JP7027972B2 - バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料 - Google Patents

バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料 Download PDF

Info

Publication number
JP7027972B2
JP7027972B2 JP2018042599A JP2018042599A JP7027972B2 JP 7027972 B2 JP7027972 B2 JP 7027972B2 JP 2018042599 A JP2018042599 A JP 2018042599A JP 2018042599 A JP2018042599 A JP 2018042599A JP 7027972 B2 JP7027972 B2 JP 7027972B2
Authority
JP
Japan
Prior art keywords
barrier
resin
film
aluminum oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018042599A
Other languages
English (en)
Other versions
JP2019155646A (ja
Inventor
好弘 岸本
梓 鈴木
可成 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2018042599A priority Critical patent/JP7027972B2/ja
Publication of JP2019155646A publication Critical patent/JP2019155646A/ja
Application granted granted Critical
Publication of JP7027972B2 publication Critical patent/JP7027972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、電子ペーパーなどの電子デバイス、食品、医薬品、ペットフードなどの包装材料として好適に使用できる、酸素および水蒸気に対するバリア性に優れたバリア樹脂フィルムとバリア積層体、及び該バリア積層体を用いた包装材料に関する。
電子ペーパーなどの電子デバイスや、食品、医薬品等の分野では、内容物の変質を防止し、かつ機能や性質を維持できるように、温度、湿度などの影響を受けない、より高いバリア性を、安定して発揮し得るバリア性積層フィルムが求められ、樹脂基材上に、酸化ケイ素や酸化アルミニウム等の蒸着膜の薄膜からなるバリア層とバリア性の塗膜層を積層した多層構造のバリア性積層フィルムも開発されている。
例えば、特許文献1には、プラスチック材料からなる基材と、該基材上に設けられた第1の蒸着薄膜層と、該第1の蒸着薄膜層上に設けられ、少なくとも水溶性高分子を含むコーティング剤を塗布して形成されたガスバリア性中間層と、該中間層上に設けられた第2の蒸着薄膜層とからなる積層体、さらには、前記基材と第1の蒸着薄膜層との間にポリオールとイソシアネート化合物とシランカップリング剤とからなるプライマー層を設けた、ガスバリア性積層体が開示されている。
特許文献2には、合成樹脂製の基材フィルムと、基材フィルムの少なくとも一方の面に積層される一の平坦化層と、この一の平坦化層の外面に積層される無機酸化物又は無機窒化物から形成されているガスバリア層と、このガスバリア層の外面に積層される他の金属アルコキシド及び/又はその加水分解物を含む組成物を用いたゾル・ゲル法により形成されている平坦化層とを備える高バリア性にシートが開示されている。
特許文献3には、樹脂フィルムの表面に金属酸化物層と、樹脂層と、金属層とをこの順に、又は逆順に積層して、前記金属酸化物層が、SiOx(1.0≦x≦2.0)で示される酸化珪素であるガスバリア性の積層フィルムが開示されている。
しかしながら、上記のような多層構造のバリア性積層フィルムは、製造法として工程が増えるための、原料費、装置稼働費などの単なるコストアップだけでなく、各層ごとでの品質のチェック、それに基づく品質管理修正、履歴管理など複雑な作業が要求される。
そのため、上記のような製造上の問題を解決し、生産性の低下を招かない、バリア性に優れたバリアフィルムが望まれている。
WO2002/083408号公報 特開2005-324469号公報 特開2008-6762号公報
本発明は、前述のような問題点を解決するためになされたものであり、従来技術のような多層構造を採らずに、バリア性に優れたバリア樹脂フィルムを提供することである。
上記課題を達成する為に、本発明のバリア樹脂フィルムは、樹脂基材と、該樹脂基材上に、Al3で表される元素結合構造部が特定の割合で局在的に分布した酸化アルミニウム蒸着膜とを有している。
前記Al3で表される元素結合構造部の割合は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いたエッチングを行うことで検出されるものであり、最大強度比率Al3/Al23×100が5以上、50以下とすることが好ましい。
すなわち、本発明は、以下の点を特徴とする。
1.樹脂基材の表面に酸化アルミニウム蒸着膜が形成されているバリア樹脂フィルムであって、
前記酸化アルミニウム蒸着膜中には、Al3で表される元素結合構造部が分布し、
飛行時間型二次イオン質量分析法(TOF-SIMS)における最大Al3濃度元素結合構造部分の強度比率Al3/Al23×100が、5以上、50以下である、バリア樹脂フィルム。
2.前記最大Al3濃度元素結合構造部分が、前記酸化アルミニウム蒸着膜の樹脂基材とは反対側の表面から、前記酸化アルミニウム蒸着膜の膜厚の4%以上、45%以下の深さ位置に存在する、上記1に記載のバリア樹脂フィルム。
3.前記樹脂基材の、前記酸化アルミニウム蒸着膜が形成されている面が、プラズマ処理面である、上記1または2に記載のバリア樹脂フィルム。
4.前記酸化アルミニウム蒸着膜は、前記プラズマ処理面に、インラインで形成されたものである、上記3に記載のバリア樹脂フィルム。
5.前記樹脂基材が、ポリエチレンテレフタレート系樹脂を含む、上記1~4の何れかに記載のバリア樹脂フィルム。
6.前記樹脂基材が、ポリブチレンテレフタレート系樹脂を含む、上記1~5の何れかに記載のバリア樹脂フィルム。
7.前記樹脂基材が、植物由来ポリエステル系樹脂を含む、上記1~6の何れかに記載のバリア樹脂フィルム。
8.前記樹脂基材が、リサイクルポリエステル系樹脂を含む、上記1~7の何れかに記載のバリア樹脂フィルム。
9.前記バリア樹脂フィルムは、更に、バリア性被覆層を前記酸化アルミニウム蒸着膜の樹脂基材とは反対側の表面上に、隣接して含み、前記バリア性被覆層は、金属アルコキシドと、ケン化度が90%以上、100%以下の水酸基含有水溶性樹脂とを含む樹脂組成物から形成されたものである、上記1~8の何れかに記載のバリア樹脂フィルム。
10.前記水酸基含有水溶性樹脂と前記金属アルコキシドの、質量比水酸基含有水溶性樹脂/金属アルコキシドが、5/95以上、20/80以下である、上記9に記載のバリア樹脂フィルム。
11.前記バリア性被覆層の厚みが、150nm以上、800nm以下である上記9または10に記載のバリア樹脂フィルム。
12.上記1~11の何れかに記載のバリア樹脂フィルムと、シーラント層とを含む、バリア積層体。
13.上記12に記載のバリア積層体から作製された、バリア包装材料。
14.上記13に記載のバリア包装材料から作製された、バリア包装体。
本発明によれば、多層構造を採らずにバリア性に優れたバリア樹脂フィルムが得られるので、製造上有利なガスバリアフィルムを提供できる。
本発明のバリア樹脂フィルムの一例を示す断面図である。 本発明のバリア樹脂フィルムの別態様の一例を示す断面図である。 本発明のバリア樹脂フィルムのさらにまた別態様の一例を示す断面図である。 本発明のバリア積層体の一例を示す断面図である。 本発明における酸化アルミニウム蒸着膜を成膜する装置の一例を示す平面図である。 本発明における、バリア樹脂フィルムのTOF-SIMSによる測定結果の1例を示すグラフ解析図である。
以下、本発明について図面を用いながら説明する。但し、本発明はこれら具体的に例示された形態や各種具体的に記載された構造に限定されるものではない。
なお、各図においては、解り易くする為に、部材の大きさや比率を変更または誇張して記載することがある。また、見易さの為に説明上不要な部分や繰り返しとなる符号は省略することがある。
図1は、本発明のバリア樹脂フィルムの一例を示す断面図である。
<バリア樹脂フィルム>
本発明のバリア樹脂フィルムは、図1に示したように、樹脂基材からなる層と、該樹脂基材からなる層上に形成された酸化アルミニウム蒸着膜とを含む。そして、別態様として、図2に示したように、該酸化アルミニウム蒸着膜上に、隣接したバリア性被覆層を含むことができる。
更には、図示はされていないが、樹脂基材の非酸化アルミニウム蒸着面や、バリア性被覆層の非酸化アルミニウム接着面に、必要に応じて、種々の機能層を積層することもできる。
本発明における酸化アルミニウム蒸着膜は、純粋な酸化アルミニウム蒸着膜では無く、該蒸着膜中にAl3で表される元素結合構造部が分布している。詳細には、飛行時間型二次イオン質量分析法(TOF-SIMS)によって金属アルミニウムの存在を示すAl3濃度元素結合構造部分が検出され、その濃度は検出の強度として得られる。本発明におけるバリア樹脂フィルムは、該強度の最大値を示す最大Al3濃度元素結合構造部分の最大強度比率Al3/Al23×100が、5以上、50以下であることを特徴とする。
該強度比率Al3/Al23が上記範囲よりも小さい場合は、該蒸着膜中にAl3で表される元素結合構造部が少なすぎて、ガスバリア性が低下し易い。上記範囲よりも大きい場合には、蒸着膜の透明性が低下し易く、包装材料としての印刷性が損なわれ、また、包装材料として包装した内容物の視認性が悪くなるという問題が生じやすい。
更に、バリア樹脂フィルムがバリア性被覆層を含む場合には、酸素透過度が、0.02cc/m2/day/atm以上、0.2cc/m2/day/atm以下であり、水蒸気透過度が、0.02g/m2/day以上、0.2g/m2/day以下のバリア性を発揮することができる。
[樹脂基材]
樹脂基材は、特に制限されるものではなく、公知の樹脂フィルム又はシートを使用することができる。例えば、ポリエチレンテレフタレート系樹脂、バイオマス由来のポリエステル、ポリブチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂などを含むポリエステル系樹脂;ポリアミド樹脂6、ポリアミド樹脂66、ポリアミド樹脂610、ポリアミド樹脂612、ポリアミド樹脂11、ポリアミド樹脂12などを含むポリアミド系樹脂;ポリエチレン、ポリプロピレンなどのα-オレフィンの重合体や共重合体などを
含むポリオレフィン系樹脂等、を含む樹脂フィルムを用いることができる。
これらの樹脂の中でも、ポリエステル系樹脂が好適に用いられ、更には、ポリエステル系樹脂の中でも、ポリエチレンテレフタレート系樹脂やポリブチレンテレフタレート系樹脂、または植物由来ポリエステル系樹脂がより好ましく用いられ、また更には、これらの樹脂のリサイクル樹脂を用いることも出来る。リサイクル樹脂としては、これらの中でもポリエステル系樹脂、特にポリエチレンテレフタレート系樹脂のリサイクル樹脂が好ましい。
樹脂基材は、1層であっても、2層以上の多層構成であってもよく、多層構成の場合には、同一組成の層であっても、異なる組成の層であってもよい。
また、多層構成の場合に、各層間は、接着剤層等が介在して接着されていてもよい。
(ポリブチレンテレフタレート(PBT)フィルム)
ポリブチレンテレフタレートフィルムは、熱変形温度が高く、機械的強度、電気的特性にすぐれ、成型加工性も良いことなどから、食品などの内容物を収容する包装袋に用いると、レトルト処理を施す際に包装袋が変形したり、その強度が低下したりすることを抑制することができる。
ポリブチレンテレフタレートフィルムは、高い強度を有する。このため、ポリブチレンテレフタレートフィルムを用いると、包装袋を構成する包装用材料がナイロンフィルムを含む場合と同様に、包装袋に耐突き刺し性を持たせることができる。
また、ポリブチレンテレフタレートフィルムは、高温高湿度環境下で加水分解するためレトルト処理後の密着強度、バリア性の低下がみられるが、ナイロンに比べて水分を吸収しにくいという特性を有する。このため、ポリブチレンテレフタレートフィルムを包装用材料の外面に配置した場合であっても、包装袋の包装用材料間のラミネート強度が低下してしまうことを抑制することができる。このような性質を持つので、ポリブチレンテレフタレートフィルムをレトルト包装袋に用いると、従来のポリエチレンテレフタレートフィルムとナイロンフィルムの貼り合せ包装材に置き換えることができることから、好ましく用いられる。
ポリブチレンテレフタレートフィルムは、主成分としてポリブチレンテレフタレート(以下、PBTとも記す)を含むフィルムであり、好ましくは51質量%以上、特に好ましくは60質量%以上のPBTを含む樹脂フィルムである。そして、ポリブチレンテレフタレートフィルムはその構造から2つの態様に分けられる。
第1の態様に係るポリブチレンテレフタレートフィルムフィルムにおけるPBTの含有率は、60質量%以上が好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。
主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり、最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上である。
ポリブチレンテレフタレートフィルムは、PBT以外のポリエステル樹脂を含んでいてもよい。PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたPBT樹脂を挙げることができる。
これらPBT以外のポリエステル樹脂の含有率は、40質量%以下が好ましい。PBT以外のポリエステル樹脂の含有率が40質量%を超えると、PBTとしての力学特性が損なわれ、インパクト強度や耐ピンホール性、絞り成形性が不十分となることが考えられる。
第1の態様に係るポリブチレンテレフタレートフィルムの層構成は、キャスト法によって、樹脂を多層化してキャストすることによって作製されたもので、複数の単位層を含む多層構造部からなる。複数の単位層はそれぞれ、主成分としてPBTを含む。例えば、複数の単位層は、それぞれ、60質量%以上のPBTを含む。なお、複数の単位層においては、n番目の単位層の上にn+1番目の単位層が直接積層されている。すなわち、複数の単位層の間には、接着剤層や接着層が介在されていない。このようなポリブチレンテレフタレートフィルムは、少なくとも10層以上、好ましくは60層以上、より好ましくは250層以上、更に好ましくは1000層以上の単位層を含む多層構造部からなる。
第2の態様に係るポリブチレンテレフタレートフィルムは、PBTを主たる繰返し単位とするポリエステルを含む単一の層によって構成されている。PBTを主たる繰返し単位とするポリエステルは、例えば、グリコール成分としての1,4-ブタンジオール、又はそのエステル形成性誘導体と、ジカルボン酸成分としてのテレフタル酸、又はそのエステル形成性誘導体を主成分とし、それらを縮合して得られるホモ、またはコポリマータイプのポリエステルを含む。第2の構成に係るPBTの含有率は、70質量%以上が好ましく、さらには80質量%以上が好ましく、最も好ましくは90質量%以上である。
第2の態様に係るポリブチレンテレフタレートフィルムは、PBT以外のポリエステル樹脂を30質量%以下の範囲で含んでいてもよい。ポリエステル樹脂を含むことにより、PBT結晶化を抑制することができ、ポリブチレンテレフタレートフィルムの延伸加工性を向上させることができる。PBTと配合するポリエステル樹脂としては、エチレンテレフタレートを主たる繰返し単位とするポリエステルを用いることができる。例えば、グリコール成分としてのエチレングリコール、ジカルボン酸成分としてのテレフタル酸を主成分としたホモタイプを好ましく用いることができる。
第2の構成に係るポリブチレンテレフタレートフィルムは、チューブラー法又はテンター法により製造することができる。チューブラー法又はテンター法により、未延伸原反を縦方向及び横方向を同時に延伸してもよく、若しくは、縦方向及び横方向を逐次延伸してもよい。このうち、チューブラー法は、周方向の物性バランスが良好な延伸フィルムを得ることができ、特に好ましく採用される。
(バイオマス由来のポリエステルフィルム)
バイオマス由来のポリエステルフィルムは、ジオール成分とジカルボン酸成分とからなるポリエステルを主成分として含んでなる樹脂組成物からなり、前記樹脂組成物が、ジオール成分がバイオマス由来のエチレングリコールであり、ジカルボン酸成分が化石燃料由来のジカルボン酸であるポリエステルを、樹脂組成物全体中に、50~95質量%、好ましくは50~90質量%含んでなるものである。
バイオマス由来のエチレングリコールは、従来の化石燃料由来のエチレングリコールと
化学構造が同じであるため、バイオマス由来のエチレングリコールを用いて合成されたポリエステルのフィルムは、従来の化石燃料由来のポリエステルフィルムと機械的特性等の物性面で遜色がない。したがって、本発明の積層フィルムおよびそれを用いたバリア性積層フィルムは、カーボンニュートラルな材料からなる層を有するため、従来の化石燃料から得られる原料から製造された積層フィルムおよびそれを用いたバリア性積層フィルムに比べて、化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。
バイオマス由来のエチレングリコールは、サトウキビ、トウモロコシ等のバイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。また、市販のバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から市販されているバイオマスエチレングリコールを好適に使用することができる。
ポリエステルのジカルボン酸成分は、化石燃料由来のジカルボン酸を使用する。ジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、およびそれらの誘導体を使用することができる。芳香族ジカルボン酸としては、テレフタル酸及びイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステル及びブチルエステル等が挙げられる。これらの中でも、テレフタル酸が好ましく、芳香族ジカルボン酸の誘導体としては、ジメチルテレフタレートが好ましい。
バイオマス由来のポリエステルフィルムを形成する樹脂中には、5~45質量%の割合で、化石燃料由来のポリエステル、化石燃料由来のポリエステル製品のリサイクルポリエステル、バイオマス由来のポリエステル製品のリサイクルポリエステルが含まれていてもよい。
上記のようにして得られるポリエステルを含む樹脂組成物は、放射性炭素(14C)測定によるバイオマス由来の炭素の含有量が、ポリエステル中の全炭素中に10~19%含まれることが好ましい。大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。
本発明においては、ポリエステル中の14Cの含有量をP14Cとした場合の、バイオマス由来の炭素の含有量Pbioを、以下のように定義する。
Pbio(%)=P14C/105.5×100
ポリエチレンテレフタレートを例にとると、ポリエチレンテレフタレートは、2炭素原子を含むエチレングリコールと8炭素原子を含むテレフタル酸とがモル比1:1で重合したものであるため、エチレングリコールとしてバイオマス由来のもののみを使用した場合、ポリエステル中のバイオマス由来の炭素の含有量Pbioは20%となる。本発明においては、樹脂組成物中の全炭素中に、放射性炭素(14C)測定によるバイオマス由来の炭素の含有量が、10~19%であることが好ましい。樹脂組成物中のバイオマス由来の炭素含有量が10%未満であると、カーボンオフセット材料としての効果が乏しくなる。一方、上記したように、樹脂組成物中のバイオマス由来の炭素含有量は20%に近いほど好ま
しいが、フィルムの製造工程上の問題や物性面から、樹脂中には上記したようなリサイクルポリエステルや添加剤を含む方が好ましいため、実際の上限は18%となる。
(リサイクルPET)
本発明の樹脂基材として、メカニカルリサイクルによりリサイクルされたポリエチレンテレフタレート(以下、ポリエチレンテレフタレートをPETとも記す)を含むものを使用できる。
具体的には、樹脂基材は、PETボトルをメカニカルリサイクルによりリサイクルしたPETを含み、このPETは、ジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸およびイソフタル酸を含む。
ここで、メカニカルリサイクルとは、一般に、回収されたPETボトル等のポリエチレンテレフタレート樹脂製品を粉砕、アルカリ洗浄してPET樹脂製品の表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してPET樹脂の内部に留まっている汚染物質を拡散させ除染を行い、PET樹脂からなる樹脂製品の汚れを取り除き、再びPET樹脂に戻す方法である。
以下、本明細書においては、PETボトルをリサイクルしたポリエチレンテレフタレートを「リサイクルポリエチレンテレフタレート(以下、リサイクルPETとも記す)」といい、リサイクルされていないポリエチレンテレフタレートを「ヴァージンポリエチレンテレフタレート(以下、ヴァージンPETとも記す)」というものとする。
樹脂基材に含まれるPETのうち、イソフタル酸成分の含有量は、PETを構成する全ジカルボン酸成分中に、0.5モル%以上5モル%以下であることが好ましく、1.0モル%以上2.5モル%以下であることがより好ましい。
イソフタル酸成分の含有量が0.5モル%未満であると柔軟性が向上しない場合があり、一方、5モル%を超えるとPETの融点が下がり耐熱性が不十分となる場合がある。
なお、PETは、通常の化石燃料由来のPETの他、バイオマスPETであっても良い。「バイオマスPET」とは、ジオール成分としてバイオマス由来のエチレングリコールを含み、ジカルボン酸成分として化石燃料由来のジカルボン酸を含むものである。このバイオマスPETは、バイオマス由来のエチレングリコールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするPETのみで形成されていてもよいし、バイオマス由来のエチレングリコールおよび化石燃料由来のジオールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするPETで形成されていてもよい。
PETボトルに用いられるPETは、上記したジオール成分とジカルボン酸成分とを重縮合させる従来公知の方法により得ることができる。
具体的には、上記のジオール成分とジカルボン酸成分とのエステル化反応および/またはエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法、または有機溶媒を用いた公知の溶液加熱脱水縮合方法などによって製造することができる。
上記PETを製造する際に用いるジオール成分の使用量は、ジカルボン酸またはその誘導体100モルに対し、実質的に等モルであるが、一般には、エステル化および/またはエステル交換反応および/または縮重合反応中の留出があることから、0.1モル%以上20モル%以下過剰に用いられる。
また、重縮合反応は、重合触媒の存在下で行うことが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧
開始時に添加してもよい。
PETボトルをリサイクルしたPETは、上記のようにして重合して固化させた後、さらに重合度を高めたり、環状三量体などのオリゴマーを除去したりするため、必要に応じて固相重合を行ってもよい。
具体的には、固相重合は、PETをチップ化して乾燥させた後、100℃以上180℃以下の温度で1時間から8時間程度加熱してPETを予備結晶化させ、続いて、190℃以上230℃以下の温度で、不活性ガス雰囲気下または減圧下において1時間~数十時間加熱することにより行われる。
リサイクルPETに含まれるPETの極限粘度は、0.58dl/g以上0.80dl/g以下であることが好ましい。極限粘度が0.58dl/g未満の場合は、樹脂基材としてPETフィルムに要求される機械特性が不足する可能性がある。他方、極限粘度が0.80dl/gを超えると、フィルム製膜工程における生産性が損なわれる場合がある。なお、極限粘度は、オルトクロロフェノール溶液で、35℃において測定される。
リサイクルPETは、リサイクルPETを50重量%以上95重量%以下の割合で含むことが好ましく、リサイクルPETの他、ヴァージンPETを含んでいてもよい。
ヴァージンPETとしては、上記したようなジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸およびイソフタル酸を含むPETであってもよく、また、ジカルボン酸成分がイソフタル酸を含まないPETであってもよい。また、樹脂基材層は、PET以外のポリエステルを含んでいてもよい。例えば、ジカルボン酸成分として、テレフタル酸およびイソフタル酸などの芳香族ジカルボン酸以外にも、脂肪族ジカルボン酸等が含まれていてもよい。
脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸ならびにシクロヘキサンジカルボン酸などの、通常炭素数が2以上40以下の鎖状または脂環式ジカルボン酸が挙げられる。脂肪族ジカルボン酸の誘導体としては、上記脂肪族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステルおよびブチルエステルなどの低級アルキルエステル、無水コハク酸などの上記脂肪族ジカルボン酸の環状酸無水物が挙げられる。これらの中でも、脂肪族ジカルボン酸としては、アジピン酸、コハク酸、ダイマー酸またはこれらの混合物が好ましく、コハク酸を主成分とするものが特に好ましい。脂肪族ジカルボン酸の誘導体としては、アジピン酸およびコハク酸のメチルエステル、またはこれらの混合物がより好ましい。
このようなPETから構成される樹脂基材は、単層であってもよく、多層であってもよい。
図3に示すように、樹脂基材に上記したようなリサイクルPETを用いる場合は、第1層2a、第2層2b、および第3層2cの3層を備えた樹脂基材としてもよい。
この場合、第2層2bをリサイクルPETのみから構成される層またはリサイクルPETとヴァージンPETとの混合層とし、第1層2aおよび第3層2cは、ヴァージンPETのみから構成される層とすることが好ましい。
このように、第1層2aおよび第3層2cにヴァージンPETのみを用いることにより、リサイクルPETが樹脂基材層の表面または裏面から表出することを防止することができる。このため、積層体の衛生性を確保することができる。
また、樹脂基材層は、図3に示す第1層2aを設けることなく、第2層2bおよび第3層2cの2層を備えた樹脂基材層としてもよい。さらに、樹脂基材層は、図3に示す第3
層2cを設けることなく、第1層2aおよび第2層2bの2層を備えた樹脂基材層としてもよい。これらの場合においても、第2層2bをリサイクルPETのみから構成される層またはリサイクルPETとヴァージンPETとの混合層とし、第1層2aおよび第3層2cは、ヴァージンPETのみから構成される層とすることが好ましい。
リサイクルPETとヴァージンPETとを混合して一つの層を成形する場合には、別々に成形機に供給する方法、ドライブレンド等で混合した後に供給する方法などがある。中でも、操作が簡便であるという観点から、ドライブレンドで混合する方法が好ましい。
樹脂基材を構成するPETは、その製造工程において、またはその製造後に、その特性が損なわれない範囲において各種の添加剤を含有することができる。添加剤として、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料などが挙げられる。添加剤は、PETを含む樹脂組成物全体中に、5質量%以上50質量%以下、好ましくは5質量%以上20質量%以下の範囲で含有されることが好ましい。
樹脂基材は、上記したPETを用いて、例えば、Tダイ法によってフィルム化することにより形成することができる。具体的には、上記したPETを乾燥させた後、PETの融点以上の温度(Tm)~Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイなどのダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。
上記のようにして得られたフィルムは2軸延伸されていることが好ましい。2軸延伸は従来公知の方法で行うことができる。例えば、上記のようにして冷却ドラム上に押し出されたフィルムを、続いて、ロール加熱、赤外線加熱などで加熱し、縦方向に延伸して縦延伸フィルムとする。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸は、通常、50℃以上100℃以下の温度範囲で行われる。また、縦延伸の倍率は、フィルム用途の要求特性にもよるが、2.5倍以上4.2倍以下とするのが好ましい。延伸倍率が2.5倍未満の場合は、PETフィルムの厚み斑が大きくなり良好なフィルムを得ることが難しい。
縦延伸されたフィルムは、続いて横延伸、熱固定、熱弛緩の各処理工程を順次施して2軸延伸フィルムとなる。横延伸は、通常、50℃以上100℃以下の温度範囲で行われる。横延伸の倍率は、この用途の要求特性にもよるが、2.5倍以上5.0倍以下が好ましい。2.5倍未満の場合はフィルムの厚み斑が大きくなり良好なフィルムが得られにくく、5.0倍を超える場合は製膜中に破断が発生しやすくなる。
横延伸のあと、続いて熱固定処理を行うが、好ましい熱固定の温度範囲は、PETのTg+70~Tm-10℃である。また、熱固定時間は1秒以上60秒以下が好ましい。さらに熱収縮率の低滅が必要な用途については、必要に応じて熱弛緩処理を行ってもよい。
上記のようにして得られるPETフィルムの厚さは、その用途に応じて任意であるが、通常、5μm以上100μm以下程度であり、好ましくは5μm以上25μm以下である。また、PETフィルムの破断強度は、MD方向で5kg/mm2以上40kg/mm2以下、TD方向で5kg/mm2以上35kg/mm2以下であり、また、破断伸度は、MD方向で50%以上350%以下、TD方向で50%以上300%以下である。また、150℃の温度環境下に30分放置した時の収縮率は、0.1%以上5%以下である。
なお、ヴァージンPETは、化石燃料ポリエチレンテレフタレート(以下化石燃料PETとも記す)であってもよく、バイオマスPETであってもよい。ここで、「化石燃料PET」とは、化石燃料由来のジオールをジオール成分とし、化石燃料由来のジカルボン酸をジカルボン酸成分とするものである。また、リサイクルPETは、化石燃料PETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよく、バイオマスPETを用いて形成されたPET樹脂製品をリサイクルして得られるものであってもよい。
[酸化アルミニウム蒸着膜]
本発明に係る酸化アルミニウム蒸着膜は、主成分として酸化アルミニウムを含む無機酸化物の薄膜であり、微量の、アルミニウムの窒化物、炭化物、水酸化物の単独又はその混合物などのアルミニウム化合物や、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム、酸化亜鉛、酸化ジルコニウム等の金属酸化物、またはこれらの金属窒化物、炭化物及びその混合物などを含むことができる。
本発明に係る酸化アルミニウム蒸着膜中には、Al3で表される元素結合構造部が分布しており、Al3で表される元素結合構造部の存在率は、該酸化アルミニウム蒸着膜の深さ位置によって異なっている。
Al3で表される元素結合構造部の存在率は、Al23(酸化アルミニウム)との存在比で表現することができ、具体的には、飛行時間型二次イオン質量分析法(TOF-SIMS)によって検出されるAl3の強度と、Al23の強度との比である、強度比率Al3/Al23によって表現することができる。
本発明に係る酸化アルミニウム蒸着膜には、強度比率Al3/Al23×100、が5以上、50以下である最大Al3濃度元素結合構造部分が存在する。このため、蒸着膜の緻密性が向上して、ガスバリア性が高くなる。
また、前記最大Al3濃度元素結合構造部分が、前記酸化アルミニウム蒸着膜の樹脂基材とは反対側の表面から、前記酸化アルミニウム蒸着膜の膜厚の4%以上、45%以下の深さ位置に存在することが好ましい。
上記の構成とすることで、酸化アルミニウム蒸着膜の最表面は、酸化度・水酸化度を持った酸化アルミニウム膜になり、バリア被覆層との接着が良くなり、ガスバリア性が向上する。
また、酸化アルミニウム蒸着膜の膜厚の4%以上、45%以下の深さ位置に最大Al3濃度元素結合構造部分を設けることで、蒸着膜の緻密性を向上させるとともに、バリア被覆層を積層させたときにしみ込んだバリア被覆材料とアルミとの反応性が起こりやすく、バリア被覆層との接着がさらに良くなる。
酸化アルミニウム蒸着膜の厚みは、5nm以上、100nm以下が好ましい。上記範囲よりも小さいとバリア性が不十分になり易く、上記範囲よりも大きいと酸化アルミニウム蒸着膜の剛性が強くなり過ぎて剥離等が発生し易い傾向になる。
[酸化アルミニウム蒸着膜の形成方法]
本発明において、酸化アルミニウム蒸着膜は、プラズマ処理された樹脂フィルムの面に形成されることが好ましく、該プラズマ処理と酸化アルミニウム蒸着膜形成処理は、例えば、図5に示されたような蒸着装置10を用いてなされる。
蒸着装置10は、減圧チャンバ12内に隔壁35a~35cが形成されている。該隔壁35a~35cにより、樹脂基材搬送室12A、プラズマ前処理室12B、成膜室12Cが形成され、特に、隔壁と隔壁35a~35cで囲まれた空間としてプラズマ前処理室12B及び成膜室12Cが形成され、各室は、必要に応じて、さらに内部に排気室が形成される。
(プラズマ前処理)
プラズマ前処理は、樹脂基材界面側の酸化アルミニウム蒸着膜の酸化度を上げて、蒸着膜と樹脂基材との密着性を確保することで、ガスバリア性を向上させるために行うものである。
そのため、プラズマ前処理では、供給されるプラズマ原料ガスは、酸素単体あるいは酸素分圧が高い不活性ガスとの混合ガスが使用される。
プラズマ前処理室12B内には、前処理が行われる樹脂基材Sを搬送し、かつプラズマ処理を可能にするプラズマ前処理ローラー20の一部が樹脂基材搬送室12Aに露出するように設けられており、樹脂基材Sは巻き取られながらプラズマ前処理室12Bに移動するようになっている。
前記プラズマ前処理室12Bは、プラズマが生成する空間を他の領域と区分し、対向空間を効率よく真空排気できるように構成されることで、プラズマガス濃度の制御が容易となり、生産性が向上する。その減圧して形成する前処理圧力は、0.1Pa~100Pa程度に設定、維持することができ、特に、1~20Paが好ましい。
樹脂基材Sの搬送速度は、特に限定されないが、生産効率の観点から、少なくとも200m/min、から1000m/minにすることができ、特に、300~800m/minが好ましい。
プラズマ前処理手段は、プラズマ供給手段及び磁気形成手段を含むものである。プラズマ前処理手段はプラズマ前処理ローラー20と協働し、樹脂基材S表面近傍に酸素プラズマPを閉じ込める。具体的には、前処理ローラー20の外周近傍の表面に沿ってプラズマ前処理手段を構成するプラズマ供給手段と磁気形成手段を配置して、前処理ローラー20とプラズマ原料ガスを供給するとともにプラズマPを発生させる電極ともなるプラズマ供給ノズル22a~22cとプラズマPの発生を促進するためマグネット21等を有する磁気形成手段とにより挟まれた空隙を形成するように設置する。
プラズマ前処理手段のプラズマ供給手段は、減圧チャンバ12の外部に設けたプラズマ供給ノズルに接続された原料揮発供給装置18と、該装置から原料ガス供給を供給する原料ガス供給ラインを含むものである。供給されるプラズマ原料ガスは、酸素単独又は酸素ガスとアルゴン、ヘリウム、窒素及びそれらの1種以上のガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。
本発明の酸化アルミニウム蒸着膜とするためプラズマ前処理としては、酸素ガスとアルゴンまたはヘリウムとの混合比率は、5対1、好ましくは、2対1である。
本発明で採用する単位面積あたりのプラズマ強度として50~8000W・sec/m2であり、50W・sec/m2以下では、プラズマ前処理の効果がみられず、また、8000W・sec/m2以上では、樹脂基材の消耗、破損着色、焼成などプラズマによる樹脂基材の劣化が起きる傾向にある。特に、本発明の酸化アルミウム蒸着膜とするためプラズマ前処理のプラズマ強度としては、100~1000W・sec/m2が好ましい。
(蒸着膜の形成)
蒸着膜を形成する蒸着法としては、物理蒸着法、化学蒸着の中から種々の蒸着法が適用できる。物理蒸着法としては、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、クラスターイオンビーム法からなる群から選ぶことができ、化学蒸着法としては、プラズマCVD法、プラズマ重合法、熱CVD法、触媒反応型CVD法からなる群から選ぶことができる。本発明においては、物理蒸着法の蒸着法が好適である。
蒸着膜成膜装置は、減圧された成膜室12C内に配置され、プラズマ前処理装置で前処理された樹脂基材Sの処理面を外側にして樹脂基材Sを巻きかけて搬送し、成膜処理する成膜ローラー23と、該成膜ローラーに対向して配置された成膜源24のターゲットを蒸発させて樹脂基材表面に蒸着膜を形成する。
蒸着膜成膜手段24は抵抗加熱方式であり、アルミニウムを蒸発源としてアルミニウムの金属線材を用い、 酸素を供給ししてアルミニウム蒸気を酸化しつつ、樹脂基材Sの表面に酸化アルミニウム蒸着膜を形成する。
酸素は、酸素単体でも、アルゴンのような不活性ガスとの混合ガスでの供給でも良いが、最大Al3濃度元素結合構造部分が生じる酸素量の調整が重要である。
また、アルミニウムの蒸発は、例えば、舟形(「ボートタイプ」という)蒸着容器に、ローラー23の軸方向にアルミニウムの金属線材を複数配置し、抵抗加熱式により加熱することで行うことができる。
このような方法で、供給される熱、熱量を調節しながらアルミニウムの金属材料を蒸発させ、かつ供給する酸素量を調整することにより、アルミニウムと酸素との反応を制御して、本発明の酸化アルミニウム蒸着膜を形成することができる。
(最大Al3濃度元素結合構造部分の強度比率Al3/Al23と深さ位置の求め方)
本発明において、酸化アルミニウム蒸着膜中の、Al3濃度とAl23濃度、更には、最大Al3濃度元素結合構造部分の深さ位置は、TOF-SIMSを用いて測定され、最大Al3濃度元素結合構造部分の深さ位置が特定され、強度比率Al3/Al23が算出される。
TOF-SIMS(飛行時間型二次イオン質量分析法、Time-of-Flight
Secondary Ion Mass Spectrometry)は、一次イオン銃から一次イオンビームを被分析固体試料表面に照射して、該試料表面からスパッタリングされて放出される二次イオンを、その飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離して、質量分析する方法である。
ここで、スパッタリングを進行させつつ二次イオン強度を検出することによって、二次イオン、即ち被検出元素イオン又は被検出元素と結合した分子イオンのイオン強度の時間推移のデータに対して、推移時間を深さに換算することで、該試料表面の深さ方向の被検出元素の濃度分布を知ることができる。
そして、予め、一次イオンの照射により試料表面に形成された窪みの深さを表面粗さ計を用いて測定して、この窪みの深さと推移時間とから平均スパッタ速度を算出しておき、スパッタ速度が一定であるとの仮定の下に、照射時間(即ち、推移時間)または照射サイクル数から、深さ(スパッタ量)を算出することが可能である。
本発明では、積層フィルムの酸化アルミニウム蒸着膜に対し、好ましくは、深い領域まで測定する為にCs(セシウム)イオン銃を用いて、上記のように一定の速度でソフトエッチングを繰り返しながら、酸化アルミニウム蒸着膜層由来のAl3、Al23のイオンと、樹脂基材層に由来するC6イオンを測定することにより、各イオンの強度比率を算出できる。
また、酸化アルミニウム蒸着膜層、樹脂基材層の界面を特定することで、検出されるイオンの最大値が界面からどの深さの位置に存在するか知ることが出来る。すなわち、C6のイオンの強度が最大値の半分になる位置を、樹脂基材層と酸化アルミニウム層との界面であると定義することで、検出されるイオンの強度の最大値が、酸化アルミニウム層のどの深さの位置にあるかを知ることができる。
測定結果は、例えば、図6に示したようなグラフとして得ることが出来る。なお、グラフは、測定された質量数の101.94をAl23、80.94をAl3、72.00をC6として作成したものである。図6のグラフにおいて、縦軸の単位(intensity)は、測定されたイオンの強度であり、横軸の単位(cycle)はエッチングの回数である。
そして、各サイクルにおける酸化アルミニウム蒸着膜内の深さと、Al3強度、Al23強度が得られ、強度比率Al3/Al23を求め、最大Al3強度を示した時の、強度比率Al3/Al23と、該深さの酸化アルミニウム蒸着膜層厚に対する割合を算出することが出来る。
[バリア性被覆層]
バリア性被覆層は、酸化アルミニウム蒸着膜を機械的・化学的に保護するとともに、バリア樹脂フィルムのバリア性能を向上させるものであり、酸化アルミニウム蒸着膜と隣接して形成される。
バリア性被覆層は、金属アルコキシドと水酸基含有水溶性樹脂とを含むバリア性被覆層用コート剤から形成される。バリア性被覆層内で、金属アルコキシドは、縮合反応生成物を生成しているが、水酸基含有水溶性樹脂との間で共縮合物を生成していてもよい。
質量比水酸基含有水溶性樹脂/金属アルコキシドは、5/95以上、20/80以下が好ましく、8/92以上、15/85以下がより好ましい。上記範囲よりも小さいと、バリア性被覆層のバリア効果が不十分になり易い傾向になり、上記範囲よりも大きいと、バリア性被覆層の剛性と脆性とが大きくなり易くなる。
バリア性被覆層の厚みは、150nm以上、800nm以下が好ましい。上記範囲よりも薄いと、バリア性被覆層のバリア効果が不十分になり易くなり、上記範囲よりも厚いと、剛性と脆性とが大きくなり易くなる。
本発明において、バリア性被覆層は、以下の方法で製造することができる。
まず、上記金属アルコキシド、水酸基含有水溶性樹脂、反応促進剤(ゾルゲル法触媒、酸等)、及び溶媒としての水、メチルアルコール、エチルアルコール、イソプロパノール等のアルコール等の有機溶媒を混合し、バリア性被覆層用コート剤組成物を調製する。
次いで、酸化アルミニウム蒸着膜の上に、常法により、上記のバリア性被覆層用コート剤組成物を塗布し、乾燥する。この乾燥工程によって、前記縮合または共縮合反応が更に進行し、塗膜が形成される。第一の塗膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗膜を形成してもよい。
さらに、20~200℃、好ましくは50~180℃の範囲の温度、かつ樹脂基材の融点以下の温度で、3秒~10分間加熱処理する。これによって、酸化アルミニウム蒸着膜の上に、上記バリアコート剤によるバリア性被覆層を形成することができる。
尚、バリア性被覆層を形成は、酸化アルミニウム蒸着膜形成後に、外気に触れることなく、インラインで行われることが好ましい。
(金属アルコキシド)
金属アルコキシドは、一般式R1nM(OR2)m(ただし、式中、R1、R2は、水素原子または炭素数1~8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。1分子中の複数のR1、R2のそれぞれは、同一であっても、異なっていてもよい。)で表される。
金属アルコキシドのMで表される具体的な金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、スズ、鉛、ボラン、その他等を例示することができ、例えば、MがSi(ケイ素)であるアルコキシシランを使用することが好ましい。
アルコキシシランは、一般式R1nSi(OR2m(ただし、n+m=4。)で表される。
上記において、OR2の具体例としては、水酸基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、i-プロポキシ基、ブトキシ基、3-メタクリロキシ基。3-アクリロキシ基、フェノキシ基、等のアルコキシ基またはフェノキシ基等が挙げられる。
上記において、R1の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、p-スチリル基、3-クロロプロピル基、トリフルオロメチル基、ビニル基、γ-グリシドキシプロピル基、メタクリル基、γ-アミノプロピル基等が挙げられる。
アルコキシシランの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチルトリフェノキシシラン、フェニルフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン等の各種アルコキシシランやフェノキシシラン等が挙げられる。
アルコキシシランにおいて、R1がビニル基、エポキシ基、メタクリル基、アミノ基等の官能基を有する有機基の場合には、一般的にシランカップリング剤と呼ばれる。
シランカップリング剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、あるいは、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、γ-グリシドキシプロピルトリメトキシシランが好適である。
上記の金属アルコキシドは、1種を用いても、2種以上を混合して用いてもよく、特に、シランカップリング剤を併用することが好適である。シランカップリング剤を併用する場合には、全金属アルコキシド中の2質量%以上、15質量%以下をシランカップリング剤にすることが好ましい。
(水酸基含有水溶性樹脂)
本発明において、水酸基含有水溶性樹脂は、金属アルコキシドと脱水共縮合し得るものであり、ケン化度は、90%以上、100%以下が好ましく、95%以上、100%以下がより好ましく、99%以上、100%以下が更に好ましい。ケン化度が上記範囲よりも小さいと。バリア性被覆層の硬度が低下し易くなる。
水酸基含有水溶性樹脂の具体例としては、例えば、ポリビニルアルコール系樹脂、エチレン・ビニルアルコ一ル共重合体、2官能フェノール化合物と2官能エポキシ化合物との重合体、等が挙げられ、各々を単独で用いてもよく、2種以上を混合して用いてもよく、共重合させて用いてもよい。これらの中で、特に、柔軟性と親和性に優れることから、ポ
リビニルアルコールが好ましく、ポリビニルアルコール系樹脂が好適である。
具体的には、例えば、ポリ酢酸ビニルをケン化して得られたポリビニルアルコ一ル系樹脂や、エチレンと酢酸ビニルとの共重合体をケン化して得られたエチレン・ビニルアルコール共重合体を使用することができる。
このようなポリビニルアルコール系樹脂としては、株式会社クラレ製のRS樹脂である「RS-110(ケン化度=99%、重合度=1,000)」、日本合成化学工業株式会社製の「ゴーセノールNM-14(ケン化度=99%、重合度=1,400)」等を挙げることができる。
<バリア積層体>
本発明のバリア積層体は、図4に示されたように、本発明のバリア樹脂フィルムに、更に、少なくとも、ヒートシール可能なシーラント層を、接着剤を介して、あるいは介することなく、バリア積層体の最表面に積層したものである。
更に必要に応じて、包装材料に用いた場合に付与したい機能、例えば、遮光性を付与するための遮光性層、装飾性、印字を付与するための印刷層、絵柄層、レーザー印刷層、臭気を吸収又は吸着する吸収性・吸着性層など各種機能層を層構成として含むことも出来る。
[シーラント層]
シーラント層は、単層であっても、2層以上の多層で構成されていてもよく、2層以上の場合は、それぞれが、同一の組成であってもよく、異なる組成であってもよく、ヒートシール性樹脂のみからなる層や、ヒートシール性樹脂を含まない層を含むこともでき、更には、種々の機能を備えた機能層や、接着剤層を含むこともできるが、バリア包装材料の片面最表層を構成する層はヒートシール性に優れた樹脂を含むことが好ましい。
また、シーラント層には、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、アンチブロッキング剤、難燃化剤、架橋剤、着色剤、顔料、滑剤、充填剤、補強剤、改質用樹脂等の種々の無機又は有機添加剤等の1種ないし2種以上を、適宜含有することができる。その含有率としては、極微量から数十%まで、その目的に応じて、任意に含有することができる。
シーラント層には、ヒートシール性樹脂の1種または2種以上を用いた、樹脂フィルム、あるいは樹脂塗布膜等を用いることができる。
<バリア包装材料>
本発明のバリア積層材料は、バリア積層体から作製される包装材料である。
<バリア包装体>
本発明のバリア包装体は、本発明のバリア包装材料から作製されるものである。
例えば、バリア包装材料のシーラント層を熱融着させるようなヒートシール加工によって、ピロー包装袋、三方シール、四方シール、ガセットタイプ等の形態のバリア包装体を作製することができる。
[実施例1]
<酸化アルミニウム蒸着膜形成>
まず、樹脂基材である厚さ12μmのポリエステルフィルム(以下、PETフィルム)を巻き取ったロールを準備した。
次に、このPETフィルムの蒸着膜を設ける面に、プラズマ前処理装置を配置した前処理区画と成膜区画を隔離した連続蒸着膜成膜装置を用いて、前処理区画において下記プラ
ズマ条件下でプラズマ供給ノズルからプラズマを導入し、搬送速度400m/minでプラズマ前処理を施し、連続搬送した成膜区画内で、プラズマ処理面上に下記条件において真空蒸着法の加熱手段として反応性抵抗加熱方式により、厚さ12nmの酸化アルミニウム蒸着膜をPETフィルムに形成して、バリア樹脂フィルムのロール巻きを得て、各種評価を実施した。
(プラズマ前処理条件)
・プラズマ強度:150W・sec/m2
・プラズマ形成ガス比:アルゴン/酸素=1:2
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
・前処理区画の真空度:3.8Pa
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・酸素のガス供給量 8000sccm
<バリア性被覆層用バリアコート剤の調製>
水226g、イソプロピルアルコール39g及び0.5N塩酸5.3gを混合し、pH2.2に調整した溶液に、テトラエトキシシラン167gとグリシドキシプロピルトリメトキシシラン9.2gを10℃となるよう冷却しながら混合させて溶液Aを調製した。
ケン価度99%以上の重合度2400のポリビニルアルコール23.3g、水513g、イソプロピルアルコール27gを混合した溶液Bを調製した。
A液とB液を重量比4.4:5.6となるよう混合して得られた溶液をバリアコート剤とした。
<バリア性被覆層付きバリア樹脂フィルムの作製>
上記のPETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート剤をスピンコート法によりコーティングした。その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのバリア性被覆層を酸化アルミニウム蒸着膜上に形成して、バリア性被覆層付きバリア樹脂フィルムを得た。
[実施例2]
実施例における酸化アルミニウム成膜条件の酸素の供給量を、10000sccmとした以外、同様にしてバリア樹脂フィルムとバリア性被覆層付きバリア樹脂フィルムを得た。
[比較例1]
実施例における酸化アルミニウム成膜条件の酸素の供給量を、20000sccmとした以外、同様にしてバリア樹脂フィルムとバリア性被覆層付きバリア樹脂フィルムを得た。
<評価方法>
[TOF-SIMSにおける強度比率Al3/Al23
バリア性被覆層が無いバリア樹脂フィルムに対して、飛行時間型二次イオン質量分析計(ION TOF社製、TOF.SIMS5)を用いて、下記測定条件で、バリア樹脂フィルムの酸化アルミニウム蒸着膜層側から、Cs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら樹脂基材由来のC6、酸化アルミウム蒸着膜由来のAl3、Al23のイオンの質量分析を行った。
質量分析の結果から、樹脂基材由来のC6のイオンの強度が最大値の半分になる位置を、樹脂基材層と酸化アルミニウム層との界面であるとした。
そして、各サイクルにおける酸化アルミニウム蒸着膜内の深さと、Al3の強度と強度比率Al3/Al23を求め、Al3の強度が最大を示した時の強度比率Al3/Al23と、該深さの酸化アルミニウム蒸着膜層厚に対する割合を算出した。
TOF-SIMS測定条件
・一次イオン種類:Bi3 ++(0.2pA,100μs)
・測定面積:150×150μm2
・エッチング銃種類:Cs(1keV、60nA)
・エッチング面積:600×600μm2
・エッチングレート:3sec/Cycle
[酸素透過度]
酸素透過度測定装置(MOCON社製、OX-TRAN2/21)を用いて、バリア性被覆層付きバリア樹脂フィルムの樹脂基材側が酸素供給側になるようにセットして、JIS K 7126 B法に準拠して、23℃、100%RH雰囲気下における酸素透過度を測定した。
[水蒸気透過度]
水蒸気透過度測定装置(MOCON社製、PERMATRAN3/33)を用いて、バリア性被覆層付きバリア樹脂フィルムの樹脂基材層側がセンサー側になるようにセットして、JIS K 7126 B法に準拠して、37.8℃、100%RH雰囲気下における水蒸気透過度を測定した。
<評価結果>
実施例1と2は、最大Al3濃度元素結合構造部分における強度比率Al3/Al23×100が5以上、50以下であり、該最大Al3濃度元素結合構造部分は酸化アルミニウム蒸着膜の膜厚の4%以上、45%以下の深さ位置に存在し、酸素透過度及び水蒸気透過度が低く、良好なガスバリア性を示した。
一方、比較例1は、最大Al3濃度元素結合構造部分における該強度比率が5未満であり、該最大強度比率が5以上、50以下を満たす最大Al3濃度元素結合構造部分は存在せず、酸素透過度及び水蒸気透過度が高く、劣ったガスバリア性を示した。
Figure 0007027972000001
1 バリア樹脂フィルム
2 樹脂基材層
2a 樹脂基材層第1層
2b 樹脂基材層第2層
2c 樹脂基材層第3層
3 酸化アルミニウム蒸着膜層
4 バリア性被覆層
5 バリア積層体
6 シーラント層
10 ローラー式連続蒸着膜成膜装置
S 樹脂基材
P プラズマ
12 減圧チャンバ
12A 樹脂基材搬送室
12B プラズマ前処理室
12C 成膜室
14a~d ガイドロール
18 原料ガス揮発供給装置
20 前処理ローラー
21 マグネット
22 プラズマ供給ノズル
23 成膜ローラー
24 蒸着膜成膜手段
31 電力供給配線
32 電源
35a~35c 隔壁

Claims (13)

  1. 樹脂基材の表面に酸化アルミニウム蒸着膜が形成されているバリア樹脂フィルムであって、
    前記酸化アルミニウム蒸着膜中には、Al3で表される元素結合構造部が分布し、
    飛行時間型二次イオン質量分析法(TOF-SIMS)における最大Al3濃度元素結合構造部分の強度比率Al3/Al23×100が、5以上、50以下であり、
    前記最大Al 3 濃度元素結合構造部分が、前記酸化アルミニウム蒸着膜の樹脂基材とは反対側の表面から、前記酸化アルミニウム蒸着膜の膜厚の4%以上、45%以下の深さ位置に存在する
    バリア樹脂フィルム。
  2. 前記樹脂基材の、前記酸化アルミニウム蒸着膜が形成されている面が、プラズマ処理面である、請求項に記載のバリア樹脂フィルム。
  3. 前記酸化アルミニウム蒸着膜は、前記プラズマ処理面に、インラインで形成されたものである、請求項1または2に記載のバリア樹脂フィルム。
  4. 前記樹脂基材が、ポリエチレンテレフタレート系樹脂を含む、請求項1~の何れか1項に記載のバリア樹脂フィルム。
  5. 前記樹脂基材が、ポリブチレンテレフタレート系樹脂を含む、請求項1~の何れか1項に記載のバリア樹脂フィルム。
  6. 前記樹脂基材が、植物由来ポリエステル系樹脂を含む、請求項1~の何れか1項に記載のバリア樹脂フィルム。
  7. 前記樹脂基材が、リサイクルポリエステル系樹脂を含む、請求項1~の何れか1項に記載のバリア樹脂フィルム。
  8. 前記バリア樹脂フィルムは、更に、バリア性被覆層を前記酸化アルミニウム蒸着膜の樹脂基材とは反対側の表面上に、隣接して含み、前記バリア性被覆層は、金属アルコキシドと、ケン化度が90%以上、100%以下の水酸基含有水溶性樹脂とを含む樹脂組成物から形成されたものである、請求項1~の何れか1項に記載のバリア樹脂フィルム。
  9. 前記水酸基含有水溶性樹脂と前記金属アルコキシドの、質量比水酸基含有水溶性樹脂/金属アルコキシドが、5/95以上、20/80以下である、請求項に記載のバリア樹脂フィルム。
  10. 前記バリア性被覆層の厚みが、150nm以上、800nm以下である請求項8または9に記載のバリア樹脂フィルム。
  11. 請求項1~10の何れか1項に記載のバリア樹脂フィルムと、シーラント層とを含む、バリア積層体。
  12. 請求項11に記載のバリア積層体から作製された、バリア包装材料。
  13. 請求項12に記載のバリア包装材料から作製された、バリア包装体。
JP2018042599A 2018-03-09 2018-03-09 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料 Active JP7027972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018042599A JP7027972B2 (ja) 2018-03-09 2018-03-09 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042599A JP7027972B2 (ja) 2018-03-09 2018-03-09 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料

Publications (2)

Publication Number Publication Date
JP2019155646A JP2019155646A (ja) 2019-09-19
JP7027972B2 true JP7027972B2 (ja) 2022-03-02

Family

ID=67994350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042599A Active JP7027972B2 (ja) 2018-03-09 2018-03-09 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料

Country Status (1)

Country Link
JP (1) JP7027972B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135831A (ko) 2018-03-23 2020-12-03 다이니폰 인사츠 가부시키가이샤 배리어 수지 필름, 배리어 적층체 및 상기 배리어 적층체를 이용한 포장 재료
JPWO2020195742A1 (ja) * 2019-03-26 2020-10-01
JP7163890B2 (ja) * 2019-05-16 2022-11-01 大日本印刷株式会社 包装袋
KR20220086602A (ko) * 2019-10-25 2022-06-23 도요보 가부시키가이샤 레이저 인자 가능한 필름 및 그것을 사용한 포장체
EP4070954A4 (en) * 2019-12-05 2023-12-20 Toyobo Co., Ltd. LAMINATED LAYER BODY
WO2023132316A1 (ja) * 2022-01-07 2023-07-13 凸版印刷株式会社 樹脂フィルム、積層体、および、包装体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009998A1 (fr) 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Film de depot
JP2006056007A (ja) 2004-08-17 2006-03-02 Dainippon Printing Co Ltd ガスバリア性積層フィルムおよびそれを使用した積層材
JP2012096469A (ja) 2010-11-02 2012-05-24 Dainippon Printing Co Ltd バリア性フィルムおよびそれを用いた積層体
WO2013100073A1 (ja) 2011-12-28 2013-07-04 大日本印刷株式会社 プラズマを使った前処理装置を有した蒸着装置
WO2014050951A1 (ja) 2012-09-28 2014-04-03 大日本印刷株式会社 透明蒸着フィルム
JP2015036208A (ja) 2013-08-12 2015-02-23 大日本印刷株式会社 バリア性フィルム、ならびにそれを用いた積層フィルムおよび包装体
WO2016052456A1 (ja) 2014-10-03 2016-04-07 三井化学東セロ株式会社 積層フィルム、輸液バッグ用外装袋および輸液バッグ包装体
JP2017081175A (ja) 2017-02-07 2017-05-18 大日本印刷株式会社 バリア性フィルムおよびそれを用いた積層体
WO2019182018A1 (ja) 2018-03-23 2019-09-26 大日本印刷株式会社 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364995A (en) * 1981-02-04 1982-12-21 Minnesota Mining And Manufacturing Company Metal/metal oxide coatings
JP3097312B2 (ja) * 1992-06-05 2000-10-10 東レ株式会社 積層フィルム
JPH08142251A (ja) * 1994-11-24 1996-06-04 Toray Ind Inc 透明ガスバリア性フィルム
JPH09156021A (ja) * 1995-12-04 1997-06-17 Toray Ind Inc 金属酸化物蒸着未延伸フイルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009998A1 (fr) 2001-07-24 2003-02-06 Toppan Printing Co., Ltd. Film de depot
JP2006056007A (ja) 2004-08-17 2006-03-02 Dainippon Printing Co Ltd ガスバリア性積層フィルムおよびそれを使用した積層材
JP2012096469A (ja) 2010-11-02 2012-05-24 Dainippon Printing Co Ltd バリア性フィルムおよびそれを用いた積層体
WO2013100073A1 (ja) 2011-12-28 2013-07-04 大日本印刷株式会社 プラズマを使った前処理装置を有した蒸着装置
WO2014050951A1 (ja) 2012-09-28 2014-04-03 大日本印刷株式会社 透明蒸着フィルム
JP2015036208A (ja) 2013-08-12 2015-02-23 大日本印刷株式会社 バリア性フィルム、ならびにそれを用いた積層フィルムおよび包装体
WO2016052456A1 (ja) 2014-10-03 2016-04-07 三井化学東セロ株式会社 積層フィルム、輸液バッグ用外装袋および輸液バッグ包装体
JP2017081175A (ja) 2017-02-07 2017-05-18 大日本印刷株式会社 バリア性フィルムおよびそれを用いた積層体
WO2019182018A1 (ja) 2018-03-23 2019-09-26 大日本印刷株式会社 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料

Also Published As

Publication number Publication date
JP2019155646A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7027972B2 (ja) バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
JP7248012B2 (ja) バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
JP7192781B2 (ja) 積層フィルム、バリア性積層フィルム及び該バリア性積層フィルムを用いたガスバリア性包装材料、ガスバリア性包装体
JP7110860B2 (ja) ガスバリア性蒸着フィルム、ガスバリア性積層体、ガスバリア性包装材料及びガスバリア性包装体。
JP7434767B2 (ja) ガスバリア性蒸着フィルム、および該ガスバリア性蒸着フィルムを用いた積層体、包装材料、包装体
EP2460656B1 (en) Gas-barrier multilayer film
JP7434766B2 (ja) ガスバリア性蒸着フィルム、ガスバリア性積層体、ガスバリア性包装材料及びガスバリア性包装体。
CN111867825B (zh) 阻隔性层积膜和使用了该阻隔性层积膜的包装材料
JP7441433B2 (ja) 蒸着膜成膜装置及び蒸着膜成膜方法
JP2021049779A (ja) バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品
JP2020070429A (ja) 酸素プラズマ処理樹脂フィルム、ガスバリア性蒸着フィルム及び該ガスバリア性蒸着フィルムを用いたガスバリア性積層体、ガスバリア性包装材料、ガスバリア性包装体、ガスバリア性包装袋、及びそれらの製造方法
JP7318783B2 (ja) 包装袋
EP2955022B1 (en) Gas barrier film
JP2023123494A (ja) バリア性積層フィルム及びバリア性積層フィルムの製造方法、並びにバリア性積層フィルムを備える包装材料
JP2021045929A (ja) バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品
JP7338153B2 (ja) ガスバリア性蒸着フィルム、ガスバリア性積層体、ガスバリア性包装材料、ガスバリア性包装材料、及びガスバリア性蒸着フィルムの製造方法
JP5034257B2 (ja) バリア性フィルム、およびその製造方法
JP2020189481A (ja) 粘接着バリアフィルム及びバリアフィルム付被着体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7027972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150