JP6859305B2 - Silver powder and its manufacturing method and conductive paste - Google Patents

Silver powder and its manufacturing method and conductive paste Download PDF

Info

Publication number
JP6859305B2
JP6859305B2 JP2018185391A JP2018185391A JP6859305B2 JP 6859305 B2 JP6859305 B2 JP 6859305B2 JP 2018185391 A JP2018185391 A JP 2018185391A JP 2018185391 A JP2018185391 A JP 2018185391A JP 6859305 B2 JP6859305 B2 JP 6859305B2
Authority
JP
Japan
Prior art keywords
silver
cross
section
silver powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018185391A
Other languages
Japanese (ja)
Other versions
JP2020056050A (en
Inventor
政徳 藤井
政徳 藤井
優磨 東
優磨 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018185391A priority Critical patent/JP6859305B2/en
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to TW112106060A priority patent/TWI829535B/en
Priority to TW108134909A priority patent/TWI807106B/en
Priority to US17/278,796 priority patent/US11804313B2/en
Priority to CN201980063297.7A priority patent/CN112752627B/en
Priority to KR1020217012300A priority patent/KR102423400B1/en
Priority to PCT/JP2019/037843 priority patent/WO2020067282A1/en
Publication of JP2020056050A publication Critical patent/JP2020056050A/en
Application granted granted Critical
Publication of JP6859305B2 publication Critical patent/JP6859305B2/en
Priority to US18/450,736 priority patent/US20230395280A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Description

本発明は、銀粉およびその製造方法ならびに導電性ペーストに関する。本発明は、特に、積層コンデンサの内部電極、太陽電池、プラズマディスプレイパネル及びタッチパネル等の回路形成に使用される導電性ペーストに供される銀粉およびその製造方法ならびに導電性ペーストに関する。 The present invention relates to silver powder, a method for producing the same, and a conductive paste. The present invention particularly relates to silver powder used for conducting circuits used for forming circuits such as internal electrodes of multilayer capacitors, solar cells, plasma display panels and touch panels, a method for producing the same, and the conductive paste.

積層コンデンサの内部電極、回路基板の導体パターン、太陽電池やプラズマディスプレイパネル用基板の電極や回路などを形成する方法としては、例えば、銀粉をガラスフリットとともに有機溶媒中に加えて混練することによって製造される焼成型の導電性ペーストを基板上に所定のパターンに形成した後、500℃以上の温度で加熱することによって、有機溶媒を除去し、銀粉同士を焼結させて導電膜を形成する方法が広く用いられている。 As a method for forming the internal electrodes of a multilayer capacitor, the conductor pattern of a circuit board, the electrodes and circuits of a substrate for a solar cell or a plasma display panel, for example, silver powder is added to an organic solvent together with a glass frit and kneaded. A method in which an organic solvent is removed by forming a firing-type conductive paste to be formed in a predetermined pattern on a substrate and then heated at a temperature of 500 ° C. or higher, and silver powders are sintered to form a conductive film. Is widely used.

このような用途に使用される導電性ペーストに対しては、電子部品の小型化へ対応するために、導体パターンの高密度化、ファインライン化などへの対応が要求される。そのため、使用される銀粉に対しては、粒径が適度に小さく粒度が揃っていること、有機溶媒中で分散していることが要求される。 For the conductive paste used in such applications, it is required to increase the density of the conductor pattern, to make it finer, and the like in order to cope with the miniaturization of electronic parts. Therefore, the silver powder used is required to have an appropriately small particle size and a uniform particle size, and to be dispersed in an organic solvent.

こうした導電性ペースト用の銀粉として、閉鎖された空隙を粒子内部に有する銀粉が知られている(例えば、特許文献1参照)。
粒子内部に閉鎖された空隙を有することにより、より低い温度(例えば400℃)でも焼成可能となる。
As a silver powder for such a conductive paste, a silver powder having closed voids inside the particles is known (see, for example, Patent Document 1).
Having closed voids inside the particles allows firing at lower temperatures (eg 400 ° C.).

特開2015−232180号公報JP-A-2015-232180

上述したように、電子部品の小型化に伴い、微細な配線を描画でき、かつ、焼成後の配線が低抵抗となる電極配線を形成することが可能な銀粉や導電性ペーストが求められている。ところで、粒子内部に閉鎖された空隙があると、その空隙内部に存在するもの(例えば還元時に取り込まれた水分や有機物等)は、焼成時に銀粒子から外部に抜ける。しかし、空隙が大きいと抜けるときの影響が大きく残ることが予想される。 As described above, with the miniaturization of electronic components, there is a demand for silver powder and conductive paste capable of drawing fine wiring and forming electrode wiring having low resistance in the wiring after firing. .. By the way, if there are closed voids inside the particles, those existing inside the voids (for example, water and organic substances taken in during reduction) escape from the silver particles to the outside during firing. However, if the void is large, it is expected that the effect of exiting will remain large.

本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。すなわち、本発明は、微細な配線を描画でき、かつ、焼成後の配線が従来よりもさらに低抵抗となる電極配線を形成することが可能な銀粉を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and to achieve the following object. That is, an object of the present invention is to provide silver powder capable of drawing fine wiring and forming electrode wiring having a wiring having a lower resistance than the conventional one after firing.

本発明者らは、前記目的を解決すべく、鋭意検討した結果、銀粉の粒子内部に閉鎖される空隙のサイズが、焼成後の電極配線の抵抗値に影響があることを知見し、本発明の完成に至った。すなわち、従来の銀粉のように、粒子内部に閉鎖される空隙のサイズが大きいと、大きな空間が焼成後も残存して電極配線の抵抗が大きくなり、一方で、粒子内部に閉鎖される空隙のサイズが小さく、かつ、小さい空隙が多く分散されている球状銀粉であれば、熱重量減少温度が低下し、焼成後に低抵抗な電極配線を形成することが可能となることが分かった。焼成時、小さい空隙は大きい空隙に比べて銀と接している面積が大きいので空隙内の温度が上昇しやすく、小さい空隙が多く分散されていると、大きい空隙がある場合と比べて、空隙内に閉じ込められた導通阻害となる有機溶媒がより低い温度で温められて燃焼すると予想される。そして、粒子内部に閉鎖される空隙のサイズを制御するためには、還元途中の液温を制御することが良いことを本発明者らは見出した。 As a result of diligent studies to solve the above object, the present inventors have found that the size of the voids closed inside the silver powder particles affects the resistance value of the electrode wiring after firing, and the present invention has been made. Has been completed. That is, if the size of the voids closed inside the particles is large like the conventional silver powder, a large space remains even after firing and the resistance of the electrode wiring increases, while the voids closed inside the particles It was found that if the spherical silver powder has a small size and many small voids are dispersed, the thermogravimetric reduction temperature is lowered, and it is possible to form an electrode wiring having low resistance after firing. During firing, the small voids have a larger area in contact with silver than the large voids, so the temperature inside the voids tends to rise. It is expected that the organic solvent, which is confined in the air and inhibits conduction, is warmed at a lower temperature and burns. Then, the present inventors have found that it is good to control the liquid temperature during reduction in order to control the size of the voids closed inside the particles.

本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。すなわち、
<1> 閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉であって、
前記銀粒子の断面を10,000倍で観察したときに、前記断面の面積に対するHeywood径が200nm以上である空隙の個数の平均が、0.01個/μm以下であり、かつ、
前記銀粒子の断面を40,000倍で観察したときに、前記断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数の平均が、25個/μm以上であることを特徴とする銀粉である。
<2> 前記銀粒子の断面を40,000倍で観察したときの、前記断面の面積に対する空隙の面積で表される空隙率(%)が、1%〜4%である前記<1>に記載の銀粉である。
<3> 前記銀粒子の断面を40,000倍で観察したときの、銀粒子のHeywood径の平均が、0.5μm〜1μmである前記<1>または<2>に記載の銀粉である。
<4> 熱重量・示差熱分析法により、室温から400℃まで昇温速度10℃/minの条件で前記銀粉を加熱した場合の、重量変化量が最大の減少量の90%重量減少したときの温度が、270℃以下である前記<1>から<3>のいずれかに記載の銀粉である。
<5> 閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉の製造方法であって、
銀イオンを含有する水性反応系に、還元剤としてアルデヒドを含有する還元剤含有溶液を添加して混合する工程を有し、
混合開始から90秒間後までの水性反応系の液温を33℃以下とすることを特徴とする銀粉の製造方法である。
<6> 混合開始から90秒間後までの水性反応系の液温を30℃以下とする前記<5>に記載の銀粉の製造方法である。
<7> 還元剤添加前の前記水性反応系の液温が、10℃〜20℃であり、
還元剤の添加量が、銀量に対して6.0当量〜14.5当量である前記<5>または<6>に記載の銀粉の製造方法である。
<8> 前記<1>から<4>のいずれかに記載の銀粉を含むことを特徴とする導電性ペーストである。
The present invention is based on the above-mentioned findings by the present inventors, and the means for solving the above-mentioned problems are as follows. That is,
<1> A silver powder containing silver particles having closed voids inside the particles.
When the cross section of the silver particles was observed at a magnification of 10,000, the average number of voids having a Heywood diameter of 200 nm or more with respect to the area of the cross section was 0.01 pieces / μm 2 or less, and
When the cross section of the silver particles is observed at a magnification of 40,000, the average number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the cross section is 25 / μm 2 or more. It is silver powder.
<2> In the above <1>, the porosity (%) represented by the area of the voids with respect to the area of the cross section when the cross section of the silver particles is observed at a magnification of 40,000 is 1% to 4%. The silver powder described.
<3> The silver powder according to <1> or <2>, wherein the average Heywood diameter of the silver particles when the cross section of the silver particles is observed at a magnification of 40,000 is 0.5 μm to 1 μm.
<4> When the weight change amount is reduced by 90% of the maximum reduction amount when the silver powder is heated from room temperature to 400 ° C. under the condition of a heating rate of 10 ° C./min by thermal weight / differential thermal analysis method. The silver powder according to any one of <1> to <3>, wherein the temperature of is 270 ° C. or lower.
<5> A method for producing silver powder containing silver particles having closed voids inside the particles.
It has a step of adding a reducing agent-containing solution containing an aldehyde as a reducing agent to an aqueous reaction system containing silver ions and mixing them.
A method for producing silver powder, wherein the liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds later is 33 ° C. or lower.
<6> The method for producing silver powder according to <5> above, wherein the liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds later is 30 ° C. or lower.
<7> The liquid temperature of the aqueous reaction system before the addition of the reducing agent is 10 ° C to 20 ° C.
The method for producing silver powder according to <5> or <6>, wherein the amount of the reducing agent added is 6.0 equivalents to 14.5 equivalents with respect to the amount of silver.
<8> A conductive paste containing the silver powder according to any one of <1> to <4>.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、微細な配線を描画でき、かつ、焼成後の配線が従来よりもさらに低抵抗となる電極配線を形成することが可能な銀粉を提供することができる。 According to the present invention, it is possible to solve the above-mentioned problems in the prior art, achieve the above object, draw fine wiring, and form an electrode wiring in which the wiring after firing has a lower resistance than the conventional one. It is possible to provide silver powder that can be produced.

図1は、実施例1の銀粉の10,000倍での断面SEM写真を示す図である。FIG. 1 is a diagram showing a cross-sectional SEM photograph of the silver powder of Example 1 at 10,000 times. 図2は、実施例1の銀粉の40,000倍での断面SEM写真を示す図である。FIG. 2 is a diagram showing a cross-sectional SEM photograph of the silver powder of Example 1 at 40,000 times. 図3は、実施例2の銀粉の10,000倍での断面SEM写真を示す図である。FIG. 3 is a diagram showing a cross-sectional SEM photograph of the silver powder of Example 2 at 10,000 times. 図4は、実施例2の銀粉の40,000倍での断面SEM写真を示す図である。FIG. 4 is a diagram showing a cross-sectional SEM photograph of the silver powder of Example 2 at 40,000 times. 図5は、比較例1の銀粉の10,000倍での断面SEM写真を示す図である。FIG. 5 is a diagram showing a cross-sectional SEM photograph of the silver powder of Comparative Example 1 at 10,000 times. 図6は、比較例1の銀粉の40,000倍での断面SEM写真を示す図である。FIG. 6 is a diagram showing a cross-sectional SEM photograph of the silver powder of Comparative Example 1 at 40,000 times. 図7は、比較例2の銀粉の10,000倍での断面SEM写真を示す図である。FIG. 7 is a diagram showing a cross-sectional SEM photograph of the silver powder of Comparative Example 2 at 10,000 times. 図8は、比較例2の銀粉の40,000倍での断面SEM写真を示す図である。FIG. 8 is a diagram showing a cross-sectional SEM photograph of the silver powder of Comparative Example 2 at 40,000 times.

(銀粉)
本発明の銀粉は、閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉であって、前記銀粒子の断面を10,000倍で観察したときに、前記断面の面積に対するHeywood径が200nm以上である空隙の個数の平均が、0.01個/μm以下であり、かつ、前記銀粒子の断面を40,000倍で観察したときに、前記断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数の平均が、25個/μm以上である。
前記銀粉に対する前記銀粒子の含有量としては、90質量%以上が好ましく、95質量%以上がより好ましく、実質的に100%である(すなわち、前記銀粉が銀粒子からなる)ことが更に好ましい。
(Silver powder)
The silver powder of the present invention is a silver powder containing silver particles having closed voids inside the particles, and when the cross section of the silver particles is observed at a magnification of 10,000, the Heywood diameter with respect to the area of the cross section is 200 nm or more. The average number of voids is 0.01 / μm 2 or less, and when the cross section of the silver particles is observed at a magnification of 40,000, the Heywood diameter with respect to the area of the cross section is 10 nm or more and less than 30 nm. The average number of voids is 25 / μm 2 or more.
The content of the silver particles with respect to the silver powder is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably substantially 100% (that is, the silver powder is composed of silver particles).

<銀粒子>
前記銀粒子は、閉鎖された空隙を粒子内部に有する。
前記銀粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができる。
前記銀粒子の断面を40,000倍で観察したときの前記銀粒子のHeywood径の平均としては、0.3μm以上が好ましく、0.4μm以上がより好ましく、0.5μm以上がさらに好ましい。また、2μm以下が好ましく、1.5μm以下がより好ましく、電極配線を形成する際に、微細な配線を好適に描画できる点から1μm以下がさらに好ましい。前記銀粒子の断面を40,000倍で観察したときの前記Heywood径の平均が、0.3μm未満であると、Heywood径で同程度以上の空隙を粒子内部に有することが困難となり、粉末全体として大きな空隙が少ないかどうかを確認できないことがあり、2μmを超えると、40,000倍で観察したときの1視野において1粒子全体を視野に収められないことがある。
前記銀粒子のアスペクト比(長径/短径)の平均としては、2以下が好ましい。前記アスペクト比の平均が2を超えると、ペースト化した際のメッシュ通過性が低下し、細線印刷における吐出ムラが起こる可能性が大きくなるためである。
<Silver particles>
The silver particles have closed voids inside the particles.
The shape of the silver particles is not particularly limited and may be appropriately selected depending on the intended purpose.
The average Heywood diameter of the silver particles when the cross section of the silver particles is observed at a magnification of 40,000 is preferably 0.3 μm or more, more preferably 0.4 μm or more, still more preferably 0.5 μm or more. Further, it is preferably 2 μm or less, more preferably 1.5 μm or less, and further preferably 1 μm or less from the viewpoint that fine wiring can be preferably drawn when forming the electrode wiring. If the average diameter of the Heywood when the cross section of the silver particle is observed at a magnification of 40,000 is less than 0.3 μm, it becomes difficult to have voids having a diameter of the Heywood of the same or more inside the particle, and the entire powder. It may not be possible to confirm whether or not there are few large voids, and if it exceeds 2 μm, it may not be possible to capture the entire particle in one field of view when observing at 40,000 times.
The average aspect ratio (major axis / minor axis) of the silver particles is preferably 2 or less. This is because if the average aspect ratio exceeds 2, the mesh passability at the time of pasting is lowered, and the possibility of ejection unevenness in fine line printing is increased.

−閉鎖された空隙−
前記銀粒子の粒子内部に存在する「閉鎖された空隙」または「空隙」とは、前記銀粒子の断面を観察した場合に、粒子内部に観察される空隙が、粒子外周から粒子外部へ連結する部分を有しておらず、粒子内部に閉じた空隙であることをいう。
-Closed void-
The "closed voids" or "voids" existing inside the particles of the silver particles are the voids observed inside the particles when the cross section of the silver particles is observed, and the voids observed inside the particles are connected from the outer periphery of the particles to the outside of the particles. It means that the void has no portion and is closed inside the particle.

前記銀粒子の断面を10,000倍で観察したときに、前記断面の面積に対するHeywood径が200nm以上である空隙の個数の平均としては、0.01個/μm以下であり、0.00個/μm以下(つまり、観察されないこと)が好ましい。
10,000倍で観察する銀粒子の個数としては、任意の100個以上が好ましく、10,000倍で観察する銀粒子の断面の面積としては、1視野あたり60μm以上が好ましく、観察する銀粒子の断面の総面積としては、120μm以上が好ましい。
2視野以上を観察し、各視野における前記断面の面積に対するHeywood径が200nm以上である空隙の個数をカウントし、それらの平均値を算出する。なお、観察する視野の上限は5視野とする。
なお、SEM像の視野枠によって粒子の一部が見切れていたとしても、粒子の個数や面積としては含めて算出に用いる。SEM像の視野枠によって空隙の一部が見切れているものは、Heywood径が不明であるので上記の空隙として採用しない。
When the cross section of the silver particles is observed at a magnification of 10,000, the average number of voids having a Heywood diameter of 200 nm or more with respect to the area of the cross section is 0.01 / μm 2 or less, which is 0.00. Pieces / μm 2 or less (ie, not observed) is preferred.
The number of silver particles observed at 10,000 times is preferably 100 or more, and the cross-sectional area of silver particles observed at 10,000 times is preferably 60 μm 2 or more per visual field, and silver to be observed. The total area of the cross section of the particles is preferably 120 μm 2 or more.
Two or more fields of view are observed, the number of voids having a Heywood diameter of 200 nm or more with respect to the area of the cross section in each field of view is counted, and the average value thereof is calculated. The upper limit of the field of view to be observed is 5 fields.
Even if some of the particles are cut off by the field frame of the SEM image, the number and area of the particles are included in the calculation. If a part of the void is cut off by the visual field frame of the SEM image, the Heywood diameter is unknown, so the void is not adopted as the above void.

前記銀粒子の断面を40,000倍で観察したときに、前記断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数の平均としては、25個/μm以上であり、28個/μm以上が好ましい。
40,000倍で観察する理由は、10,000倍では観察が困難である10nm以上30nm未満である空隙を十分に観察できるためである。40,000倍で撮影した粒子断面の写真を用いて、必要に応じて拡大して観察することができる。なお、10nm未満である空隙は、SEM像の状態によって空隙として見えたり見えなかったりして、判別が困難であるため、前記個数には含めなかった。
40,000倍で観察する銀粒子の断面の面積としては、1視野当たり3μm以上が好ましく、観察する銀粒子の断面の総面積としては、15μm以上が好ましく、20μm以上がより好ましい。例えば、5視野を観察したときの総面積として、15μm以上が好ましく、20μm以上がより好ましい。なお、観察する銀粒子の断面の総面積の上限は50μmとする。
複数の視野(好ましくは5視野以上)を観察し、各視野における前記断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数をカウントし、それらの平均値を算出する。
なお、SEM像の視野枠によって粒子の一部が見切れていたとしても、粒子の個数や面積としては含めて算出に用いる。SEM像の視野枠によって空隙の一部が見切れているものは、Heywood径が不明であるので上記の空隙として採用しない。
When the cross section of the silver particles is observed at a magnification of 40,000, the average number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the cross section is 25 / μm 2 or more, and 28 /. μm 2 or more is preferable.
The reason for observing at 40,000 times is that it is possible to sufficiently observe voids of 10 nm or more and less than 30 nm, which are difficult to observe at 10,000 times. Using a photograph of the cross section of the particles taken at 40,000 times, it can be magnified and observed as needed. Voids having a diameter of less than 10 nm are not included in the number because they may or may not be seen as voids depending on the state of the SEM image and it is difficult to distinguish them.
The cross-sectional area of the silver particles observed at 40,000 times is preferably 3 μm 2 or more per visual field, and the total cross-sectional area of the silver particles to be observed is preferably 15 μm 2 or more, more preferably 20 μm 2 or more. For example, the total area when observing 5 visual fields is preferably 15 μm 2 or more, and more preferably 20 μm 2 or more. The upper limit of the total area of the cross section of the silver particles to be observed is 50 μm 2 .
A plurality of fields of view (preferably 5 or more fields of view) are observed, the number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the cross section in each field of view is counted, and the average value thereof is calculated.
Even if some of the particles are cut off by the field frame of the SEM image, the number and area of the particles are included in the calculation. If a part of the void is cut off by the visual field frame of the SEM image, the Heywood diameter is unknown, so the void is not adopted as the above void.

前記銀粒子の断面と粒子内部の空隙は、密集した状態の銀粒子を樹脂に埋め固めた後、クロスセクションポリッシャーなどにより研磨することにより銀粒子の断面を露出させ、粒子断面について電界放出形走査電子顕微鏡(FE−SEM)などを用いて観察することができる。
そして、閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉は、上記のようにして銀粒子の断面を観察したときに、断面が観察された銀粒子の半分以上において、粒子内部に閉じた空隙が少なくとも1つは観察されることが好ましい。
The cross section of the silver particles and the voids inside the particles are obtained by embedding the dense silver particles in a resin and then polishing the silver particles with a cross section polisher or the like to expose the cross section of the silver particles. It can be observed using an electron microscope (FE-SEM) or the like.
Then, the silver powder containing the silver particles having closed voids inside the particles was closed inside the particles in more than half of the silver particles whose cross section was observed when the cross section of the silver particles was observed as described above. It is preferable that at least one void is observed.

[銀粒子断面積、銀粒子断面のHeywood径、空隙面積、および空隙のHeywood径の測定方法]
画像解析ソフト(例えば、株式会社マウンテック製、画像解析式粒度分布測定ソフトウェアMac−View)を用いて、FE−SEMにより撮影した銀粒子の断面の外周を、画像を表示した画面上のポインタでなぞることにより、一筆書きになぞり閉じた範囲内の粒子断面の面積を算出すると共に、銀粒子断面のHeywood径も算出することができる。また、銀粒子の断面に見られる(銀粒子の外周とつながりのない閉鎖した)空隙の外周を、同様に画像を表示した画面上のポインタでなぞることにより、一筆書きになぞり閉じた範囲内の空隙の面積を算出すると共に、空隙のHeywood径も算出することができる。画像解析ソフトにおいて、なぞる対象の大きさに合わせて、ポインタを制御しやすい大きさまで画面上の画像を拡大表示させてなぞることが好ましい。
[Measuring method of silver particle cross-sectional area, silver particle cross-section Heywood diameter, void area, and void Heywood diameter]
Using image analysis software (for example, Mac-View, image analysis type particle size distribution measurement software manufactured by Mountech Co., Ltd.), trace the outer circumference of the cross section of silver particles photographed by FE-SEM with a pointer on the screen displaying the image. Thereby, the area of the particle cross section within the closed range can be calculated by tracing with one stroke, and the Heywood diameter of the silver particle cross section can also be calculated. In addition, by tracing the outer circumference of the void (closed that is not connected to the outer circumference of the silver particle) seen in the cross section of the silver particle with the pointer on the screen displaying the image in the same manner, the area within the closed range can be traced with a single stroke. In addition to calculating the area of the void, the Heywood diameter of the void can also be calculated. In the image analysis software, it is preferable to magnify and trace the image on the screen to a size that makes it easy to control the pointer according to the size of the object to be traced.

[空隙率]
前記空隙率(%)は、前記銀粒子の断面を40,000倍で観察したときの、前記断面の面積に対する空隙の面積で表される。複数の視野(好ましくは5視野以上)を観察し、各視野における空隙率を算出し、それらの平均値を算出する。
前記空隙率としては、1%〜4%が好ましく、2%〜3%がより好ましい。
[Porosity]
The porosity (%) is represented by the area of voids with respect to the area of the cross section when the cross section of the silver particles is observed at a magnification of 40,000. A plurality of fields of view (preferably 5 or more fields of view) are observed, the porosity in each field of view is calculated, and the average value thereof is calculated.
The porosity is preferably 1% to 4%, more preferably 2% to 3%.

[減量終了温度]
前記減量終了温度は、熱重量・示差熱分析法により、室温から400℃まで昇温速度10℃/minの条件で前記銀粉を加熱した場合の、重量変化量が最大の減少量の90%重量減少したときの温度を指す。
具体的には、大気雰囲気下、室温から400℃まで昇温速度10℃/minの条件で、熱重量・示差熱分析法(TG−DTA法)による示差熱天秤(例えば、株式会社リガク、TG8120)を用いて重量変化量を測定した場合の、室温から400℃までの最大の減少量(最大減量)に対し、90%の重量が減少したときの温度として求めることができる。
前記減量終了温度としては、300℃以下が好ましく、270℃以下がより好ましい。
[Weight loss end temperature]
The weight loss end temperature is 90% of the maximum weight loss when the silver powder is heated from room temperature to 400 ° C. under the condition of a temperature rise rate of 10 ° C./min by thermogravimetric analysis. Refers to the temperature when it decreases.
Specifically, under the condition of a temperature rise rate of 10 ° C./min from room temperature to 400 ° C. under an air atmosphere, a differential thermal balance by thermal weight / differential thermal analysis method (TG-DTA method) (for example, Rigaku Co., Ltd., TG8120) ) Is used to measure the amount of change in weight, it can be determined as the temperature when the weight is reduced by 90% with respect to the maximum amount of decrease (maximum weight loss) from room temperature to 400 ° C.
The weight loss end temperature is preferably 300 ° C. or lower, more preferably 270 ° C. or lower.

(銀粉の製造方法)
本発明の銀粉の製造方法は、閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉の製造方法であって、混合工程を有し、さらに必要に応じて、洗浄工程、乾燥工程などのその他の工程を有する。
(Manufacturing method of silver powder)
The method for producing silver powder of the present invention is a method for producing silver powder containing silver particles having closed voids inside the particles, and has a mixing step, and if necessary, other steps such as a washing step and a drying step. Has the process of.

<混合工程>
前記混合工程は、銀イオンを含有する水性反応系に、還元剤としてアルデヒドを含有する還元剤含有溶液を添加して混合する工程であり、混合開始から90秒間後までの水性反応系の液温を33℃以下とすることを特徴とする。
混合工程により、銀イオンから前記銀粒子が還元析出される。
混合開始から90秒間後までの水性反応系の液温は、混合開始による反応進行に伴い上昇するが、その最高到達温度は、33℃以下に維持され、30℃以下に維持されることが好ましい。
前記最高到達温度が、33℃を超えると、銀粒子の成長が早いため、細かな空隙が出来にくく、大きな空隙が発生しやすくなることがある。そして、水性反応系中の有機成分が大きな空隙に多く取り込まれるため、銀粒子内での有機成分の分布が不均一となることによる悪影響が生じることがある。
<Mixing process>
The mixing step is a step of adding a reducing agent-containing solution containing an aldehyde as a reducing agent to the aqueous reaction system containing silver ions and mixing the mixture, and the liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds later. The temperature is 33 ° C. or lower.
By the mixing step, the silver particles are reduced and precipitated from the silver ions.
The liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds after the start of mixing rises as the reaction progresses due to the start of mixing, but the maximum temperature reached is preferably maintained at 33 ° C. or lower and preferably 30 ° C. or lower. ..
When the maximum temperature reached exceeds 33 ° C., the silver particles grow quickly, so that it is difficult to form fine voids, and large voids may easily occur. Then, since a large amount of the organic component in the aqueous reaction system is taken into the large voids, an adverse effect may occur due to the non-uniform distribution of the organic component in the silver particles.

前記最高到達温度を実現するためには、還元剤添加前の前記水性反応系の液温を下げることが好ましく、さらに、外部から冷却し、反応熱を逃がして液温を冷やす機構を設けることがより好ましい。冷却すると共に、還元剤の含有量を低くする、銀の含有量を低くする、還元剤添加後の水性反応系の容量を増やす、添加する還元剤含有溶液の温度を下げるなどによって、反応熱による液温の上昇を抑制することも有効である。
前記液温を冷やす機構としては、例えば、水冷ジャケットのような熱交換器をつけた機構、溶液が接する外壁を放熱しやすい材料とした機構、放熱フィンをつけて空冷する機構、撹拌翼に冷却機能をつけた機構など、種々の機構を採用することができる。
In order to achieve the maximum temperature reached, it is preferable to lower the liquid temperature of the aqueous reaction system before the addition of the reducing agent, and further, it is necessary to provide a mechanism for cooling the liquid temperature by releasing the reaction heat by cooling from the outside. More preferred. By cooling, the content of the reducing agent is lowered, the content of silver is lowered, the volume of the aqueous reaction system after the addition of the reducing agent is increased, the temperature of the solution containing the reducing agent to be added is lowered, etc. It is also effective to suppress the rise in liquid temperature.
The mechanism for cooling the liquid temperature includes, for example, a mechanism with a heat exchanger such as a water cooling jacket, a mechanism with an outer wall in contact with the solution made of a material that easily dissipates heat, a mechanism with heat radiation fins for air cooling, and a stirring blade for cooling. Various mechanisms such as a mechanism with a function can be adopted.

なお、混合開始から90秒間後までの水性反応系の液温(最高到達温度)を測定および制御するにあたり、還元剤添加開始から還元剤添加完了までにかかる時間(還元剤添加時間)は、10秒間以内であることが好ましい。 In measuring and controlling the liquid temperature (maximum temperature) of the aqueous reaction system from the start of mixing to 90 seconds later, the time required from the start of addition of the reducing agent to the completion of addition of the reducing agent (reducing agent addition time) is 10. It is preferably within seconds.

前記混合工程において、前記還元剤含有溶液の添加と同時ないし混合時に、キャビテーションを発生させてもよい。キャビテーションを発生させる方法としては、特開2015−232180号公報に記載された方法を採用することができる。 In the mixing step, cavitation may occur at the same time as or during mixing with the addition of the reducing agent-containing solution. As a method for generating cavitation, the method described in JP-A-2015-232180 can be adopted.

−水性反応系−
前記銀イオンを含有する水性反応系としては、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀錯体を含有する水溶液は、硝酸銀水溶液または酸化銀懸濁液にアンモニア水またはアンモニウム塩を添加することにより生成することができる。これらの中でも、銀粒子が適当な粒径と球状の形状を有する点から、硝酸銀水溶液にアンモニア水を添加して得られる銀アンミン錯体水溶液が好ましい。
前記水性反応系における銀の濃度としては、0.8質量%以下が好ましく、0.3〜0.6質量%がより好ましい。前記濃度が、0.8質量%を超えると、還元剤の添加後の発熱量が大きくなり、混合開始から90秒間後までの水性反応系の液温(最高到達温度)を制御し、33℃以下にすることが困難になることがある。
前記銀錯体を含有する水溶液を調製する場合の、アンモニアの添加量としては、銀量に対して1.2当量〜3.2当量(モル当量)が好ましく、2.0当量〜3.2当量がより好ましい。前記添加量が、3.2当量を超えると、還元剤の添加後の発熱量が大きくなり、混合開始から90秒間後までの水性反応系の液温(最高到達温度)の制御が困難になることがある。
-Aqueous reaction system-
As the aqueous reaction system containing silver ions, an aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used. An aqueous solution containing a silver complex can be produced by adding aqueous ammonia or an ammonium salt to a silver nitrate aqueous solution or a silver oxide suspension. Among these, a silver ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution is preferable because the silver particles have an appropriate particle size and a spherical shape.
The concentration of silver in the aqueous reaction system is preferably 0.8% by mass or less, more preferably 0.3 to 0.6% by mass. When the concentration exceeds 0.8% by mass, the calorific value after the addition of the reducing agent increases, and the liquid temperature (maximum reached temperature) of the aqueous reaction system from the start of mixing to 90 seconds later is controlled to 33 ° C. It can be difficult to:
When preparing the aqueous solution containing the silver complex, the amount of ammonia added is preferably 1.2 equivalents to 3.2 equivalents (molar equivalents) with respect to the amount of silver, and 2.0 equivalents to 3.2 equivalents. Is more preferable. If the amount added exceeds 3.2 equivalents, the calorific value after the addition of the reducing agent becomes large, and it becomes difficult to control the liquid temperature (maximum temperature) of the aqueous reaction system from the start of mixing to 90 seconds later. Sometimes.

前記水性反応系の還元剤添加前の液温としては、10℃〜室温(25℃)が好ましく、10℃〜20℃がより好ましい。
前記温度が、10℃未満であると、還元剤添加前に硝酸銀が析出する恐れがあり、25℃を超えると、還元剤の含有量を低くする、銀の含有量を低くする、還元剤添加後の水性反応系の容量を増やすなどの制御を行ったとしても、銀粒子の粒径などの粒子特性を大幅に変えることなく、混合開始から90秒間後までの水性反応系の液温(最高到達温度)を制御し、33℃以下とすることが困難になることがある。
なお、還元剤添加前の前記水性反応系の液温を10℃〜20℃にすると共に、後述する通り、還元剤の添加量を銀量に対して6.0当量〜14.5等量とすることにより、反応熱による前記最高到達温度を制御し、33℃以下にすることができる点で好ましい。
The liquid temperature of the aqueous reaction system before the addition of the reducing agent is preferably 10 ° C. to room temperature (25 ° C.), more preferably 10 ° C. to 20 ° C.
If the temperature is less than 10 ° C, silver nitrate may precipitate before the addition of the reducing agent, and if it exceeds 25 ° C, the content of the reducing agent is lowered, the content of silver is lowered, and the reducing agent is added. Even if control such as increasing the capacity of the aqueous reaction system is performed later, the liquid temperature of the aqueous reaction system (maximum) from the start of mixing to 90 seconds after the start of mixing without significantly changing the particle characteristics such as the particle size of silver particles. It may be difficult to control the ultimate temperature) so that the temperature is 33 ° C. or lower.
The liquid temperature of the aqueous reaction system before the addition of the reducing agent was set to 10 ° C to 20 ° C, and the amount of the reducing agent added was 6.0 equivalent to 14.5 equivalent with respect to the amount of silver, as described later. It is preferable that the maximum temperature reached by the reaction heat can be controlled to 33 ° C. or lower.

−還元剤含有溶液−
前記還元剤含有溶液は、還元剤としてアルデヒドを含有する。
前記アルデヒドとしては、その分子内にアルデヒド基を含有し、還元剤として機能する化合物であれば、特に制限はなく、目的に応じて適宜選択することができるが、ホルムアルデヒド、アセトアルデヒドが好ましい。
前記還元剤含有溶液は、水溶液またはアルコール溶液であることが好ましく、例えば、ホルムアルデヒドを含む水溶液としてホルマリンを使用することができる。
-Reducing agent-containing solution-
The reducing agent-containing solution contains an aldehyde as a reducing agent.
The aldehyde is not particularly limited as long as it is a compound containing an aldehyde group in its molecule and functions as a reducing agent, and can be appropriately selected depending on the intended purpose, but formaldehyde and acetaldehyde are preferable.
The reducing agent-containing solution is preferably an aqueous solution or an alcohol solution, and formalin can be used as an aqueous solution containing formaldehyde, for example.

前記還元剤含有溶液におけるアルデヒドの含有量としては、15.0質量%〜40.0質量%が好ましく、30.0質量%〜40.0質量%がより好ましい。
還元剤の添加量としては、銀量に対して6.0当量〜14.5当量(モル当量)が好ましく、6.0当量〜10.0当量がより好ましい。前記添加量が6.0当量未満であると、未還元が起こりやすくなり、14.5当量を超えると、還元剤の添加後の発熱量が大きくなり、混合開始から90秒間後までの水性反応系の液温(最高到達温度)を制御し、33℃以下にすることが困難になることがある。一方、6.0当量〜10.0当量であると、サイズの小さい(すなわち、Heywood径が10nm以上30nm未満である)空隙が多く発生しやすい点で有利である。
The content of the aldehyde in the reducing agent-containing solution is preferably 15.0% by mass to 40.0% by mass, more preferably 30.0% by mass to 40.0% by mass.
The amount of the reducing agent added is preferably 6.0 equivalents to 14.5 equivalents (molar equivalents), more preferably 6.0 equivalents to 10.0 equivalents, relative to the amount of silver. If the added amount is less than 6.0 equivalents, unreduction is likely to occur, and if it exceeds 14.5 equivalents, the calorific value after the addition of the reducing agent increases, and the aqueous reaction from the start of mixing to 90 seconds later. It may be difficult to control the liquid temperature (maximum ultimate temperature) of the system to 33 ° C. or lower. On the other hand, when the amount is 6.0 equivalents to 10.0 equivalents, it is advantageous in that a large number of small voids (that is, the Heywood diameter is 10 nm or more and less than 30 nm) are likely to occur.

なお、前記アルデヒドを含有する還元剤含有溶液は、他のアスコルビン酸等の還元剤に比べて、添加直後の反応が激しいため還元剤混合直後から液温が大きく上昇しやすい。そのため、前記アルデヒドを含有する還元剤含有溶液を用いる場合において、混合開始から90秒間後までの間の水性反応系の液温(最高到達温度)を33℃以下にすることは困難であった。しかし、本発明の銀粉の製造方法において、前記最高到達温度を33℃以下にすることにより、所望の空隙特性を有する本発明の銀粉を得ることができることを知見した。
また、ヒドラジンを還元剤として用いた場合は、ほとんど空隙は生じない。
In addition, since the reaction containing the reducing agent containing the aldehyde is more intense immediately after the addition than other reducing agents such as ascorbic acid, the liquid temperature tends to rise significantly immediately after the mixing of the reducing agent. Therefore, when the reducing agent-containing solution containing the aldehyde is used, it is difficult to keep the liquid temperature (maximum temperature) of the aqueous reaction system from the start of mixing to 90 seconds after the start of mixing to 33 ° C. or lower. However, in the method for producing silver powder of the present invention, it has been found that the silver powder of the present invention having desired void characteristics can be obtained by setting the maximum temperature reached to 33 ° C. or lower.
Further, when hydrazine is used as a reducing agent, almost no voids are generated.

<その他の工程>
前記その他の工程としては、例えば、洗浄工程、乾燥工程などが挙げられる。
<Other processes>
Examples of the other steps include a washing step and a drying step.

(導電性ペースト)
本発明の導電性ペーストは、本発明の前記銀粉を含み、溶剤、バインダーを含有することが好ましく、さらに必要に応じてその他の成分を含有する。
(Conductive paste)
The conductive paste of the present invention contains the silver powder of the present invention, preferably contains a solvent and a binder, and further contains other components as necessary.

前記導電性ペーストの粘度は、コーンプレートタイプ粘度計を用いて、25℃、1rpm値で、100Pa・s以上1,000Pa・s以下となるように各々の配合量の調整することが好ましい。前記粘度が、100Pa・s未満であると、低粘度の領域では「にじみ」が発生することがあり、1,000Pa・sを超えると、高粘度の領域では「かすれ」、と言った印刷の不具合が発生することがある。 The viscosity of the conductive paste is preferably adjusted by using a cone plate type viscometer so that the blending amount of each is 100 Pa · s or more and 1,000 Pa · s or less at a value of 25 ° C. and 1 rpm. If the viscosity is less than 100 Pa · s, "bleeding" may occur in the low viscosity region, and if it exceeds 1,000 Pa · s, "blurring" may occur in the high viscosity region. Problems may occur.

<バインダー>
前記バインダーとしては、太陽電池の電極用途として800℃近辺で焼成する樹脂組成物として用いられてきた熱分解性を有するものであれば特に制限はなく、公知の樹脂を用いることができ、例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリビニルアルコール類、ポリビニルピロリドン類、アクリル樹脂、アルキド樹脂、ポリプロピレン樹脂、ポリ塩化ビニル系樹脂、ポリウレタン系樹脂、ロジン系樹脂、テルペン系樹脂、フェノール系樹脂、脂肪族系石油樹脂、酢酸ビニル系樹脂、酢酸ビニル−アクリル酸エステル共重合体、ポリビニルブチラール等のブチラール樹脂誘導体の有機バインダーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Binder>
The binder is not particularly limited as long as it has thermal decomposability and has been used as a resin composition to be fired at around 800 ° C. for the electrode use of solar cells, and known resins can be used, for example. Cellulous derivatives such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, polyvinyl alcohols, polyvinyl pyrrolidones, acrylic resins, alkyd resins, polypropylene resins, polyvinyl chloride resins, polyurethane resins, rosin resins, terpene resins, phenol resins, Examples thereof include aliphatic petroleum resins, vinyl acetate resins, vinyl acetate-acrylic acid ester copolymers, and organic binders of butyral resin derivatives such as polyvinyl butyral. These may be used alone or in combination of two or more.

<溶剤>
前記溶剤は、前記バインダーを溶解することができるものであれば特に制限はなく、公知の溶剤を用いることができ、導電性ペーストの製造において前記有機バインダーを予め溶解、混合して用いることが好ましい。
前記溶剤としては、例えば、ジオキサン、ヘキサン、トルエン、エチルセロソルブ、シクロヘキサノン、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトール、ブチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ジアセトンアルコール、ターピネオール、メチルエチルケトン、ベンジルアルコール、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Solvent>
The solvent is not particularly limited as long as it can dissolve the binder, and a known solvent can be used, and it is preferable to dissolve and mix the organic binder in advance in the production of the conductive paste. ..
Examples of the solvent include dioxane, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol diethyl ether, diacetone alcohol, tarpineol, methyl ethyl ketone, benzyl alcohol, 2,2. , 4-trimethyl-1,3-pentanediol monoisobutyrate and the like. These may be used alone or in combination of two or more.

<その他の成分>
前記その他の成分としては、例えば、界面活性剤、分散剤、粘度調整剤などが挙げられる。
<Other ingredients>
Examples of the other components include surfactants, dispersants, viscosity modifiers and the like.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

(実施例1)
ビーカーの周囲にコイル状に冷却水を流すことのできる冷却ジャケットが設置されているビーカー(ガラス製)に、銀濃度が0.44質量%の硝酸銀水溶液(冷蔵庫にて冷却して18.5℃としたもの)を3,667g準備し、前記硝酸銀水溶液に濃度28質量%のアンモニア水溶液151.8g(銀に対して2.6モル当量相当)を加え、アンモニア水の添加から30秒間後に、20質量%の水酸化ナトリウム水溶液7.2gを添加して銀アンミン錯体水溶液を得た。
冷却水の温度を20℃に設定しており、液深さ半分の位置に熱電対を設けて液温を測定したところ、銀アンミン錯体水溶液の液温は20℃であった。
(Example 1)
A silver nitrate aqueous solution with a silver concentration of 0.44% by mass (cooled in a refrigerator at 18.5 ° C) is placed in a beaker (made of glass) in which a cooling jacket that allows cooling water to flow in a coil is installed around the beaker. 3.667 g was prepared, 151.8 g of an aqueous ammonia solution having a concentration of 28% by mass (equivalent to 2.6 mol equivalents with respect to silver) was added to the silver nitrate aqueous solution, and 30 seconds after the addition of the ammonia water, 20 7.2 g of a mass% aqueous sodium hydroxide solution was added to obtain a silver ammine complex aqueous solution.
The temperature of the cooling water was set to 20 ° C., and a thermocouple was provided at a position half the depth of the liquid to measure the liquid temperature. As a result, the liquid temperature of the silver ammine complex aqueous solution was 20 ° C.

前記銀アンミン錯体水溶液を攪拌し、ホルマリンを純水で希釈した23質量%のホルムアルデヒド溶液386.4g(銀に対して12.4モル当量相当)を、撹拌している前記銀アンミン錯体水溶液に混合すると共に、冷却水を流し続けた。
混合開始から90秒間の最高到達温度は30℃であった。
混合開始から90秒間後に1.55質量%のステアリン酸エタノール溶液6.01gを添加して還元反応を終了させ、銀粒子を含むスラリーを得た。
前記スラリーを濾過し、ろ液の導電率が0.2mSになるまで水洗した後、真空乾燥機を用いて73℃で10時間乾燥させた。その後、得られた乾燥粉を解砕機(協立理工株式会社製、SK−M10型)に投入し、30秒間の解砕を2回繰り返した。このようにして実施例1の銀粉を得た。
The silver ammine complex aqueous solution was stirred, and 386.4 g (equivalent to 12.4 mol equivalents with respect to silver) of a 23 mass% formaldehyde solution obtained by diluting formalin with pure water was mixed with the stirred silver ammine complex aqueous solution. At the same time, the cooling water was kept flowing.
The maximum temperature reached for 90 seconds from the start of mixing was 30 ° C.
90 seconds after the start of mixing, 6.01 g of a 1.55 mass% ethanol stearate solution was added to terminate the reduction reaction, and a slurry containing silver particles was obtained.
The slurry was filtered, washed with water until the conductivity of the filtrate became 0.2 mS, and then dried at 73 ° C. for 10 hours using a vacuum dryer. Then, the obtained dry powder was put into a crusher (SK-M10 type manufactured by Kyoritsu Riko Co., Ltd.), and crushing for 30 seconds was repeated twice. In this way, the silver powder of Example 1 was obtained.

得られた実施例1の銀粉を、樹脂に埋めた後、クロスセクションポリッシャーによる研磨を行って銀粉の粒子断面を露出させた。そして、粒子断面について電界放出形走査電子顕微鏡(FE−SEM;日本電子株式会社製、JEM−9310FIB)を用いて倍率10,000倍で2視野を撮影した。撮影した画像のうち1視野を図1に示す。 The obtained silver powder of Example 1 was embedded in a resin and then polished with a cross section polisher to expose the particle cross section of the silver powder. Then, two fields of view were photographed with respect to the particle cross section using a field emission scanning electron microscope (FE-SEM; manufactured by JEOL Ltd., JEM-9310FIB) at a magnification of 10,000 times. One field of view of the captured image is shown in FIG.

また、撮影したFE−SEM画像について、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、Mac−View)を用いて、得られた銀粒子断面の銀粒子内部に見られる(銀粒子の外周とつながりのない閉鎖した)空隙の外周を、画像を表示した画面上のポインタでなぞることで、空隙のHeywood径を算出した。 In addition, the captured FE-SEM image can be seen inside the silver particles of the obtained silver particle cross section using image analysis type particle size distribution measurement software (Mt. Tech, Inc., Mac-View) (with the outer circumference of the silver particles). The Heywood diameter of the void was calculated by tracing the outer circumference of the void (closed without connection) with a pointer on the screen displaying the image.

実施例1の銀粉での倍率10,000倍のFE−SEM像を図1に示す。倍率10,000倍で粒子断面(粒子断面の総面積62μm)の写真を使用して必要に応じて拡大しながら観察した結果、Heywood径が200nm以上である空隙は観察されなかった。図1のほかにもう1視野を観察したが、Heywood径が200nm以上である空隙は観察されなかった。 An FE-SEM image at a magnification of 10,000 times with silver powder of Example 1 is shown in FIG. As a result of observing while enlarging as necessary using a photograph of a particle cross section (total area of the particle cross section 62 μm 2) at a magnification of 10,000 times, no void having a Heywood diameter of 200 nm or more was observed. In addition to FIG. 1, another field of view was observed, but no voids having a Heywood diameter of 200 nm or more were observed.

次いで、粒子断面について倍率40,000倍で5視野を撮影した。撮影した画像のうちの1視野を図2に示す。撮影したFE−SEM画像について、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、Mac−View)を用いて、得られた銀粒子断面の粒子外周、および銀粒子内部に見られる(銀粒子の外周とつながりのない閉鎖した)空隙の外周を、必要に応じて写真を拡大しながら画像を表示した画面上のポインタでなぞることで、銀粒子の断面積、銀粒子のHeywood径、空隙のHeywood径、および面積を測定した。5視野についてそれぞれ測定した。 Next, 5 fields of view were photographed at a magnification of 40,000 times with respect to the particle cross section. One field of view of the captured image is shown in FIG. The captured FE-SEM image can be seen on the outer circumference of the obtained silver particle cross section and inside the silver particle using the image analysis type particle size distribution measurement software (Mac-View, manufactured by Mountech Co., Ltd.). By tracing the outer circumference of the void (closed, which is not connected to the outer circumference) with a pointer on the screen displaying the image while enlarging the photograph as necessary, the cross-sectional area of the silver particles, the Heywood diameter of the silver particles, and the Heywood of the voids are traced. The diameter and area were measured. Measurements were made for each of the five fields of view.

実施例1の銀粉では、Heywood径が10nm以上30nm未満である空隙の個数は5視野で合計566個あり、そのうち、10nm以上20nm未満である空隙の個数は5視野で合計418個あった。粒子断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数は5視野分の平均で25個/μmであった。また、粒子断面の面積に対する空隙の面積で表される空隙率(%)は、5視野分の平均で2.7%であった。
実施例1の銀粉は球状であり、銀粒子の断面のHeywood粒径は、5視野分の平均で0.88μmであった。
In the silver powder of Example 1, the number of voids having a Heywood diameter of 10 nm or more and less than 30 nm was 566 in total in 5 visual fields, and the number of voids having a Heywood diameter of 10 nm or more and less than 20 nm was 418 in total in 5 visual fields. The number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the particle cross section was 25 / μm 2 on average for 5 fields of view. The porosity (%) represented by the area of the voids with respect to the area of the particle cross section was 2.7% on average for the five fields of view.
The silver powder of Example 1 was spherical, and the Heywood particle diameter of the cross section of the silver particles was 0.88 μm on average for five fields of view.

(実施例2)
実施例1において、前記硝酸銀水溶液に加える濃度28質量%のアンモニア水溶液を113.9g(銀に対して1.95モル当量相当)に変更したこと、水酸化ナトリウム水溶液を添加しなかったこと、ホルムアルデヒド溶液を濃度37.0%、181.2g(銀に対して9.3モル当量相当)に変更したこと以外は、実施例1と同様にして実施例2の銀粉を得た。
冷却水の温度を20℃に設定しており、混合開始前の銀アンミン錯体水溶液の液温は20℃であり、混合開始から90秒間の最高到達温度は27℃であった。
(Example 2)
In Example 1, the concentration of 28% by mass of the aqueous ammonia solution added to the silver nitrate aqueous solution was changed to 113.9 g (equivalent to 1.95 molar equivalents with respect to silver), no sodium hydroxide aqueous solution was added, and formaldehyde. The silver powder of Example 2 was obtained in the same manner as in Example 1 except that the solution was changed to a concentration of 37.0% and 181.2 g (corresponding to 9.3 molar equivalents with respect to silver).
The temperature of the cooling water was set to 20 ° C., the liquid temperature of the silver ammine complex aqueous solution before the start of mixing was 20 ° C., and the maximum temperature reached for 90 seconds from the start of mixing was 27 ° C.

実施例2の銀粉での倍率10,000倍のFE−SEM像を図3に示す。倍率10,000倍において粒子断面(粒子断面の総面積74μm)を観察した結果、Heywood径が200nm以上である空隙は観察されなかった。図3のほかにもう1視野を観察したが、Heywood径が200nm以上である空隙は観察されなかった。 An FE-SEM image at a magnification of 10,000 times with silver powder of Example 2 is shown in FIG. As a result of observing the particle cross section (total area of the particle cross section 74 μm 2 ) at a magnification of 10,000 times, no void having a Heywood diameter of 200 nm or more was observed. In addition to FIG. 3, another field of view was observed, but no voids having a Heywood diameter of 200 nm or more were observed.

粒子断面について倍率40,000倍で5視野を撮影した画像のうちの1視野を図4に示す。実施例2の銀粉では、倍率40,000倍においてHeywood径が10nm以上30nm未満である空隙の個数は5視野で合計622個あり、そのうち、10nm以上20nm未満である空隙の個数は5視野で合計417個あった。粒子断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数は、5視野分の平均で28個/μmであった。また、粒子断面の面積に対する空隙の面積で表される空隙率(%)は、5視野分の平均で2.0%であった。
実施例2の銀粉は球状であり、銀粒子の断面のHeywood粒径は、5視野分の平均で0.76μmであった。
FIG. 4 shows one field of view of the five fields of view taken at a magnification of 40,000 times with respect to the particle cross section. In the silver powder of Example 2, the number of voids having a Heywood diameter of 10 nm or more and less than 30 nm at a magnification of 40,000 times is 622 in total in 5 visual fields, and the number of voids having a Heywood diameter of 10 nm or more and less than 20 nm is total in 5 visual fields. There were 417. The number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the particle cross section was 28 / μm 2 on average for 5 fields of view. The porosity (%) represented by the area of the voids with respect to the area of the particle cross section was 2.0% on average for the five visual fields.
The silver powder of Example 2 was spherical, and the Heywood particle diameter of the cross section of the silver particles was 0.76 μm on average for five fields of view.

(比較例1)
実施例1において、冷却ジャケットを設置せず、硝酸銀溶液を冷却せず26.5℃のものを使用した以外は、実施例1と同様にして比較例1の銀粉を得た。混合開始前の銀アンミン錯体水溶液の液温は28℃であり、混合開始から90秒間の最高到達温度は37℃であった。
(Comparative Example 1)
In Example 1, the silver powder of Comparative Example 1 was obtained in the same manner as in Example 1 except that a cooling jacket was not installed and the silver nitrate solution was not cooled and the solution was used at 26.5 ° C. The liquid temperature of the silver ammine complex aqueous solution before the start of mixing was 28 ° C., and the maximum temperature reached for 90 seconds from the start of mixing was 37 ° C.

比較例1の銀粉での倍率10,000倍のFE−SEM像を図5に示す。比較例1の銀粉では、倍率10,000倍において粒子断面(粒子断面の総面積70μm)を観察した結果、Heywood径が200nm以上である空隙が観察された。その数は2個であった。図5のほかにもう1視野を観察し、2視野分における粒子断面の面積に対するHeywood径が200nm以上の空隙の密度(個/μm)は、0.05であった。 FIG. 5 shows an FE-SEM image of Comparative Example 1 with a silver powder having a magnification of 10,000 times. In the silver powder of Comparative Example 1, as a result of observing the particle cross section (total area of the particle cross section 70 μm 2 ) at a magnification of 10,000 times, voids having a Heywood diameter of 200 nm or more were observed. The number was two. In addition to FIG. 5, another field of view was observed, and the density (pieces / μm 2 ) of voids having a Heywood diameter of 200 nm or more with respect to the area of the particle cross section in the two fields of view was 0.05.

粒子断面について倍率40,000倍で5視野を撮影した画像のうちの1視野を図6に示す。比較例1の銀粉では、倍率40,000倍においてHeywood径が10nm以上30nm未満である空隙の個数は5視野で合計329個あり、そのうち、10nm以上20nm未満である空隙の個数は5視野で合計192個あった。粒子断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数は、5視野分の平均で16個/μmであった。また、粒子断面の面積に対する空隙の面積で表される空隙率(%)は、5視野分の平均で3.9%であった。
比較例1の銀粉は球状であり、銀粒子の断面のHeywood粒径は、5視野分の平均で0.82μmであった。
FIG. 6 shows one field of view of the five fields of view taken at a magnification of 40,000 times with respect to the particle cross section. In the silver powder of Comparative Example 1, the number of voids having a Heywood diameter of 10 nm or more and less than 30 nm at a magnification of 40,000 times was 329 in total in 5 visual fields, and the number of voids having a Heywood diameter of 10 nm or more and less than 20 nm was total in 5 visual fields. There were 192. The number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the particle cross section was 16 / μm 2 on average for 5 fields of view. The porosity (%) represented by the area of the voids with respect to the area of the particle cross section was 3.9% on average for the five fields of view.
The silver powder of Comparative Example 1 was spherical, and the Heywood particle diameter of the cross section of the silver particles was 0.82 μm on average for five fields of view.

(比較例2)
実施例2において、冷却ジャケットを設置せず、硝酸銀溶液を冷却せず26.5℃のものを使用した以外は、実施例2と同様にして比較例2の銀粉を得た。混合開始前の銀アンミン錯体水溶液の液温は28℃であり、混合開始から90秒間の最高到達温度は35.0℃であった。
(Comparative Example 2)
In Example 2, the silver powder of Comparative Example 2 was obtained in the same manner as in Example 2 except that a cooling jacket was not installed and the silver nitrate solution was not cooled and the solution was used at 26.5 ° C. The liquid temperature of the silver ammine complex aqueous solution before the start of mixing was 28 ° C., and the maximum temperature reached for 90 seconds from the start of mixing was 35.0 ° C.

比較例2の銀粉の断面の倍率10,000倍のFE−SEM像を図7に示す。倍率10,000倍において粒子断面(粒子断面の総面積133μm)を観察した結果、Heywood径が200nm以上である空隙が観察された。その数は10個であった。図7のほかにもう1視野を観察し、2視野分における粒子断面の面積に対するHeywood径が200nm以上の空隙の密度(個/μm)は、0.07であった。 FIG. 7 shows an FE-SEM image of the cross section of the silver powder of Comparative Example 2 at a magnification of 10,000 times. As a result of observing the particle cross section (total area of the particle cross section 133 μm 2 ) at a magnification of 10,000 times, voids having a Heywood diameter of 200 nm or more were observed. The number was 10. In addition to FIG. 7, another field of view was observed, and the density (pieces / μm 2 ) of voids having a Heywood diameter of 200 nm or more with respect to the area of the particle cross section in the two fields of view was 0.07.

粒子断面について倍率40,000倍で5視野を撮影した画像のうちの1視野を図8に示す。比較例2の銀粉では、倍率40,000倍においてHeywood径が10nm以上30nm未満である空隙の個数は5視野で合計517個あり、そのうち、10nm以上20nm未満である空隙の個数は5視野で合計443個あった。粒子断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数は、5視野分の平均で25個/μmであった。また、粒子断面の面積に対する空隙の面積で表される空隙率(%)は、5視野分の平均で1.23%であった。
比較例2の銀粉は球状であり、銀粒子の断面のHeywood粒径は、5視野分の平均で0.69μmであった。
FIG. 8 shows one field of view of the five fields of view taken at a magnification of 40,000 times with respect to the particle cross section. In the silver powder of Comparative Example 2, the number of voids having a Heywood diameter of 10 nm or more and less than 30 nm at a magnification of 40,000 times was 517 in total in 5 visual fields, and the number of voids having a Heywood diameter of 10 nm or more and less than 20 nm was total in 5 visual fields. There were 443 pieces. The number of voids having a Heywood diameter of 10 nm or more and less than 30 nm with respect to the area of the particle cross section was 25 / μm 2 on average for 5 fields of view. The porosity (%) represented by the area of the voids with respect to the area of the particle cross section was 1.23% on average for the five visual fields.
The silver powder of Comparative Example 2 was spherical, and the Heywood particle diameter of the cross section of the silver particles was 0.69 μm on average for five fields of view.

実施例および比較例の、10,000倍における2視野分の空隙のHeywood径の範囲ごとの個数、粒子の断面の面積、空隙率の一覧を表1に示す。断面積1μm当たりのHeywood径200nm以上の空隙数(2視野平均)は、比較例1が0.05個/μmであり、比較例2が0.07個/μmであり、実施例1と実施例2はゼロであった。
なお、それぞれの視野(1)が、SEM像写真を掲載したもの(図1、3、5、および7)に対応する。
Table 1 shows a list of the number of voids for two fields of view in each range of Heywood diameters, the cross-sectional area of the particles, and the porosity at 10,000 times that of Examples and Comparative Examples. The number of voids (two visual field averages) with a Heywood diameter of 200 nm or more per 1 μm 2 of the cross-sectional area was 0.05 / μm 2 in Comparative Example 1 and 0.07 / μm 2 in Comparative Example 2. 1 and Example 2 were zero.
In addition, each field of view (1) corresponds to the one on which the SEM image photograph is posted (FIGS. 1, 3, 5, and 7).

Figure 0006859305
Figure 0006859305

実施例および比較例の、40,000倍における5視野分の空隙のHeywood径の範囲ごとの個数、粒子の断面の面積、空隙率の一覧を表2−1、および表2−2に示す。 Tables 2-1 and 2-2 show a list of the number of voids for 5 fields of view in each range of Heywood diameters, the cross-sectional area of the particles, and the porosity at 40,000 times that of Examples and Comparative Examples.

Figure 0006859305
Figure 0006859305

Figure 0006859305
Figure 0006859305

これらの実施例および比較例の製造条件と、得られた銀粉の下記の粉体特性の測定結果を表3−1、および表3−2に示す。 The production conditions of these Examples and Comparative Examples and the measurement results of the following powder properties of the obtained silver powder are shown in Tables 3-1 and 3-2.

<比表面積測定>
BET比表面積測定器(ユアサアイオニクス株式会社製、4ソーブUS)を使用してBET1点法により測定した。
<Specific surface area measurement>
It was measured by the BET 1-point method using a BET specific surface area measuring device (4 Sorb US manufactured by Yuasa Ionics Co., Ltd.).

<粒度分布測定>
体積基準の累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)、およびピークトップ頻度を以下の方法により測定した。
すなわち、銀粉0.1gをイソプロピルアルコール(IPA)40mLに加えて超音波ホモジナイザー(株式会社日本精機製作所製、装置名:US−150T;19.5kHz、チップ先端直径18mm)により2分間分散させた後、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製、マイクトロラックMT−3300 EXII)により測定した。
なお、ピークトップ頻度とは、粒子径の分布の縦軸を頻度として表した際の、頻度(%)が最も大きいときの頻度の値を表す。
<Measurement of particle size distribution>
Volume-based cumulative 10% particle size (D10), cumulative 50% particle size (D50), cumulative 90% particle size (D90), and peak top frequency were measured by the following methods.
That is, after 0.1 g of silver powder was added to 40 mL of isopropyl alcohol (IPA) and dispersed with an ultrasonic homogenizer (manufactured by Nissei Tokyo Office Co., Ltd., device name: US-150T; 19.5 kHz, chip tip diameter 18 mm) for 2 minutes. , Laser diffraction / scattering type particle size distribution measuring device (Mictrolac MT-3300 EXII, manufactured by Microtrack Bell Co., Ltd.).
The peak top frequency represents the value of the frequency when the frequency (%) is the highest when the vertical axis of the particle size distribution is expressed as the frequency.

<減量終了温度>
大気雰囲気下、室温から400℃まで昇温速度10℃/minの条件で、熱重量・示差熱分析法(TG−DTA法)(株式会社リガク、示差熱天秤TG8120)により減量終了温度を測定した。減量終了温度は、重量変化量(縦軸)が、400℃までの最大の減少量(最大減量)の90%まで減少したときの温度とした。
<Weight loss end temperature>
The weight loss end temperature was measured by thermogravimetric analysis (TG-DTA method) (Rigaku Co., Ltd., differential thermal balance TG8120) under the condition of a temperature rise rate of 10 ° C / min from room temperature to 400 ° C in an atmospheric atmosphere. .. The weight loss end temperature was defined as the temperature at which the weight change amount (vertical axis) was reduced to 90% of the maximum weight loss amount (maximum weight loss) up to 400 ° C.

Figure 0006859305
Figure 0006859305

Figure 0006859305
Figure 0006859305

これらの結果から、熱重量・示差熱分析法の結果から、減量終了温度が比較例1では331℃、比較例2では269℃、実施例1では265℃、実施例2では250℃を示しており、実施例1〜2の減量終了温度が低いことが分かった。実施例1〜2が比較例に比べて、空隙内に含まれる成分が一度に抜けやすい傾向があると予想される。 From these results, from the results of the thermogravimetric analysis method, the weight loss end temperature was 331 ° C in Comparative Example 1, 269 ° C in Comparative Example 2, 265 ° C in Example 1, and 250 ° C in Example 2. It was found that the weight loss end temperature of Examples 1 and 2 was low. It is expected that the components contained in the voids tend to be easily removed at once in Examples 1 and 2 as compared with Comparative Examples.

(導電性ペーストの製造例)
(実施例1−1)
下記の各成分を、プロペラレス自公転式攪拌脱泡装置(株式会社シンキー製、AR−250)を用いて30秒間混合する操作を2回行った後、3本ロールミル(EXAKT社製、EXAKT80S)を用いて混練し、500μmメッシュで濾過することで、実施例3の導電性ペーストを得た。
・実施例1の銀粉:25.5g
・富士フイルム和光純薬株式会社製、ターピネオール(TPO):1.37g
・富士フイルム和光純薬株式会社製、100cos 11.5% in TPO:3.13g
(Production example of conductive paste)
(Example 1-1)
After performing the operation of mixing each of the following components twice for 30 seconds using a propellerless self-revolving stirring and defoaming device (manufactured by Shinky Co., Ltd., AR-250), a three-roll mill (manufactured by EXAKT, EXAKT80S). Was kneaded and filtered through a 500 μm mesh to obtain the conductive paste of Example 3.
-Silver powder of Example 1: 25.5 g
・ Fujifilm Wako Pure Chemical Industries, Ltd., Tarpineol (TPO): 1.37g
・ Fujifilm Wako Pure Chemical Industries, Ltd., 100cos 11.5% in TPO: 3.13g

このようにして得られた導電性ペーストを、2.5cm角に切った太陽電池用単結晶シリコン基板(100Ω/□)の表面にスクリーン印刷機(マイクロテック株式会社製、MT−320T)によって線状に印刷し、熱風式乾燥機により200℃で10分間乾燥した後、高速焼成IR炉(日本ガイシ株式会社、高速焼成試験4室炉)により、大気中においてピーク温度770℃、イン−アウト21秒間で焼成して電極配線を作製した。得られた導電膜についてデジタルマルチメーターを用いて電気抵抗を計測し、また、マイクロスコープを用いて焼成後の線の幅、厚み、および長さを計測し、体積抵抗(Ω・cm)を算出した。結果を表4に示す。 The conductive paste thus obtained was cut into 2.5 cm squares and lined on the surface of a single crystal silicon substrate (100 Ω / □) for solar cells by a screen printing machine (manufactured by Microtech Co., Ltd., MT-320T). After printing in the form and dried at 200 ° C for 10 minutes with a hot air dryer, a high-speed firing IR furnace (Nippon Gaishi Co., Ltd., high-speed firing test 4-chamber furnace) has a peak temperature of 770 ° C in the air, in-out 21 The electrode wiring was prepared by firing in seconds. The electrical resistance of the obtained conductive film is measured using a digital multimeter, and the width, thickness, and length of the line after firing are measured using a microscope to calculate the volume resistance (Ω · cm). did. The results are shown in Table 4.

(実施例2−1)
実施例1−1において、実施例1の銀粉を実施例2の銀粉に変更したこと以外は、実施例1−1と同様にして実施例2−1の導電性ペーストを得た。結果を表4に示す。
(Example 2-1)
A conductive paste of Example 2-1 was obtained in the same manner as in Example 1-1, except that the silver powder of Example 1 was changed to the silver powder of Example 2. The results are shown in Table 4.

(比較例1−1および2−1)
実施例1−1において、実施例1の銀粉を比較例1の銀粉および比較例2の銀粉にそれぞれ変更したこと以外は、実施例1−1と同様にして比較例1−1および2−1の導電性ペーストを得た。結果を表4に示す。
(Comparative Examples 1-1 and 2-1)
Comparative Examples 1-1 and 2-1 are the same as in Example 1-1, except that the silver powder of Example 1 is changed to the silver powder of Comparative Example 1 and the silver powder of Comparative Example 2, respectively. Conductive paste was obtained. The results are shown in Table 4.

Figure 0006859305
Figure 0006859305

これらの実施例および比較例より、本発明の銀粉は、微細な配線を描画でき、かつ、焼成後の配線が従来よりもさらに低抵抗となる電極配線を形成することが可能であることが分かった。 From these Examples and Comparative Examples, it was found that the silver powder of the present invention can draw fine wiring and can form electrode wiring in which the wiring after firing has a lower resistance than the conventional one. It was.

以上より、本発明により作成された銀粉は、微細な配線を描画でき、かつ、焼成後の配線が従来よりもさらに低抵抗となる電極配線を形成することが可能であることが分かった。したがって、低温での焼成が可能かつ、低抵抗なペーストの作成が可能となるため、様々な対象物への電極配線に使用可能であり、また、太陽電池等の性能を向上させることが期待される。 From the above, it was found that the silver powder produced by the present invention can draw fine wiring and can form electrode wiring in which the wiring after firing has a lower resistance than the conventional one. Therefore, since it is possible to bake at a low temperature and produce a paste having low resistance, it can be used for electrode wiring to various objects, and it is expected to improve the performance of solar cells and the like. Ru.

Claims (8)

閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉であって、
前記銀粒子の断面を10,000倍で、前記銀粒子の断面の面積が1視野あたり60μm 以上で、2〜5視野を観察したときに、前記断面の面積に対するHeywood径が200nm以上である空隙が観察されず、かつ、
前記銀粒子の断面を40,000倍で、前記銀粒子の断面の総面積が15μm 〜50μm となるように観察したときに、前記断面の面積に対するHeywood径が10nm以上30nm未満である空隙の個数の平均が、25個/μm以上であることを特徴とする銀粉。
A silver powder containing silver particles having closed voids inside the particles.
When the cross section of the silver particles is 10,000 times larger, the area of the cross section of the silver particles is 60 μm 2 or more per visual field, and 2 to 5 visual fields are observed, the Heywood diameter with respect to the area of the cross section is 200 nm or more. No voids are observed and
40,000 times a cross-section of the silver particles, when the total area of the cross section of the silver particles was observed to be a 15μm 2 ~50μm 2, void Heywood diameter to the area of the cross section is less than 30nm or 10nm A silver powder having an average number of 25 pieces / μm 2 or more.
前記銀粒子の断面を40,000倍で観察したときの、前記断面の面積に対する空隙の面積で表される空隙率(%)が、1%〜4%である請求項1に記載の銀粉。 The silver powder according to claim 1, wherein the porosity (%) represented by the area of the voids with respect to the area of the cross section when the cross section of the silver particles is observed at a magnification of 40,000 is 1% to 4%. 前記銀粒子の断面を40,000倍で観察したときの、銀粒子のHeywood径の平均が、0.5μm〜1μmである請求項1または2に記載の銀粉。 The silver powder according to claim 1 or 2, wherein the average Heywood diameter of the silver particles when the cross section of the silver particles is observed at a magnification of 40,000 is 0.5 μm to 1 μm. 熱重量・示差熱分析法により、室温から400℃まで昇温速度10℃/minの条件で前記銀粉を加熱した場合の、重量変化量が最大の減少量の90%重量減少したときの温度が、270℃以下である請求項1から3のいずれかに記載の銀粉。 According to the thermogravimetric analysis method, the temperature when the silver powder is heated from room temperature to 400 ° C. at a heating rate of 10 ° C./min and the weight change amount is reduced by 90% of the maximum reduction amount. The silver powder according to any one of claims 1 to 3, which has a temperature of 270 ° C. or lower. 閉鎖された空隙を粒子内部に有する銀粒子を含む銀粉の製造方法であって、
銀イオンを含有する水性反応系に、還元剤としてアルデヒドを含有する還元剤含有溶液を添加して混合する工程を有し、
還元剤添加開始から還元剤添加完了までにかかる時間が、10秒間以内であり、
混合開始から90秒間後までの水性反応系の液温を33℃以下とすることを特徴とする銀粉の製造方法。
A method for producing silver powder containing silver particles having closed voids inside the particles.
It has a step of adding a reducing agent-containing solution containing an aldehyde as a reducing agent to an aqueous reaction system containing silver ions and mixing them.
The time required from the start of addition of the reducing agent to the completion of addition of the reducing agent is within 10 seconds.
A method for producing silver powder, wherein the liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds later is 33 ° C. or lower.
混合開始から90秒間後までの水性反応系の液温を30℃以下とする請求項5に記載の銀粉の製造方法。 The method for producing silver powder according to claim 5, wherein the liquid temperature of the aqueous reaction system from the start of mixing to 90 seconds later is 30 ° C. or lower. 還元剤添加前の前記水性反応系の液温が、10℃〜20℃であり、
還元剤の添加量が、銀量に対して6.0当量〜14.5当量である請求項5または6に記載の銀粉の製造方法。
The liquid temperature of the aqueous reaction system before the addition of the reducing agent was 10 ° C to 20 ° C.
The method for producing silver powder according to claim 5 or 6, wherein the amount of the reducing agent added is 6.0 equivalents to 14.5 equivalents with respect to the amount of silver.
請求項1から4のいずれかに記載の銀粉を含むことを特徴とする導電性ペースト。 A conductive paste containing the silver powder according to any one of claims 1 to 4.
JP2018185391A 2018-09-28 2018-09-28 Silver powder and its manufacturing method and conductive paste Active JP6859305B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018185391A JP6859305B2 (en) 2018-09-28 2018-09-28 Silver powder and its manufacturing method and conductive paste
TW108134909A TWI807106B (en) 2018-09-28 2019-09-26 Silver powder and its manufacturing method and conductive adhesive
US17/278,796 US11804313B2 (en) 2018-09-28 2019-09-26 Silver powder, production method thereof, and conductive paste
CN201980063297.7A CN112752627B (en) 2018-09-28 2019-09-26 Silver powder, method for producing same, and conductive paste
TW112106060A TWI829535B (en) 2018-09-28 2019-09-26 How to make silver powder
KR1020217012300A KR102423400B1 (en) 2018-09-28 2019-09-26 Silver powder, manufacturing method thereof, and conductive paste
PCT/JP2019/037843 WO2020067282A1 (en) 2018-09-28 2019-09-26 Silver powder, production method thereof, and conductive paste
US18/450,736 US20230395280A1 (en) 2018-09-28 2023-08-16 Silver powder, production method thereof, and conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185391A JP6859305B2 (en) 2018-09-28 2018-09-28 Silver powder and its manufacturing method and conductive paste

Publications (2)

Publication Number Publication Date
JP2020056050A JP2020056050A (en) 2020-04-09
JP6859305B2 true JP6859305B2 (en) 2021-04-14

Family

ID=69950734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185391A Active JP6859305B2 (en) 2018-09-28 2018-09-28 Silver powder and its manufacturing method and conductive paste

Country Status (6)

Country Link
US (2) US11804313B2 (en)
JP (1) JP6859305B2 (en)
KR (1) KR102423400B1 (en)
CN (1) CN112752627B (en)
TW (2) TWI807106B (en)
WO (1) WO2020067282A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102308468B1 (en) * 2018-12-28 2021-10-06 대주전자재료 주식회사 Spherical silver powder and preparation method thereof
US20220288680A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Method for producing silver particles, thermosetting resin compositions, semiconductor device, and electrical and/or electronic components
JP7093475B1 (en) * 2021-03-26 2022-06-29 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method
JP2023164095A (en) * 2022-04-28 2023-11-10 Dowaエレクトロニクス株式会社 Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste
WO2023210789A1 (en) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 Method for producing silver powder, silver powder and conductive paste
JP7375245B1 (en) 2022-04-28 2023-11-07 Dowaエレクトロニクス株式会社 Silver powder manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333504A (en) * 1991-05-10 1992-11-20 Sumitomo Metal Mining Co Ltd Continuous production of monodisperse fine silver powder
JPH08176620A (en) * 1994-12-27 1996-07-09 Dowa Mining Co Ltd Production of silver powder
JP4489389B2 (en) * 2003-07-29 2010-06-23 三井金属鉱業株式会社 Method for producing fine silver powder
JP2006161145A (en) * 2004-12-10 2006-06-22 Dowa Mining Co Ltd Silver powder and method for producing the same
CN101279376A (en) * 2008-05-15 2008-10-08 金川集团有限公司 Preparation of high dispersed superfine spherical silver powder for conductive silver slurry
JP5772241B2 (en) * 2011-06-02 2015-09-02 住友金属鉱山株式会社 Silver powder manufacturing method
JP5872440B2 (en) 2012-02-13 2016-03-01 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
JP6129909B2 (en) 2012-02-13 2017-05-17 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
JP5945480B2 (en) * 2012-09-07 2016-07-05 ナミックス株式会社 Silver paste composition and method for producing the same
JP5999220B2 (en) * 2015-04-24 2016-09-28 住友金属鉱山株式会社 Silver powder
KR101927476B1 (en) * 2016-10-31 2018-12-10 엘에스니꼬동제련 주식회사 Silver powder and manufacturing method of the same
WO2019117234A1 (en) * 2017-12-15 2019-06-20 Dowaエレクトロニクス株式会社 Spherical silver powder

Also Published As

Publication number Publication date
CN112752627B (en) 2022-12-16
TWI807106B (en) 2023-07-01
TW202325861A (en) 2023-07-01
CN112752627A (en) 2021-05-04
JP2020056050A (en) 2020-04-09
TW202030337A (en) 2020-08-16
KR102423400B1 (en) 2022-07-21
US20230395280A1 (en) 2023-12-07
US11804313B2 (en) 2023-10-31
KR20210065989A (en) 2021-06-04
US20220023939A1 (en) 2022-01-27
WO2020067282A1 (en) 2020-04-02
TWI829535B (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP6859305B2 (en) Silver powder and its manufacturing method and conductive paste
TWI653347B (en) Silver particle synthesizing method, silver particle, conductive paste manufacturing method, and conductive paste
CN106573300B (en) Silver powder, method for producing same, and conductive paste
JP6216412B2 (en) Silver powder manufacturing method
WO2016017600A1 (en) Silver powder, method for producing same, and conductive paste
TWI725796B (en) Mixed silver powder and conductive paste comprising same
CN105392583A (en) Transmission method, reception method, transmission device, and reception device
JP6096143B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP2009231059A (en) Conductive ink for offset printing, and circuit pattern forming method using the same
JP5756694B2 (en) Flat metal particles
JP2021006661A (en) Silver powder and method for producing the same
CN113226597B (en) Spherical silver powder and method for producing same
JP6814529B2 (en) Silver powder and its manufacturing method
JP2007095509A (en) Conductive paste
JP2009064603A (en) Conductive paste for mlcc
JP2007095525A (en) Conductive paste
JP2008159498A (en) Conductive paste and manufacturing method thereof
JP2007095527A (en) Conductive paste and method of manufacturing same
JP7246557B1 (en) Silver powder, conductive paste, method for producing silver powder, and mixed silver powder
JP3727904B2 (en) Metal powder and method for producing the same
KR20240055786A (en) Silver powder, conductive paste and silver powder manufacturing method, and mixed silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6859305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250