JP6977292B2 - 絶縁性ペースト - Google Patents

絶縁性ペースト Download PDF

Info

Publication number
JP6977292B2
JP6977292B2 JP2017071715A JP2017071715A JP6977292B2 JP 6977292 B2 JP6977292 B2 JP 6977292B2 JP 2017071715 A JP2017071715 A JP 2017071715A JP 2017071715 A JP2017071715 A JP 2017071715A JP 6977292 B2 JP6977292 B2 JP 6977292B2
Authority
JP
Japan
Prior art keywords
insulating paste
insulating
solvent
paste
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071715A
Other languages
English (en)
Other versions
JP2018174083A (ja
Inventor
麻代 宮地
章弘 堀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2017071715A priority Critical patent/JP6977292B2/ja
Publication of JP2018174083A publication Critical patent/JP2018174083A/ja
Application granted granted Critical
Publication of JP6977292B2 publication Critical patent/JP6977292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

本発明は、絶縁性ペーストに関する。
近年、伸縮性配線基板を構成する基板に用いる材料について様々な開発がなされている。この種の技術としては、例えば、特許文献1に記載の技術が知られている。同文献には、熱可塑性エラストマーからなる絶縁ベース材と、該絶縁ベース材上に形成された配線層と、配線層上に形成された熱可塑性エラストマーからなる絶縁層とを備えた伸縮性フレキシブル回路基板が記載されている。また、熱可塑性エラストマーとして、熱可塑性のウレタンシートを使用することが記載されている(特許文献1の実施例、段落0027)。
特開2013−187380号公報
しかしながら、本発明者が検討したところ、上記文献に記載のエラストマーからなるエラストマー基板においては、エラストマー基板表面に導電性ペーストからなる配線を形成したときの、当該配線パターンの形状保持性の点で、改善の余地を有していることが判明した。
本発明者はさらに検討したところ、乾燥処理を施した絶縁性シートの表面に対して、溶剤を含有する導電性ペーストを用いて導電層を形成したとき、当該導電層のパターン形状が良好に保持されることを見出した。
詳細なメカニズムは定かでないが、導電層の下面と接する下層の絶縁性シートに、導電層中の溶剤が染みこむため、導電層の下面側においても十分に溶剤が乾燥されることになり、導電層のパターン形状が良好となると考えられる。
このような知見に基づきさらに鋭意研究したところ、絶縁性シートの乾燥後における溶剤膨潤度合いを、適切に評価できる評価指標を見出し、当該評価指標に基づいて、絶縁性シートにおける乾燥後の溶剤膨潤度合いを所定値以上とすることにより、上述のように導電層パターンの形状保持性を向上させることを見出し、本発明を完成するに至った。
本発明によれば、
エラストマーを含む絶縁性シートの形成するために用いる絶縁性ペーストであって、
エラストマー組成物および溶剤を含み、
下記の条件で測定される、絶縁性シートにおける乾燥後の溶剤膨潤度合いを示すW2/W1×100が、110%以上200%以下である、絶縁性ペーストが提供される。
(測定条件)
当該絶縁性ペーストを乾燥または硬化させ、絶縁性シートを得る。
得られた絶縁性シートを100℃で60分乾燥させたときの、前記絶縁性シートの重量をW1とし、その後、室温25℃で前記絶縁性シートを測定用溶剤に60分浸漬させた後の、前記絶縁性シートの重量をW2とする。
得られたW1,W2を用いて、式:W2/W1×100に基づいて、前記絶縁性シートにおける乾燥後の溶剤膨潤度合いを求める。
また、本発明によれば、上記絶縁性シートの形成するために用いる絶縁性ペーストであって、エラストマー組成物および溶剤を含む、絶縁性ペーストが提供される。
本発明によれば、表面に形成された導電層パターンの形状保持性に優れた絶縁層を実現できる絶縁性シートおよびそれを形成するための絶縁性ペーストを提供できる。
本実施形態における電子装置の概略を示す断面図である。 本実施形態における電子装置の製造工程の概略を示す断面図である。
以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、本明細書中において、「〜」は特に断りがなければ以上から以下を表す。
本実施形態の絶縁性ペーストの概要について説明する。
本実施形態の絶縁性シートは、エラストマーを含むものであり、下記の条件で測定される、乾燥後の溶剤膨潤度合いを示すW2/W1×100が、110%以上200%以下となるように構成することができる。
(測定条件)
当該絶縁性シートを100℃で60分乾燥させたときの、当該絶縁性シートの重量をW1とし、その後、室温25℃で当該絶縁性シートを測定用溶剤に60分浸漬させた後の、当該絶縁性シートの重量をW2とする。
本実施形態の絶縁性シートは、溶剤を含むペースト状の絶縁性樹脂組成物(絶縁性ペースト)を乾燥することによって構成された乾燥膜とすることができる。この絶縁性ペーストは、支持体の表面に対する塗布性や成膜性に優れている。また、エラストマー組成物を有するため絶縁性ペーストの硬化物は適度な伸縮性を発揮することができる。このような絶縁性ペーストや絶縁性シートは、例えば、伸縮性配線基板を構成する基板を形成する用途に適することができる。
ここで、上記伸縮性配線基板は次のような工程で得ることができる。まず、本実施形態の絶縁性ペーストを支持基板上に塗布し乾燥させることにより、乾燥膜(絶縁層)を形成する。続いて、得られた乾燥膜上に、スキージ印刷等の印刷法によって、溶剤を含有する導電性ペーストからなる塗布膜を形成した後、当該塗布膜を乾燥させて、パターン状の導電層を得る。必要に応じて、これらの絶縁層および導電層をさらなる加熱によって硬化させてもよい。以上により、絶縁層上に配置されたパターン形状の導電層を備える伸縮性配線基板を得ることができる。
本発明者は、このような伸縮性配線基板の製造プロセスにおける絶縁性ペーストについて検討したところ、絶縁性ペーストの乾燥膜(絶縁性シート)の表面に対して、溶剤を含有する導電性ペーストを塗布し乾燥してなる導電層を形成したとき、当該導電層のパターン形状が良好に保持されることを見出した。
詳細なメカニズムは定かでないが、乾燥時において、導電層の下面に接する下層の乾燥膜に、導電層中に残存する溶剤が染みこむため、導電層の下面側においても十分に溶剤が除去されることになり、導電層のパターン形状が良好となると考えられる。
このような知見に基づきさらに鋭意研究したところ、絶縁性シートの乾燥後における溶剤膨潤度合いを、適切に評価できる評価指標W2/W1を見出し、当該評価指標に基づいて、絶縁性シートにおける乾燥後の溶剤膨潤度合いを示すW2/W1を所定値以上とすることにより、導電層パターンの形状保持性を向上させることを見出し、本発明を完成するに至った。
また、本実施形態において、上記W2/W1×100は、乾燥条件や測定用溶剤を適切に選択することによって、乾燥した絶縁性ペーストや絶縁性シートがどの程度の溶剤を再度吸収することを、安定的に評価することができる指標となる。このような指標W2/W1×100を上記下限値以上とすることにより、溶剤膨潤度合いを適度に高くすることで、絶縁性シートおよびそれを形成するために用いる絶縁性ペーストにおいて、導電層パターンの形状保持性を向上させることができる。
また、本実施形態の絶縁性ペーストを基板として使用した伸縮性配線基板を用いることによって、パターン形状が良好である配線を実現し、接続信頼性が良好な接続構造を実現することができる。
以下、本実施形態の絶縁性ペーストについて説明する。
本実施形態の絶縁性ペーストは、絶縁性シートの形成するために用いる絶縁性ペーストであって、エラストマー組成物および溶剤を含むことができる。本実施形態の絶縁性ペーストがエラストマー組成物を含むことにより、絶縁性ペーストからなるエラストマーを伸縮性基板などに利用した際も、当該エラストマーに対して適度な伸縮性を発現することができる。また、このエラストマー組成物は、溶剤に可溶なものから選択することができる。このため、本実施形態の絶縁性ペーストからなる絶縁性シートは、導電性ペースト中の溶剤を吸収可能となり、導電性ペーストで構成された配線の形状安定性を向上させることができる。
(エラストマー)
上記エラストマーとしては、シリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、アクリルゴム、スチレンゴム、クロロプレンゴム、エチレンプロピレンゴム等を用いることができる。この中でも、エラストマーは、シリコーンゴム、ウレタンゴム、フッ素ゴムからなる群から選択される一種以上の熱硬化性エラストマーを含むことができる。また、エラストマーは、化学的に安定であり、また、機械的強度にも優れる観点からシリコーンゴムを含むことができる。
上記熱硬化性エラストマーは、熱硬化性エラストマー組成物の硬化物で構成することができる。例えば、上記シリコーンゴムは、シリコーンゴム系硬化性組成物の硬化物で構成することができる。なお熱可塑性エラストマーは、熱可塑性エラストマーの乾燥物で構成することができる。本明細書中、絶縁性ペーストのエラストマーとは、絶縁性ペーストを乾燥または硬化して形成されたエラストマーを意味するものとする。
エラストマー組成物は、上記エラストマーを形成するために用いるものであり、例えば、シリコーンゴム、ウレタンゴム、フッ素ゴムからなる群から選択される一種以上の熱硬化性エラストマーを形成するために用いる熱硬化性エラストマー組成物を含むことができ、好ましくは、シリコーンゴム系硬化性組成物を含むことができる。
以下、本実施形態のエラストマーの一例であるシリコーンゴムとして、シリコーンゴム系硬化性組成物を用いた場合について説明する。
本実施形態のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)を含むことができる。ビニル基含有オルガノポリシロキサン(A)は、本実施形態のシリコーンゴム系硬化性組成物の主成分となる重合物である。
上記ビニル基含有オルガノポリシロキサン(A)は、直鎖構造を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を含むことができる。
上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、直鎖構造を有し、かつ、ビニル基を含有しており、かかるビニル基が硬化時の架橋点となる。
ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基の含有量は、特に限定されないが、例えば、分子内に2個以上のビニル基を有し、かつ15モル%以下であるのが好ましく、0.01〜12モル%であるのがより好ましい。これにより、ビニル基含有直鎖状オルガノポリシロキサン(A1)中におけるビニル基の量が最適化され、後述する各成分とのネットワークの形成を確実に行うことができる。本実施形態において、「〜」は、その両端の数値を含むことを意味する。
なお、本明細書中において、ビニル基含有量とは、ビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。ただし、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであると考える。
また、ビニル基含有直鎖状オルガノポリシロキサン(A1)の重合度は、特に限定されないが、例えば、好ましくは1000〜10000程度、より好ましくは2000〜5000程度の範囲内である。なお、重合度は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)の比重は、特に限定されないが、0.9〜1.1程度の範囲であるのが好ましい。
ビニル基含有直鎖状オルガノポリシロキサン(A1)として、上記のような範囲内の重合度および比重を有するものを用いることにより、得られるシリコーンゴムの耐熱性、難燃性、化学的安定性等の向上を図ることができる。
ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、特に、下記式(1)で表される構造を有するものであるが好ましい。
Figure 0006977292
式(1)中、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられ、中でも、ビニル基が好ましい。炭素数1〜10のアリール基としては、例えば、フェニル基等が挙げられる。
また、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。
また、Rは炭素数1〜8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜8のアリール基としては、例えば、フェニル基が挙げられる。
さらに、式(1)中のRおよびRの置換基としては、例えば、メチル基、ビニル基等が挙げられ、Rの置換基としては、例えば、メチル基等が挙げられる。
なお、式(1)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。さらに、R、およびRについても同様である。
さらに、m、nは、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する繰り返し単位の数であり、mは0〜2000の整数、nは1000〜10000の整数である。mは、好ましくは0〜1000であり、nは、好ましくは2000〜5000である。
また、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)の具体的構造としては、例えば下記式(1−1)で表されるものが挙げられる。
Figure 0006977292
式(1−1)中、RおよびRは、それぞれ独立して、メチル基またはビニル基であり、少なくとも一方がビニル基である。
さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.4モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)と、ビニル基含有量が0.5〜15モル%である第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)とを含有するものであるのが好ましい。シリコーンゴムの原料である生ゴムとして、一般的なビニル基含有量を有する第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)と、ビニル基含有量が高い第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)とを組み合わせることで、ビニル基を偏在化させることができ、シリコーンゴムの架橋ネットワーク中に、より効果的に架橋密度の疎密を形成することができる。その結果、より効果的にシリコーンゴムの引裂強度を高めることができる。
具体的には、ビニル基含有直鎖状オルガノポリシロキサン(A1)として、例えば、上記式(1−1)において、Rがビニル基である単位および/またはRがビニル基である単位を、分子内に2個以上有し、かつ0.4モル%以下を含む第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)と、Rがビニル基である単位および/またはRがビニル基である単位を、0.5〜15モル%含む第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)とを用いるのが好ましい。
また、第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)は、ビニル基含有量が0.01〜0.2モル%であるのが好ましい。また、第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)は、ビニル基含有量が、0.8〜12モル%であるのが好ましい。
さらに、第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)と第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)とを組み合わせて配合する場合、(A1−1)と(A1−2)の比率は特に限定されないが、例えば、重量比で(A1−1):(A1−2)が50:50〜95:5であるのが好ましく、80:20〜90:10であるのがより好ましい。
なお、第1および第2のビニル基含有直鎖状オルガノポリシロキサン(A1−1)および(A1−2)は、それぞれ1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。
また、ビニル基含有オルガノポリシロキサン(A)は、分岐構造を有するビニル基含有分岐状オルガノポリシロキサン(A2)を含んでもよい。
<<オルガノハイドロジェンポリシロキサン(B)>>
本実施形態のシリコーンゴム系硬化性組成物は、オルガノハイドロジェンポリシロキサン(B)を含むことができる。
オルガノハイドロジェンポリシロキサン(B)は、直鎖構造を有する直鎖状オルガノハイドロジェンポリシロキサン(B1)を含むことができる。
直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖構造を有し、かつ、Siに水素が直接結合した構造(≡Si−H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分が有するビニル基とヒドロシリル化反応し、これらの成分を架橋する重合体である。
直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子量は特に限定されないが、例えば、重量平均分子量が20000以下であるのが好ましく、1000以上、10000以下であることがより好ましい。
なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)の重量平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。
また、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、通常、ビニル基を有しないものであるのが好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子内において架橋反応が進行するのを的確に防止することができる。
以上のような直鎖状オルガノハイドロジェンポリシロキサン(B1)としては、例えば、下記式(2)で表される構造を有するものが好ましく用いられる。
Figure 0006977292
式(2)中、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。
また、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。
なお、式(2)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。Rについても同様である。ただし、複数のRおよびRのうち、少なくとも2つ以上がヒドリド基である。
また、Rは炭素数1〜8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜8のアリール基としては、例えば、フェニル基が挙げられる。複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。
なお、式(2)中のR,R,Rの置換基としては、例えば、メチル基、ビニル基等が挙げられ、分子内の架橋反応を防止する観点から、メチル基が好ましい。
さらに、m、nは、式(2)で表される直鎖状オルガノハイドロジェンポリシロキサン(B1)を構成する繰り返し単位の数であり、mは2〜150整数、nは2〜150の整数である。好ましくは、mは2〜100の整数、nは2〜100の整数である。
なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、オルガノハイドロジェンポリシロキサン(B)は、分岐構造を有する分岐状オルガノハイドロジェンポリシロキサン(B2)を含んでもよい。
本実施形態において、絶縁性ペースト中におけるエラストマー組成物の含有量は、絶縁性ペースト全体に対して、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。また、絶縁性ペースト中におけるエラストマー組成物の含有量は、絶縁性ペースト全体に対して、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。
エラストマー組成物の含有量を上記下限値以上とすることにより、絶縁性ペーストのエラストマーが適度な柔軟性を持つことができる。また、エラストマー組成物の含有量を上記上限値以下とすることにより、エラストマーの機械的強度の向上を図ることができる。
<<シリカ粒子(C)>>
本実施形態の絶縁性ペーストは、必要に応じ、シリカ粒子(C)を含むことができる。これにより、絶縁性ペーストから形成されるエラストマーの硬さや機械的強度の向上を図ることができる。また、絶縁性ペーストのエラストマーの絶縁性を高めることができる。
シリカ粒子(C)としては、特に限定されないが、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ等が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
シリカ粒子(C)は、例えば、BET法による比表面積が例えば50〜400m/gであるのが好ましく、100〜400m/gであるのがより好ましい。また、シリカ粒子(C)の平均一次粒径は、例えば1〜100nmであるのが好ましく、5〜20nm程度であるのがより好ましい。
シリカ粒子(C)として、かかる比表面積および平均粒径の範囲内であるものを用いることにより、形成されるシリコーンゴムの硬さや機械的強度の向上、特に引張強度の向上をさせることができる。
本実施形態において、絶縁性ペースト中におけるシリカ粒子(C)の含有量は、絶縁性ペースト全体に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。また、絶縁性ペースト中におけるシリカ粒子(C)の含有量は、絶縁性ペースト全体に対して、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。
シリカ粒子(C)の含有量を上記下限値以上とすることにより、絶縁性ペーストのエラストマーが適度な機械的強度を持つことができる。一方、シリカ粒子(C)の含有量を上記上限値以下とすることにより、エラストマーが適度な伸縮特性を持つことができる。これにより、繰り返し使用時における耐久性を高めることができる。
<<シランカップリング剤(D)>>
本実施形態のシリコーンゴム系硬化性組成物は、シランカップリング剤(D)を含むことができる。
シランカップリング剤(D)は、加水分解性基を有することができる。加水分解基が水により加水分解されて水酸基になり、この水酸基がシリカ粒子(C)表面の水酸基と脱水縮合反応することで、シリカ粒子(C)の表面改質を行うことができる。
また、このシランカップリング剤(D)は、疎水性基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にこの疎水性基が付与されるため、シリコーンゴム系硬化性組成物中ひいてはシリコーンゴム中において、シリカ粒子(C)の凝集力が低下(シラノール基による水素結合による凝集が少なくなる)し、その結果、シリコーンゴム系硬化性組成物中のシリカ粒子の分散性が向上すると推測される。これにより、シリカ粒子とゴムマトリックスとの界面が増加し、シリカ粒子の補強効果が増大する。さらに、ゴムのマトリックス変形の際、マトリックス内でのシリカ粒子の滑り性が向上すると推測される。そして、シリカ粒子(C)の分散性の向上及び滑り性の向上によって、シリカ粒子(C)によるシリコーンゴムの機械的強度(例えば、引張強度や引裂強度など)が向上する。
さらに、シランカップリング剤(D)は、ビニル基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にビニル基が導入される。そのため、シリコーンゴム系硬化性組成物の硬化の際、すなわち、ビニル基含有オルガノポリシロキサン(A)が有するビニル基と、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とがヒドロシリル化反応して、これらによるネットワーク(架橋構造)が形成される際に、シリカ粒子(C)が有するビニル基も、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とのヒドロシリル化反応に関与するため、ネットワーク中にシリカ粒子(C)も取り込まれるようになる。これにより、形成されるシリコーンゴムの低硬度化および高モジュラス化を図ることができる。
シランカップリング剤(D)としては、疎水性基を有するシランカップリング剤およびビニル基を有するシランカップリング剤を併用することができる。
シランカップリング剤(D)としては、例えば、下記式(4)で表わされるものが挙げられる。
−Si−(X)4−n・・・(4)
上記式(4)中、nは1〜3の整数を表わす。Yは、疎水性基、親水性基またはビニル基を有するもののうちのいずれかの官能基を表わし、nが1の時は疎水性基であり、nが2または3の時はその少なくとも1つが疎水性基である。Xは、加水分解性基を表わす。
疎水性基は、炭素数1〜6のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基であり、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられ、中でも、特に、メチル基が好ましい。
また、親水性基は、例えば、水酸基、スルホン酸基、カルボキシル基またはカルボニル基等が挙げられ、中でも、特に、水酸基が好ましい。なお、親水性基は、官能基として含まれていてもよいが、シランカップリング剤(D)に疎水性を付与するという観点からは含まれていないのが好ましい。
さらに、加水分解性基は、メトキシ基、エトキシ基のようなアルコキシ基、クロロ基またはシラザン基等が挙げられ、中でも、シリカ粒子(C)との反応性が高いことから、シラザン基が好ましい。なお、加水分解性基としてシラザン基を有するものは、その構造上の特性から、上記式(4)中の(Y−Si−)の構造を2つ有するものとなる。
上記式(4)で表されるシランカップリング剤(D)の具体例は、例えば、官能基として疎水性基を有するものとして、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザンが挙げられ、官能基としてビニル基を有するものとして、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられるが、中でも、上記記載を考慮すると、特に、疎水性基を有するものとしてはヘキサメチルジシラザン、ビニル基を有するものとしてはジビニルテトラメチルジシラザンであるのが好ましい。
本実施形態において、シランカップリング剤(D)の含有量の下限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。また、シランカップリング剤(D)の含有量の上限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、100質量%以下であることが好ましく、80質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。
シランカップリング剤(D)の含有量を上記下限値以上とすることにより、絶縁性ペーストのエラストマーが基板との適度な密着性を持ち、また、シリカ粒子(C)を用いる場合においては、エラストマー全体としての機械的強度の向上に資することができる。また、シランカップリング剤(D)の含有量を上記上限値以下とすることにより、エラストマーが適度な機械特性を持つことができる。
<<白金または白金化合物(E)>>
本実施形態のシリコーンゴム系硬化性組成物は、白金または白金化合物(E)を含むことができる。
白金または白金化合物(E)は、硬化の際の触媒として作用する触媒成分である。白金または白金化合物(E)の添加量は触媒量である。
白金または白金化合物(E)としては、公知のものを使用することができ、例えば、白金黒、白金をシリカやカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。
なお、白金または白金化合物(E)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本実施形態において、絶縁性ペースト中における白金または白金化合物(E)の含有量は、絶縁性ペースト全体に対して、0.0001質量%以上であることが好ましく、0.0002質量%以上であることがより好ましく、0.0003質量%以上であることがさらに好ましい。また、絶縁性ペースト中における白金または白金化合物(E)の含有量は、絶縁性ペースト全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
白金または白金化合物(E)の含有量を上記下限値以上とすることにより、絶縁性ペーストが適切な速度で硬化することが可能となる。また、白金または白金化合物(E)の含有量を上記上限値以下とすることにより、絶縁性ペーストを作製する際のコストの削減に資することができる。
<<水(F)>>
また、本実施形態のシリコーンゴム系硬化性組成物には、上記成分(A)〜(E)以外に、水(F)が含まれていてもよい。
水(F)は、シリコーンゴム系硬化性組成物に含まれる各成分を分散させる分散媒として機能するとともに、シリカ粒子(C)とシランカップリング剤(D)との反応に寄与する成分である。そのため、シリコーンゴム中において、シリカ粒子(C)とシランカップリング剤(D)とを、より確実に互いに連結したものとすることができ、全体として均一な特性を発揮することができる。
さらに、水(F)を含有する場合、その含有量は、適宜設定することができるが、具体的には、シランカップリング剤(D)100重量部に対して、例えば、10〜100重量部の範囲であるのが好ましく、30〜70重量部の範囲であるのがより好ましい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。
(その他の成分)
さらに、本実施形態のシリコーンゴム系硬化性組成物は、上記(A)〜(F)成分以外に、他の成分をさらに含むことができる。この他の成分としては、例えば、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、酸化セリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ガラスウール、マイカ等のシリカ粒子(C)以外の無機充填材、反応阻害剤、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等の添加剤が挙げられる。
(溶剤)
本実施形態の絶縁性ペーストは、溶剤を含むものである。この溶剤としては、公知の各種溶剤を用いることができるが、例えば、高沸点溶剤を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記高沸点溶剤の沸点の下限値は、例えば、100℃以上であり、好ましくは130℃以上であり、より好ましくは150℃以上である。これにより、支持基板上に絶縁性ペーストを塗布する際、得られる塗布膜の成膜性を向上させることや塗布膜の膜厚バラツキを抑制することができる。一方で、上記高沸点溶剤の沸点の上限値は、特に限定されないが、例えば、300℃以下でもよく、290℃以下でもよく、280℃以下でもよい。これにより、配線形成時においての過度の熱履歴を抑制できるので、電子部品や配線へのダメージを抑制できる。また、絶縁性ペーストのエラストマー中の溶剤が十分揮発したものを基板として使用できるため、かかる基板の表面上に導電性ペーストを用いて印刷で形成された配線の形状を良好に維持することができる。
また、本実施形態の溶剤としては、エラストマーの溶解性や沸点の観点から適切に選択できるが、例えば、炭素数5以上20以下の脂肪族炭化水素、好ましくは炭素数8以上18以下の脂肪族炭化水素、より好ましくは炭素数10以上15以下の脂肪族炭化水素を含むことができる。
また、本実施形態の溶剤の一例としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素類;ベンゼン、トルエン、エチルベンゼン、キシレン、トリフルオロメチルベンゼン、ベンゾトリフルオリドなどの芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、シクロペンチルエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフランなどのエーテル類;ジクロロメタン、クロロホルム、1,1−ジクロロエタン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタンなどのハロアルカン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのカルボン酸アミド類;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド類などを例示することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
ここで用いられる溶剤は、上記の絶縁性ペースト中の組成成分を均一に溶解ないし分散させることのできる溶剤の中から適宜選択すればよい。
上記溶剤が、ハンセン溶解度パラメータの極性項(δ)の上限値が、例えば、10MPa1/2以下であり、好ましくは7MPa1/2以下であり、より好ましくは5.5MPa1/2以下である第1溶剤を含むことができる。これにより、絶縁性ペースト中において、シリコーンゴム系硬化性樹脂組成物などのエラストマー組成物の分散性や溶解性を良好なものとすることができる。この第1溶剤の上記極性項(δ)の下限値は、特に限定されないが、例えば、0Pa1/2以上でもよい。
上記第1溶剤におけるハンセン溶解度パラメータの水素結合項(δ)の上限値が、例えば、20MPa1/2以下であり、好ましくは10MPa1/2以下であり、より好ましくは7MPa1/2以下である。これにより、絶縁性ペースト中において、シリコーンゴム系硬化性樹脂組成物などのエラストマー組成物の分散性や溶解性を良好なものとすることができる。この第1溶剤の上記水素結合項(δ)の下限値は、特に限定されないが、例えば、0Pa1/2以上でもよい。
ハンセンの溶解度パラメータ(HSP)は、ある物質が他のある物質にどのくらい溶けるのかという溶解性を表す指標である。HSPは、溶解性を3次元のベクトルで表す。この3次元ベクトルは、代表的には、分散項(δ)、極性項(δ)、水素結合項(δ)で表すことができる。そしてベクトルが似ているもの同士は、溶解性が高いと判断できる。ベクトルの類似度をハンセン溶解度パラメータの距離(HSP距離)で判断することが可能である。
本明細書で用いている、ハンセン溶解度パラメーター(HSP値)は、HSPiP(Hansen Solubility Parameters in Practice)というソフトを用いて算出することができる。ここで、ハンセンとアボットが開発したコンピューターソフトウエアHSPiPには、HSP距離を計算する機能と様々な樹脂と溶剤もしくは非溶剤のハンセンパラメーターを記載したデータベースが含まれている。
各樹脂の純溶剤および良溶剤と貧溶剤の混合溶剤に対する溶解性を調べ、HSPiPソフトにその結果を入力し、D:分散項、P:極性項、H:水素結合項、R0:溶解球半径を算出する。
本実施形態の溶剤としては、例えば、エラストマーや当該エラストマーを構成する構成単位と溶剤との、HSP距離、極性項や水素結合項の差分が小さいもの選択することができる。
以下、本実施形態の絶縁性シートおよび絶縁性ペーストの特性について説明する。
本実施形態の絶縁性シートにおいて、下記の条件で測定される、乾燥後の溶剤膨潤度合いを示すW2/W1×100の下限値は、例えば、110%以上であり、好ましくは120%以上であり、より好ましくは130%以上である。このような絶縁性ペーストの硬化物等で構成される絶縁性シートにより、表面に形成された導電層パターンの形状保持性に優れた絶縁層を実現できる。一方で、上記溶剤膨潤度合いを示すW2/W1×100の上限値は、特に限定されないが、例えば、200%以下でもよく、好ましくは190%以下でもよく、より好ましくは180%以下でもよい。これにより、例えば、絶縁性シート上に導電ペーストを塗布するときに使用するマスクによって、絶縁性シートの表面にメッシュ(網目構造)跡が残ることや、メッシュ跡により導電層の膜厚にバラツキが生じることを抑制できる。
上記溶剤膨潤度合いの測定において、次のような測定条件が使用できる。
絶縁性シートを100℃で60分乾燥させたときの、当該絶縁性シートの重量をW1とし、その後、室温25℃で当該絶縁性シートを測定用溶剤に60分浸漬させた後の、当該絶縁性シートの重量をW2とする。W1に対するW2の比率(%)を、溶剤膨潤度合いとすることができる。
上記測定用溶剤としては、上記の溶剤を用いることができるが、例えば、導電性ペーストと同種の溶剤でもよく、各種の高沸点溶剤を用いることができる。具体的には、測定用溶剤として、極性項や水素結合項が小さい第1溶剤を使用してもよく、例えば、テトラデカンなどを使用してもよい。
室温25℃においてせん断速度20〔1/s〕で測定した時の絶縁性ペーストの粘度の下限値は、例えば、1Pa・s以上であり、好ましくは5Pa・s以上であり、より好ましくは10Pa・s以上である。これにより、成膜性を向上させることができる。また、厚膜形成時においても膜厚バラツキを抑制できる。一方で、室温25℃における絶縁性ペーストの粘度の上限値は、例えば、100Pa・s以下であり、好ましくは90Pa・s以下であり、より好ましくは80Pa・s以下である。これにより、絶縁性ペーストの塗布容易性や印刷性を向上させることができる。
本実施形態における絶縁性ペーストにおいて、室温25℃において、せん断速度1〔1/s〕で測定した時の粘度をη1とし、せん断速度5〔1/s〕で測定した時の粘度をη5とし、チキソ指数を粘度比(η1/η5)とする。このとき、このチキソ指数の下限値は、例えば、1.0以上であり、好ましくは1.1以上であり、より好ましくは1.2以上である。これにより、絶縁性ペーストのスキージなどによる印刷作業が容易になる。一方で、上記チキソ指数の上限値は、例えば、3.0以下であり、好ましくは2.5以下であり、より好ましくは2.0以下である。これにより、絶縁性ペーストのレベリング性を高めることができる。
本実施形態の絶縁性シートの、JIS K6253(1997)に準拠して規定されるデュロメータ硬さAの上限値としては、例えば、80以下でもよく、好ましくは70以下でもよく、より好ましくは65以下でもよい。これにより、絶縁性ペーストの硬化物等で構成される絶縁性シートにおいて、柔軟性を向上させることができ、屈曲や伸張などの変形が容易となる。絶縁性シートのデュロメータ硬さAの下限値としては、例えば、10以上であり、好ましくは20以上であり、より好ましくは30以上である。このような硬化物を下地基板として使用することにより、下地基板表面上における配線形成性を高めることができる。例えば、スクリーン印刷等の印刷で形成された配線の形状や高さのバラツキを抑制することができる。
本実施形態の絶縁性シートの、JIS K6251(2004)に準拠して測定される引張強度の下限値としては、例えば、4.0MPa以上であり、好ましくは5.0MPa以上であり、より好ましくは6.0MPa以上であり、さらに好ましくは7.0MPa以上である。これにより、絶縁性ペーストの硬化物等で構成される絶縁性シートの機械的強度を向上させることができる。また、破断エネルギーを大きくすることができる。このため、繰り返しの変形に耐えられる耐久性に優れた硬化物を実現することができる。一方で、絶縁性シートの硬化物の引張強度の上限値としては、特に限定されないが、例えば、15MPa以下としてもよく、13MPa以下としてもよい。これにより、絶縁性シートの硬化物の伸縮性と機械的強度のバランスを図ることができる。
本実施形態の絶縁性シートの、JIS K6252(2001)に準拠して測定される引裂強度の下限値としては、例えば、15N/mm以上でもよく、20N/mm以上でもよく、好ましくは25N/mm以上であり、より好ましくは30N/mm以上であり、さらに好ましくは33N/mm以上であり、さらに一層好ましくは35N/mm以上である。これにより、絶縁性ペーストの硬化物等で構成される絶縁性シートの繰り返し使用時における耐久性や機械的強度を向上させることができる。一方で、絶縁性シートの硬化物の引裂強度の上限値としては、特に限定されないが、例えば、70N/mm以下としてもよく、60N/mm以下としてもよい。これにより、本実施形態の絶縁性シートの硬化物の諸特性のバランスをとることができる。
本実施形態では、たとえば絶縁性ペースト中に含まれる各成分の種類や配合量、絶縁性ペーストの調製方法等を適切に選択することにより、上記W2/W1×100、粘度、チキソ指数、硬度、引張強度および引裂強度を制御することが可能である。これらの中でも、たとえば、疎水性の溶剤、炭化水素系溶剤、印刷に適した高沸点の溶剤または極性項や水素結合項が小さい溶剤などの溶剤の種類を適切に選択すること、シリカ粒子(C)の配合量や配合比率、末端にビニル基を有するビニル基含有オルガノポリシロキサン(A)を使用することにより樹脂の架橋密度や架橋構造の偏在を制御すること、シリカ粒子(C)のシランカップリング剤(D)で表面改質すること、水を添加すること等のシランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させること、硬化温度および硬化時間を適切に制御することなどが、上記W2/W1×100、粘度、チキソ指数、硬度、引張強度および引裂強度を所望の数値範囲とするための要素として挙げられる。
(絶縁性ペーストの製造方法)
以下、本実施形態に係る絶縁性ペーストの製造方法について説明する。
本実施形態の絶縁性ペーストは、たとえば、以下に示すような工程を経ることにより製造することができる。
まず、シリコーンゴム系硬化性組成物の各成分を、任意の混練装置により、均一に混合してシリコーンゴム系硬化性組成物を調製する。
[1]たとえば、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、シランカップリング剤(D)とを所定量秤量し、その後、任意の混練装置により、混練することで、これら各成分(A)、(C)、(D)を含有する混練物を得る。
なお、この混練物は、予めビニル基含有オルガノポリシロキサン(A)とシランカップリング剤(D)とを混練し、その後、シリカ粒子(C)を混練(混合)して得るのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)中におけるシリカ粒子(C)の分散性がより向上する。
また、この混練物を得る際には、水(F)を必要に応じて、各成分(A)、(C)、および(D)の混練物に添加するようにしてもよい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。
さらに、各成分(A)、(C)、(D)の混練は、第1温度で加熱する第1ステップと、第2温度で加熱する第2ステップとを経るようにするのが好ましい。これにより、第1ステップにおいて、シリカ粒子(C)の表面をカップリング剤(D)で表面処理することができるとともに、第2ステップにおいて、シリカ粒子(C)とカップリング剤(D)との反応で生成した副生成物を混練物中から確実に除去することができる。その後、必要に応じて、得られた混練物に対して、成分(A)を添加し、更に混練してもよい。これにより、混練物の成分のなじみを向上させることができる。
第1温度は、例えば、40〜120℃程度であるのが好ましく、例えば、60〜90℃程度であるのがより好ましい。第2温度は、例えば、130〜210℃程度であるのが好ましく、例えば、160〜180℃程度であるのがより好ましい。
また、第1ステップにおける雰囲気は、窒素雰囲気下のような不活性雰囲気下であるのが好ましく、第2ステップにおける雰囲気は、減圧雰囲気下であるのが好ましい。
さらに、第1ステップの時間は、例えば、0.3〜1.5時間程度であるのが好ましく、0.5〜1.2時間程度であるのがより好ましい。第2ステップの時間は、例えば、0.7〜3.0時間程度であるのが好ましく、1.0〜2.0時間程度であるのがより好ましい。
第1ステップおよび第2ステップを、上記のような条件とすることで、前記効果をより顕著に得ることができる。
[2]次に、オルガノハイドロジェンポリシロキサン(B)と、白金または白金化合物(E)とを所定量秤量し、その後、任意の混練装置を用いて、上記工程[1]で調製した混練物に、各成分(B)、(E)を混練することで、シリコーンゴム系硬化性組成物(エラストマー組成物)を得る。
なお、この各成分(B)、(E)の混練の際には、予め上記工程[1]で調製した混練物とオルガノハイドロジェンポリシロキサン(B)とを、上記工程[1]で調製した混練物と白金または白金化合物(E)とを混練し、その後、それぞれの混練物を混練するのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応を進行させることなく、各成分(A)〜(E)をシリコーンゴム系硬化性組成物中に確実に分散させることができる。
各成分(B)、(E)を混練する際の温度は、ロール設定温度として、例えば、10〜70℃程度であるのが好ましく、25〜30℃程度であるのがより好ましい。
さらに、混練する時間は、例えば、5分〜1時間程度であるのが好ましく、10〜40分程度であるのがより好ましい。
上記工程[1]および上記工程[2]において、温度を上記範囲内とすることにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。また、上記工程[1]および上記工程[2]において、混練時間を上記範囲内とすることにより、各成分(A)〜(E)をシリコーンゴム系硬化性組成物中により確実に分散させることができる。
なお、各工程[1]、[2]において使用される混練装置としては、特に限定されないが、例えば、ニーダー、2本ロール、バンバリーミキサー(連続ニーダー)、加圧ニーダー等を用いることができる。
また、本工程[2]において、混練物中に1−エチニルシクロヘキサノールのような反応抑制剤を添加するようにしてもよい。これにより、混練物の温度が比較的高い温度に設定されたとしても、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。
[3]次に、工程[2]で得られたエラストマー組成物(シリコーンゴム系硬化性組成物)を、溶剤に溶解させることにより、本実施形態の絶縁性ペーストを得ることができる。
[用途]
以下、本実施形態の絶縁性ペーストの用途の一例について、図1を示しながら説明する。図1には、配線を備えた電子装置100の概略を断面図として図示している。
電子装置100は、図1に示すように、配線基板50と、電子部品60と、を備えることができる。この配線基板50は、基板20上に配線10を備えることにより構成される。基板20は、伸縮性を有する絶縁基板を用いることできる。この基板20は、本実施形態の絶縁性ペーストを硬化させた硬化物で構成することができる。電子部品60は、このような伸縮性配線基板(配線基板50)を構成する配線10に電気的に接続するように構成されていてもよい。
本実施形態の絶縁性ペーストは、得られる硬化物に対して機械的強度や繰り返し伸縮したときの耐久性を維持することができるため、接続信頼性に優れた電子装置100の構造を実現することができる。
本実施形態の電子装置100は、たとえばウェアラブルデバイスとして用いられるものであり、各方向に繰り返し伸縮される装置に好適に用いることができる。
また、本実施形態の電子装置100を構成する配線10は、通常、柔軟性を有する導電性材料により構成される。この導電性材料は、例えば、エラストマー組成物および導電性フィラーを含むことができる。
このエラストマー組成物としては、前述の絶縁性ペーストの材料として例示されたエラストマー組成物と同様のものを採用することができる。具体的には、シリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、アクリルゴム、スチレンゴム、クロロプレンゴム、エチレンプロピレンゴム等を形成するために用いられるエラストマー組成物を用いることができ、用途等に応じ、この材料を適宜選択することができる。
上記配線10は、上記のシリコーンゴム系硬化性組成物および導電性フィラーを含む導電性ペーストを硬化してなる、導電ペーストの硬化物で構成されていてもよい。
上記導電性ペースト中の導電性フィラーとしては、例えば、公知の導電材料を用いてもよいが、以下のような金属粉(G)を含むことができる。
この金属粉(G)を構成する金属は特に限定はされないが、例えば、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、或いはこれらを合金化した金属粉のうち少なくとも一種類、あるいは、これらのうちの二種以上を含むことができる。
これらのうち、金属粉(G)としては、導電性の高さや入手容易性の高さから、銀または銅を含むこと、すなわち、銀粉または銅粉を含むことが好ましい。なお、これらの金属粉(G)は他種金属でコートしたものも使用できる。
本実施形態において、金属粉(G)の形状には制限がないが、樹枝状、球状、リン片状等の従来から用いられているものが使用できる。
また、金属粉(G)の粒径も制限されないが、たとえば平均粒径D50で0.001μm以上であることが好ましく、より好ましくは0.01μm以上であり、さらに好ましくは0.1μm以上である。金属粉(G)の粒径は、たとえば平均粒径D50で1,000μm以下であることが好ましく、より好ましくは100μm以下であり、さらに好ましくは20μm以下である。
平均粒径D50をこのような範囲に設定することで、導電性ペーストの硬化物として適度な導電性を発揮することができる。なお、金属粉(G)の粒径は、たとえば、導電性ペーストあるいはこの硬化物について透過型電子顕微鏡等で観察の上、画像解析を行い、任意に選んだ金属粉200個の平均値として定義することができる。
上記導電性ペースト中における導電性フィラーの含有量は、導電性ペースト全体に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。また、導電性ペースト中における導電性フィラーの含有量は、導電性ペース全体に対して、85質量%以下であることが好ましく、75質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。
金属粉(G)の含有量を上記下限値以上とすることにより、絶縁性ペーストの硬化物が適度な導電特性を持つことができる。また、金属粉(G)の含有量を上記上限値以下とすることにより、硬化物が適度な柔軟性を持つことができる。
また、導電性ペースト中における上記シリカ粒子(C)の含有量の下限値は、シリカ粒子(C)および導電性フィラーの合計量100質量%に対して、例えば、1質量%以上であり、好ましくは3質量%以上であり、より好ましくは5質量%以上とすることができる。これにより、導電性ペーストの硬化物の機械的強度を向上させることができる。一方で、上記導電性ペースト中における上記シリカ粒子(C)の含有量の上限値は、シリカ粒子(C)および導電性フィラーの合計量100質量%に対して、例えば、20質量%以下であり、好ましくは15質量%以下であり、より好ましくは10質量%以下である。これにより、導電性ペーストの硬化物における伸縮電気特性と機械的強度のバランスを図ることができる。
本実施形態において、導電性ペーストの溶剤としては、上述の溶剤種を用いることができるが、この中でも上記絶縁性ペーストや絶縁性ペーストの硬化物である絶縁性シートに対して溶解性を示す溶剤を用いることができる。具体的な導電性ペーストの溶剤としては、例えば、高沸点溶剤やHSPの極性項(δ)や水素結合項(δ)が上記上限値以下の溶剤を用いることができる。
本実施形態の絶縁性ペーストは、上記のような導電性ペーストの硬化物で形成された伸縮配線を備える伸縮性基板を構成する基板や、これら配線間の層間絶縁層に用いることができる。
また、上記電子部品60は、用途に応じ、公知の部品の中から適宜選択すればよい。具体的には、半導体素子、及び半導体素子以外の抵抗やコンデンサ等を挙げることができる。半導体素子としては、たとえば、トランジスタや、ダイオード、LED、コンデンサ等を挙げることができる。本実施形態の電子装置100において、この電子部品60は配線10により導通が図られている。
また、本実施形態の電子装置100は、必要に応じ、カバー材30が備えられていてもよい。このカバー材30を備えることにより、配線10、電子部品60が損傷されることを防ぐことができる。カバー材30は、電子部品60や、基板20上の配線10を覆うように構成されていてもよい。
また、このカバー材30は、基板20と同様の材料により構成することができる。このようなカバー材30が基板20や配線10の伸縮に追従することから、電子装置100全体として、偏りなく伸縮することができ、この電子装置100の長寿命化にも資することができる。
次に、本実施形態の電子装置100の製造工程の一例について図2を用いて説明する。
図2は、本実施形態における電子装置100の製造工程の概略を示す断面図である。
まず図2(a)に示すように、作業台110上に支持体120を設置し、その支持体120上に絶縁ペースト130を塗工する。塗工方法としては、各種の方法を用いることができるが、例えば、スキージ140を用いたスキージ方法などの印刷法を用いることができる。続いて、塗膜状の絶縁ペースト130を乾燥させて、支持体120上に絶縁層132(乾燥した絶縁性シート)を形成することができる。乾燥条件は、絶縁ペースト130中の溶剤の種類や量に応じて適宜設定することができるが、例えば、乾燥温度を150℃〜180℃、乾燥時間を1分〜30分等とすることができる。
続いて、図2(b)に示すように、絶縁層132上に、所定の開口パターン形状を有するマスク160を配置する。そして、図2(b)、(c)に示すように、マスク160を介して、絶縁層132上に導電ペースト150を塗工する。塗工方法は、絶縁ペースト130の塗工方法と同様の手法を用いることができ、例えば、スキージ140によるスキージ印刷を用いてもよい。ここで、絶縁ペースト130および導電ペースト150がそれぞれ熱硬化性エラストマー組成物を含む場合、乾燥した絶縁層132上に、所定のパターン形状を有する導電性塗膜(導電層152)を積層した後、これらを一括して硬化処理してもよい。硬化処理としては、熱硬化性エラストマー組成物に応じて適宜設定できるが、例えば、硬化温度を160℃〜220℃、硬化時間を1時間〜3時間等とすることができる。硬化処理後または硬化処理前に、図2(d)に示すように、マスク160を取り外すことができる。これにより、絶縁層132の硬化物で構成される基板上に、所定のパターン形状を有する、導電層152の硬化物である配線を形成することができる。
続いて、図2(e)に示すように、絶縁層132およびパターン状の導電層152の上に、さらに絶縁ペースト170を塗工し、図2(f)に示すように絶縁層172を形成することができる。これらの工程を適宜、繰り返してもよい。また、絶縁層132から支持体120を分離することも可能である。
以上により、図2(f)に示す電子装置100を得ることができる。
なお、絶縁ペーストに代えて絶縁性シートを使用する場合、図2(b)に示す工程から開始してもよい。すなわち、支持体120上に絶縁性シートを設置し、所定の乾燥を行った後、その絶縁性シート上にマスク160を介して導電ペースト150を塗布してもよい。以後の工程は、上述の工程に従って行うことができる。これにより、図2(f)に示す電子装置100を得ることが可能である。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、参考形態の例を付記する。
1. エラストマーを含む絶縁性シートであって、
下記の条件で測定される、乾燥後の溶剤膨潤度合いを示すW2/W1×100が、110%以上200%以下である、絶縁性シート。
(測定条件)
当該絶縁性シートを100℃で60分乾燥させたときの、当該絶縁性シートの重量をW1とし、その後、室温25℃で当該絶縁性シートを測定用溶剤に60分浸漬させた後の、当該絶縁性シートの重量をW2とする。
2. 1.に記載の絶縁性シートであって、
伸縮性配線基板を構成する基板を形成するために用いられる、絶縁性シート。
3. 1.または2.に記載の絶縁性シートであって、
JIS K6253(1997)に準拠して規定されるデュロメータ硬さAが、10以上80以下である、絶縁性シート。
4. 1.から3.のいずれか1つに記載の絶縁性シートであって、
IS K6251(2004)に準拠して測定される引張強度が、4.0MPa以上15MPa以下である、絶縁性シート。
5. 1.から4.のいずれか1つに記載の絶縁性シートであって、
JIS K6252(2001)に準拠して測定される引裂強度が、15N/mm以上である、絶縁性シート。
6. 1.から5.のいずれか1つに記載の絶縁性シートの形成するために用いる絶縁性ペーストであって、
エラストマー組成物および溶剤を含む、絶縁性ペースト。
7. 6.に記載の絶縁性ペーストであって、
前記溶剤が、沸点が100℃以上300℃以下である高沸点溶剤を含む、絶縁性ペースト。
8. 6.または7.に記載の絶縁性ペーストであって、
前記溶剤が、炭素数5以上20以下の脂肪族炭化水素を含む、絶縁性ペースト。
9. 6.から8.のいずれか1つに記載の絶縁性ペーストであって、
前記溶剤が、ハンセン溶解度パラメータの極性項(δ )が10MPa 1/2 以下である第1溶剤を含む、絶縁性ペースト。
10. 6.から9.のいずれか1つに記載の絶縁性ペーストであって、
室温25℃における、当該絶縁性ペーストの粘度が、1Pa・s以上100Pa・s以下である、絶縁性ペースト。
11. 6.から10.のいずれか1つに記載の絶縁性ペーストであって、
室温25℃における当該絶縁性ペーストについて、せん断速度1〔1/s〕で測定した時の粘度をη1とし、せん断速度5〔1/s〕で測定した時の粘度をη5としたとき、粘度比(η1/η5)であるチキソ指数が、1.0以上3.0以下である、絶縁性ペースト。
12. 6.から11.のいずれか1つに記載の絶縁性ペーストであって、
前記エラストマー組成物が、シリコーンゴム、ウレタンゴム、フッ素ゴムからなる群から選択される一種以上のエラストマーを形成するための熱硬化性エラストマー組成物を含む、絶縁性ペースト。
13. 6.から12.のいずれか1つに記載の絶縁性ペーストであって、
前記エラストマー組成物が、シリコーンゴム系硬化性組成物を含む、絶縁性ペースト。
14. 6.から13.のいずれか1つに記載の絶縁性ペーストであって、
前記エラストマー組成物の含有量が、当該絶縁性ペースト全体に対して、5質量%以上50質量%以下である、絶縁性ペースト。
15. 6.から14.のいずれか1つに記載の絶縁性ペーストであって、
シリカ粒子(C)をさらに含む、絶縁性ペースト。
16. 15.に記載の絶縁性ペーストであって、
前記シリカ粒子(C)の含有量が、当該絶縁性ペースト全体に対して、1質量%以上50質量%以下である、絶縁性ペースト。



以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
実施例および比較例において用いた材料は以下の通りである。
(ビニル基含有オルガノポリシロキサン(A))
(A1−1):第1のビニル基含有直鎖状オルガノポリシロキサン:ビニル基含有量は0.13モル%、Mn=227,734、Mw=573,903、IV値(dl/g)=0.89)、下記の合成スキーム1により合成したビニル基含有ジメチルポリシロキサン(上記式(1−1)で表わされる構造)
(A1−2):第2のビニル基含有直鎖状オルガノポリシロキサン:ビニル基含有量は0.92モル%、下記の合成スキーム2により合成したビニル基含有ジメチルポリシロキサン(上記式(1−1)で表わされる構造でRおよびRがビニル基である構造)
(オルガノハイドロジェンポリシロキサン(B))
(B1):直鎖状オルガノハイドロジェンポリシロキサン:モメンティブ社製、「88466」
(シリカ粒子(C))
(C1):シリカ微粒子(粒径7nm、比表面積300m/g)、日本アエロジル社製、「AEROSIL300」
(シランカップリング剤(D))
(D1):ヘキサメチルジシラザン(HMDZ)、Gelest社製、「HEXAMETHYLDISILAZANE(SIH6110.1)」
(D2):ジビニルテトラメチルジシラザン、Gelest社製、「1,3−DIVINYLTETRAMETHYLDISILAZANE(SID4612.0)」
(白金または白金化合物(E))
(E1):白金化合物、PLATINUM DIVINYLTETRAMETHYLDISILOXANE COMPLEX(in xylene) (Gelest社製、商品名「SIP6831.2」)
(水(F))
(F1):純水
(金属粉(G))
(G1):銀粉、DOWAエレクトロニクス社製、商品名「3−8F」、平均粒径D501.6μm
(添加剤)
(反応阻害剤1):1−エチニル−1−シクロヘキサノール(東京化成社製)
(ビニル基含有オルガノポリシロキサン(A)の合成)
[合成スキーム1:第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)の合成]
下記式(7)にしたがって、第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)を合成した。
すなわち、Arガス置換した、冷却管および攪拌翼を有する300mLセパラブルフラスコに、オクタメチルシクロテトラシロキサン74.7g(252mmol)、カリウムシリコネート0.1gを入れ、昇温し、120℃で30分間攪拌した。なお、この際、粘度の上昇が確認できた。
その後、155℃まで昇温し、3時間攪拌を続けた。そして、3時間後、1,3−ジビニルテトラメチルジシロキサン0.1g(0.6mmol)を添加し、さらに、155℃で4時間攪拌した。
さらに、4時間後、トルエン250mLで希釈した後、水で3回洗浄した。洗浄後の有機層をメタノール1.5Lで数回洗浄することで、再沈精製し、オリゴマーとポリマーを分離した。得られたポリマーを60℃で一晩減圧乾燥し、第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)を得た(Mw=573,903、Mn=227,734)。また、H−NMRスペクトル測定により算出したビニル基含有量は0.13モル%であった。
Figure 0006977292
[合成スキーム2:第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)の合成]
上記(A1−1)の合成工程において、オクタメチルシクロテトラシロキサン74.7g(252mmol)に加えて2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサン0.86g(2.5mmol)を用いたこと以外は、(A1−1)の合成工程と同様にすることで、下記式のように、第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)を合成した。H−NMRスペクトル測定により算出したビニル基含有量は0.92モル%であった。
Figure 0006977292
[絶縁性ペーストの作製]
(実施例1〜6:シリコーンゴム系硬化性組成物1〜6の調製)
実施例1〜6において、次のようにしてシリコーンゴム系硬化性組成物1〜6を調整した。まず、下記の表1に示す割合で、90%のビニル基含有オルガノポリシロキサン(A)、シランカップリング剤(D)および水(F)の混合物を予め混練し、その後、混合物にシリカ粒子(C)を加えてさらに混練し、混練物(シリコーンゴムコンパウンド)を得た。
ここで、シリカ粒子(C)添加後の混練は、カップリング反応のために窒素雰囲気下、60〜90℃の条件下で1時間混練する第1ステップと、副生成物(アンモニア)の除去のために減圧雰囲気下、160〜180℃の条件下で2時間混練する第2ステップとを経ることで行い、その後、冷却し、残り10%のビニル基含有オルガノポリシロキサン(A)を2回に分けて添加し、20分間混練した。
続いて、下記の表1に示す割合で、得られた混練物(シリコーンゴムコンパウンド)100重量部に、オルガノハイドロジェンポリシロキサン(B)、白金または白金化合物(E)および反応阻害剤を加えて、ロールで混練し、シリコーンゴム系硬化性組成物1〜6(エラストマー組成物)を得た。
続いて、得られた100重量部のシリコーンゴム系硬化性組成物1〜6を、212.5重量部のテトラデカンに浸漬し、続いて自転・公転ミキサーで撹拌し、液状の絶縁性ペースト1〜6を得た。
Figure 0006977292
[導電性ペーストの作製]
続いて、表1に記載の100重量部のシリコーンゴム系硬化性組成物5を、233重量部のテトラデカンに浸漬し、続いて自転・公転ミキサーで撹拌し、溶液状としたものに、銀粉(G1)400重量部を加えて再度自転・公転ミキサーで撹拌することで導電性ペーストを得た。
(シリコーンゴムの作製)
実施例1〜6において、得られたシリコーンゴム系硬化性組成物1〜6を、160℃、10MPaで20分間プレスし、厚さ1mmのシート状に成形すると共に、1次硬化した。続いて、200℃で4時間加熱し、2次硬化した。
以上により、シート状シリコーンゴム(シリコーンゴム系硬化性組成物1〜6の硬化物)からなる絶縁性シート1〜6を得た。得られた絶縁性シートに対して、下記の評価を行った。評価結果を表2に示す。
引張強度、については、3つのサンプルで行い、3つの平均値を測定値とした。また、引裂強度については、5つのサンプルで行い、5つの平均値を測定値とした。さらに、硬度については、2つのサンプルを用いて、各サンプルでn=5で測定を行い10測定の平均値を測定値とした。それぞれに対して、その平均値を表2に示す。
(実施例7)
絶縁性シート7として、アズワン株式会社で購入した天然ゴムのシート(硬さ60、厚さ1mm、幅500mm×長さ500mm、アズワン商品コード2−9289−02)を用いた。下記の評価を行った。評価結果については、シリコーンゴムの作製に記載したサンプル数、評価回数と同様におこなった。
(実施例8)
絶縁性シート8として、アズワン株式会社で購入したエチレンプロピレンゴムのシート(硬さ65、厚さ1mm、幅500mm×長さ500mm、アズワン商品コード2−9301−02)を用いた。
(比較例1)
絶縁性シート9として、アズワン株式会社で購入したクロロプレンゴムのシート(硬さ60、厚さ1mm、幅500mm×長さ500mm、アズワン商品コード2−9293−02)を用いた。
(比較例2)
絶縁性ペースト7として、水分散ウレタン(住化バイエルウレタン株式社製、ディスパコールU42)を型枠に流し込み、3日間自然乾燥して150mm×150mm、厚さ1mmの絶縁性シート10を得た。
(比較例3)
絶縁性シート11として、株式会社扶桑ゴム産業で購入したポリエーテル型ウレタンのシート(硬さ90、厚さ1mm、幅1000mm×長さ2000mm、ゴム通商品コード10005−0002−0)を用いた。
(比較例4)
絶縁性シート12として、株式会社扶桑ゴム産業で購入したポリエステル型ウレタンのシート(硬さ30、厚さ1mm、幅1000mm×長さ2000mm、ゴム通商品コード10199−0004−0)を用いた。
(比較例5)
絶縁性シート13として、フッ素系ゴムのシート(厚さ1mm、クレハエラストマー株式会社製、FB760N)を用いた。
(比較例6)
絶縁性シート14として、アズワン株式会社で購入したニトリルゴムのシート(硬さ60、厚さ1mm、幅300mm×長さ300mm、アズワン商品コード2−9305−01)を用いた。
Figure 0006977292
表2中の溶剤のハンセンの溶解度パラメータ(HSP)において、テトラデカンの分散項(δ):15.8MPa1/2、極性項(δ):0MPa1/2、水素結合項(δ):0MPa1/2であり、水の分散項(δ):17.9MPa1/2、極性項(δ):12.8MPa1/2、水素結合項(δ):24.3MPa1/2であった。また、テトラデカンの沸点は253℃であった。
[絶縁性ペーストおよび絶縁性シートの評価]
得られた絶縁性ペーストおよび絶縁性シートについては以下の項目に従い評価を行った。
(溶剤膨潤度合いの測定)
各実施例および各比較例において、得られた絶縁性シートを100℃で60分乾燥させ、そのときの絶縁性シートの重量W1を測定した。その後、室温25℃で当該絶縁性シートを測定用溶剤に60分浸漬させ、そのときの絶縁性シートの重量W2を測定した。測定用溶剤として、テトラデカンを使用した。絶縁性シートにおける乾燥後の溶剤膨潤度合いを、W2/W1×100(%)とした。結果を表1に示す。
<硬度:デュロメータ硬さA>
得られた厚さ1mmの、各実施例および各比較例の絶縁性シートを6枚積層し、6mmの試験片を作製した。室温25℃において、得られた試験片に対して、JIS K6253(1997)に準拠してタイプAデュロメータ硬さ(硬さ)を測定した。
<引張強度>
得られた厚さ1mmの、各実施例および各比較例の絶縁性シートを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、室温25℃において、得られたダンベル状3号形試験片の引張強度を測定した。単位は、MPaである。
<引裂強度>
得られた厚さ1mmの、各実施例および各比較例の絶縁性シートを用いて、室温25℃において、JIS K6252(2001)に準拠して、クレセント形試験片を作製し、得られたクレセント形試験片の引裂強度を測定した。単位は、N/mmである。
(粘度、チキソ指数)
得られた絶縁性ペーストについて、東機産業社製のTPE−100Hを用いて、室温25℃における、せん断速度1〔1/s〕、せん断速度5〔1/s〕、せん断速度20〔1/s〕のそれぞれで粘度を測定した。チキソ指数は、せん断速度1〔1/s〕で測定した時の粘度をη1とし、せん断速度5〔1/s〕で測定した時の粘度をη5としたとき、チキソ指数を粘度比(η1/η5)として求めた。
(導電層パターンの形状保持性評価)
各実施例・比較例で得た絶縁性シート上に、マスク(SUS製の長さ100mm×幅100mm×厚み200μmの、L/S=500μm/500μmで長さ20mm(10本線)で開口しているもの)を乗せ、得られた導電性ペーストをキャストしメタルブレードでスキージした。その後、マスクを外し、180℃のオーブンで2時間乾燥・硬化させ、絶縁性シート(基板)上に、導電層パターン(配線)を形成した。硬化後に隣接する配線を目視で観察し、配線が独立しているかを確認し、独立している配線数を測定した。
◎:10本全て
○:5本以上、9本以下
×:4本以下
各実施例で得られた絶縁性シートは、各比較例の絶縁性シートと比べて、表面に形成された導電層パターンの形状保持性に優れていることが分かった。
10 配線
20 基板
30 カバー材
50 配線基板
60 電子部品
100 電子装置
110 作業台
120 支持体
130 絶縁ペースト
132 絶縁層
140 スキージ
150 導電ペースト
152 導電層
160 マスク
170 絶縁ペースト
172 絶縁層

Claims (16)

  1. エラストマーを含む絶縁性シートの形成するために用いる絶縁性ペーストであって、
    エラストマー組成物および溶剤を含み、
    下記の条件で測定される、絶縁性シートにおける乾燥後の溶剤膨潤度合いを示すW2/W1×100が、110%以上200%以下である、絶縁性ペースト
    (測定条件)
    当該絶縁性ペーストを乾燥または硬化させ、絶縁性シートを得る。
    得られた絶縁性シートを100℃で60分乾燥させたときの、前記絶縁性シートの重量をW1とし、その後、室温25℃で前記絶縁性シートを測定用溶剤に60分浸漬させた後の、前記絶縁性シートの重量をW2とする。
    得られたW1,W2を用いて、式:W2/W1×100に基づいて、前記絶縁性シートにおける乾燥後の溶剤膨潤度合いを求める。
  2. 請求項1に記載の絶縁性ペーストであって、
    伸縮性配線基板を構成する基板を形成するために用いられる、絶縁性ペースト
  3. 請求項1または2に記載の絶縁性ペーストであって、
    前記絶縁性シートのJIS K6253(1997)に準拠して規定されるデュロメータ硬さAが、10以上80以下である、絶縁性ペースト
  4. 請求項1から3のいずれか1項に記載の絶縁性ペーストであって、
    前記絶縁性シートのJIS K6251(2004)に準拠して測定される引張強度が、4.0MPa以上15MPa以下である、絶縁性ペースト
  5. 請求項1から4のいずれか1項に記載の絶縁性ペーストであって、
    前記絶縁性シートのJIS K6252(2001)に準拠して測定される引裂強度が、15N/mm以上である、絶縁性ペースト
  6. 請求項1から5のいずれか1項に記載の絶縁性ペーストであって、
    前記溶剤が、沸点が100℃以上300℃以下である高沸点溶剤を含む、絶縁性ペースト。
  7. 請求項1から6のいずれか1項に記載の絶縁性ペーストであって、
    前記溶剤が、炭素数5以上20以下の脂肪族炭化水素を含む、絶縁性ペースト。
  8. 請求項1かのいずれか1項に記載の絶縁性ペーストであって、
    前記溶剤が、ハンセン溶解度パラメータの極性項(δ)が10MPa1/2以下である第1溶剤を含む、絶縁性ペースト。
  9. 請求項からのいずれか1項に記載の絶縁性ペーストであって、
    室温25℃における、当該絶縁性ペーストの粘度が、1Pa・s以上100Pa・s以下である、絶縁性ペースト。
  10. 請求項からのいずれか1項に記載の絶縁性ペーストであって、
    室温25℃における当該絶縁性ペーストについて、せん断速度1〔1/s〕で測定した時の粘度をη1とし、せん断速度5〔1/s〕で測定した時の粘度をη5としたとき、粘度比(η1/η5)であるチキソ指数が、1.0以上3.0以下である、絶縁性ペースト。
  11. 請求項から10のいずれか1項に記載の絶縁性ペーストであって、
    前記エラストマー組成物が、シリコーンゴム、ウレタンゴム、フッ素ゴムからなる群から選択される一種以上のエラストマーを形成するための熱硬化性エラストマー組成物を含む、絶縁性ペースト。
  12. 請求項から11のいずれか1項に記載の絶縁性ペーストであって、
    前記エラストマー組成物が、シリコーンゴム系硬化性組成物を含む、絶縁性ペースト。
  13. 請求項から12のいずれか1項に記載の絶縁性ペーストであって、
    前記エラストマー組成物の含有量が、当該絶縁性ペースト全体に対して、5質量%以上50質量%以下である、絶縁性ペースト。
  14. 請求項から13のいずれか1項に記載の絶縁性ペーストであって、
    シリカ粒子(C)をさらに含む、絶縁性ペースト。
  15. 請求項14に記載の絶縁性ペーストであって、
    前記シリカ粒子(C)の含有量が、当該絶縁性ペースト全体に対して、1質量%以上50質量%以下である、絶縁性ペースト。
  16. 請求項1から15のいずれか1項に記載の絶縁性ペーストであって、
    前記測定用溶剤が、テトラデカンである、絶縁性ペースト。
JP2017071715A 2017-03-31 2017-03-31 絶縁性ペースト Active JP6977292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071715A JP6977292B2 (ja) 2017-03-31 2017-03-31 絶縁性ペースト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071715A JP6977292B2 (ja) 2017-03-31 2017-03-31 絶縁性ペースト

Publications (2)

Publication Number Publication Date
JP2018174083A JP2018174083A (ja) 2018-11-08
JP6977292B2 true JP6977292B2 (ja) 2021-12-08

Family

ID=64107528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071715A Active JP6977292B2 (ja) 2017-03-31 2017-03-31 絶縁性ペースト

Country Status (1)

Country Link
JP (1) JP6977292B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572056B2 (ja) * 2002-10-04 2010-10-27 信越化学工業株式会社 熱伝導性シリコーンゴム複合シート
JP4802456B2 (ja) * 2004-06-02 2011-10-26 株式会社カネカ 硬化性組成物及び該硬化性組成物により封止された半導体装置
CN107430342A (zh) * 2015-03-06 2017-12-01 东丽株式会社 平版印刷版原版、使用其的平版印刷版的制造方法及印刷物的制造方法
JP2017012674A (ja) * 2015-07-06 2017-01-19 住友ベークライト株式会社 ウェアラブルセンサーデバイス

Also Published As

Publication number Publication date
JP2018174083A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6686420B2 (ja) 配線基板、電子装置、および配線基板の製造方法
JP6680034B2 (ja) 電子装置
JP6772448B2 (ja) 導電性樹脂組成物、配線、配線基板および電子装置
JP2020115475A (ja) 導電性ペースト
JP2021015985A (ja) 伸縮性配線基板およびウェアラブルデバイス
JP6828784B2 (ja) 伸縮性配線基板およびウェアラブルデバイス
JP6888262B2 (ja) 配線基板および電子装置
WO2019123752A1 (ja) 導電性ペースト
JP7088223B2 (ja) 絶縁性ペースト
JP6977292B2 (ja) 絶縁性ペースト
JP7392258B2 (ja) 伸縮性配線基板およびウェアラブルデバイス
JP7512588B2 (ja) 伸縮性配線基板、及びデバイス
JP7308722B2 (ja) 導電性ペーストおよび伸縮性配線基板
CN112771629B (zh) 绝缘性膏
JP2021088688A (ja) シリコーンゴム、及び構造体
WO2019235083A1 (ja) エラストマーおよび成形体
JP2022076292A (ja) 伸縮性多層回路基板、それを用いた伸縮性ディスプレイ、ウェアラブルデバイス、又は生体センサー、表示装置、及び伸縮性多層回路基板の製造方法
JP2022078683A (ja) 柔軟伸縮ヒータデバイス
JP2022055597A (ja) 伸縮性導電糸、導電性構造物、及びウェアラブルデバイス
JP2022102093A (ja) 流体駆動型アクチュエータ、その製造方法、及びアクチュエータシステム
JP2022099852A (ja) センサデバイス、及びモニタリング装置
JP2018171699A (ja) 樹脂製可動部材およびロボット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151