JP6989242B2 - 接続構造体 - Google Patents

接続構造体 Download PDF

Info

Publication number
JP6989242B2
JP6989242B2 JP2015199318A JP2015199318A JP6989242B2 JP 6989242 B2 JP6989242 B2 JP 6989242B2 JP 2015199318 A JP2015199318 A JP 2015199318A JP 2015199318 A JP2015199318 A JP 2015199318A JP 6989242 B2 JP6989242 B2 JP 6989242B2
Authority
JP
Japan
Prior art keywords
metal layer
porous metal
semiconductor element
connection structure
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015199318A
Other languages
English (en)
Other versions
JP2017071826A (ja
Inventor
俊一郎 佐藤
直之 児島
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015199318A priority Critical patent/JP6989242B2/ja
Publication of JP2017071826A publication Critical patent/JP2017071826A/ja
Application granted granted Critical
Publication of JP6989242B2 publication Critical patent/JP6989242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Dicing (AREA)

Description

本発明は、基板と、半導体素子とが多孔質状金属層を介して接合されてなる接続構造体に関する。
半導体装置は、一般に、リードフレームの素子担持部上または絶縁基板の回路電極部上に、半導体素子(チップ)を接合するためのダイマウント材を形成する工程と、リードフレーム上もしくは回路電極上のダイマウント材表面に半導体素子を搭載し、リードフレームの素子担持部もしくは絶縁基板の回路電極部と半導体素子とを接合する工程と、半導体素子の電極部と、リードフレームの端子部もしくは絶縁基板の端子部を電気的に接合するワイヤボンディング工程と、このようにして組み立てた半導体装置を樹脂被覆するモールド工程を経て製造される。
特許文献1には、金属基板上に接合材を介して半導体素子を配置し、半導体素子の側壁部に接合材と同一材料で形成されたフィレット層を、半導体素子の厚さの半分以上の高さで形成する、半導体装置とその製造方法が開示されている。また、特許文献2には、第1の被接合部材(半導体素子)と第2の被接続部材(基板)とを接合する際に、第2の被接続部材上に、第1の被接合部材よりも大きな面積で接合材を供給する、接合方法が開示されている。これらの方法によれば、接合時に、接合部材間の熱膨張係数の相異に起因して発生する応力や歪みを緩和でき、熱衝撃によるクラック等の発生を防止できる。
特開2014−120639号公報 特開2014−110282号公報
しかし、上記の方法では、接合材が半導体素子の側面やガードリングに接触する構成となるため、高温動作もしくは高電圧動作時に、接合材に含まれる金属材料(特に、重金属)が半導体素子内部に拡散する。このような半導体素子内部への金属拡散は、リーク電流の増加を招き、半導体素子内部の電気抵抗を増加させ、半導体素子の耐圧特性を低下させる。そのため、上記のような方法では、電気的な接続信頼性を確保することが困難であった。
そこで、本発明は、上記課題に鑑みてなされたものであり、半導体素子へのリーク電流の増加を抑制し、半導体素子の耐圧特性の低下を防止し得る接続構造体を提供することを目的とする。
上記課題を解決するため、本発明は、導体部材と、前記導体部材上に多孔質状金属層を介して接合されてなる半導体素子とを備える接合構造体であって、前記多孔質状金属層の厚みtが、100μm以下であり、前記多孔質状金属層の幅Lが、前記半導体素子の前記多孔質状金属層に対向する面の幅Lと前記多孔質状金属層の厚みtとの間で、下記式(1)の関係を満足することを特徴とする。
−t ≦ L ≦ L+t (1)
また、前記半導体素子が、前記多孔質状金属層に対向する面の反対側の面と、前記半導体素子の側面とにわたって、面取り部を有し、前記半導体素子の高さ方向に沿った前記面取り部の面取り高さHが、前記半導体素子(C)の厚みtの1/2以下であることが好ましい。
また、前記面取り部の面取り幅Wが、12.5μm以上であることが好ましい。
また、前記面取り部の面取り幅Wが、45μm以下であることが好ましい。
また、前記面取り部が、前記半導体素子の側面に沿った直線と、前記多孔質状金属層に対向する面の反対側の面に沿った直線との交点Dを中心とする、半径Rの円弧状の曲面を有し、前記半径Rが、12.5μm〜45μmであることが好ましい。
また、前記半導体素子と前記多孔質状金属層との間に、更に絶縁樹脂が介在していることが好ましい。
また、多孔質状金属層が、加圧・加熱により多孔質状金属層前駆体を焼成してなる層であることが好ましい。
また、前記多孔質状金属層が、有機分散媒に金属微粒子(M)を分散してなる金属微粒子分散材(E)を焼結してなる層であり、前記金属微粒子(M)が、平均粒子径2〜500nmの金属微粒子(M1)を含むことが好ましい。
また、前記金属微粒子(M)が、銅および銀から選択される1種又は2種を含むことが好ましい。
本発明によれば、半導体素子へのリーク電流の増加を抑制でき、半導体素子の耐圧特性が低下することを防止し得る、信頼性の高い接続構造が得られる。
第1実施形態に係る接続構造体を模式的に示す断面図である。 多孔質状金属層の幅Lが所定の関係を満たさない場合の接続構造体を模式的に示す断面図である。 本発明に係る接続構造体を作成する際に好適に用いることができる焼結炉の断面を示す概念図である。 第2実施形態に係る接続構造体を模式的に示す断面図である。 面取り部が好ましい条件を満たさない場合の接続構造体の断面の一部を模式的に示す断面図である。 多孔質状金属層前駆体が半導体素子の側面を這い上がる様子を模式的に示す断面図である。
以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。
[第1実施形態]
<接続構造体>
以下、図1に示す接続構造体1を例に本発明の一形態について説明する。
図1に示されるように、本発明の一実施形態に係る接続構造体1は、導体部材11と、導体部材11上に多孔質状金属層13を介して接合されてなる半導体素子12とを備える。
(1)導体部材
導体部材11は、特に限定されるものではないが、例えば、半導体装置に使用する基板や、リードフレーム等を用いることができる。
半導体装置に使用する基板としては、例えば、セラミックス等の絶縁層の一方の面上に銅板等の導体パターンをめっきやスパッタ、あるいは、ロウ材等で接合して形成したもの、セラミック基板に直接電極板を接合したDBC(Direct Bonded Copper)基板等が好適に使用できる。なお、基板の他方の面には放熱等を目的として金属板(例えば銅板等)を接合してもよい。
ここで、セラミックスとしては、例えば、アルミナ(Al)、窒化アルミ(AlN)および窒化ケイ素(Si)等が挙げられる。
また、リードフレームについては、公知のものを広く使用できる。特に、半導体素子12をリードフレーム上に実装すると、放熱性が高まることが期待できる。
なお、導体部材11の大きさや形状は、実装する半導体素子12の大きさや数等に応じて適宜選択すればよい。
(2)半導体素子
半導体素子12は、導体部材11の上に、多孔質状金属層13を介して接合される。
半導体素子12は、半導体による電子部品、または電子部品の機能中心部の素子である。このような半導体素子12は、例えば半導体ウエハと外部接続用電極を有する基板とを貼り合わせ、これをチップ単位に切断(ダイシング)して形成される。
また、半導体素子12には、電極等との多孔質状金属層13に対向する面121に合金等の金属層が設けられていることが好ましい。このような合金としては、例えばTi−Ni−Au合金、Ti−Ni−Cu合金、Ti−Ni−Ag合金、Ti−Au合金、Ti−Cu合金、Ti−Ag合金等が挙げられる。
なお、半導体素子12の大きさや形状は、使用の目的に応じて適宜選択することができる。
(3)多孔質状金属層
多孔質状金属層13は、導体部材11と、半導体素子12との間に配置される。
多孔質状金属層13の厚みtは、100μm以下であり、好ましくは50μm以下である。該厚みtが100μmを越えると、導体部材11上に大きな熱を発する半導体素子12(例えば、パワーデバイス等)を実装した場合に、半導体素子12から発生した熱を導体部材11側に伝える際の熱抵抗が大きくなるおそれがある。
また、多孔質状金属層13の厚みtは、10μm以上であることが好ましい。該厚みtが小さくなるほど上記熱抵抗は低下するが、一方で、小さすぎると部材間の熱膨張係数差に起因した熱応力の緩和性が低いため接続信頼性が低下するおそれがある。
また、多孔質状金属層13の幅Lは、半導体素子12の多孔質状金属層13に対向する面121の幅Lと、上記厚みtとの間で、下記式(1)の関係を満足する。
−t ≦ L ≦ L+t (1)
なお、上述のように、多孔質状金属層13の厚みtは100μm以下であることから、多孔質状金属層13の幅Lは、(L−100μm)以上、(L+100μm)以下である。幅Lが、幅Lに対して±100μmの範囲内にあることにより、チップ搭載精度の向上や、接続材料(多孔質状金属層およびその前駆体)の流動性低下による這い上がりリスクの低下、ガードリング領域内への亀裂進展の抑制、接合材料欠如による素子特性の低下の抑制を図ることができる。
特に、多孔質状金属層13の幅Lが、上記式(1)の関係を満たすことで、放熱性および接続信頼性を確保しつつ、半導体素子12の内部への金属拡散によるリーク電流の増加を抑制でき、半導体素子12の耐圧特性を良好に維持できる。
しかし、多孔質状金属層13の幅Lが、上記式(1)の関係を満足しない場合には、下記のような不具合が生じる。図2(A)および(B)に、多孔質状金属層13の幅Lが上記式(1)の関係を満たさない場合の、接続構造体の断面図を示す。
図2(A)に示されるように、多孔質状金属層13の幅Lが(L−t)よりも小さい場合には、半導体素子12から導体部材11への放熱性が低下して、半導体素子12の外周部の熱抵抗が増加するため、半導体素子12の高温動作が難しくなる。
また、図2(B)に示されるように、多孔質状金属層13の幅Lが(L+t)よりも大きい場合には、多孔質状金属層13の形成過程において、後述する多孔質状金属層前駆体の平面方向への流動性fが低下し、半導体素子12の近傍において厚み方向への流動性fが優位になる。そのため、多孔質状金属層前駆体が半導体素子12の側面123を這い上がり、該側面123に付着しやすくなる。半導体素子12の側面123において、多孔質状金属層前駆体の付着面積が大きくなるほど、焼成時の加熱により、多孔質状金属層前駆体から半導体素子12の内部へと金属拡散が起こりやすくなる。その結果、焼成後の半導体素子12において、リーク電流が増加し、耐圧特性が低下する。
なお、多孔質状金属層13は、金属粒子の焼結体であり、内部に多数の空孔を有する。ここでいう空孔は、焼結体中に形成された金属材料が存在しない部分であり、金属微粒子間の隙間によって形成されている。多孔質状金属層13の内部において、金属材料の占める体積割合が50〜99.999%の範囲にあることが好ましい。空孔の大きさは、平均最大幅が10〜1000nmであることが好ましい。なお、空孔は、部分的に有機材料が充填されていてもよい。
多孔質状金属層13を構成する金属微粒子は、Cu(銅)、Ag(銀)、Au(金)、Al(アルミニウム)、Ni(ニッケル)、Sn(錫)、In(インジウム)およびTi(チタン)から選択される1種または2種以上の金属を主たる構成要素とすることが好ましい。特に、放熱性および導電性に優れることから、CuおよびAgから選択される1種または2種を含むことが好ましく、さらにマイグレーションを抑制できることから、Cuを含むことがより好ましい。
また、多孔質状金属層13は、加圧・加熱により多孔質状金属層前駆体を焼成してなる層であることが好ましい。このような多孔質状金属層13によれば、接合界面端部に発生する応力を緩和でき、放熱性と導電性を維持しつつ接合信頼性を向上できる。
この他、多孔質状金属層13としては、例えば、空孔率が2〜25体積%である、平均空孔径が30〜600nmである、等の諸条件を満足するものを好適に用いることができる。
(4)その他
接続構造体1において、半導体素子12と多孔質状金属層13との間には、更に絶縁樹脂が介在していることが好ましい。半導体素子12と多孔質状金属層13との間に絶縁樹脂が介在することにより、半導体素子12の側面123に多孔質状金属層13が付着するのを抑制でき、半導体素子12の内部への金属拡散を防止できる。
絶縁樹脂は、耐熱性樹脂であることが好ましい。耐熱性樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、シリコン樹脂、アミドイミド樹脂、マレイミド樹脂、ポリビニルピロリドン等が挙げられ、これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、このような耐熱性樹脂は、荷重たわみ温度が150℃以上で、かつガラス転移温度(Tg)が100℃以上であることが好ましい。
なお、接続構造体1は、本発明の効果を妨げない範囲で、必要に応じて、上記以外の他の層をさらに含んでいてもよい。
<接続構造体の製造方法>
次に、接続構造体1の製造方法について説明する。
(1)まず、図1に示す導体部材11および半導体素子12を準備する。
導体部材11は、上述したように、半導体装置に使用する基板や、リードフレーム等を用いることができる。
また、半導体素子12についても、上述したように、半導体による電子部品、または電子部品の機能中心部の素子を用いることができる。
なお、半導体素子12は、予め所定のサイズに切断(ダイシング)されたものを用いてもよいし、半導体ウエハに後述する多孔質状金属前駆体を形成後に、多孔質状金属前駆体と共に半導体ウエハを所定のサイズに切断(ダイシング)して個片化してもよい。
ダイシング方法は、特に限定されるものではなく、公知の装置および方法を用いて行うことができる。
(2)次いで、焼成後に図1に示す多孔質状金属層13を構成することになる多孔質状金属層前駆体を形成するために、金属微粒子分散材を準備する。すなわち、多孔質状金属層13は、金属微粒子分散材を焼結してなる層であることが好ましい。
金属微粒子分散材は、金属微粒子(M)を塗料化して調整される。このような金属微粒子分散材は、有機分散媒に金属微粒子(M)を分散してなることが好ましい。
金属微粒子(M)は、Cu(銅)、Ag(銀)、Au(金)、Al(アルミニウム)、Ni(ニッケル)、Sn(錫)、In(インジウム)およびTi(チタン)から選択される1種または2種以上の金属を含むことが好ましく、放熱性および導電性に優れることから、CuおよびAgから選択される1種または2種を含むことがより好ましく、さらに、加工性、マイグレーションの防止、コスト低減等の点からCuを含むことが特に好ましい。
金属微粒子(M)は、導電性と熱伝導性が高く、焼結性を有する微粒子であり、平均一次粒子径がナノサイズ(1μm未満の粒子をいう)のものが好ましい。具体的には、平均一次粒子径が2〜500nmの金属微粒子(M1)が好ましい。金属微粒子(M)の平均一次粒径を上記範囲とすることにより、焼成により、均質な粒子径と空孔を有する緻密な多孔質体が形成できる。
金属微粒子(M)は、平均一次粒子径が2〜500nmの金属微粒子(M1)に、更に平均一次粒子径が0.5〜50μmの金属微粒子(M2)を併用してもよい。このような併用により、金属微粒子(M2)間に金属微粒子(M1)が良好に分散して安定化されるため、焼成時に金属微粒子(M1)が自由に移動することを効果的に抑制することができ、前述の金属微粒子(M1)の分散性と安定性をさらに向上できる。なお、金属微粒子(M)中に金属微粒子(M2)を混合して使用する場合、金属微粒子(M)中の金属微粒子(M1)は50〜95体積%で、金属微粒子(M2)は50〜5体積%(体積%の合計は100体積%である)とすることが好ましい。金属微粒子(M2)としては、金属微粒子(M1)に記載したと同種の金属粒子を使用することが好ましい。
ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の金属微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて得られる画像から測定すること可能な測定値である。また、平均粒子径とは、電子顕微鏡を用いて観察可能な一次粒子の数平均粒子径を意味する。
また、金属微粒子(M)の配合量は、金属微粒子分散材100質量%中に、50〜85質量%であることが好ましい。
有機分散媒には、分子中に2以上のヒドロキシル基を有する1種又は2種以上のポリオールが含有されていることが好ましく、該ポリオールの融点は30〜280℃であることがより好ましい。ポリオールは、多孔質状金属層前駆体中で金属微粒子(M)を分散させ、かつ、加熱・焼結する際に脱水素化反応を受けて水素ラジカルを発生させて焼結を促進する作用を発揮する。
このようなポリオールとしては、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリトリトール、ペンタエリスリトール、ペンチトール、キシリトール、リビトール、アラビトール、ヘキシトール、マンニトール、ソルビトール、ズルシトール、グリセルアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコース、フルクトース、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクトース、キシロース、アラビノース、イソマルトース、グルコヘプトース、ヘプトース、マルトトリオース、ラクツロース、及びトレハロースから選択される1種又は2種以上が例示できる。
有機分散媒の成分としては、上記ポリオール以外に、アルコール、アミド基を有する有機溶媒、エーテル系化合物、ケトン系化合物、アミン系化合物等を配合することができる。これらのポリオール以外の分散媒は、有機分散媒中で併せて30体積%以下となるように配合されることが好ましい。
また、有機分散媒は、必要に応じて有機バインダーを含んでも良い。
有機バインダーは、金属微粒子分散材中で金属微粒子(M)の凝集の抑制、金属微粒子分散材の粘度の調節、及び導体部材11等の上に塗布後、形状を維持する機能を発揮する。このような有機バインダーとしては、セルロース樹脂系バインダー、アセテート樹脂系バインダー、アクリル樹脂系バインダー、ウレタン樹脂系バインダー、ポリビニルピロリドン樹脂系バインダー、ポリアミド樹脂系バインダー、ブチラール樹脂系バインダー、及びテルペン系バインダーから選択される1種又は2種以上が好ましい。なお、有機分散媒として、有機バインダーを配合する場合には、有機分散媒100質量%に対して、0.1〜10質量%とすることが好ましい。有機分散媒中の有機バインダーの配合量が多すぎると、多孔質状金属層前駆体を焼成する際に、有機バインダーが熱分解しにくくなり、多孔質状金属層13内の残留カーボン量が増えるため、焼結が阻害され、クラック、薄利等の問題を生ずる恐れがある。
また、金属微粒子分散材は、必要に応じて、有機分散剤を含んでいても良い。有機分散剤は、多孔質状金属層前駆体中で金属微粒子(M)を分散させる作用を有する。有機分散剤としては、水溶性の高分子化合物を使用することができ、このような水溶性の高分子化合物としては、例えばポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプンおよびゼラチン等が挙げられる。なお、金属微粒子分散材に、有分散材を配合する場合には、有機分散媒100質量%に対して、0.1〜10質量%とすることが好ましい。上記範囲とすることにより、良好な分散効果が得られる。
また、金属微粒子分散材は、必要に応じて上記以外の成分を含んでいても良い。上記以外の成分としては、例えば増粘剤や帯電防止剤等の各種添加剤が挙げられる。なお、各種添加剤を配合する場合に、その合計量は、有機分散媒100質量%に対して、10質量%以下であることが好ましい。
また、金属微粒子分散材は、適度な粘性を有していることが好ましい。金属粒子分散材の粘度は、多孔質状金属層前駆体の形成方法(塗布法や印刷法)に適した粘度に適宜調整すればよいが、例えば20〜200Pa・sが好ましい。粘度が高すぎると、形成された多孔質状金属層前駆体の表面に印刷痕や、内部に空気が巻き込まれたボイドが形成される原因になる。粘度は、JIS Z8803 (2011)に準じて、振動式粘度計で測定することができる。上記振動式粘度計としては、例えば、株式会社セコニック製、振動式粘度計、型式:VM100Aを挙げることができる。
また、金属微粒子分散材の調整方法は、特に限定されるものではなく、上記成分を適量秤量して配合し、これを公知の分散方法により分散させることにより行うことができる。
(3)次に、上記にて調製した金属微粒子分散材を使用して、焼成後に多孔質状金属層13となる多孔質状金属層前駆体を形成する。
多孔質状金属層前駆体は、導体部材11または半導体素子12上に直接形成しても良いし、キャリアシート上に形成した後、導体部材11および半導体素子12の間に配置しても良い。
多孔質状金属層前駆体を形成する方法は、特に限定されず、粘度や形成範囲、厚み等に応じて、公知の方法から適宜選択して行うことができる。例えば、塗布法、印刷法、刷毛塗り法、転写法、スパッタ法等を用いることができる。
多孔質状金属層前駆体は、導体部材11、半導体素子12またはキャリアシート上に形成された後に、必要に応じて乾燥処理される。多孔質状金属層前駆体の乾燥温度は、好ましくは110〜180℃であり、乾燥時間は、好ましくは10〜60分であり、乾燥雰囲気は、酸素濃度1%以下の窒素雰囲気が好ましい。乾燥後の多孔質状金属層前駆体の厚みは、乾燥前に比較して、50〜70%の厚みに収縮する。
なお、多孔質状金属層前駆体の形成に際しては、後述する加圧を伴う焼成工程において、多孔質状金属前駆体が変形(流動や収縮)することを考慮して、多孔質状金属層前駆体の粘度や、形成幅、厚み等を適宜調節することが好ましい。これにより、加圧・焼成後に得られる多孔質状金属層13の厚みtおよび幅Lを所定の範囲に制御できる。例えば、多孔質状金属層前駆体の粘度については、多孔質状金属層前駆体を形成する際に用いる金属微粒子分散材の粘度や、多孔質状金属層前駆体を乾燥する際の乾燥条件等を適宜調節することにより、調整できる。
(4)次いで、上記で形成された多孔質状金属層前駆体を、導体部材11および半導体素子12の間に配置した積層体を作製する。
具体的には、(i)導体部材11上に形成した多孔質状金属前駆体上に半導体素子12を配置する、(ii)多孔質状金属前駆体を形成した半導体素子12を、多孔質状金属前駆体側から導体部材11上に配置する、または、(iii)キャリアシート上に形成した多孔質状金属前駆体を、導体部材11上に配置し、さらに、該多孔質状金属層前駆体上に半導体素子12を配置することにより、上記積層体を作製することができる。
(5)そして、このようにして得られた積層体を焼成することにより、多孔質状金属層前駆体が焼結されて多孔質状金属層13が形成される。これにより導体部材11と半導体素子12とが、多孔質状金属層13を介して接合され、図1に示す接続構造体1が得られる。なお、積層体の焼成は、加圧を伴う加熱により行われることが好ましい。
積層体の焼成時の加圧は、半導体素子12の上側から、5〜20MPaの圧力で行われることが好ましい。なお、圧力条件が、20MPaを超えると半導体素子12を破損するおそれがある。
上記のような加圧には、例えば、図3に示す焼結装置を使用することができる。すなわち、該装置を用い、以下の操作により加圧、焼成することで、多孔質状金属層前駆体を焼結して、本実施形態に係る多孔質状金属層13を形成できる。
図3(a)に示す、レイアップ用のプレス板42を用意して、ワーク41をそのプレス板42上にレイアップし、真空プレス機43の下熱盤44上にセットする。その後、図3(b)に示すように、チャンバー45を閉じてチャンバー45内を真空状態にする。そして、図3(c)に示すように、加圧シリンダー46により圧力を加えた状態で、ワーク41を上熱盤47と下熱盤44とで挟持して、加熱する。上記加圧下での加熱、焼成により、多孔質状金属層前駆体が焼結されて多孔質状金属層13が形成される。
また、積層体の焼成時の加熱は、5〜20℃/分昇温速度で昇温後、一定温度で保持して行うことが好ましい。昇温速度を上記範囲とすることにより、例えば、空孔率が2〜25体積%で、平均空孔径が30〜600nmである多孔質状金属層13を形成することが可能になる。
なお、保持温度は、200〜300℃とすることが好ましい。また、保持時間は、保持温度によって適宜調整することが望ましいが、例えば、0.01〜1.0時間とすることが好ましい。保持温度及び保持時間を上記範囲とすることにより、多孔質状金属層前駆体が良好に焼結され、また、良好に形成された多孔質状金属層13により導体部材11と半導体素子12とが良好に接合される。また、保持温度が高すぎる場合や保持時間が長すぎる場合には、半導体素子12を破損する恐れがあるほか、多孔質状金属層13を形成する金属微粒子が半導体素子12の内部に拡散しやすくなる傾向にある。
上記温度および圧力で一定時間保持された積層体は、冷却後に徐荷し、接続構造体1として上記焼成装置から回収される。
このようにして得られた接続構造体1は、半導体素子12においてリーク電流の増加を防止でき、また耐圧特性に優れる。
なお、接続構造体1は、半導体素子12と、多孔質状金属層13との間に、更に絶縁樹脂を介在させることが好ましい。絶縁樹脂を介在させる方法は、特に限定されるものではないが、例えば次のような方法が挙げられる。
(イ)多孔質状金属層前駆体に絶縁樹脂を配合する方法
多孔質状金属層前駆体を形成する際の金属微粒子分散材中に、絶縁樹脂を予め適量配合しておき、該金属微粒子分散材を用いて多孔質状金属層前駆体を形成する。このような絶縁樹脂が配合された多孔質状金属層前駆体を有する積層体を上述の方法で焼成すると、焼成時の加圧と加熱により、多孔質状金属層前駆体中の絶縁樹脂と有機分散媒が金属微粒子(M)から分離して外周側に押し出される。押し出された絶縁樹脂は、焼結後も多孔質状金属層13の外周面に留まるため、半導体素子12と多孔質状金属層13との間に絶縁樹脂が介在した接続構造体1が得られる。
(ロ)絶縁樹脂層を形成する方法
予め、絶縁樹脂が分散した溶液を準備しておく。該樹脂溶液を用いて、半導体素子12、多孔質状金属層前駆体、またはキャリアシート上に絶縁樹脂層を形成し、半導体素子12と多孔質状金属層前駆体との間に配置する。このようにして得られた積層体を、上述の方法で焼成することで、半導体素子12と多孔質状金属層13との間に絶縁樹脂が介在した接続構造体1が得られる。なお、該絶縁樹脂層の形成方法および配置方法は、上述した多孔質状金属層前駆体と同様の方法により行うことができる。
上記のように、焼成時に、半導体素子12と多孔質状金属層前駆体との間に絶縁樹脂が介在していることにより、加圧を伴う加熱により多孔質状金属層前駆体が流動し、多孔質状金属層前駆体が半導体素子12の側面を這い上がった場合であっても、絶縁樹脂が先に半導体素子12の側面123側に付着するため、該側面123に直接金属微粒子(M)が付着するのを防止でき、半導体素子12内部への金属拡散も防止できる。
また、このような絶縁樹脂としては、上述の耐熱性樹脂を好適に用いることができる。
[第2実施形態]
本実施形態では、図4および図5を参照しながら、本発明の接続構造体1について、別の一形態を説明する。なお、以下に示す部分以外は、第1実施形態と同様な構成および作用効果を有し、重複する記載は一部省略する。
ここで、図4は、接続構造体1の断面を示す図であり、図5は、好ましい条件を満たさない接続構造体の断面の一部を示す図である。
図4に示されるように、第1実施形態に係る接続構造体1を構成する半導体素子12について一部を改良している。すなわち、接続構造体1は、半導体素子12が、好ましくは多孔質状金属層13に対向する面121の反対側の面122と、半導体素子12の側面123とにわたって、面取り部125を有している。
ここで、半導体素子12の高さ方向に沿った面取り部125の面取り高さHは、半導体素子12の厚みtの1/2以下であることが好ましい。このような面取り部125を有することにより、耐チッピング性が向上する。
しかし、図5(A)に示されるように、面取り高さHが大きすぎると、ダイシング時にチッピングが発生しやすくなり、また、焼成時には、半導体素子12と多孔質状金属層13との接続面付近にクラックが発生しやすくなるため、歩留まりが悪化する。さらに、面取り高さHが大きすぎる場合には、焼成時の多孔質状金属層前駆体の這い上がり量の増加に伴い、リーク電流が増加し、半導体素子12の耐圧特性が低下する傾向にある。特に、這い上がった多孔質状金属層前駆体が半導体表面側のガードリングに付着した場合、金属の電荷(イオン)の移動により、ブレークダウンが発生するおそれがある。
なお、這い上がり量tとは、図6(A)および(B)に示されるように、半導体素子12の裏面電極と多孔質状金属層13が接する界面(121、132)を基準面とした場合に、半導体素子12の側面123に沿って、基準面から厚み方向に、多孔質状金属層13または多孔質状金属層前駆体が流動したときの高さ、である。
特に、多孔質状金属層前駆体の這い上がり量tが、半導体素子12の厚みtの半分以上となる場合に、半導体素子12内部への金属拡散およびこれに伴うリーク電流の増加の問題が顕著となる。
また、面取り部125の面取り幅Wは、12.5μm以上であることが好ましい。図5(B)に示すように、面取り幅Wが小さすぎると、面取り部125を形成することが困難となる。また、面取り幅Wが小さすぎると、多孔質状金属層13を形成する際の加圧を伴う加熱工程において多孔質状金属層前駆体が流動し、半導体素子12の側面123を這い上がってきた場合に、半導体素子12のガードリング電極127と、多孔質状金属層前駆体とが接触するリスクがある。
面取り部125の面取り幅Wは、45μm以下であることが好ましい。図5(C)に示すように、面取り幅Wが大きすぎると、半導体素子12の耐圧や使用状況(湿度や圧力)によっては、上記のように半導体素子12の側面123を這い上った多孔質状金属層13と半導体素子12との間で、空気が絶縁破壊を起こして、火花放電を起こすリスクがある。
また、図4に示すように、面取り部125は、半導体素子12の側面123に沿った直線Xと、多孔質状金属層13に対向する面の反対側の面122に沿った直線Xとの交点Dを中心とする、半径Rの円弧状の曲面を有していることが好ましい。
このような円弧状の曲面を有する面取り部125の面取り高さHおよび面取り幅Wは、半径Rとなる。したがって、半径Rは、12.5〜45μmであることが好ましい。半径Rが上記範囲を満足することにより、面取り部の形成加工が容易である他、加圧を伴う接続プロセスにおいて、多孔質状金属層前駆体が半導体素子12の側面123を這い上がってきた場合であっても、多孔質状金属層が電極127に接触することを防止でき、且つ、這い上がった多孔質状金属層と電極127との間で適度な放電距離を確保できる。
なお、図4では、半導体素子12の面取り部125は、交点Dを中心とする、半径Rの円弧状の曲面として示されているが、これに限定されるものではなく、面取り部は平面であっても良く、角を丸めただけであってもよい。また、面取り部125の面取り高さHと面取り幅Wは、それぞれ異なる長さであってもよい。
面取り部125の形成方法は、必ずしも限定されるものではないが、好ましくは、半導体素子12のダイシング工程を2段階にすることで形成する。このような方法によれば、ダイシング工程で面取り加工を行うことができ、面取り加工のための個別の工程を設ける必要が無く、製造工程を簡素化できる。また、個片化された半導体素子12を個別に加工する必要が無いため、面取り部の形成も容易である。
具体的には、第1のダイシング工程では、ハイト量をダイシングブレード(以下、単に「ブレード」という。)が半導体ウエハの厚みtの1/2以下まで入る位置に設定し、続く第2のダイシング工程は、ハイト量をブレードが半導体ウエハを十分に貫通する位置に設定して、2段階のダイシング工程を行う。
第1のダイシング工程において、ハイト量を、ブレードが半導体ウエハの厚みtの1/2以下まで入る位置に設定することにより、面取り高さHを半導体素子12の厚みtの1/2以下とすることができる。
また、ブレードのカーフ幅(刃厚)の選択や、送り速度等の設定により、面取り幅Wを所望の大きさに設定することができる。
例えば、第1のダイシング工程で用いるブレードのカーフ幅を、第2のダイシング工程で用いるカーフ幅よりも大きく設定し、その大きさの違いにより、面取り幅Wを制御できる。すなわち、送り速度が一定の場合、第1のダイシング工程で用いられるブレードのカーフ幅により、面取り部125に接する面122の幅Lc1が決定する。
したがって、上記のようなダイシング条件で得られた半導体素子12の面取り幅Wは、多孔質状金属層13に対向する面121の幅Lと、面取り部125に接する面122の幅Lc1との関係で、(L−Lc1)/2と表すことができ、下記式(2)の関係を満足することが好ましい。
12.5μm ≦ (L−Lc1)/2 ≦ 45μm (2)
なお、ダイシング装置およびブレードは、公知のものを広く用いることができる。また、上記以外のダイシング条件についても、公知の設定を用いることができる。
また、面取り部125の形成方法は、上記の方法に限られず、公知の面取り加工により形成することもできる。公知の面取り加工としては、例えば、面取り部分を砥石などにより研削または研磨する方法等が挙げられる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
以下、本発明を、実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
本実施例、比較例で使用した(1)材料、(2)焼結装置、及び(3)評価方法を以下に記載する。
(1)材料
(A)半導体素子
・半導体素子(A−1)
半導体素子(A−1)のサイズは7mm×7mmで、厚みは150μmである。また、多孔質状金属層に対向させる側の面はTi−Ni−Au合金でメタライズされている。
・半導体素子(A−2)
半導体素子(A−2)のサイズは7mm×7mmで、厚みは150μmである。また、多孔質状金属層に対向させる側の面はTi−Ni−Cu合金でメタライズされている。
(B)多孔質状金属層前駆体
・多孔質状金属層前駆体(B−1)
平均一次粒子径20nmの銅微粒子が、ジエチレングリコール中に70質量%の濃度で分散している銅微粒子分散材(1)を使用した。なお、該銅微粒子分散材(1)には、高分子分散剤としてポリビニルピロリドンが2質量%配合されている。
・多孔質状金属層前駆体(B−2)
平均一次粒子径20nmの銅微粒子と平均一次粒子径5μmの銅微粒子とが体積比7:3の割合で混合された銅微粒子が、ジエチレングリコール中に70質量%の濃度で分散している銅微粒子分散材(2)を使用した。なお、該銅微粒子分散材(2)には、高分子分散剤としてポリビニルピロリドンが2質量%配合されている。
・多孔質状金属層前駆体(B−3)
平均一次粒子径20nmの銀微粒子が、オクタンジオール中に90質量%の濃度で分散している銀微粒子分散材(3)を使用した。なお、該銀微粒子分散材(3)には、高分子分散剤としてポリエチレングリコールが2質量%配合されている。
(C)導体部材
・DBC基板(C−1)
東芝マテリアル株式会社製のDBC基板(Cu/窒素珪素/Cu)を使用した。該DBC基板において、Cu板の厚み:0.3mm/セラミック板の厚み:0.32mm/Cu板の厚み:0.3mmである。
(2)焼結装置
図3に示す焼結装置を使用した。該装置を用いて多孔質状金属層前駆体を以下の操作により焼結して多孔質状金属層を形成した。
図3(a)に示す、レイアップ用のプレス板42を用意して、ワーク41をそのプレス板42上にレイアップし、真空プレス機43の下熱盤44上にセットする。その後、図3(b)に示すように、チャンバー45を閉じてチャンバー45内を真空状態にする。そして、図3(c)に示すように、加圧シリンダー46により圧力を加えた状態で、ワーク41を上熱盤47と下熱盤44とで挟持して、加熱する。
上記加熱、焼成により、多孔質状金属層前駆体が焼結されて多孔質状金属層が形成される。
(3)測定および評価
・面取り部Rの測定
作製したサンプルを樹脂埋めし、断面研磨した後、クロスセクションポリッシャ(日本電子株式会社製)により形成した断面について、走査型電子顕微鏡(scanning electron microscope、加速電圧20.0kV、倍率5000倍、WD12.1mm)を用いて画像を作成した。得られた画像から、画像処理ソフト(三谷商事株式会社製 WinROOF)を用いて、半導体素子側面の面取り部Rを計測した。
・耐チッピング性(歩留まり)
得られたサンプルについて、光学顕微鏡を用いて、チッピングの有無を確認した。チッピングが確認されたサンプルを不良品として、歩留まり(良品率(%))を算出した。本実施例では、歩留まりが96%以上を良好とした。
・耐圧試験
任意に抽出したサンプルを10個について(n=10)、ケースレーインスツルメンツ社製のカーブトレーサー2600−PCT−4Bを用いて、逆電圧1200Vをかけた際のリーク電流特性を測定した。リーク電流が100μA以下のサンプルを合格(クリア)とし、合格したサンプルの個数(クリア数)をカウントした。本実施例では、クリア数が9個以上を良好とした。
以下、本発明の実施例および比較例について説明する。
[実施例1]
(多孔質状金属層前駆体の形成)
半導体素子(A−1)に係る6inchのウエハ裏面電極上に、開口径6inch、厚さ0.1mmの印刷マスクを使用して、金属微粒子分散材(1)スキージで印刷供給し、恒温槽内に配置した。その後、恒温槽内を窒素置換して酸素濃度1%の窒素雰囲気とし、常温から150℃へ昇温して、150℃で60分乾燥し、多孔質状金属層前駆体(B−1)を形成した。
(半導体素子のダイシング)
次に、乾燥後の多孔質状金属層前駆体(B−1)上に、ダイシングフレームと共にダイシングテープを一括貼付し、ダイシング装置(株式会社ディスコ製 DAD6340)を用いて、7.0mm角に個片化した。なお、ダイシング条件としては、ブレード型番NBC−ZH 105F−SE−27HEFF(株式会社ディスコ製、カーフ幅0.040〜0.050mm)を用い、回転数40,000rpm、送り速度10.0mm/sec、送りピッチ7.0mmとし、さらに、ハイト量はダイシングテープに10μmブレードが入るように設定して行った。
(多孔質状金属層の形成)
個片化された多孔質状金属層前駆体(B−1)付き半導体素子(A−1)を、ダイスピッカー(キヤノンマシナリー株式会社製CAP-300II型式)でピックアップし、該多孔質状金属層前駆体を下にして、準備したDBC基板上(C−1)に該半導体素子をマウントした。その後、多孔質状金属層前駆体(B−1)と半導体素子(A−1)とが配置されたDBC基板(C−1)を、上記焼結装置を使用して加熱・焼結した。
具体的には、上記半導体素子上に、30μmの離型材(PTFEシート)を配置し、減圧雰囲気下(真空度3000Pa以下)で、上熱盤で上記半導体素子の上側から圧力10MPaで加圧しながら、同時に10℃/分の昇温速度で加熱を開始し、300℃まで昇温後、300℃で20分間保持した。その後、冷却して除荷した。
上記焼結により、多孔質状金属層前駆体(B−1)から多孔質状金属層を形成すると共に、該多孔質状金属層を介して半導体素子(A−1)をDBC基板(C−1)に接合し、接続構造体を得た。
[実施例2]
(多孔質状金属層前駆体の形成)
準備したDBC基板(C−1)へ、開口径6.98mm角、厚さ0.1mmの印刷マスクを使用して、金属微粒子分散材からなる多孔質状金属層前駆体(B−1)をスキージで印刷供給し、150℃に設定した恒温槽で60分乾燥した。
(多孔質状金属層の形成)
次に、乾燥後の多孔質状金属層前駆体(B−1)上に、予め7.0mm角に個片化された半導体素子(A−1)をマウントした。その後、実施例1と同様の方法で、接続構造体を得た。
[実施例3]
多孔質状金属層前駆体の形成において、開口径7.02mm角の印刷マスクを用いた以外は、実施例2と同様の方法で接続構造体を得た。
[実施例4]
半導体素子のダイシングにおいて、ダイシング条件を下記のように設定した以外は、実施例3と同様の方法で接続構造体を得た。
実施例4のダイシング工程は2段階で行われた。第1のダイシング工程は、ブレード型番NBC−ZH 105F−SE−27HEFF(株式会社ディスコ製、カーフ幅0.040〜0.050mm)を用いて、回転数40,000rpm、送り速度10.0mm/sec、送りピッチ7.0mmとし、さらに、ハイト量はチップ厚の1/2にブレードが入るように設定して行った。また、第2のダイシング工程は、ブレード型番NBC−ZH 105F−SE−27HEFB(株式会社ディスコ製、カーフ幅0.020〜0.025mm)を用いて、回転数40,000rpm、送り速度10.0mm/sec、送りピッチ7.0mmとし、さらに、ハイト量はダイシングテープに10μmブレードが入るように設定して行った。
[実施例5]
半導体素子のダイシングにおいて、第1のダイシング工程は、ブレード型番NBC−ZH 105F−SE−27HEFL(株式会社ディスコ製、カーフ幅0.100〜0.110mm)を用いて、第2のダイシング工程は、ブレード型番NBC−ZH 105F−SE−27HEFF(株式会社ディスコ製、カーフ幅0.040〜0.050mm)を用いた以外は、実施例4と同様の方法で接続構造体を得た。
[実施例6]
半導体素子のダイシングにおいて、第2のダイシング工程は、ブレード型番NBC−ZH 105F−SE−27HEFA(株式会社ディスコ製、カーフ幅0.015〜0.020mm)を用いた以外は、実施例5と同様の方法で接続構造体を得た。
[実施例7]
多孔質状金属層前駆体の形成において、150℃に設定した恒温槽で15分乾燥とした以外は、実施例4と同様の方法で接続構造体を得た。
[実施例8]
多孔質状金属層前駆体の形成において、150℃に設定した恒温槽で15分乾燥とした以外は、実施例5と同様の方法で接続構造体を得た。
[実施例9]
多孔質状金属層前駆体の形成において、150℃に設定した恒温槽で15分乾燥とした以外は、実施例6と同様の方法で接続構造体を得た。
[実施例10]
半導体素子(A−1)に代えて半導体素子(A−2)を用いた以外は、実施例1と同様の方法で接続構造体を得た。
[実施例11]
多孔質状金属層前駆体(B−1)に代えて多孔質状金属層前駆体(B−2)を用いた以外は、実施例1と同様の方法で接続構造体を得た。
[実施例12]
多孔質状金属層前駆体(B−1)に代えて多孔質状金属層前駆体(B−3)を用いた以外は、実施例1と同様の方法で接続構造体を得た。
[実施例13]
多孔質状金属層前駆体の形成において、印刷マスク厚さを0.3mmとした以外は、実施例1と同様の方法で接続構造体を得た。
[比較例1]
DBC基板(C−1)に多孔質状金属層前駆体(B−1)をスキージで印刷供給する際に、開口径6.50mm角、厚さ0.1mmの印刷マスクを使用した以外は、実施例2と同様の方法で接続構造体を得た。
[比較例2]
多孔質状金属層前駆体の形成において、開口径7.50mm角の印刷マスクを用いた以外は、実施例2と同様の方法で接続構造体を得た。
[比較例3]
半導体素子(A−1)に代えて半導体素子(A−2)を用いた以外は、比較例1と同様の方法で接続構造体を得た。
[比較例4]
多孔質状金属層前駆体(B−1)に代えて多孔質状金属層前駆体(B−2)を用いた以外は、比較例1と同様の方法で接続構造体を得た。
[比較例5]
多孔質状金属層前駆体(B−1)に代えて多孔質状金属層前駆体(B−3)を用いた以外は、比較例1と同様の方法で接続構造体を得た。
上記実施例1〜13および比較例1〜5で得られた接続構造体について、上述の方法にて測定および評価した結果を、表1および2に示す。
Figure 0006989242
Figure 0006989242
表1に示されるように、本発明の実施例1〜13に係る接続構造体は、特に、多孔質状金属層の幅Lが、所定の関係(L−t ≦ L ≦ L+t)を満足するため、歩留まりが良く、耐圧特性に優れることが確認された。
一方、表2に示されるように、比較例1〜5に係る接続構造体は、多孔質状金属層の幅Lが、所定の関係(L−t ≦ L ≦ L+t)を満足していない(L<L−tまたはL>L+tある)ため、耐圧特性が悪いことが確認された。
また、本発明によれば、特に実施例4〜9で確認されているように、半導体素子に所定の面取り部を設けることで、さらに歩留まりを向上できる。
1 接続構造体
11 導体部材
12 半導体素子
121 多孔質状金属層に対向する面
122 多孔質状金属層に対向する面の反対側の面
123 側面
125 面取り部
127 ガードリング電極
13 多孔質状金属層
41 ワーク
42 プレス板
43 真空プレス機
44 下熱盤
45 チャンバー
46 加圧シリンダー
47 上熱盤

Claims (8)

  1. 導体部材と、前記導体部材上に有機分散媒に金属微粒子(M)を分散してなる金属微粒子分散材(E)を焼結してなる多孔質状金属層を介して接合されてなる半導体素子とを備える接合構造体であって、
    前記多孔質状金属層の厚みtが、100μm以下であり、
    前記多孔質状金属層の幅Lが、前記半導体素子の前記多孔質状金属層に対向する面の幅Lと前記多孔質状金属層の厚みtとの間で、下記式(1)の関係を満足し、
    −t ≦ L ≦ L+t (1)
    前記半導体素子が、前記多孔質状金属層に対向する面の反対側の面と、前記半導体素子の側面とにわたって、面取り部を有し、
    前記半導体素子の高さ方向に沿った前記面取り部の面取り高さHが、前記半導体素子の厚みtの1/2以下である、接続構造体。
  2. 前記面取り部の面取り幅Wが、12.5μm以上である、請求項1に記載の接合構造体。
  3. 前記面取り部の面取り幅Wが、45μm以下である、請求項1または2に記載の接合構造体。
  4. 前記面取り部が、前記半導体素子の側面に沿った直線と、前記多孔質状金属層に対向する面の反対側の面に沿った直線との交点Dを中心とする、半径Rの円弧状の曲面を有し、
    前記半径Rが、12.5μm〜45μmである、請求項1に記載の接合構造体。
  5. 前記半導体素子と前記多孔質状金属層との間に、更に絶縁樹脂が介在してなる、請求項1〜4のいずれか1項に記載の接合構造体。
  6. 前記多孔質状金属層が、加圧・加熱により多孔質状金属層前駆体を焼成してなる層である、請求項1〜5のいずれか1項に記載の接続構造体。
  7. 前記金属微粒子(M)が、平均粒子径2〜500nmの金属微粒子(M1)を含む、請求項1〜6のいずれか1項に記載の接続構造体。
  8. 前記金属微粒子(M)が、銅および銀から選択される1種又は2種を含む、請求項1〜7のいずれか1項に記載の接続構造体。
JP2015199318A 2015-10-07 2015-10-07 接続構造体 Active JP6989242B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199318A JP6989242B2 (ja) 2015-10-07 2015-10-07 接続構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199318A JP6989242B2 (ja) 2015-10-07 2015-10-07 接続構造体

Publications (2)

Publication Number Publication Date
JP2017071826A JP2017071826A (ja) 2017-04-13
JP6989242B2 true JP6989242B2 (ja) 2022-01-05

Family

ID=58538629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199318A Active JP6989242B2 (ja) 2015-10-07 2015-10-07 接続構造体

Country Status (1)

Country Link
JP (1) JP6989242B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093945B2 (ja) * 2018-02-28 2022-07-01 公立大学法人大阪 ナノ銀ペーストを用いた半導体チップ接合方法
JP7468358B2 (ja) * 2018-11-29 2024-04-16 株式会社レゾナック 接合体及び半導体装置の製造方法、並びに接合用銅ペースト
KR20200083697A (ko) 2018-12-28 2020-07-09 삼성전자주식회사 접착 필름, 이를 이용한 반도체 장치, 및 이를 포함하는 반도체 패키지
JP7228422B2 (ja) * 2019-03-15 2023-02-24 日東電工株式会社 焼結接合用シート、基材付き焼結接合用シート、および焼結接合用材料層付き半導体チップ
EP3951840A4 (en) * 2019-03-29 2022-06-08 Mitsui Mining & Smelting Co., Ltd. COMPOSITE BODIES AND METHOD OF MAKING THEREOF
JP7346171B2 (ja) * 2019-09-02 2023-09-19 株式会社東芝 半導体装置及びその製造方法
DE112022000219T5 (de) * 2021-07-16 2023-08-17 Fuji Electric Co., Ltd. Halbleitervorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837168A (ja) * 1994-07-25 1996-02-06 Sumitomo Electric Ind Ltd 半導体ウエハのダイシング方法及び装置
JP2007090795A (ja) * 2005-09-30 2007-04-12 Sanritsu:Kk 薄板ワークの切断と面取り方法
JP6108987B2 (ja) * 2013-06-28 2017-04-05 古河電気工業株式会社 接続構造体
JP6340215B2 (ja) * 2014-03-07 2018-06-06 イサハヤ電子株式会社 半導体接合方法

Also Published As

Publication number Publication date
JP2017071826A (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6989242B2 (ja) 接続構造体
JP5718536B2 (ja) 接続構造体、及び半導体装置
KR102163532B1 (ko) 반도체 장치, 세라믹스 회로 기판 및 반도체 장치의 제조 방법
JP2013041884A (ja) 半導体装置
JP4013386B2 (ja) 半導体製造用保持体およびその製造方法
JP6319643B2 (ja) セラミックス−銅接合体およびその製造方法
JP6108987B2 (ja) 接続構造体
KR20140127250A (ko) 땜납 접합 구조, 파워 모듈, 히트 싱크가 형성된 파워 모듈용 기판 및 그것들의 제조 방법, 그리고 땜납 하지층 형성용 페이스트
JP6178850B2 (ja) 接続構造体、及び半導体装置
JP6907546B2 (ja) パワーモジュール
JP5863323B2 (ja) 半導体装置、及び半導体装置の製造方法
CN111868900A (zh) 电子组件安装模块的制造方法
JP7155654B2 (ja) 接合体の製造方法
JP6170045B2 (ja) 接合基板及びその製造方法ならびに接合基板を用いた半導体モジュール及びその製造方法
EP3203514B1 (en) Substrate for power module with silver underlayer and power module
JP6853435B2 (ja) パワーモジュールの製造方法
KR20170063544A (ko) Ag 하지층이 형성된 파워 모듈용 기판 및 파워 모듈
JP6606514B2 (ja) 金属粒子及び導電性材料の粒子を用いた導電性接合材料並びに導電性接合構造
WO2020004309A1 (ja) 試料保持具
JP7192100B2 (ja) 窒化珪素回路基板、及び、電子部品モジュール
KR102671539B1 (ko) 전자 부품 모듈, 및 질화규소 회로 기판
JP5682779B2 (ja) 高密度かつ接合性に優れたパワーモジュール用基板
JP2023108664A (ja) 接合体の製造方法
US20040216678A1 (en) Wafer Holder for Semiconductor Manufacturing Equipment and Semiconductor Manufacturing Equipment in Which It Is Installed
US20040154543A1 (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200616

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200618

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200918

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200928

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210412

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210701

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210706

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211004

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211027

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211129

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R151 Written notification of patent or utility model registration

Ref document number: 6989242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151