatment temperature, in an atmosphere of hydrogen, argon, nitrogen, oxygen gas or a mixed gas thereof. It is preferable to carry out by holding for 96 hours.
  • the gas atmosphere for the third heat treatment is preferably performed in an argon or trace oxygen (nitrogen or argon gas base) gas atmosphere.
  • the reason why the third heat treatment temperature is specified in the range of 900 to 1250 ° C is that, if the temperature is less than the lower limit, the growth of oxygen precipitates 14c is not sufficiently performed, and if the upper limit is exceeded, problems such as slipping may occur. is there.
  • the reason why the third heat treatment time is specified in the range of 1 to 96 hours is that if the growth is less than the lower limit, the growth of the oxygen precipitate 14c is not sufficient, and if the upper limit is exceeded, the productivity may be reduced. . More preferably, the third heat treatment is performed at 1000 to 1200 ° C. for 8 to 24 hours.
  • the third heat treatment is performed by increasing the temperature at a rate of 0.1 to 20 ° CZ, preferably at a rate of 1 to 5 ° CZ, in a part or whole range from 900 ° C to 1250 ° C. It may be carried out for up to 96 hours, preferably 8 to 24 hours!
  • oxygen ions are implanted into the inside of the wafer 11 subjected to the third heat treatment.
  • This implantation of oxygen ions is also performed conventionally, and is performed by the same means.
  • oxygen ions are implanted into the region 11a having a predetermined depth from the surface of the wafer 11 so that the thickness of the SOI layer 13 in the finally obtained SIMOX substrate becomes 10 to 200 nm, preferably 20 to LOOnm. You. If the thickness of the SOI layer 13 is less than lOnm, it is difficult to control the thickness of the SOI layer 13, and if the thickness of the SOI layer 13 exceeds 200 nm, it is difficult due to the acceleration voltage of the oxygen ion implanter.
  • a mask or the like is partially formed at a desired position on the surface of the silicon wafer 11 and oxygen ions are implanted into the inside of the silicon wafer 11 so that the mask is not formed.
  • Oxygen ions are implanted into the inside of the wafer below, and oxygen ions are not implanted into the inside of the wafer below the area where the mask was formed.
  • the buried oxide layer 12 is partially formed only underneath. Even if heavy metal contamination occurs due to the ion implantation process, the heavy metal, which is a contaminant, is converted into 14 layers by the oxygen precipitates 14c formed by performing the second heat treatment step and the third heat treatment step. It can be efficiently captured inside.
  • the wafer 11 into which oxygen ions have been implanted is subjected to a first heat treatment at a temperature of 1300 to 1390 ° C. in an inert gas or a mixed gas atmosphere of oxygen and an inert gas.
  • the inert gas include an argon gas and a nitrogen gas. Therefore, the gas atmosphere of the first heat treatment is preferably argon alone, a mixed gas of oxygen and argon, or a mixed gas of oxygen and nitrogen.
  • the heat treatment time of the first heat treatment is preferably 1 to 20 hours, more preferably 10 to 20 hours.
  • an oxidized film l ib, 11c is formed on the front and back surfaces of the wafer 11, and the embedded oxide film 12 is spread over the entire surface of the wafer 11 in a region 1 la where the surface force of the wafer 11 has a predetermined depth. Formed.
  • oxygen ions are partially implanted into a region having a predetermined surface depth and a predetermined depth using a mask or the like, the buried oxide layer 12 is partially formed. Further, an SOI layer 13 is formed between the oxidized film lib on the front side and the buried oxidized film 12. In addition, a defect accumulating layer 14a is inevitably formed immediately below the buried oxide layer 12.
  • oxygen precipitates near the surface layer are dissolved by the first heat treatment, so that a DZ layer is formed.
  • the oxygen precipitates 14c present in the defect accumulating layer 14a immediately below the buried oxide layer 12 and the Balta layer 14 located therebelow are further grown by the temperature rise in the early stage of the first heat treatment step, and the oxygen precipitates 14c are formed.
  • the size of the elementary precipitates increases, melting begins when the temperature is maintained at 1300-1390 ° C in the middle stage, and the size decreases to a certain size.However, growth starts again due to the temperature drop at the end of the first heat treatment step. Even if the first heat treatment step is performed, the oxygen precipitate 14c formed in advance remains in the balta 14.
  • the heavy metal contamination is caused by the oxygen precipitates 14c formed by performing the second heat treatment step and the third heat treatment step. Heavy metals as dyes can be efficiently captured in the Balta layer 14.
  • a fourth heat treatment may be performed in which the wafer subjected to the first heat treatment is kept at 500 to 1200 ° C. for 1 to 96 hours.
  • oxygen precipitates 14c formed in the inside of notch layer 14 below buried oxide layer 12 can be regrown.
  • the gas atmosphere of the fourth heat treatment is preferably performed in an argon or trace oxygen (nitrogen or argon gas base) gas atmosphere.
  • the reason why the fourth heat treatment temperature is specified in the range of 500 to 1200 ° C is that the growth of oxygen precipitates 14 c is less likely to occur sufficiently below the lower limit, and a problem such as slipping occurs if the upper limit is exceeded. That's why.
  • the reason why the fourth heat treatment time is set within the range of 1 to 96 hours is that if the oxygen precipitate 14c does not grow sufficiently below the lower limit, the productivity decreases if the growth exceeds the upper limit. .
  • the fourth heat treatment is preferably performed at 1000 to 1200 ° C. for 8 to 24 hours.
  • the silicon nitride film 1 lb, 11c on the front and rear surfaces of the wafer 11 subjected to the third heat treatment is removed with hydrofluoric acid or the like.
  • the buried oxide layer 12 formed on the wafer surface force at a predetermined depth, the SOI layer 13 formed on the wafer surface on the buried oxide layer, and the buried oxide layer 12 It has a formed defect accumulating layer 14a and a Balta layer 14 below the buried oxide layer 12, and has a gettering source composed of oxygen precipitates 14c in the Balta layer 14 below the defect accumulating layer 14a.
  • the SIMOX substrate is characterized in that the density of the substance 14c is 1 ⁇ 10 8 to 1 ⁇ 10 12 Zcm 3 and the size of the oxygen precipitate 14c is 50 nm or more.
  • the Balta layer 14 below the defect accumulating layer 14a has an oxygen precipitate 14c having a density of 1 ⁇ 10 8 to 1 ⁇ 10 12 / cm 3 and a size of 50 nm or more.
  • sudden heavy metal contamination during the device process can be efficiently captured by the oxide precipitate 14c.
  • the silicon oxide precipitate 14c is a stronger gettering source than the defect accumulation layer 14a, the heavy metal contaminant is trapped by the conventional defect accumulation layer 14a, and the heavy metal contaminant is gettered by the oxygen precipitate 14c of the warta layer 14. Can be ring.
  • the concentration of heavy metals was forcibly contaminated with a heavy metal so that the substrate in 1 X ⁇ 11 1 X 10 12 atoms / cm 2, the defect collection layer 14a
  • the concentration of heavy metals captured can be reduced to a level of 5 ⁇ 10 9 pieces / cm 2 or less.
  • the rapid heat treatment step, the second heat treatment step, and the third heat treatment step were performed before the oxygen ion implantation step, but FIGS. 4 (a) to 4 ( g), the same SIMO X as the SIMOX substrate shown in Fig. 3 is obtained even if the rapid heat treatment step, the second heat treatment step, and the third heat treatment step are performed between the oxygen ion implantation step and the first heat treatment step. A substrate is obtained.
  • the wafer 11 subjected to the rapid heat treatment was subjected to a second heat treatment at 800 ° C. for 4 hours in a nitrogen atmosphere.
  • a third heat treatment was performed in which the wafer subjected to the second heat treatment was maintained at 1000 ° C. for 16 hours in a 3% oxygen gas (nitrogen gas base) atmosphere.
  • the wafer is heated to a temperature of 550 ° C. or less, and in this state, a predetermined area of the silicon wafer (for example, an area of about 0.4 m from the substrate surface). ) was implanted with oxygen ions under the following conditions.
  • the surface of the wafer was washed with SC-1 and SC-2. Subsequently, as shown in Fig. 3 (f), the wafer 11 was placed in a heat treatment furnace and maintained at a constant temperature of 1350 ° C for 4 hours in an Ar gas atmosphere with an oxygen partial pressure of 0.5%. Increase oxygen partial pressure of atmosphere to 70%! Then, a first heat treatment of holding for 4 hours was performed. After the first heat treatment, the oxidized films l ib and 11c on the front and rear surfaces of the wafer were removed with an HF solution, and the SIMOX shown in FIG. A substrate was obtained. This SIMOX substrate was used as Example 1.
  • the wafer was continuously heated at a temperature of 500 ° C. from 1500 ° C. to 1150 ° C. in 25 ° C.Z seconds, and then held at 1150 ° C. for 15 seconds, as shown in FIG. After that, rapid heat treatment was performed to decrease the temperature to 500 ° C at a rate of 25 ° CZ seconds.
  • a second heat treatment was performed in which the rapidly heat-treated wafer 11 was kept at 800 ° C. for 4 hours in an argon atmosphere.
  • a third heat treatment was performed in which the wafer subjected to the second heat treatment was kept at 1000 ° C.
  • a 0.5% oxygen gas (argon gas base) atmosphere was placed in a heat treatment furnace and maintained at a constant temperature of 1350 ° C for 4 hours in an Ar gas atmosphere with an oxygen partial pressure of 0.5%.
  • a first heat treatment was performed in which the oxygen partial pressure of the internal atmosphere was increased to 70% and maintained for another 4 hours.
  • 1 lb and 1 lc of the oxide film on the front and back surfaces of the wafer were removed with an HF solution to obtain a SIMOX substrate shown in FIG. 4 (g). This SIMOX substrate was used as Example 2.
  • the oxygen concentration 1. 3 X 10 18 atoms / cm 3 was grown by the CZ method (old ASTM), carbon concentration 5 X 10 16 atoms / cm 3 ( old ASTM) and the ratio A CZ silicon wafer cut into a predetermined thickness from a silicon ingot having a resistance of 20 ⁇ ⁇ cm was prepared.
  • the wafer 11 was subjected to a second heat treatment at 800 ° C. for 4 hours in an atmosphere of 3% oxygen gas (based on argon gas).
  • a third heat treatment was performed in which the wafer subjected to the second heat treatment was held at 1000 ° C.
  • the wafer is heated to a temperature of 550 ° C. or less, and in this state, a predetermined region of the silicon wafer (for example, Oxygen ions were implanted into the region (about 0.4 m from the substrate surface) under the same conditions as in Example 1 above.
  • a predetermined region of the silicon wafer for example, Oxygen ions were implanted into the region (about 0.4 m from the substrate surface) under the same conditions as in Example 1 above.
  • the surface of the wafer was washed with SC-1 and SC-2. Subsequently, as shown in Fig. 1 (e), the wafer 11 was placed in a heat treatment furnace and maintained at a constant temperature of 1350 ° C for 4 hours in an Ar gas atmosphere with an oxygen partial pressure of 0.5%. Increase oxygen partial pressure of atmosphere to 70%! Then, a first heat treatment of holding for 4 hours was performed. After the first heat treatment, the oxide films 11b and 11c on the front and rear surfaces of the wafer were removed with an HF solution to obtain a SIMOX substrate shown in FIG. 1 (f). This SIMOX substrate was used as Example 3.
  • FIG. 1 (a) cut the oxygen concentration 1.
  • 35 X 10 18 atoms / cm 3 was grown by the CZ method from a silicon ingot (old ASTM) and resistivity 20 Omega ⁇ cm to a predetermined thickness
  • a CZ silicon wafer was prepared.
  • the wafer is continuously heated from 500 ° C to 850 ° C for 0.5 ° C in minutes in an argon atmosphere, and then maintained at 850 ° C for 1 hour.
  • a second heat treatment was performed.
  • FIG. 1 (c) the second heat-treated wafer 11 was heated from 850 ° C to 1100 ° C at a rate of 3.0 ° CZ in an argon atmosphere.
  • a third heat treatment was performed at 1100 ° C. for 16 hours.
  • the wafer is heated to a temperature of 550 ° C or less, and in this state, the wafer is heated to a predetermined area of the silicon wafer (for example, an area approximately 0. 0 from the substrate surface).
  • Oxygen ions were implanted under the same conditions as in Example 1 above.
  • the surface of the wafer was washed with SC-1 and SC-2. Subsequently, as shown in Fig. 1 (e), the wafer 11 was placed in a heat treatment furnace and maintained at a constant temperature of 1350 ° C for 4 hours in an Ar gas atmosphere with an oxygen partial pressure of 0.5%. Increase oxygen partial pressure of atmosphere to 70%! Then, a first heat treatment of holding for 4 hours was performed. After the first heat treatment, the oxide films 11b and 11c on the front and rear surfaces of the wafer were removed with an HF solution to obtain a SIMOX substrate shown in FIG. 1 (f). This SIMOX substrate was used as Example 4.
  • a fourth heat treatment was performed in which the wafers after the first heat treatment of Examples 1 to 4 were kept at 1000 ° C. for 16 hours in a 0.5% oxygen gas (argon gas base) atmosphere. After this 4th heat treatment The silicon oxide film on the top and bottom surfaces of the wafer was removed with an HF solution to obtain a SIMOX substrate. This SIMOX substrate was used in Examples 5 to 8.
  • a CZ silicon wafer cut to a predetermined thickness from a silicon ingot having an oxygen concentration of 1.3 ⁇ 10 18 atoms / cm 3 (former ASTM) and a specific resistance of 20 ⁇ ⁇ cm grown by the CZ method was prepared.
  • the wafer is heated to a temperature of 550 ° C. or lower, and in this state, oxygen ions are applied to a predetermined area of the silicon wafer (for example, an area approximately 0. 0 from the substrate surface) under the same conditions as in Example 1 above. Injected.
  • the surface of the wafer was washed with SC-1 and SC-2. Subsequently, the wafer was placed in a heat treatment furnace and maintained at a constant temperature of 1350 ° C for 4 hours in an Ar gas atmosphere with an oxygen partial pressure of 0.5%, and then the oxygen partial pressure of the furnace atmosphere was increased to 70% Then, a first heat treatment was performed for 4 hours. After the first heat treatment, the oxide films on the front and rear surfaces of the wafer were removed with an HF solution to obtain a SIMOX substrate. This SIMOX substrate was used as Comparative Example 1.
  • the wafer subjected to the first heat treatment of Comparative Example 1 was subjected to a fourth heat treatment in which the wafer was held at 1000 ° C. for 16 hours in a 3% oxygen gas (argon gas base) atmosphere. After the fourth heat treatment, the silicon oxide films on the front and rear surfaces of the wafer were removed with an HF solution to obtain a SIMOX substrate. This SIMO X substrate was used as Comparative Example 2.
  • the SOI layer 13, the buried oxide layer 12 and the vacancy immediately below the buried oxide layer of each SIMOX substrate were removed.
  • the collapsed layer 14a was dissolved and recovered with an aqueous solution of hydrofluoric-nitric acid, and the recovered solution was subjected to ICP-MS measurement to measure the concentration of nickel contained in the solution.
  • the Balta layers 14 of Examples 1 to 8 and Comparative Examples 1 and 2 were separately separated into a Balta layer excluding 1 m from the back surface and a region 1 m from the back surface, and were completely dissolved. Was measured for nickel concentration.
  • Example 5 Each of the SIMOX substrates in Example 5 and Comparative Example 2 was cleaved into two parts.
  • the cleaved substrate was selectively etched with a Wright etchant.
  • the cleaved substrates of Example 5 and Comparative Example 2 were each observed with an optical microscope.
  • Example 5 it was observed that oxygen precipitates were grown at a high density inside the substrate at a substrate cleavage surface force of 2 m depth.
  • Comparative Example 2 the oxygen precipitate hardly grew. That is, even if a buried oxide film forming heat treatment step requiring 1300 ° C. or more is performed, if the oxygen precipitates are sufficiently grown before the heat treatment, the oxygen precipitates do not disappear. It has been proved that these oxygen precipitates have a gettering effect in the SIMOX manufacturing process.
  • the method for producing a SIMOX substrate of the present invention can efficiently capture heavy metal contamination caused by ion implantation or high-temperature heat treatment in the Balta layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)

Abstract

 イオン注入や高温熱処理に起因する重金属汚染をバルク層内部に効率良く捕獲し得る。  ウェーハ11内部に酸素イオンを注入する工程と、ウェーハを所定のガス雰囲気中、1300~1390°Cで第1熱処理して埋込み酸化層12を形成するとともにSOI層13を形成する工程とを含み、酸素イオン注入前のウェーハが9×1017~1.8×1018atoms/cm3(旧ASTM)の酸素濃度を有し、埋込み酸化層がウェーハ全面にわたって又は部分的に形成され、酸素イオン注入工程前又は酸素イオン注入工程と第1熱処理工程との間にウェーハ内部に酸素析出核14bを形成するための第2熱処理工程とウェーハ内部に形成された酸素析出核14bを酸素析出物14cに成長させるための第3熱処理工程とを含むことを特徴とする。

Description

SIMOX基板の製造方法及び該方法により得られる SIMOX基板 技術分野
[0001] 本発明は、シリコン単結晶本体に埋込み酸ィ匕層(Buried Oxide)を介して単結晶シリ コン層(以下、 SOI層という。)が形成された SOI (Silicon-On-Insulator)基板のうち、 SIMOX (Separation by Implanted Oxygen)技術による SIMOX基板の製造方法及 び該方法により得られる SIMOX基板に関するものである。更に詳しくは、イオン注入 や高温熱処理に起因する重金属汚染を基板内部に効率良く捕獲し得る SIMOX基 板の製造方法及び該方法により得られる SIMOX基板に関するものである。
背景技術
[0002] SOI基板は、(1)素子と基板間の寄生容量を低減できるのでデバイス動作の高速ィ匕 が可能であり、(2)放射線耐圧に優れており、(3)誘電体分離が容易のため高集積ィ匕 が可能である、更に (4)耐ラッチアップの特性を向上できる等の非常に優れた特徴を 有する。現在 SOI基板の製造方法には、大きく 2つに分類できる。一つの方法は、薄 膜化される活性ゥ ーハと、支持ゥエーハを貼合せて形成する貼合せ法であり、他の 方法はゥ ーハ表面より酸素イオンを注入してゥ ーハ表面力 所定の深さの領域 に埋込み酸化層を形成する SIMOX法である。特に SIMOX法は製造工程数が少な V、ため将来的に有効な手法として期待されて!、る。
SIMOX基板の製造方法としては、シリコン単結晶基板の一方の主面を鏡面加工し た後に、この鏡面加工面力 酸素イオンをインプランテーションにより基板中の所定 深さに注入する酸素イオン注入工程と、酸素イオンを注入した基板に酸ィ匕雰囲気下 、高温熱処理を施すことにより基板内部に埋込み酸化層を形成する高温熱処理工程 力も構成される。具体的には、シリコン単結晶基板を 500°C〜650°Cの温度に保持し 、基板表面力も 1017〜1018個 /cm2程度の酸素原子イオン或いは酸素分子イオン を所定の深さに注入する。引続き酸素イオンを注入したシリコン基板を 500°C〜700 °Cの温度に保持した熱処理炉内に投入し、スリップを発生させないように徐々に昇温 を開始して 1300°C〜1390°C程度の温度で 10時間程度の熱処理を施す。この高温 熱処理により基板内部に注入された酸素イオンがシリコンと反応して基板内部に埋 込み酸化層が形成される。
[0003] 一方、デバイス製造プロセスにお 、て、デバイス特性に直接的悪影響を及ぼす金 属を基板表面力 除去するゲッタリング技術としては、基板裏面にサンドブラストで歪 みをつける方法、基板裏面に多結晶シリコン膜を堆積する方法、基板裏面に高濃度 のリンを注入する方法などの外部ゲッタリング法(External Gettering)があるが、シリコ ン基板内部に析出した酸素析出物に起因する結晶欠陥の歪場を利用する内部ゲッ タリング法(Intrinsic Gettering)が量産性に優れ、かつクリーンなゲッタリング方法とし て一部では量産に用いられて 、る。
し力しながら一般的に SIMOX基板は基板内部に埋込み酸ィ匕層を形成するために 、酸素イオン注入後 1300°C前後の高温熱処理が必要とされているため、この高温熱 処理によってバルタ層中に内部ゲッタリングシンクである酸素析出物を形成すること は困難であるといわれていた。具体的には、シリコン単結晶ゥエーハには、点欠陥、 即ち S源子が格子間に侵入した格子間型点欠陥と、格子を形成する S源子が欠除 した空孔型点欠陥が存在し、この点欠陥は熱平衡的に存在するもので、例えば、 12 00。Cでは、格子間型点欠陥: 1 X 1017個 Zcm3、空孔型点欠陥: 1 X 1015個 Zcm3、 また 600°Cでは格子間型点欠陥: 1 X 1016個 Zcm3、空孔型点欠陥: 1 X 105個 Zc m3存在することが開示されている (例えば、特許文献 1参照。 ) o即ち、点欠陥は熱平 衡的に存在し、 1200°Cでの点欠陥濃度は、 600°Cでの点欠陥濃度よりも高くなるこ とが知られている。そのため、埋込み酸化層と SOI層を形成する高温熱処理の前に、 この高温熱処理温度よりも低 、所定の温度でバルタ層内に酸素析出物を形成した後 に、 1300°C前後の高温熱処理を施した場合、バルタ層内に形成した酸素析出物は この高温熱処理によって消失してしまうと考えられていた。
[0004] この上述した問題点を解決する方策として、シリコン単結晶基板に酸素イオンを注 入したのち、基板を水素雰囲気又は酸素を少量含む窒素雰囲気中で、 1200-130 0°Cの温度で 6〜 12時間熱処理を施して埋込み酸ィ匕層を形成した後、低温から高温 で段階的又は連続的に温度を上昇させて熱処理を施す半導体基板の製造方法が 提案されている (例えば、特許文献 2参照。 ) 0この特許文献 2に示される具体的な熱 処理の条件として、段階的な熱処理方法を 500°Cから出発し、 50〜100°Cの段階で 順次上昇させ、最終温度を 850°Cまでとする方法、連続的な熱処理方法を 500°Cか ら出発し、 0. 2〜1. 0°CZ分の勾配で、最終温度を 850°Cとする方法が記載されて いる。し力し、 SIMOX基板の埋込み酸化層を形成するために 1300°C程度の高温 熱処理を施すことで結晶引上げ時に起因する酸素析出核の縮小及び消滅が起こつ ているため、上記特許文献 2に示される熱処理条件では酸素析出物の成長が抑制さ れるため最終到達温度が 850°Cでは十分なゲッタリング効果が得られていな力つた。
[0005] また、部分的に埋込み酸化層が形成されない領域を有し、かつシリコン単結晶基板 バルタもしくはシリコン単結晶基板裏面に、結晶欠陥もしくは結晶歪みによるゲッタリ ング手段が付与された構造を有する SIMOX基板及びその製造方法が提案されて いる(例えば、特許文献 3参照。 ) 0この特許文献 3では、埋込み酸化層が断片的に 表層近傍に形成されており、ゲッタリングするための熱処理条件が 500〜900°Cの範 囲で酸素析出核を形成、密度は 105個 /cm3〜109個 /cm3の範囲であり、第 2の熱 処理として 1000〜 1150°Cの範囲で上記析出核を成長させ析出物にしてもよ ヽと記 載されている。
[0006] しかし、実施例のなかに従来技術による SIMOX、すなわちゥエーハ全面に埋込み 酸ィ匕膜が成長した SIMOXを参照サンプルとして重金属の定量汚染による基板表面 の結晶欠陥発生量を評価しているが、部分埋込み酸ィ匕膜の実施例では表面欠陥が ほとんど観察されていないのに対して、従来 SIMOXでは 105〜106個/ cm2のピット 及び積層欠陥が観察されて ヽる。すなわち特許文献 2でも完全なゲッタリング技術が 確立して ヽな 、ことを意味して 、る。
特許文献 1:特公平 3— 9078号公報(2ページ第 3欄 6行目〜 13行目)
特許文献 2:特開平 7— 193072号公報 (請求項 1〜3)
特許文献 3 :特開平 5— 82525号公報 (請求項 1、 2、 4及び 5、段落 [0019]〜段落 [ 0023])
非特許文献 1 : J.Electrochem.Soc., 142,2059,(1995)
発明の開示
発明が解決しょうとする課題 [0007] 一方、 SIMOX基板を製造する際の特徴として埋込み酸化層の直下には厚さ 200 nm程度の欠陥集合層が必然的に形成され、この欠陥集合層にはゲッタリング効果 力 Sあることが開示されている (例えば、非特許文献 1参照。 ) o即ち、非特許文献 1に 開示された内容を踏まえると、 SIMOX基板の製造工程において突発的に重金属汚 染が発生したとき、上記特許文献 2や上記特許文献 3に示される SIMOX基板の酸 素析出物では十分なゲッタリング効果を得ることができない場合、埋込み酸化層直下 の欠陥集合層にも重金属が捕獲されてしまうことが考えられる。
[0008] また、近年 SIMOX基板の SOI層における薄膜ィ匕が要望されて 、ることから、埋込 み酸化層直下の欠陥集合層に捕獲された重金属汚染領域がデバイス特性に影響を 与える可能性があり、少なくともデバイス特性に影響を与えず、かつプロセス中での 突発的な重金属汚染を効率良く捕獲できるゲッタリング源を有する SIMOX基板の設 計が必要となっていた。
[0009] 本発明の目的は、埋込み酸化層と SOI層を形成する高温熱処理前にバルタ層内 部にゲッタリングシンクを形成することで、イオン注入や高温熱処理に起因する重金 属汚染をバルタ層内部に効率良く捕獲し得る、 SIMOX基板の製造方法及び該方法 により得られる SIMOX基板を提供することにある。
本発明の別の目的は、欠陥集合層の重金属捕獲濃度を低減させ、かつノ レク層 内部に重金属を効率良く捕獲し得る、 SIMOX基板の製造方法及び該方法により得 られる SIMOX基板を提供することにある。
課題を解決するための手段
[0010] 本発明者らは、従来、酸素析出物を形成するための熱処理を施した後に、基板内 部に埋込み酸化層とその上に SOI層を形成する高温熱処理を施すと、形成した酸素 析出物が消失してしまうと考えられてきた事象に関して鋭意検討した結果、形成した 酸素析出物のサイズが大きい場合には、後に続く工程で高温熱処理を施したとして も、酸素析出物が消失してしまうことなく残存することを知見し、本発明に至ったもの である。
[0011] 請求項 1に係る発明は、図 1 (a)〜図 1 (f)又は図 2 (a)〜図 2 (f)に示すように、シリ コンゥヱーハ 11の内部に酸素イオンを注入する酸素イオン注入工程と、ゥヱーハ 11 を酸素と不活性ガスとの混合ガス雰囲気中、 1300〜 1390°Cで第 1熱処理すること により、ゥエーハ 11表面力も所定の深さの領域に埋込み酸ィ匕層 12を形成するととも に埋込み酸ィ匕層 12上のゥエーハ表面に SOI層 13を形成する第 1熱処理工程とを含 む SIMOX基板の製造方法の改良である。
その特徴ある構成は、酸素イオン注入する前のシリコンゥエーハ 11が 9 X 1017〜1 . 8 X 1018atoms/cm3 (旧 ASTM)の酸素濃度を有し、埋込み酸化層 12がゥエー ハ全面にわたって又は部分的に形成され、酸素イオン注入工程前又は酸素イオン 注入工程と第 1熱処理工程との間にゥヱーハ 11内部に酸素析出核 14bを形成する ための第 2熱処理工程と、この第 2熱処理工程に続くゥエーハ 11内部に形成された 酸素析出核 14bを酸素析出物 14cに成長させるための第 3熱処理工程とを含むとこ ろにある。
請求項 1に係る発明では、酸素イオン注入工程前又は酸素イオン注入工程と第 1 熱処理工程との間に酸素析出物 14cを成長させる第 2及び第 3熱処理を施すこと〖こ より、イオン注入や高温熱処理に起因する重金属汚染を第 2及び第 3熱処理で形成 した酸素析出物 14cによりバルタ層 14内部に効率良く捕獲することができる。上記各 工程を経ることにより、欠陥集合層 14aより下方のバルタ層 14に酸素析出物 14cから なるゲッタリング源を有し、酸素析出物 14cの密度が 1 X 108〜1 X 1012個/ cm3であ り、酸素析出物 14cのサイズが 50nm以上である SIMOX基板を得ることができる。
[0012] 請求項 2に係る発明は、請求項 1に係る発明であって、第 2熱処理工程における第 2熱処理は、ゥヱーハを水素、アルゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲 気下、 500〜900°Cの温度で 1〜96時間保持することにより行われ、第 3熱処理ェ 程における第 3熱処理は、第 2熱処理したゥエーハを、水素、アルゴン、窒素、酸素ガ スもしくはそれら混合ガス雰囲気下、前記第 2熱処理温度より高い 900〜1250°Cの 温度で 1〜96時間保持することにより行われる製造方法である。
[0013] 請求項 3に係る発明は、請求項 1に係る発明であって、第 1熱処理したゥエーハを 5 00〜1200°Cで 1〜96時間保持する第 4熱処理することにより、埋込み酸ィ匕層 12より 下方のバルタ層 14内部に形成された酸素析出物 14cを再成長させる第 4熱処理ェ 程を更に含む製造方法である。 請求項 3に係る発明では、第 4熱処理を施すことで、酸素析出物 14cのサイズを再 成長させることができる。
[0014] 請求項 4に係る発明は、請求項 1又は 2に係る発明であって、第 2熱処理工程にお ける第 2熱処理は、 500°Cから 900°Cの一部範囲又は全ての範囲において 0. 1〜2 0. 0°CZ分の速度で昇温することにより 1〜96時間の範囲内で行われ、第 3熱処理 工程における第 3熱処理は、 900°Cから 1250°Cの一部範囲又は全ての範囲におい て 0. 1〜20°CZ分の速度で昇温することにより 1〜96時間の範囲内で行われる製 造方法である。
[0015] 請求項 5に係る発明は、図 3 (a)〜図 3 (g)又は図 4 (a)〜図 4 (g)に示すように、シリ コンゥヱーハ 11の内部に酸素イオンを注入する酸素イオン注入工程と、ゥヱーハ 11 を酸素と不活性ガスとの混合ガス雰囲気中、 1300〜 1390°Cで第 1熱処理すること により、ゥエーハ 11表面力も所定の深さの領域に埋込み酸ィ匕層 12を形成するととも に埋込み酸ィ匕層 12上のゥエーハ表面に SOI層 13を形成する第 1熱処理工程とを含 む SIMOX基板の製造方法の改良である。
その特徴ある構成は、酸素イオン注入する前のシリコンゥエーハ 11が 9 X 1017〜1 . 8 X 1018atoms/cm3 (旧 ASTM)の酸素濃度を有し、埋込み酸化層 12がゥエー ハ全面にわたって又は部分的に形成され、酸素イオン注入工程前又は酸素イオン 注入工程と第 1熱処理工程との間にゥエーハ 11内部に空孔 15を注入するための急 速熱処理工程と、この急速熱処理工程に続くゥ ーハ 11内部に酸素析出核 14bを 形成するための第 2熱処理工程と、この第 2熱処理工程に続くゥヱーハ 11内部に形 成された酸素析出核 14bを酸素析出物 14cに成長させるための第 3熱処理工程とを 含むところにある。
請求項 5に係る発明では、酸素イオン注入工程前又は酸素イオン注入工程と第 1 熱処理工程との間にゥエーハ 11内部に空孔 15を注入するための急速熱処理工程と 、酸素析出物 14cを成長させる第 2及び第 3熱処理を施すことにより、イオン注入や 高温熱処理に起因する重金属汚染を第 2及び第 3熱処理で形成した酸素析出物 14 cによりバルタ層 14内部に効率良く捕獲することができる。また急速熱処理工程を施 すことで、ゥ ーハ 11面内の酸素析出物密度分布の面内均一性が確保され、低酸 素濃度のシリコンゥ ーハであっても酸素析出物成長の確実性が向上する。上記各 工程を経ることにより、欠陥集合層 14aより下方のバルタ層 14に酸素析出物 14cから なるゲッタリング源を有し、酸素析出物 14cの密度が 1 X 108〜1 X 1012個/ cm3であ り、酸素析出物 14cのサイズが 50nm以上である SIMOX基板を得ることができる。
[0016] 請求項 6に係る発明は、請求項 5に係る発明であって、急速熱処理工程における急 速熱処理は、ゥエーハを非酸ィ匕性ガスもしくはアンモニアガスとの混合ガス雰囲気下 、 1050〜1350°Cで 1〜900秒間保持させた後、その後降温速度 10°C/秒以上で 降温することにより行われ、第 2熱処理工程における第 2熱処理は、急速熱処理した ゥヱーハを水素、アルゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲気下、 500〜 1000°Cで 1〜96時間保持することにより行われ、第 3熱処理工程における第 3熱処 理は、第 2熱処理したゥエーハを、水素、アルゴン、窒素、酸素ガスもしくはそれら混 合ガス雰囲気下、第 2熱処理温度より高い 900〜1250°Cで 1〜96時間保持すること により行われる製造方法である。
[0017] 請求項 7に係る発明は、請求項 5に係る発明であって、第 1熱処理したゥ ーハを 5 00〜1200°Cで 1〜96時間第 4熱処理することにより、埋込み酸化層 12より下方の バルタ層 14内部に形成された酸素析出物 14cを再成長させる工程を更に含む製造 方法である。
請求項 7に係る発明では、第 4熱処理を施すことで、酸素析出物 14cのサイズを再 成長させることができる。
[0018] 請求項 8に係る発明は、請求項 5又は 6に係る発明であって、第 2熱処理工程にお ける第 2熱処理は、 500°Cから 1000°Cの一部範囲又は全ての範囲において 0. 1〜 20. 0°CZ分の速度で昇温することにより 1〜96時間の範囲内で行われ、第 3熱処 理工程における第 3熱処理は、 1000°Cから 1250°Cの一部範囲又は全ての範囲に おいて 0. 1〜20°CZ分の速度で昇温することにより 1〜96時間の範囲内で行われ る製造方法である。
[0019] 請求項 9に係る発明は、請求項 1ないし 8いずれか 1項に記載の方法力 製造され た SIMOX基板であって、ゥエーハ表面力 所定の深さの領域に形成された埋込み 酸化層 12と、埋込み酸ィ匕層上のゥエーハ表面に形成された SOI層 13と、埋込み酸 化層 12の直下に形成された欠陥集合層 14aと、埋込み酸ィ匕層 12の下方のバルタ層 14とを備え、欠陥集合層 14aより下方のバルタ層 14に酸素析出物 14cからなるゲッ タリング源を有し、酸素析出物 14cの密度が 1 X 108〜1 X 1012個/ cm3であり、酸素 析出物 14cのサイズが 50nm以上であることを特徴とする SIMOX基板である。
請求項 9に係る発明では、欠陥集合層 14aより下方のバルタ層 14に酸素析出物 14 cからなるゲッタリング源を有し、酸素析出物 14cの密度が 1 X 108〜1 X 1012個/ cm 3であり、酸素析出物 14cのサイズが 50nm以上であるので欠陥集合層 14aよりも強い ゲッタリング源となるため、従来欠陥集合層 14aに捕獲されていた重金属汚染物のほ とんどを欠陥集合層に捕獲させることなくバルタ層 14の酸素析出物 14cにゲッタリン グすることができる。
発明の効果
[0020] 本発明の SIMOX基板の製造方法は、酸素イオン注入工程前又は酸素イオン注入 工程と第 1熱処理工程との間に第 2熱処理工程及び第 3熱処理工程を含むカゝ、或い は急速熱処理工程、第 2熱処理工程及び第 3熱処理工程を含むことで、後に続くィ オン注入や高温熱処理に起因する重金属汚染を第 2及び第 3熱処理で形成した酸 素析出物によりバルタ層内部に効率良く捕獲することができる。また、本発明の SIM OX基板では、欠陥集合層より下方のバルタ層に酸素析出物力もなるゲッタリング源 を有し、酸素析出物の密度が 1 X 108〜1 X 1012個/ cm3であり、酸素析出物のサイ ズが 50nm以上であるので欠陥集合層よりも強 ヽゲッタリング源となるため、欠陥集合 層の重金属捕獲濃度を低減させることができ、かつバルタ層内部に重金属を効率良 く捕獲することがでさる。
図面の簡単な説明
[0021] [図 1]本発明の第 1の実施形態における SIMOX基板の製造方法を示す工程図であ る。
[図 2]本発明の第 1の実施形態における SIMOX基板の別の製造方法を示す工程図 である。
[図 3]本発明の第 2の実施形態における SIMOX基板の製造方法を示す工程図であ る。 [図 4]本発明の第 2の実施形態における SIMOX基板の別の製造方法を示す工程図 である。
符号の説明
[0022] 10 SIMOX基板
11 シリコンゥ ハ
12 埋込み酸化層
13 SOI層
14 バルタ層
14a 欠陥集合層
14b 酸素析出核
14c 酸素析出物
15 空孔
発明を実施するための最良の形態
[0023] 次に本発明を実施するための第 1の最良の形態を図面に基づいて説明する。
本発明はシリコンゥ ハ内部に酸素イオンを注入した後、酸素と不活性ガスとの 混合ガス雰囲気中、 1300 1390°Cで第 1熱処理することによりゥ ハ表面力も所 定の深さの領域に埋込み酸化層が形成され、そのゥ ハ表面に SOI層が形成され た SIMOX基板に関するものである。そして、図 1に示すように、本発明における SIM OX基板の製造方法の特徴ある構成は、酸素イオン注入工程前又は酸素イオン注入 工程と第 1熱処理工程との間にゥヱ 11内部に酸素析出核 14bを形成するため の第 2熱処理工程と、この第 2熱処理工程に続くゥ ハ 11内部に形成された酸素 析出核 14bを酸素析出物 14cに成長させるための第 3熱処理工程とを含むところに ある。本実施の形態では、酸素イオン注入前に第 2熱処理工程と、この第 2熱処理ェ 程に続く第 3熱処理工程をそれぞれこの順に施す方法について詳述する。
[0024] (1 1)第 2熱処理工程
先ず図 1 (a)に示すように、シリコンゥ ハ 11を準備する。準備したシリコンゥ 11は 9 X 1017 1. 8 X 1018atoms/cm3 (旧 ASTM)の酸素濃度を有するものが 準備される。この準備するシリコンゥ ハはェピタキシャルゥ もしくはァ ノレゥェーハでも良い。
そして図 1 (b)に示すように、準備されたこのようなシリコンゥエーハ 11を第 2熱処理 する。この第 2熱処理を行うことにより、ゥヱーハ 11内部に酸素析出核 14bが形成さ れる。第 2熱処理工程における第 2熱処理は、ゥエーハを水素、アルゴン、窒素、酸 素ガスもしくはそれら混合ガス雰囲気下、 500〜900°Cの温度で 1〜96時間保持す ることにより行われることが好ましい。この第 2熱処理のガス雰囲気は、アルゴンもしく は微量酸素(窒素もしくはアルゴンガスベース)ガス雰囲気下で行われることがより好 ましい。第 2熱処理温度を 500〜900°Cの範囲内に規定したのは、下限値未満では 核形成温度が低すぎで長時間の熱処理が必要となり、上限値を越えると酸素析出核 形成が生じないためである。また第 2熱処理時間を 1〜96時間の範囲内に規定した のは、下限値未満では酸素析出核を形成するのに時間が短すぎであり、上限値を越 えると生産性が低下する不具合を生じるためである。この第 2熱処理は 500〜800°C の温度で 4〜35時間行われることが更に好ましい。また第 2熱処理は 500°Cから 900 °Cの一部範囲又は全ての範囲において 0. 1-20. 0°CZ分の速度、好ましくは 0. 1 〜5. 0°CZ分で昇温することにより 1〜96時間、好ましくは 4〜35時間の範囲内で 行っても良い。
(1 2)第 3熱処理工程
次に図 1 (c)に示すように、第 2熱処理したゥエーハ 11を第 3熱処理する。この第 3 熱処理を行うことにより、ゥ ーハ 11内部に形成された酸素析出核 14bを酸素析出 物 14cに成長させることができる。第 3熱処理工程における第 3熱処理は、第 2熱処 理したゥ ーハを、水素、アルゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲気下 、前記第 2熱処理温度より高い 900〜1250°Cの温度で 1〜96時間保持することによ り行われることが好ましい。この第 3熱処理のガス雰囲気は、アルゴンもしくは微量酸 素(窒素もしくはアルゴンガスベース)ガス雰囲気下で行われることがより好ましい。第 3熱処理温度を 900〜1250°Cの範囲内に規定したのは、下限値未満では酸素析出 物の成長が十分に起こりにくぐ上限値を越えるとスリップ発生などによる不具合が生 じるためである。また第 3熱処理時間を 1〜96時間の範囲内に規定したのは、下限値 未満では酸素析出物の成長が十分でなぐ上限値を越えると生産性が低下する不具 合を生じるためである。また、第 3熱処理は 1000〜1200°Cで 8〜24時間で行われ ることが更に好ましい。更に、第 3熱処理は 900°Cから 1250°Cの一部範囲又は全て の範囲において 0. 1〜20°CZ分の速度、好ましくは 1〜5°CZ分で昇温することによ り 1〜96時間、好ましくは 8〜24時間の範囲内で行なっても良い。
[0026] (1 3)酸素イオン注入工程
次に、図 1 (d)に示すように、第 3熱処理したゥエーハ 11の内部に酸素イオンを注入 する。この酸素イオンの注入は従来力も行われて 、る手段と同一の手段により行われ る。そして、最終的に得られた SIMOX基板における SOI層 13の厚さが 10〜200nm 、好ましくは 20〜: LOOnmになるように、ゥヱーハ 11表面から所定の深さの領域 11a に酸素イオンが注入される。 SOI層 13の厚さが 10nm未満であると SOI層 13の厚さ を制御することが困難であり、 SOI層 13の厚さが 200nmを越えると酸素イオン注入 機の加速電圧上困難である。
また、シリコンゥエーハ 11表面の所望の位置に部分的にマスク等を形成して力 シ リコンゥエーハ 11の内部に酸素イオンを注入することで、マスクを形成しな 、箇所の 下方にはゥエーハ内部に酸素イオンが注入され、マスクを形成した箇所の下方には ゥエーハ内部に酸素イオンが注入されないので、後に続く第 1熱処理を施すことによ り、マスクを形成しな ヽ箇所の下方のみに埋込み酸化層 12が部分的に形成される。 なお、イオン注入工程に起因する重金属汚染が発生したとしても、前述した第 2熱 処理工程及び第 3熱処理工程を施すことで形成された酸素析出物 14cにより、汚染 物である重金属をバルタ層 14内部に効率良く捕獲することができる。
[0027] (1 4)第 1熱処理工程
次に図 1 (e)に示すように、酸素イオンが注入されたゥヱーハ 11を酸素と不活性ガ スとの混合ガス雰囲気中、 1300〜1390°Cの温度で第 1熱処理する。不活性ガスと してはアルゴンガスや窒素ガスが挙げられる。従って、この第 1熱処理のガス雰囲気 は、酸素とアルゴンの混合ガス、又は酸素と窒素の混合ガスであることが好ましい。そ して、この第 1熱処理の熱処理時間は 1〜20時間、好ましくは 10〜20時間であること が好ましい。
この第 1熱処理により、ゥエーハ 11表面及び裏面には酸ィ匕膜 l ib, 11cが形成され 、ゥエーハ 11表面力も所定の深さの領域 1 laには埋込み酸ィ匕層 12がゥエーハ全面 にわたつて又は部分的に形成される。更に、表側の酸ィ匕膜 l ibと埋込み酸ィ匕層 12と の間には SOI層 13が形成される。また埋込み酸ィ匕層 12直下には欠陥集合層 14aが 必然的に形成される。また、表層付近の酸素析出物は第 1熱処理により溶解するた め酸素析出物が存在しない DZ層(Denuded Zone)となる。また、埋込み酸化層 12直 下の欠陥集合層 14a及びその下方に位置するバルタ層 14に存在して 、た酸素析出 物 14cは、この第 1熱処理工程序盤の昇温によって更に成長してその酸素析出物サ ィズが大きくなり、中盤の 1300〜1390°Cの温度保持により溶解が始まり、一定の大 きさにまでサイズが小さくなる力 第 1熱処理工程終盤の降温によって再度成長を始 めるため、第 1熱処理工程を施したとしても、事前に形成していた酸素析出物 14cは バルタ 14中に残存するものと推察している。
なお、この第 1熱処理工程に起因する重金属汚染が発生したとしても、前述した第 2熱処理工程及び第 3熱処理工程を施すことで形成された酸素析出物 14cにより、汚 染物である重金属をバルタ層 14内部に効率良く捕獲することができる。
[0028] なお、図示しないが、この第 1熱処理に続いて第 1熱処理したゥエーハを 500〜12 00°Cで 1〜96時間保持する第 4熱処理を施しても良い。この第 4熱処理を施すことで 、埋込み酸化層 12より下方のノ レク層 14内部に形成された酸素析出物 14cを再成 長させることができる。この第 4熱処理のガス雰囲気は、アルゴンもしくは微量酸素( 窒素もしくはアルゴンガスベース)ガス雰囲気下で行われることが好まし 、。第 4熱処 理温度を 500〜1200°Cの範囲内に規定したのは、下限値未満では酸素析出物 14 cの成長が十分に起こりにくぐ上限値を越えるとスリップ発生などの不具合を生じる ためである。また第 4熱処理時間を 1〜96時間の範囲内に規定したのは、下限値未 満では酸素析出物 14cの成長が十分でなぐ上限値を越えると生産性が低下する不 具合を生じるためである。また、第 4熱処理は 1000〜1200°Cで 8〜24時間で行わ れることが好ましい。
[0029] (1 5)酸ィ匕膜 l ib, 11c除去工程
最後の図 1 (f)に示すように、第 1熱処理したゥエーハ 11表面及び裏面に形成され た酸化膜 l ib, 11cをフッ酸等により除去する。これにより、ゥエーハ表面から所定の 深さの領域に形成された埋込み酸化層 12と、埋込み酸化層上のゥエーハ表面に形 成された SOI層 13と、埋込み酸化層 12の直下に形成された欠陥集合層 14aと、埋 込み酸化層 12の下方のバルタ層 14とを備え、欠陥集合層 14aより下方のバルタ層 1 4に酸素析出物 14cからなるゲッタリング源を有し、酸素析出物 14cの密度が 1 X 108 〜1 X 1012個/ cm3であり、酸素析出物 14cのサイズが 50nm以上であることを特徴 とする SIMOX基板が得られる。
[0030] この SIMOX基板では、欠陥集合層 14aより下方のバルタ層 14に密度が 1 X 108〜 1 X 1012個/ cm3、サイズが 50nm以上の酸素析出物 14cを有しているため、デバイ スプロセス中での突発的な重金属汚染をこの酸ィ匕析出物 14cにより効率良く捕獲で きる。また、この酸ィ匕析出物 14cは欠陥集合層 14aよりも強いゲッタリング源となるた め、従来欠陥集合層 14aに捕獲されて 、た重金属汚染物をバルタ層 14の酸素析出 物 14cにゲッタリングすることができる。この結果、例えば、重金属濃度が 1 X ΙΟ11 1 X 1012個 /cm2で基板になるように重金属で強制汚染したとき、欠陥集合層 14aの 捕獲される重金属濃度を 5 X 109個 /cm2以下の水準にまで低減することができる。 言うまでもないが、埋込み酸ィ匕層が部分的に形成された SIMOX基板においても適 用できる。
[0031] なお、本実施の形態では図 1に示すように、酸素イオン注入工程前に第 2熱処理ェ 程及び第 3熱処理工程を施した力 図 2 (a)〜図 2 (f)にそれぞれ示すように、酸素ィ オン注入工程と第 1熱処理工程の間に第 2熱処理工程及び第 3熱処理工程を施して も図 1に示す SIMOX基板と同様の SIMOX基板が得られる。
[0032] 次に本発明を実施するための第 2の最良の形態を図面に基づいて説明する。
本発明はシリコンゥエーハ内部に酸素イオンを注入した後、酸素と不活性ガスとの 混合ガス雰囲気中、 1300〜1390°Cで第 1熱処理することによりゥエーハ表面力も所 定の深さの領域に埋込み酸化層が形成され、そのゥエーハ表面に SOI層が形成され た SIMOX基板に関するものである。そして、図 3に示すように、本発明における SIM OX基板の製造方法の特徴ある構成は、酸素イオン注入工程前又は酸素イオン注入 工程と第 1熱処理工程との間にゥエーハ 11内部に空孔 15を注入するための急速熱 処理工程と、この急速熱処理工程に続くゥ ーハ 11内部に酸素析出核 14bを形成 するための第 2熱処理工程と、この第 2熱処理工程に続くゥ ハ 11内部に形成さ れた酸素析出核 14bを酸素析出物 14cに成長させるための第 3熱処理工程とを含む ところにある。本実施の形態では、酸素イオン注入前に急速熱処理工程と、この急速 熱処理工程に続く第 2熱処理工程と、この第 2熱処理工程に続く第 3熱処理工程をそ れぞれこの順に施す方法につ 、て詳述する。
(2— 1)急速熱処理工程
先ず図 3 (a)に示すように、シリコンゥ ハ 11を準備する。準備したシリコンゥ 11は 8 X 1017 1. 8 X 1018atoms/cm3 (旧 ASTM)の酸素濃度を有するものが 準備される。この準備するシリコンゥ はェピタキシャルゥ もしくはァ ノレゥェーハでも良い。
そして図 3 (b)に示すように、準備されたこのようなシリコンゥ ハ 11を急速熱処理 する。この急速熱処理を行うことにより、ゥヱ 11内部に空孔 15が注入される。こ の急速熱処理により、ゥ ハ面内の酸素析出物密度分布の面内均一性が確保さ れ、低酸素濃度のシリコンゥ ハであっても酸素析出物成長の確実性が向上する 。なお、この急速熱処理を施さない場合、後に続く工程を施したとしてもゥ ハ面内 の酸素析出物密度分布が均一にできないおそれがある。急速熱処理工程における 急速熱処理は、ゥ ハを非酸ィ匕性ガスもしくはアンモニアガスとの混合ガス雰囲気 下、 1050 1350°Cで 1 900秒間保持させた後、その後降温速度 10°CZ秒以上 で降温することにより行われることが好ましい。急速熱処理温度を 1050°C 1350°C の範囲内に規定したのは、下限値未満では酸素析出核の形成を促進させるのに十 分な空孔量をゥ ハ内に注入することができず、上限値を越えると、熱処理時にゥ にスリップ転位が発生し、デバイス作製時に支障をきたすことになり好ましくな いためである。好ましい熱処理温度は 1100 1300°Cである。また保持時間を 1秒 900秒間としたのは、下限値未満ではゥ ハの面内及び深さ方向において、所 望とする熱処理到達温度までに要する時間が異なり、品質のバラツキを生み出す原 因となることが懸念されるためである。また上限値を規定したのは、スリップ低減及び 生産性を考慮したためである。好ましい保持時間は 10 60秒間である。上記急速 熱処理温度で所定時間保持することにより、ゥ ハ内部に空孔が注入されるが、注 入された空孔をゥヱーハ内部に留めておくには、ゥヱーハを降温する際の冷却速度 が重要な役割を果たすこととなる。注入された空孔はゥ ーハ表面に達すると消失し 、最表面近くでは濃度が低下して、それによつて生じる濃度差により内部力 表面へ 向けて空孔の外方拡散が起こると考えられる。このため、冷却速度が遅いと降温に滞 在する時間が長くなり、その分、外方拡散が進行してしまい、いったん、高温の RTA 熱処理によって注入された空孔が減少し、酸素析出核形成に十分なだけの量を確 保することができなくなると考えられる。
[0034] そのため、所定の保持を行った後、降温速度 10°CZ秒以上で降温する。降温速度 を 10°CZ秒以上に規定したのは、下限値未満であると空孔消失の抑制効果が得ら れないためである。上限値を設定しな力つた理由は、 10°CZ秒を越えれば、その効 果はほとんど変わらないためである。しかし、降温速度を高く設定しすぎると冷却中に ゥエーハ面内温度均一性が悪くなりスリップが発生するため、降温速度は生産性を考 慮して 10〜100°C/秒に制御することが望ましい。より好ましい降温速度は 15〜50 °CZ秒である。
[0035] (2— 2)第 2熱処理工程
次に、図 3 (c)に示すように、急速熱処理したゥエーハ 11を第 2熱処理する。この第 2熱処理を行うことにより、ゥヱーハ 11内部に酸素析出核 14bが形成される。第 2熱処 理工程における第 2熱処理は、急速熱処理したゥエーハを水素、アルゴン、窒素、酸 素ガスもしくはそれら混合ガス雰囲気下、 500〜1000°Cで 1〜96時間保持すること により行われることが好ましい。この第 2熱処理のガス雰囲気は、アルゴンもしくは微 量酸素(窒素もしくはアルゴンガスベース)ガス雰囲気下で行われることがより好まし い。第 2熱処理温度を 500〜1000°Cの範囲内に規定したのは、下限値未満では核 形成温度が低すぎで長時間の熱処理が必要となり、上限値を越えると酸素析出核形 成が生じないためである。また第 2熱処理時間を 1〜96時間の範囲内に規定したの は、下限値未満では酸素析出核 14bを形成するのに時間が短すぎであり、上限値を 越えると生産性が低下する不具合を生じるためである。この第 2熱処理は 500〜800 °Cの温度で 4〜35時間行われることが更に好ましい。また第 2熱処理は 500°Cから 1 000°Cの一部範囲又は全ての範囲において 0. 1〜20. 0°CZ分の速度、好ましくは 0. 1〜5. 0°CZ分で昇温することにより 1〜96時間、好ましくは 4〜35時間の範囲内 で行なっても良い。
[0036] (2— 3)第 3熱処理工程
次に図 3 (d)に示すように、第 2熱処理したゥエーハ 11を第 3熱処理する。この第 3 熱処理を行うことにより、ゥ ーハ 11内部に形成された酸素析出核 14bを酸素析出 物 14cに成長させることができる。第 3熱処理工程における第 3熱処理は、第 2熱処 理したゥ ーハを、水素、アルゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲気下 、第 2熱処理温度より高い 900〜1250°Cで 1〜96時間保持することにより行われるこ とが好ましい。この第 3熱処理のガス雰囲気は、アルゴンもしくは微量酸素(窒素もしく はアルゴンガスベース)ガス雰囲気下で行われることが好まし ヽ。第 3熱処理温度を 9 00〜1250°Cの範囲内に規定したのは、下限値未満では酸素析出物 14cの成長が 十分に起こりにくぐ上限値を越えるとスリップ発生などの不具合を生じるためである。 また第 3熱処理時間を 1〜96時間の範囲内に規定したのは、下限値未満では酸素 析出物 14cの成長が十分でなぐ上限値を越えると生産性が低下する不具合を生じ るためである。また、第 3熱処理は 1000〜1200°Cで 8〜24時間で行われることが更 に好ましい。更に、第 3熱処理は 900°Cから 1250°Cの一部範囲又は全ての範囲に おいて 0. 1〜20°CZ分の速度、好ましくは 1〜5°CZ分で昇温することにより 1〜96 時間、好ましくは 8〜24時間の範囲内で行なっても良!ヽ。
[0037] (2— 4)酸素イオン注入工程
次に、図 3 (e)に示すように、第 3熱処理したゥエーハ 11の内部に酸素イオンを注入 する。この酸素イオンの注入は従来力も行われて 、る手段と同一の手段により行われ る。そして、最終的に得られた SIMOX基板における SOI層 13の厚さが 10〜200nm 、好ましくは 20〜: LOOnmになるように、ゥヱーハ 11表面から所定の深さの領域 11a に酸素イオンが注入される。 SOI層 13の厚さが lOnm未満であると SOI層 13の厚さ を制御することが困難であり、 SOI層 13の厚さが 200nmを越えると酸素イオン注入 機の加速電圧上困難である。
また、シリコンゥエーハ 11表面の所望の位置に部分的にマスク等を形成して力 シ リコンゥエーハ 11の内部に酸素イオンを注入することで、マスクを形成しな 、箇所の 下方にはゥエーハ内部に酸素イオンが注入され、マスクを形成した箇所の下方には ゥエーハ内部に酸素イオンが注入されないので、後に続く第 1熱処理を施すことによ り、マスクを形成しな ヽ箇所の下方のみに埋込み酸化層 12が部分的に形成される。 なお、イオン注入工程に起因する重金属汚染が発生したとしても、前述した第 2熱 処理工程及び第 3熱処理工程を施すことで形成された酸素析出物 14cにより、汚染 物である重金属をバルタ 14層内部に効率良く捕獲することができる。
(2— 5)第 1熱処理工程
次に図 3 (f)に示すように、酸素イオンが注入されたゥエーハ 11を不活性ガスもしく は酸素と不活性ガスとの混合ガス雰囲気中、 1300〜 1390°Cの温度で第 1熱処理す る。不活性ガスとしてはアルゴンガスや窒素ガスが挙げられる。従って、この第 1熱処 理のガス雰囲気は、アルゴン単独、酸素とアルゴンの混合ガス、又は酸素と窒素の混 合ガスであることが好ましい。そして、この第 1熱処理の熱処理時間は 1〜20時間、 好ましくは 10〜20時間であることが好ましい。
この第 1熱処理により、ゥエーハ 11表面及び裏面には酸ィ匕膜 l ib, 11cが形成され 、ゥエーハ 11表面力も所定の深さの領域 1 laには埋込み酸ィ匕層 12がゥエーハ全面 にわたつて形成される。また、マスク等によりゥヱーハ 11表面力 所定の深さの領域 に酸素イオンを部分的に注入した場合、部分的に埋込み酸ィ匕層 12が形成される。 更に、表側の酸ィ匕膜 l ibと埋込み酸ィ匕層 12との間には SOI層 13が形成される。また 埋込み酸化層 12直下には欠陥集合層 14aが必然的に形成される。また、表層近傍 の酸素析出物は第 1熱処理により溶解するため DZ層が形成される。また、埋込み酸 化層 12直下の欠陥集合層 14a及びその下方に位置するバルタ層 14に存在して ヽ た酸素析出物 14cは、この第 1熱処理工程序盤の昇温によって更に成長してその酸 素析出物サイズが大きくなり、中盤の 1300〜1390°Cの温度保持により溶解が始まり 、一定の大きさにまでサイズが小さくなるが、第 1熱処理工程終盤の降温によって再 度成長を始めるため、第 1熱処理工程を施したとしても、事前に形成していた酸素析 出物 14cはバルタ 14中に残存する。
なお、この第 1熱処理工程に起因する重金属汚染が発生したとしても、前述した第 2熱処理工程及び第 3熱処理工程を施すことで形成された酸素析出物 14cにより、汚 染物である重金属をバルタ層 14内部に効率良く捕獲することができる。
[0039] なお、図示しないが、この第 1熱処理に続いて第 1熱処理したゥエーハを 500〜12 00°Cで 1〜96時間保持する第 4熱処理を施しても良い。この第 4熱処理を施すことで 、埋込み酸化層 12より下方のノ レク層 14内部に形成された酸素析出物 14cを再成 長させることができる。この第 4熱処理のガス雰囲気は、アルゴンもしくは微量酸素( 窒素もしくはアルゴンガスベース)ガス雰囲気下で行われることが好まし 、。第 4熱処 理温度を 500〜1200°Cの範囲内に規定したのは、下限値未満では酸素析出物 14 cの成長が十分に起こりにくぐ上限値を越えるとスリップ発生などの問題が生じるた めである。また第 4熱処理時間を 1〜96時間の範囲内に規定したのは、下限値未満 では酸素析出物 14cの成長が十分でなぐ上限値を越えると生産性が低下する不具 合を生じるためである。また、第 4熱処理は 1000〜1200°Cで 8〜24時間で行われ ることが好ましい。
[0040] (2— 6)酸化膜 l ib, 11c除去工程
最後の図 3 (g)に示すように、第 3熱処理したゥヱーハ 11表面及び裏面の酸ィ匕膜 1 lb, 11cをフッ酸等により除去する。これにより、ゥ ーハ表面力 所定の深さの領域 に形成された埋込み酸化層 12と、埋込み酸ィ匕層上のゥヱーハ表面に形成された SO I層 13と、埋込み酸化層 12の直下に形成された欠陥集合層 14aと、埋込み酸化層 1 2の下方のバルタ層 14とを備え、欠陥集合層 14aより下方のバルタ層 14に酸素析出 物 14cからなるゲッタリング源を有し、酸素析出物 14cの密度が 1 X 108〜1 X 1012個 Zcm3であり、酸素析出物 14cのサイズが 50nm以上であることを特徴とする SIMOX 基板が得られる。
[0041] この SIMOX基板では、欠陥集合層 14aより下方のバルタ層 14に密度が 1 X 108〜 1 X 1012個/ cm3、サイズが 50nm以上の酸素析出物 14cを有しているため、デバイ スプロセス中での突発的な重金属汚染をこの酸ィ匕析出物 14cにより効率良く捕獲で きる。また、この酸ィ匕析出物 14cは欠陥集合層 14aよりも強いゲッタリング源となるた め、従来欠陥集合層 14aに捕獲されて 、た重金属汚染物をバルタ層 14の酸素析出 物 14cにゲッタリングすることができる。この結果、例えば、重金属濃度が 1 X ΙΟ11 1 X 1012個 /cm2で基板になるように重金属で強制汚染したとき、欠陥集合層 14aの 捕獲される重金属濃度を 5 X 109個 /cm2以下の水準にまで低減することができる。
[0042] なお、本実施の形態では図 3に示すように、酸素イオン注入工程前に急速熱処理 工程、第 2熱処理工程及び第 3熱処理工程を施したが、図 4 (a)〜図 4 (g)にそれぞ れ示すように、酸素イオン注入工程と第 1熱処理工程の間に急速熱処理工程、第 2 熱処理工程及び第 3熱処理工程を施しても図 3に示す SIMOX基板と同様の SIMO X基板が得られる。
実施例
[0043] 次に本発明の実施例を比較例とともに詳しく説明する。
<実施例 1 >
先ず、図 3 (a)に示すように、 CZ法により育成した酸素濃度 1. 2 X 1018atoms/c m3 (旧 ASTM)及び比抵抗 20 Ω · cmのシリコンインゴットから所定の厚さに切り出し た CZシリコンゥエーハを用意した。次いで、図 3 (b)に示すように、このゥエーハをアン モ-ァガス雰囲気下、 500°Cから 1150°Cまで 25°CZ秒で連続昇温した後に、 1150 °Cで 15秒保持し、その後、 25°C/秒の降温速度で 500°Cまで降温させる急速熱処 理を行った。次に、図 3 (c)に示すように、この急速熱処理したゥエーハ 11を、窒素雰 囲気下、 800°Cで 4時間保持する第 2熱処理を行った。次に、図 3 (d)に示すように、 この第 2熱処理したゥヱーハを 3%酸素ガス(窒素ガスベース)雰囲気下、 1000°Cで 16時間保持する第 3熱処理を行った。次に、図 3 (e)に示すように、このゥエーハを 5 50°C以下の温度に加熱し、この状態でシリコンゥエーハの所定の領域 (例えば、基板 表面から約 0. 4 mの領域)に次の条件で酸素イオンを注入した。
[0044] 加速電圧: 180keV
ビーム電流: 50mA
ドーズ量: 4 X 1017個/ cm2
イオン注入後に、ゥエーハ表面に SC— 1及び SC— 2洗浄を行った。続いて図 3 (f) に示すように、ゥエーハ 11を熱処理炉内に入れて酸素分圧 0. 5%の Arガス雰囲気 下、 1350°Cの一定温度で 4時間保持した後、引続き炉内雰囲気の酸素分圧を 70% まで増力!]させ更に 4時間保持する第 1熱処理を行った。この第 1熱処理を終えたゥヱ ーハ表面及び裏面の酸ィ匕膜 l ib, 11cを HF溶液で除去して図 3 (g)に示す SIMOX 基板を得た。この SIMOX基板を実施例 1とした。
[0045] <実施例 2 >
先ず、図 4 (a)に示すように、 CZ法により育成した酸素濃度 1. 2 X 1018atoms/c m3 (旧 ASTM)及び比抵抗 20 Ω · cmのシリコンインゴットから所定の厚さに切り出し た CZシリコンゥエーハを用意した。次いで、図 4 (b)に示すように、このゥエーハを 55 0°C以下の温度に加熱し、この状態でシリコンゥエーハの所定の領域 (例えば、基板 表面から約 0. 4 mの領域)に上記実施例 1と同様の条件で酸素イオンを注入した。 イオン注入後に、ゥエーハ表面に SC—1及び SC— 2洗浄を行った。続いてこのゥ エーハを図 4 (c)に示すように、アンモニアガス雰囲気下、 500°C力ら 1150°Cまで 25 °CZ秒で連続昇温した後に、 1150°Cで 15秒保持し、その後、 25°CZ秒の降温速 度で 500°Cまで降温させる急速熱処理を行った。次に、図 4 (d)に示すように、この急 速熱処理したゥエーハ 11を、アルゴン雰囲気下、 800°Cで 4時間保持する第 2熱処 理を行った。次に、図 4(e)に示すように、この第 2熱処理したゥエーハを 0. 5%酸素 ガス(アルゴンガスベース)雰囲気下、 1000°Cで 16時間保持する第 3熱処理を行つ た。次に、図 4 (f)に示すように、ゥエーハ 11を熱処理炉内に入れて酸素分圧 0. 5% の Arガス雰囲気下、 1350°Cの一定温度で 4時間保持した後、引続き炉内雰囲気の 酸素分圧を 70%まで増加させ更に 4時間保持する第 1熱処理を行った。この第 1熱 処理を終えたゥエーハ表面及び裏面の酸ィ匕膜 1 lb, 1 lcを HF溶液で除去して図 4 ( g)に示す SIMOX基板を得た。この SIMOX基板を実施例 2とした。
[0046] <実施例 3 >
先ず、図 1 (a)に示すように、 CZ法により育成した酸素濃度 1. 3 X 1018atoms/c m3 (旧 ASTM)、炭素濃度 5 X 1016atoms/cm3 (旧 ASTM)及び比抵抗 20 Ω · cm のシリコンインゴットから所定の厚さに切り出した CZシリコンゥエーハを用意した。次い で、図 1 (b)に示すように、このゥエーハ 11を、 3%酸素ガス(アルゴンガスベース)雰 囲気下、 800°Cで 4時間保持する第 2熱処理を行った。次に、図 1 (c)に示すように、 この第 2熱処理したゥエーハを 3%酸素ガス(アルゴンガスベース)雰囲気下、 1000 °Cで 8時間保持する第 3熱処理を行った。次に、図 1 (d)に示すように、このゥェーハ を 550°C以下の温度に加熱し、この状態でシリコンゥエーハの所定の領域 (例えば、 基板表面から約 0. 4 mの領域)に上記実施例 1と同様の条件で酸素イオンを注入 した。
イオン注入後に、ゥエーハ表面に SC— 1及び SC— 2洗浄を行った。続いて図 1 (e) に示すように、ゥエーハ 11を熱処理炉内に入れて酸素分圧 0. 5%の Arガス雰囲気 下、 1350°Cの一定温度で 4時間保持した後、引続き炉内雰囲気の酸素分圧を 70% まで増力!]させ更に 4時間保持する第 1熱処理を行った。この第 1熱処理を終えたゥヱ ーハ表面及び裏面の酸ィ匕膜 l ib, 11cを HF溶液で除去して図 1 (f)に示す SIMOX 基板を得た。この SIMOX基板を実施例 3とした。
[0047] <実施例 4>
先ず、図 1 (a)に示すように、 CZ法により育成した酸素濃度 1. 35 X 1018atoms/c m3 (旧 ASTM)及び比抵抗 20 Ω · cmのシリコンインゴットから所定の厚さに切り出し た CZシリコンゥエーハを用意した。次いで、図 1 (b)に示すように、このゥエーハをァ ルゴン雰囲気下、 500°C力ら 850°Cまで 0. 5°CZ分で連続昇温した後に、 850°Cで 1時間保持する第 2熱処理を行った。次に、図 1 (c)に示すように、この第 2熱処理し たゥエーハ 11を、アルゴン雰囲気下、 850°Cから 3. 0°CZ分の昇温速度で 1100°C まで昇温した後に、 1100°Cで 16時間保持する第 3熱処理を行った。次に、図 1 (d) に示すように、このゥエーハを 550°C以下の温度に加熱し、この状態でシリコンゥエー ハの所定の領域 (例えば、基板表面から約 0. の領域)に上記実施例 1と同様 の条件で酸素イオンを注入した。
イオン注入後に、ゥエーハ表面に SC— 1及び SC— 2洗浄を行った。続いて図 1 (e) に示すように、ゥエーハ 11を熱処理炉内に入れて酸素分圧 0. 5%の Arガス雰囲気 下、 1350°Cの一定温度で 4時間保持した後、引続き炉内雰囲気の酸素分圧を 70% まで増力!]させ更に 4時間保持する第 1熱処理を行った。この第 1熱処理を終えたゥヱ ーハ表面及び裏面の酸ィ匕膜 l ib, 11cを HF溶液で除去して図 1 (f)に示す SIMOX 基板を得た。この SIMOX基板を実施例 4とした。
[0048] <実施例 5〜8 >
実施例 1〜4の第 1熱処理を終えたゥエーハを 0. 5%酸素ガス(アルゴンガスベース )雰囲気下、 1000°Cで 16時間保持する第 4熱処理を行った。この第 4熱処理を終え たゥエーハ表面及び裏面の酸ィ匕膜を HF溶液で除去して SIMOX基板を得た。この S IMOX基板を実施例 5〜8とした。
[0049] <比較例 1 >
先ず、 CZ法により育成した酸素濃度 1. 3 X 1018atoms/cm3 (旧 ASTM)及び比 抵抗 20 Ω · cmのシリコンインゴットから所定の厚さに切り出した CZシリコンゥエーハを 用意した。次いで、このゥエーハを 550°C以下の温度に加熱し、この状態でシリコンゥ エーハの所定の領域 (例えば、基板表面から約 0. の領域)に上記実施例 1と同 様の条件で酸素イオンを注入した。
イオン注入後に、ゥエーハ表面に SC—1及び SC— 2洗浄を行った。続いてゥエー ハを熱処理炉内に入れて酸素分圧 0. 5%の Arガス雰囲気下、 1350°Cの一定温度 で 4時間保持した後、引続き炉内雰囲気の酸素分圧を 70%まで増加させ更に 4時間 保持する第 1熱処理を行った。この第 1熱処理を終えたゥエーハ表面及び裏面の酸 化膜を HF溶液で除去して SIMOX基板を得た。この SIMOX基板を比較例 1とした。
[0050] <比較例 2>
比較例 1の第 1熱処理を終えたゥヱーハを 3%酸素ガス(アルゴンガスベース)雰囲 気下、 1000°Cで 16時間保持する第 4熱処理を行った。この第 4熱処理を終えたゥェ ーハ表面及び裏面の酸ィ匕膜を HF溶液で除去して SIMOX基板を得た。この SIMO X基板を比較例 2とした。
[0051] <比較試験 1 >
実施例 1〜8及び比較例 1, 2の各 SIMOX基板 10の表面酸ィ匕膜 l ib, 11cを除去 した後、各 SIMOX基板の SOI層 13、埋込み酸化層 12及び埋込み酸化層直下の欠 陥集合層 14aをフッ酸硝酸水溶液でそれぞれ溶解回収し、これら回収した溶解液に I CP— MS測定を行い、溶解液中に含まれるニッケル濃度を測定した。また、実施例 1 〜8及び比較例 1, 2のバルタ層 14を、裏面から 1 mを除くバルタ層と裏面から 1 mの領域とにそれぞれ分別して全溶解し、全溶解した各溶解液中のニッケル濃度を 測定した。
実施例 1〜8の SIMOX基板には、裏面から 1 μ mを除くバルタ領域にはニッケルが 検出されたが、その他の領域にはニッケルは検出されな力つた。一方、比較例 1及び 2の SIMOX基板では埋込み酸ィ匕層直下の欠陥集合層 14aにニッケルが検出された 。即ち、デバイス領域に影響を与える可能性のある埋め込み酸ィ匕層直下には、本発 明の製造方法により得られた SIMOX基板にはニッケル汚染が検出されないことが判 明した。
[0052] <比較試験 2>
実施例 5及び比較例 2における SIMOX基板をそれぞれ 2分割に劈開した。この劈 開した基板をライト (Wright)エッチング液で選択エッチングを行った。劈開した実施 例 5及び比較例 2の基板を光学顕微鏡によりそれぞれ観察した。実施例 5では基板 劈開面表面力 深さ 2 mにおいて酸素析出物が基板内部に高密度で成長してい ることが観察された。一方、比較例 2では酸素析出物がほとんど成長していな力つた 。即ち、 1300°C以上を必要とする埋込み酸ィ匕膜形成熱処理工程を施したとしても、 その熱処理前に十分に酸素析出物成長させておけば、この酸素析出物は消失しな いことを証明しており、これら酸素析出物が SIMOX製造工程でゲッタリング効果を有 することが判明した。
産業上の利用可能性
[0053] 本発明の SIMOX基板の製造方法は、イオン注入や高温熱処理に起因する重金 属汚染をバルタ層内部に効率良く捕獲することができる。

Claims

請求の範囲
[1] シリコンゥ ーハ (11)の内部に酸素イオンを注入する酸素イオン注入工程と、
前記ゥエーハ (11)を酸素と不活性ガスとの混合ガス雰囲気中、 1300〜 1390°Cで 第 1熱処理することにより、前記ゥ ーハ (11)表面力 所定の深さの領域に埋込み酸 化層 (12)を形成するとともに前記埋込み酸ィ匕層 (12)上のゥ ーハ表面に SOI層 (13)を 形成する第 1熱処理工程と
を含む SIMOX基板の製造方法にぉ 、て、
前記酸素イオン注入する前のシリコンゥエーハ (11)が 9 X 1017〜1. 8 X 1018atoms /cm3 (旧 ASTM)の酸素濃度を有し、前記埋込み酸ィ匕層 (12)がゥエーハ全面にわ たって又は部分的に形成され、
前記酸素イオン注入工程前又は前記酸素イオン注入工程と前記第 1熱処理工程と の間に前記ゥ ーハ (11)内部に酸素析出核 (14b)を形成するための第 2熱処理工程と 、この第 2熱処理工程に続く前記ゥ ーハ (11)内部に形成された酸素析出核 (14b)を 酸素析出物 (14c)に成長させるための第 3熱処理工程とを含むことを特徴とする SIM OX基板の製造方法。
[2] 第 2熱処理工程における第 2熱処理は、ゥ ーハを水素、アルゴン、窒素、酸素ガ スもしくはそれら混合ガス雰囲気下、 500〜900°Cの温度で 1〜96時間保持すること により行われ、第 3熱処理工程における第 3熱処理は、前記第 2熱処理したゥエーハ を、水素、アルゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲気下、前記第 2熱処 理温度より高い 900〜1250°Cの温度で 1〜96時間保持することにより行われる請求 項 1記載の製造方法。
[3] 第 1熱処理したゥエーハを 500〜1200°Cで 1〜96時間保持する第 4熱処理するこ とにより、埋込み酸ィヒ層 (12)より下方のバルタ層 (14)内部に形成された酸素析出物 (14c)を再成長させる第 4熱処理工程を更に含む請求項 1記載の製造方法。
[4] 第 2熱処理工程における第 2熱処理は、 500°Cから 900°Cの一部範囲又は全ての 範囲において 0. 1〜20. 0°CZ分の速度で昇温することにより 1〜96時間の範囲内 で行われ、第 3熱処理工程における第 3熱処理は、 900°Cから 1250°Cの一部範囲 又は全ての範囲において 0. 1〜20°CZ分の速度で昇温することにより 1〜96時間 の範囲内で行われる請求項 1又は 2記載の製造方法。
[5] シリコンゥヱーハ (11)の内部に酸素イオンを注入する酸素イオン注入工程と、
前記ゥエーハ (11)を酸素と不活性ガスとの混合ガス雰囲気中、 1300〜 1390°Cで 第 1熱処理することにより、前記ゥ ーハ (11)表面力 所定の深さの領域に埋込み酸 化層 (12)を形成するとともに前記埋込み酸ィ匕層 (12)上のゥ ーハ表面に SOI層 (13)を 形成する第 1熱処理工程と
を含む SIMOX基板の製造方法にぉ 、て、
前記酸素イオン注入する前のシリコンゥエーハ (11)が 9 X 1017〜1. 8 X 1018atoms /cm3 (旧 ASTM)の酸素濃度を有し、前記埋込み酸ィ匕層 (12)がゥエーハ全面にわ たって又は部分的に形成され、
前記酸素イオン注入工程前又は前記酸素イオン注入工程と前記第 1熱処理工程と の間に前記ゥ ーハ (11)内部に空孔を注入するための急速熱処理工程と、この急速 熱処理工程に続く前記ゥ ーハ (11)内部に酸素析出核 (14b)を形成するための第 2熱 処理工程と、この第 2熱処理工程に続く前記ゥ ーハ (11)内部に形成された酸素析 出核 (14b)を酸素析出物 (14c)に成長させるための第 3熱処理工程と
を含むことを特徴とする SIMOX基板の製造方法。
[6] 急速熱処理工程における急速熱処理は、ゥヱーハを非酸ィ匕性ガスもしくはアンモニ ァガスとの混合ガス雰囲気下、 1050〜1350°Cで 1〜900秒間保持させた後、その 後降温速度 10°CZ秒以上で降温することにより行われ、第 2熱処理工程における第 2熱処理は、前記急速熱処理したゥヱーハを水素、アルゴン、窒素、酸素ガスもしくは それら混合ガス雰囲気下、 500〜1000°Cで 1〜96時間保持することにより行われ、 第 3熱処理工程における第 3熱処理は、前記第 2熱処理したゥ ーハを、水素、アル ゴン、窒素、酸素ガスもしくはそれら混合ガス雰囲気下、前記第 2熱処理温度より高 い 900〜1250°Cで 1〜96時間保持することにより行われる請求項 5記載の製造方 法。
[7] 第 1熱処理したゥエーハを 500〜1200°Cで 1〜96時間第 4熱処理することにより、 埋込み酸ィ匕層 (12)より下方のバルタ層 (14)内部に形成された酸素析出物 (14c)を再成 長させる工程を更に含む請求項 5記載の製造方法。
[8] 第 2熱処理工程における第 2熱処理は、 500°Cから 1000°Cの一部範囲又は全て の範囲において 0. 1-20. 0°CZ分の速度で昇温することにより 1〜96時間の範囲 内で行われ、第 3熱処理工程における第 3熱処理は、 1000°Cから 1250°Cの一部範 囲又は全ての範囲において 0. 1〜20°CZ分の速度で昇温することにより 1〜96時 間の範囲内で行われる請求項 5又は 6記載の製造方法。
[9] 請求項 1な!、し 8 、ずれか 1項に記載の方法から製造された SIMOX基板であって 、ゥエーハ表面から所定の深さの領域に形成された埋込み酸化層 (12)と、前記埋込 み酸ィ匕層上のゥ ーハ表面に形成された SOI層 (13)と、前記埋込み酸化層 (12)の直 下に形成された欠陥集合層 (14a)と、前記埋込み酸ィ匕層 (12)の下方のバルタ層 (14)と を備え、
前記欠陥集合層 (14a)より下方の前記バルタ層 (14)に酸素析出物 (14c)力 なるゲッ タリング源を有し、前記酸素析出物 (14c)の密度が 1 X 108〜1 X 1012個/ cm3であり 、前記酸素析出物 (14c)のサイズが 50nm以上であることを特徴とする SIMOX基板。
PCT/JP2005/009166 2004-05-25 2005-05-19 Simox基板の製造方法及び該方法により得られるsimox基板 WO2005117122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05741161.3A EP1768185A4 (en) 2004-05-25 2005-05-19 PROCESS FOR THE MANUFACTURE OF A SIMOX SUBSTRATE AND SIMOX SUBSTRATE MANUFACTURED BY THE PROCESS
US11/597,798 US20080044669A1 (en) 2004-05-25 2005-05-19 Method for Manufacturing Simox Substrate and Simox Substrate Obtained by the Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-154624 2004-05-25
JP2004154624A JP2005340348A (ja) 2004-05-25 2004-05-25 Simox基板の製造方法及び該方法により得られるsimox基板

Publications (1)

Publication Number Publication Date
WO2005117122A1 true WO2005117122A1 (ja) 2005-12-08

Family

ID=35451155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009166 WO2005117122A1 (ja) 2004-05-25 2005-05-19 Simox基板の製造方法及び該方法により得られるsimox基板

Country Status (7)

Country Link
US (1) US20080044669A1 (ja)
EP (1) EP1768185A4 (ja)
JP (1) JP2005340348A (ja)
KR (2) KR20090130872A (ja)
CN (2) CN101847595B (ja)
TW (1) TWI267144B (ja)
WO (1) WO2005117122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187844A1 (ja) * 2018-03-28 2019-10-03 住友精密工業株式会社 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706199B2 (ja) * 2004-07-20 2011-06-22 株式会社Sumco Simox基板の製造方法
JP5158833B2 (ja) * 2006-03-31 2013-03-06 古河電気工業株式会社 窒化物系化合物半導体装置および窒化物系化合物半導体装置の製造方法。
KR100741856B1 (ko) * 2006-04-24 2007-07-24 삼성전자주식회사 소이 기판의 형성 방법 및 이에 의해 형성된 소이 기판
JP4952069B2 (ja) * 2006-06-02 2012-06-13 大日本印刷株式会社 加速度センサの製造方法
JP2008016534A (ja) * 2006-07-04 2008-01-24 Sumco Corp 貼り合わせウェーハの製造方法
EP2105957A3 (en) * 2008-03-26 2011-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate and method for manufacturing semiconductor device
DE102008027521B4 (de) 2008-06-10 2017-07-27 Infineon Technologies Austria Ag Verfahren zum Herstellen einer Halbleiterschicht
JP2010135538A (ja) * 2008-12-04 2010-06-17 Sumco Corp 貼り合わせウェーハの製造方法
KR100987794B1 (ko) 2008-12-22 2010-10-13 한국전자통신연구원 반도체 장치의 제조 방법
KR101160267B1 (ko) * 2011-01-27 2012-06-27 주식회사 엘지실트론 웨이퍼 상에 원추형 구조물 형성 방법
CN102168314B (zh) * 2011-03-23 2012-05-30 浙江大学 直拉硅片的内吸杂工艺
CN104155302B (zh) * 2014-07-03 2017-02-15 胜科纳米(苏州)有限公司 检测硅晶体缺陷的方法
JP6704781B2 (ja) * 2016-04-27 2020-06-03 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144761A (ja) * 1991-03-27 1993-06-11 Mitsubishi Materials Corp Soi基板の製造方法
JPH07193072A (ja) * 1993-12-27 1995-07-28 Nec Corp 半導体基板の製造方法
JP2002353225A (ja) * 2001-05-28 2002-12-06 Shin Etsu Handotai Co Ltd 窒素ドープアニールウエーハの製造方法及び窒素ドープアニールウエーハ
WO2003001583A2 (en) * 2001-06-22 2003-01-03 Memc Electronic Materials, Inc. Process for producing silicon on insulator structure having intrinsic gettering by ion implantation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204855B2 (ja) * 1994-09-30 2001-09-04 新日本製鐵株式会社 半導体基板の製造方法
JP3211233B2 (ja) * 1998-08-31 2001-09-25 日本電気株式会社 Soi基板及びその製造方法
WO2000055397A1 (fr) * 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Procede de production d'une tranche de silicium et tranche de silicium ainsi obtenue
JP2002134724A (ja) * 2000-10-24 2002-05-10 Mitsubishi Materials Silicon Corp Soi基板の製造方法
US6743495B2 (en) * 2001-03-30 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing silicon wafers with improved surface characteristics
US6602757B2 (en) * 2001-05-21 2003-08-05 International Business Machines Corporation Self-adjusting thickness uniformity in SOI by high-temperature oxidation of SIMOX and bonded SOI
US7112509B2 (en) * 2003-05-09 2006-09-26 Ibis Technology Corporation Method of producing a high resistivity SIMOX silicon substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144761A (ja) * 1991-03-27 1993-06-11 Mitsubishi Materials Corp Soi基板の製造方法
JPH07193072A (ja) * 1993-12-27 1995-07-28 Nec Corp 半導体基板の製造方法
JP2002353225A (ja) * 2001-05-28 2002-12-06 Shin Etsu Handotai Co Ltd 窒素ドープアニールウエーハの製造方法及び窒素ドープアニールウエーハ
WO2003001583A2 (en) * 2001-06-22 2003-01-03 Memc Electronic Materials, Inc. Process for producing silicon on insulator structure having intrinsic gettering by ion implantation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187844A1 (ja) * 2018-03-28 2019-10-03 住友精密工業株式会社 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置
JPWO2019187844A1 (ja) * 2018-03-28 2021-04-01 住友精密工業株式会社 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置
JP7263319B2 (ja) 2018-03-28 2023-04-24 住友精密工業株式会社 Memsデバイスの製造方法、memsデバイス及びそれを用いたシャッタ装置
US11932535B2 (en) 2018-03-28 2024-03-19 Sumitomo Precision Products Co., Ltd. MEMS device manufacturing method, MEMS device, and shutter apparatus using the same

Also Published As

Publication number Publication date
CN101010805A (zh) 2007-08-01
EP1768185A4 (en) 2013-06-19
JP2005340348A (ja) 2005-12-08
KR20090130872A (ko) 2009-12-24
CN101847595B (zh) 2013-02-13
CN101847595A (zh) 2010-09-29
TW200607021A (en) 2006-02-16
EP1768185A1 (en) 2007-03-28
TWI267144B (en) 2006-11-21
US20080044669A1 (en) 2008-02-21
KR20090006878A (ko) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2005117122A1 (ja) Simox基板の製造方法及び該方法により得られるsimox基板
US6897084B2 (en) Control of oxygen precipitate formation in high resistivity CZ silicon
US7763541B2 (en) Process for regenerating layer transferred wafer
US6593173B1 (en) Low defect density, thin-layer, SOI substrates
TWI724266B (zh) 處理矽晶圓以具有內部去疵及閘極氧化物完整性良率之方法
JP4605876B2 (ja) シリコンウエーハおよびシリコンエピタキシャルウエーハの製造方法
US20120235283A1 (en) Silicon on insulator structures having high resistivity regions in the handle wafer
US20090017291A1 (en) Silicon epitaxial wafer and production method for same
US20030192469A1 (en) Process for controlling denuded zone depth in an ideal oxygen precipitating silicon wafer
US20070105279A1 (en) Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
KR20040037031A (ko) 이온 주입에 의한 고유 게터링을 갖는 실리콘 온인슐레이터 구조 제조 방법
KR100965510B1 (ko) Simox 기판의 제조 방법 및 그 방법에 의해 얻어지는 simox 기판
TWI549192B (zh) Method of manufacturing wafers
US20100052093A1 (en) Semiconductor substrate and method of manufacturing the same
EP1675166A2 (en) Internally gettered heteroepitaxial semiconductor wafers and methods of manufacturing such wafers
JP2020004989A (ja) シリコン接合ウェーハ
JP2005286282A (ja) Simox基板の製造方法及び該方法により得られるsimox基板
KR20070022285A (ko) Simox 기판의 제조방법 및 그 방법에 의해 얻어지는simox 기판
JP2006080348A (ja) Soi基板の製造方法及びsoi基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067024681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11597798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005741161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580025113.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067024681

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741161

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11597798

Country of ref document: US