JPH04333504A - Continuous production of monodisperse fine silver powder - Google Patents

Continuous production of monodisperse fine silver powder

Info

Publication number
JPH04333504A
JPH04333504A JP10567091A JP10567091A JPH04333504A JP H04333504 A JPH04333504 A JP H04333504A JP 10567091 A JP10567091 A JP 10567091A JP 10567091 A JP10567091 A JP 10567091A JP H04333504 A JPH04333504 A JP H04333504A
Authority
JP
Japan
Prior art keywords
silver
reducing agent
reaction tube
solution
monodisperse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10567091A
Other languages
Japanese (ja)
Inventor
Noboru Kunimine
國峯 登
Hideo Toda
戸田 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10567091A priority Critical patent/JPH04333504A/en
Publication of JPH04333504A publication Critical patent/JPH04333504A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To homogeneously, continuously and easily obtain a monodisperse silver grain. CONSTITUTION:A silver soln. 5 and a reducing agent soln. 6 are prepared, the solns. are continuously dripped into a slender reaction tube 1 at a specified rate and agitated, the reduced fine silver grain slurry is continuously discharged from the lower end of the tube 1, and the fine silver grain is drawn off by centrifugal separation or suction filtration. A water-soluble high molecular substance is added to the reducing agent soln. to make the silver grain monodisperse and globular. Meanwhile, a substance is added to the silver soln. and reducing agent soln. to control the diameter of the silver grain, and an ultrasonic vibrator 3 is set around the tube 1 to accelerate the reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、微細な単分散銀粒子を
均質且つ連続的に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for homogeneously and continuously producing fine monodisperse silver particles.

【0002】0002

【従来の技術】微細銀粉は、ペーストとして電子部品の
電極材料等に多用されているが、電子デバイスの小型化
,薄型化に伴い、より均質で薄い焼成銀面が得られるよ
うな銀粉が求められている。
[Prior Art] Fine silver powder is often used as a paste in electrode materials for electronic components, but as electronic devices become smaller and thinner, there is a demand for silver powder that can produce a more homogeneous and thinner baked silver surface. It is being

【0003】従来、かかる銀微粉の製造方法としては、
銀溶液を攪拌しながら還元剤を滴下するか、又は還元剤
中に銀溶液を滴下するかして、得られた銀粉を三本ロー
ルミルで処理する方法が採られていた。
Conventionally, methods for producing such fine silver powder include:
A method has been adopted in which a reducing agent is added dropwise to the silver solution while stirring, or the silver solution is added dropwise into the reducing agent, and the resulting silver powder is processed in a three-roll mill.

【0004】0004

【発明が解決しようとする課題】ところで、上記従来の
方法では、銀粉を三本ロールミルで処理してペースト化
する場合、高度な分散処理技術が必要とされ、しかも得
られた銀ペーストの銀電極としての評価は劣るものであ
った。
[Problems to be Solved by the Invention] However, in the conventional method described above, when processing silver powder with a three-roll mill to form a paste, advanced dispersion processing technology is required, and furthermore, the silver electrodes of the obtained silver paste are The evaluation was poor.

【0005】本発明は、従来の技術の有するこのような
問題点に鑑みなされたものであり、その目的とするとこ
ろは、単分散銀粒子を均質且つ連続的に簡単に得ること
のできる製造方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a manufacturing method that can easily and homogeneously obtain monodisperse silver particles. This is what we are trying to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明による単分散銀微粉の連続製造方法は、銀溶
液と還元剤溶液を細長い反応管の上部から連続添加して
攪拌し、還元された銀微粒子を反応管の下部から連続的
に取り出すようにしたものである。攪拌には反応管の周
囲に取付けられた超音波振動子による超音波振動が併用
され得る。
[Means for Solving the Problems] In order to achieve the above object, the continuous production method of monodispersed silver fine powder according to the present invention includes continuously adding a silver solution and a reducing agent solution from the upper part of an elongated reaction tube and stirring them. The reduced silver particles are continuously taken out from the bottom of the reaction tube. Ultrasonic vibration by an ultrasonic vibrator attached around the reaction tube may be used for stirring.

【0007】生成される銀粒子の単分散化(ばらばらの
状態にすること)と球状化を図るために、還元剤溶液に
は、ポリビニールピロリドン,ゼラチン,アラビアゴム
,カルボキシメチルセルローズ,ポリアクリル酸及びデ
キストリンの如き水溶性の高分子物質が添加されてもよ
い。又、銀微粒子の粒径を制御するために、銀溶液中に
アンモニア水を、そして還元剤溶液中にアンモニア水,
トリエタノールアミン,グリセリン,炭酸アルカリ及び
苛性アルカリが夫々添加されてPH値が調整される。尚
、還元剤としては、ナトリウムボロハイドライド,ホル
ムアルデヒドに、ハイドロキノン,メトール,フエニド
ン及びl−アスコビル酸又はこれらと亜硫酸塩,酸性亜
硫酸塩との混合物を加えたものが使用される。
[0007] In order to make the produced silver particles monodisperse (individual state) and spherical, the reducing agent solution contains polyvinyl pyrrolidone, gelatin, gum arabic, carboxymethyl cellulose, polyacrylic acid. A water-soluble polymeric substance such as dextrin may also be added. In addition, in order to control the particle size of silver fine particles, ammonia water was added to the silver solution, and ammonia water was added to the reducing agent solution.
Triethanolamine, glycerin, alkali carbonate and caustic alkali are respectively added to adjust the pH value. As the reducing agent, a mixture of sodium borohydride, formaldehyde, hydroquinone, metol, phenidone, l-ascobylic acid, or a mixture of these and a sulfite or acidic sulfite is used.

【0008】[0008]

【作用】還元剤溶液中に硝酸銀アンモニウム錯塩溶液を
添加還元する場合は、その添加時間を長くすればする程
、得られる銀粒子は成長凝集して大きくなり、逆に短け
れば短い程単分散化し、微粒子となる。多量の銀溶液を
一度に還元剤溶液中に投入すると、両溶液の相互拡散均
質化までに時間が掛り、粒径のばらつきが増大する。 還元剤がナトリウムボロハイドライド,l−アスコルビ
ン酸及びハイドロキノンの場合には、還元終了までに要
する時間は4〜5分である。従って、反応管として両溶
液の滞留時間が10分間となるようなものを設計するこ
とにより、下部から連続的に均質な単分散銀微粉を得る
ことができる。
[Effect] When adding and reducing a silver ammonium nitrate complex salt solution to a reducing agent solution, the longer the addition time, the larger the resulting silver particles will grow and agglomerate; , and become fine particles. When a large amount of silver solution is added to the reducing agent solution at once, it takes time for both solutions to become homogenized through mutual diffusion, which increases the variation in particle size. When the reducing agent is sodium borohydride, l-ascorbic acid, and hydroquinone, the time required to complete the reduction is 4 to 5 minutes. Therefore, by designing the reaction tube so that the residence time of both solutions is 10 minutes, it is possible to continuously obtain homogeneous monodispersed silver fine powder from the lower part.

【0009】[0009]

【実施例】図1は本発明方法を実施するために使用され
る反応管装置を示しており、1は上部にガス抜き孔1a
を下端小径部にコック1bを有する内径10cm,長さ
120cmの反応管、2は反応管1の周囲に付設されて
いて温度調整を行うためのジャケット、3は反応管1の
周囲に設置されていて得られる銀微粉粒子の均質化を図
るための複数の超音波振動子、4は反応管1の下部に設
置された銀イオン濃度計、5は銀溶液貯溜槽、6は還元
剤溶液貯留槽、7及び8は貯溜槽6と反応管1を結ぶパ
イプライン中に設けられたコック及び流量計、9及び1
0は貯留槽6と反応管1を結ぶパイプライン中に設けら
れたコック及び流量計、11は反応管1中に設置された
攪拌機12を駆動するためのモータ、13は熟成槽、1
4は熟成槽中に設けられた攪拌機、15は反応管1の下
端と熟成槽13とを結ぶパイプライン中に設けられたコ
ック、16は遠心分離法又は吸引濾過法により銀微粉を
取り出すための分取装置、17は反応管1の下端と分取
装置16とを結ぶパイプライン中に設けられたコック、
18は熟成槽13と分取装置16とを結ぶパイプライン
中に設けられたコックである。
[Example] Fig. 1 shows a reaction tube apparatus used for carrying out the method of the present invention, and 1 indicates a gas vent hole 1a in the upper part.
A reaction tube with an inner diameter of 10 cm and a length of 120 cm has a cock 1b at the small diameter part of the lower end, 2 is a jacket attached around the reaction tube 1 to adjust the temperature, and 3 is installed around the reaction tube 1. 4 is a silver ion concentration meter installed at the bottom of the reaction tube 1, 5 is a silver solution storage tank, and 6 is a reducing agent solution storage tank. , 7 and 8 are cocks and flow meters installed in the pipeline connecting the storage tank 6 and the reaction tube 1, 9 and 1
0 is a cock and a flow meter installed in the pipeline connecting the storage tank 6 and the reaction tube 1, 11 is a motor for driving the stirrer 12 installed in the reaction tube 1, 13 is an aging tank, 1
4 is a stirrer installed in the aging tank; 15 is a cock installed in the pipeline connecting the lower end of the reaction tube 1 and the aging tank 13; and 16 is a cock for removing fine silver powder by centrifugation or suction filtration. A separation device 17 is a cock provided in the pipeline connecting the lower end of the reaction tube 1 and the separation device 16;
18 is a cock provided in the pipeline connecting the aging tank 13 and the fractionating device 16.

【0010】実施例1 貯留槽5に、硝酸銀1700g,アンモニア水(S.G
.0.9)1500ml及び純水から成る硝酸銀アンモ
ニア錯塩水溶液5000mlを、又貯留槽6に、亜硫酸
カリウム1400g,ハイドロキノン400g,炭酸ナ
トリウム400g,ゼラチン100g及び純水から成る
還元剤溶液45000mlを夫々用意した。両溶液を夫
々10℃に保ち、先づコック9を開いて反応管1を還元
剤溶液で満たし、次に、コック7を開いて銀溶液を毎分
50mlの割合で、又還元剤溶液を毎分450mlの割
合で、反応管1内へ同時に滴下しながら攪拌した。同時
にコック1b,17を開き、毎分500mlの割合で銀
粉スラリーを分取装置16へ流出させた。分取装置16
において、この銀粉スラリーは連続的に母液と分離され
、洗滌,乾燥することにより、真球状の銀粒子1075
gを得た。反応は約110分で終了し、銀粒子の平均粒
径は1.8μm,シグマは0.3μmであった。
Example 1 In the storage tank 5, 1700 g of silver nitrate and aqueous ammonia (S.G.
.. 0.9) 5,000 ml of a silver nitrate ammonia complex aqueous solution consisting of 1,500 ml and pure water, and 45,000 ml of a reducing agent solution consisting of 1,400 g of potassium sulfite, 400 g of hydroquinone, 400 g of sodium carbonate, 100 g of gelatin and pure water were prepared in storage tank 6. Both solutions were kept at 10°C, and first the cock 9 was opened to fill the reaction tube 1 with the reducing agent solution, and then the cock 7 was opened to add the silver solution at a rate of 50 ml per minute and the reducing agent solution every minute. The mixture was simultaneously dropped into the reaction tube 1 at a rate of 450 ml and stirred. At the same time, the cocks 1b and 17 were opened, and the silver powder slurry was flowed out to the fractionator 16 at a rate of 500 ml per minute. Preparation device 16
In the process, this silver powder slurry is continuously separated from the mother liquor, washed and dried to form truly spherical silver particles 1075.
I got g. The reaction was completed in about 110 minutes, and the average particle size of the silver particles was 1.8 μm, and the sigma was 0.3 μm.

【0011】実施例2 銀溶液は実施例1と同様のものを同量用意し、還元剤溶
液としては、亜硫酸アンモニウム1200g,アンモニ
ア水(S.G.0.9)200ml,ハイドロキノン2
00g,フエニドン(1−フエニール−3−ピラゾリド
ン)40g及びポリビニールピロリドン40gを純水に
溶解して45000mlを用意した。そして、銀溶液を
毎分50mlの割合で、又還元剤溶液を毎分450ml
の割合で、実施例1と同じ条件で反応させ、銀微粉10
70gを得た。この銀粉は表面に凹凸のある単分散球状
体であり、平均粒径0.7μm、シグマ0.2μmであ
った。
Example 2 The same amount of silver solution as in Example 1 was prepared, and the reducing agent solution was 1200 g of ammonium sulfite, 200 ml of aqueous ammonia (S.G. 0.9), and 2 ml of hydroquinone.
00 g, phenidone (1-phenyl-3-pyrazolidone), 40 g, and polyvinylpyrrolidone, 40 g, were dissolved in pure water to prepare 45,000 ml. Then, the silver solution was added at a rate of 50 ml per minute, and the reducing agent solution was added at a rate of 450 ml per minute.
The reaction was carried out under the same conditions as in Example 1 at a ratio of 10
70g was obtained. This silver powder was a monodisperse spherical body with an uneven surface, and had an average particle size of 0.7 μm and a sigma of 0.2 μm.

【0012】実施例3 フエニドンの代わりにメトール(P−メチルアミノフエ
ノール硫酸塩)40gを用いたほかは実施例2と全く同
じものを同じ条件で反応させて、単分散銀微粉1072
gを得た。平均粒径0.7μm,シグマ0.2μmであ
った。
Example 3 The same reaction as in Example 2 was carried out under the same conditions except that 40 g of metol (P-methylaminophenol sulfate) was used instead of phenidone, and 1072 g of monodispersed silver fine powder was obtained.
I got g. The average particle diameter was 0.7 μm, and the sigma was 0.2 μm.

【0013】実施例4 硝酸銀結晶1700gを純水に溶解して5000mlの
銀溶液を、又ナトリウムボロハイドライド55g,カセ
イソーダ370gを純水に溶解して5500mlの還元
剤溶液を夫々用意した。先づ反応管1を純水で満たし、
銀溶液と還元剤溶液を夫々毎分30mlの割合で同時に
滴下した。反応温度は20℃,PHは9.0±0.1に
保ち、約3時間後に反応は終了し、1070gの黒灰色
銀粉が得られた。銀粉の平均粒径は0.6μm(FSS
S)であった。
Example 4 1700 g of silver nitrate crystals were dissolved in pure water to prepare 5000 ml of a silver solution, and 55 g of sodium borohydride and 370 g of caustic soda were dissolved in pure water to prepare 5500 ml of a reducing agent solution. First, fill reaction tube 1 with pure water,
A silver solution and a reducing agent solution were each added dropwise at the same time at a rate of 30 ml per minute. The reaction temperature was maintained at 20° C. and the pH at 9.0±0.1, and the reaction was completed after about 3 hours, yielding 1070 g of black-gray silver powder. The average particle size of silver powder is 0.6 μm (FSS
S).

【0014】実施例5 銀溶液として、硝酸銀結晶1700g,アンモニア水(
S.G.0.9)1450ml及び純水から成る硝酸銀
アンモニア錯塩水溶液6000mlを、又還元剤溶液と
して、l−アスコルビン酸600g,亜硫酸アンモニウ
ム400g,ポリビニールピロリドン100gを純水に
溶解したもの60000mlを夫々用意した。両溶液共
15℃に保ち、銀溶液を毎分60ml,還元剤溶液を毎
分600mlの割合で同時に滴下し、反応させた。反応
管1からは毎分660mlの割合で分取装置16へ取り
出し、ここで直接遠心分離機にかけ、水洗乾燥して、1
074gの真球状の銀微粉を得た。反応は110分で終
了し、平均粒径は0.3μmであった。
Example 5 As a silver solution, 1700 g of silver nitrate crystals and aqueous ammonia (
S. G. 0.9) 6000 ml of a silver nitrate ammonia complex aqueous solution consisting of 1450 ml and pure water, and 60000 ml of a reducing agent solution in which 600 g of l-ascorbic acid, 400 g of ammonium sulfite, and 100 g of polyvinyl pyrrolidone were dissolved in pure water were prepared. Both solutions were kept at 15° C., and the silver solution and the reducing agent solution were simultaneously added dropwise at a rate of 60 ml per minute and 600 ml per minute, respectively, to cause a reaction. The reaction tube 1 is taken out at a rate of 660 ml per minute to the fractionator 16, where it is directly centrifuged, washed with water, and dried.
074 g of perfectly spherical fine silver powder was obtained. The reaction was completed in 110 minutes, and the average particle size was 0.3 μm.

【0015】上記各実施例では、反応後の銀粉スラリー
を直接分取装置16へ流出させて銀粉を得るようにした
が、それに代えてコック15を開き、銀粉スラリーを一
旦熟成槽13へ流出させ、ここで攪拌機14により熟成
させた後分取装置16へ送るようにしてもよい。
In each of the above embodiments, the silver powder slurry after the reaction was directly flowed to the fractionator 16 to obtain silver powder, but instead, the cock 15 was opened and the silver powder slurry was temporarily flowed to the ripening tank 13. Here, the mixture may be aged using the stirrer 14 and then sent to the fractionating device 16.

【0016】次に、比較例として従来方法を用いた場合
の実験例について説明する。銀溶液として、純水2l,
亜硫酸カリウム100g,ハイドロキノン15g,ゼラ
チン2.0gから成る水溶液を、又還元剤溶液として、
硝酸銀結晶85g,アンモニア水74mlを純水に溶解
したもの500mlを夫々用意した。銀溶液を20℃に
保ちながら攪拌しておき、これに上記還元剤溶液を滴下
して銀粉を生成したが、その滴下時間と生成された銀粒
子との関係は次の通りであった。     還元剤溶液の滴下時間           
     銀粒子の状態        1800秒 
                 粒径1〜10μm
の凝集粒子                    
  30秒                  粒径
0.5〜3μmの凝集粒子             
       10秒               
   粒径0.6μmの単分散球状粒子
Next, as a comparative example, an experimental example using the conventional method will be explained. As a silver solution, 2 liters of pure water,
An aqueous solution consisting of 100 g of potassium sulfite, 15 g of hydroquinone, and 2.0 g of gelatin was also used as a reducing agent solution.
85 g of silver nitrate crystals and 74 ml of ammonia water were dissolved in pure water to prepare 500 ml of each. The silver solution was stirred while being maintained at 20° C., and the reducing agent solution was added dropwise to the silver solution to produce silver powder. The relationship between the dropping time and the produced silver particles was as follows. Dripping time of reducing agent solution
Silver particle state 1800 seconds
Particle size 1-10μm
agglomerated particles of
30 seconds Agglomerated particles with a particle size of 0.5 to 3 μm
10 seconds
Monodisperse spherical particles with a particle size of 0.6 μm

【0017】[0017]

【発明の効果】上述の如く、本発明によれば、極めて均
質の単分散銀粒子を容易且つ連続的に製造することがで
きる。又、本発明方法により得られた銀粒子は、焼成面
が平滑であって、従来の銀粉に見られる銀焼結面の穴は
全く見られず、特に積層型チップコンデンサの内部電極
用等として極めて有用である。
As described above, according to the present invention, extremely homogeneous monodisperse silver particles can be easily and continuously produced. In addition, the silver particles obtained by the method of the present invention have a smooth sintered surface and do not have any holes on the sintered surface that are found in conventional silver powder, and are particularly suitable for internal electrodes of multilayer chip capacitors. Extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法の実施に用いられる反応管装置の構
成図である。
FIG. 1 is a configuration diagram of a reaction tube apparatus used to carry out the method of the present invention.

【符号の説明】[Explanation of symbols]

1    反応管 3    超音波振動子 4    銀イオン濃度計 5    銀溶液貯留槽 6    還元剤溶液貯留槽 1b,7,9,17,18    コック8,10  
    流量計 12,14    攪拌機 13          熟成槽 16          分取装置
1 Reaction tube 3 Ultrasonic vibrator 4 Silver ion concentration meter 5 Silver solution storage tank 6 Reducing agent solution storage tank 1b, 7, 9, 17, 18 Cock 8, 10
Flow meter 12, 14 Stirrer 13 Aging tank 16 Preparation device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  銀溶液と還元剤溶液を細長い反応管の
上部から連続添加して攪拌し、還元された銀微粒子を上
記反応管の下部から連続して取り出すようにした、単分
散銀微粉の連続製造方法。
1. A monodisperse fine silver powder, in which a silver solution and a reducing agent solution are continuously added from the upper part of a long and narrow reaction tube and stirred, and the reduced silver particles are continuously taken out from the lower part of the reaction tube. Continuous manufacturing method.
【請求項2】  還元剤溶液中に水溶製高分子物質を添
加して、生成される銀粒子の単分散化と球状化を図るよ
うにした、請求項1に記載の方法。
2. The method according to claim 1, wherein a water-soluble polymeric substance is added to the reducing agent solution to make the produced silver particles monodisperse and spherical.
【請求項3】  銀溶液中にアンモニア水を、又還元剤
溶液中にアンモニア水,トリエタノールアミン,グリセ
リン,炭酸アルカリ及び苛性アルカリを夫々添加してP
H値を調整することにより、銀微粒子の粒径を制御する
ようにした、請求項1に記載の方法。
Claim 3: Adding ammonia water to the silver solution and adding ammonia water, triethanolamine, glycerin, alkali carbonate and caustic alkali to the reducing agent solution respectively.
The method according to claim 1, wherein the particle size of the silver particles is controlled by adjusting the H value.
【請求項4】  反応管の周囲に超音波振動子を設置し
て、攪拌と併用するようにした、請求項1乃至3の何れ
かに記載の方法。
4. The method according to claim 1, wherein an ultrasonic vibrator is installed around the reaction tube to be used in conjunction with stirring.
JP10567091A 1991-05-10 1991-05-10 Continuous production of monodisperse fine silver powder Pending JPH04333504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10567091A JPH04333504A (en) 1991-05-10 1991-05-10 Continuous production of monodisperse fine silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10567091A JPH04333504A (en) 1991-05-10 1991-05-10 Continuous production of monodisperse fine silver powder

Publications (1)

Publication Number Publication Date
JPH04333504A true JPH04333504A (en) 1992-11-20

Family

ID=14413878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10567091A Pending JPH04333504A (en) 1991-05-10 1991-05-10 Continuous production of monodisperse fine silver powder

Country Status (1)

Country Link
JP (1) JPH04333504A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046483A3 (en) * 2000-12-06 2003-03-06 Univ Northwestern Silver stain removal from dna detection chips by cyanide etching or sonication
JP2006307330A (en) * 2005-03-30 2006-11-09 Mitsubishi Materials Corp Silver particulate having high dispersibility, method for producing the same, and its use
WO2007066416A1 (en) * 2005-12-08 2007-06-14 Sumitomo Metal Mining Co., Ltd. Silver microparticle colloid dispersion liquid, coating liquid for silver film formation and process for producing the same, and silver film
CN100455382C (en) * 2003-07-29 2009-01-28 三井金属矿业株式会社 Fine-grain silver powder and process for producing the same
WO2010001496A1 (en) * 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 Metal microparticle containing composition and process for production of the same
JP2010255037A (en) * 2009-04-23 2010-11-11 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Method for continuously producing silver nanowire
US20110209578A1 (en) * 2010-02-26 2011-09-01 Kuniaki Ara Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal
CN102366838A (en) * 2011-09-16 2012-03-07 王利兵 Preparation method of silver nano-particle with uniformity in particle size and favorable monodisperse stability
US20120118105A1 (en) * 2010-11-17 2012-05-17 E. I. Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
JP5126862B1 (en) * 2011-03-14 2013-01-23 エム・テクニック株式会社 Method for producing metal fine particles
JP2013108121A (en) * 2011-11-18 2013-06-06 Noritake Co Ltd Method for producing metal nanoparticle
JP2014084498A (en) * 2012-10-23 2014-05-12 Sumitomo Metal Mining Co Ltd Manufacturing method and manufacturing apparatus of silver powder
CN104174866A (en) * 2014-08-04 2014-12-03 太仓市武锋金属制品有限公司 Preparation method of superfine silver powder for electronic material
WO2015004770A1 (en) * 2013-07-11 2015-01-15 株式会社応用ナノ粒子研究所 Nanoparticle production method, production device and automatic production device
JP2015045065A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2015045066A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Production method of silver powder and production apparatus of silver powder
WO2020067282A1 (en) * 2018-09-28 2020-04-02 Dowaエレクトロニクス株式会社 Silver powder, production method thereof, and conductive paste

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046483A3 (en) * 2000-12-06 2003-03-06 Univ Northwestern Silver stain removal from dna detection chips by cyanide etching or sonication
US6726847B2 (en) 2000-12-06 2004-04-27 Northwestern University Silver stain removal by chemical etching and sonication
CN100455382C (en) * 2003-07-29 2009-01-28 三井金属矿业株式会社 Fine-grain silver powder and process for producing the same
JP2006307330A (en) * 2005-03-30 2006-11-09 Mitsubishi Materials Corp Silver particulate having high dispersibility, method for producing the same, and its use
JP4577515B2 (en) * 2005-03-30 2010-11-10 三菱マテリアル株式会社 Highly dispersible silver fine particles, production method thereof, and use
WO2007066416A1 (en) * 2005-12-08 2007-06-14 Sumitomo Metal Mining Co., Ltd. Silver microparticle colloid dispersion liquid, coating liquid for silver film formation and process for producing the same, and silver film
US7922938B2 (en) 2005-12-08 2011-04-12 Sumitomo Metal Mining Co., Ltd. Fine silver particle colloidal dispersion, coating liquid for silver film formation, processes for producing these, and silver film
WO2010001496A1 (en) * 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 Metal microparticle containing composition and process for production of the same
JP5377483B2 (en) * 2008-06-30 2013-12-25 Dowaエレクトロニクス株式会社 Composition containing fine metal particles and method for producing the same
JP2010255037A (en) * 2009-04-23 2010-11-11 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Method for continuously producing silver nanowire
US20110209578A1 (en) * 2010-02-26 2011-09-01 Kuniaki Ara Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal
JP2013543061A (en) * 2010-11-17 2013-11-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Reactor for silver powder production and continuous production method
US8574338B2 (en) * 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
US20120118105A1 (en) * 2010-11-17 2012-05-17 E. I. Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
WO2012067706A1 (en) * 2010-11-17 2012-05-24 E. I. Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
JP5126862B1 (en) * 2011-03-14 2013-01-23 エム・テクニック株式会社 Method for producing metal fine particles
US9387536B2 (en) 2011-03-14 2016-07-12 M. Technique Co., Ltd. Method for producing metal microparticles
CN102366838A (en) * 2011-09-16 2012-03-07 王利兵 Preparation method of silver nano-particle with uniformity in particle size and favorable monodisperse stability
JP2013108121A (en) * 2011-11-18 2013-06-06 Noritake Co Ltd Method for producing metal nanoparticle
JP2014084498A (en) * 2012-10-23 2014-05-12 Sumitomo Metal Mining Co Ltd Manufacturing method and manufacturing apparatus of silver powder
US20160136732A1 (en) * 2013-07-11 2016-05-19 Applied Nanoparticle Laboratory Corporation Nanoparticle production method, production device and automatic production device
US10427220B2 (en) 2013-07-11 2019-10-01 Applied Nanoparticle Laboratory Corporation Nanoparticle production method, production device and automatic production device
WO2015004770A1 (en) * 2013-07-11 2015-01-15 株式会社応用ナノ粒子研究所 Nanoparticle production method, production device and automatic production device
CN105392582A (en) * 2013-07-11 2016-03-09 株式会社应用纳米粒子研究所 Nanoparticle production method, production device and automatic production device
JP2015045066A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Production method of silver powder and production apparatus of silver powder
JP2015045065A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
CN104174866A (en) * 2014-08-04 2014-12-03 太仓市武锋金属制品有限公司 Preparation method of superfine silver powder for electronic material
WO2020067282A1 (en) * 2018-09-28 2020-04-02 Dowaエレクトロニクス株式会社 Silver powder, production method thereof, and conductive paste
JP2020056050A (en) * 2018-09-28 2020-04-09 Dowaエレクトロニクス株式会社 Silver powder, producing method therefor, and conductive paste
CN112752627A (en) * 2018-09-28 2021-05-04 同和电子科技有限公司 Silver powder, method for producing same, and conductive paste
KR20210065989A (en) * 2018-09-28 2021-06-04 도와 일렉트로닉스 가부시키가이샤 Silver powder, manufacturing method thereof, and conductive paste
US11804313B2 (en) 2018-09-28 2023-10-31 Dowa Electronics Materials Co., Ltd. Silver powder, production method thereof, and conductive paste

Similar Documents

Publication Publication Date Title
JPH04333504A (en) Continuous production of monodisperse fine silver powder
CN1974385B (en) Preparation process of monodispersive silica sol
US9371572B2 (en) Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
CN112475311A (en) Quasi-spherical silver powder with accurately controllable particle size and preparation method thereof
CN109942030B (en) Preparation method of high-density small-particle-size spherical cobaltosic oxide
CN109382508A (en) A kind of electric slurry spherical gold powder and preparation method thereof
CN107971502A (en) A kind of preparation method of high dispersiveness spherical silver powder
CN108907217A (en) A kind of method that short route prepares Ultrafine Platinum Powder
JPH11106806A (en) Silver powder composed of hexagonal sheet-shaped crystal silver grain and its production
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
CN101780545B (en) Low-oxygen content submicron cobalt powder and cobalt oxalate precursor and manufacturing method thereof
CN112264629A (en) Preparation method and application of low-cost high-dispersion silver powder
JPH0920903A (en) Production of monodisperse gold grain powder
CN108046323B (en) A kind of preparation method of niobium oxide
JPH11189812A (en) Manufacture of granular silver powder
JPH04235205A (en) Production of copper powder
JPH083605A (en) Production of monodispersive noble metal powder and the same noble metal powder
CN110105582B (en) Preparation method of metalloporphyrin framework nanocrystalline structure
RU2033443C1 (en) Method of gold powder preparing
JPS61276907A (en) Production of fine silver particle
CN111659901A (en) Preparation method of submicron silver powder
JPH04240112A (en) Production of silica particulates
CN115464133B (en) Copper nanowire and preparation method thereof
JPS61243105A (en) Production of pulverous silver particles
CN114178541A (en) Preparation method of yolk eggshell type gold nanostructure with built-in LSPR coupling