JP6129909B2 - Spherical silver powder and method for producing the same - Google Patents

Spherical silver powder and method for producing the same Download PDF

Info

Publication number
JP6129909B2
JP6129909B2 JP2015143643A JP2015143643A JP6129909B2 JP 6129909 B2 JP6129909 B2 JP 6129909B2 JP 2015143643 A JP2015143643 A JP 2015143643A JP 2015143643 A JP2015143643 A JP 2015143643A JP 6129909 B2 JP6129909 B2 JP 6129909B2
Authority
JP
Japan
Prior art keywords
ppm
silver powder
silver
spherical silver
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015143643A
Other languages
Japanese (ja)
Other versions
JP2015232180A (en
Inventor
晃嗣 平田
晃嗣 平田
徳昭 野上
徳昭 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015143643A priority Critical patent/JP6129909B2/en
Publication of JP2015232180A publication Critical patent/JP2015232180A/en
Application granted granted Critical
Publication of JP6129909B2 publication Critical patent/JP6129909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、球状銀粉およびその製造方法に関し、特に、積層コンデンサの内部電極や回路基板の導体パターン、プラズマディスプレイパネルや太陽電池の基板の電極や回路などの電子部品に使用する導電性ペースト用の球状銀粉およびその製造方法に関する。   The present invention relates to spherical silver powder and a method for producing the same, and particularly for conductive pastes used for electronic components such as internal electrodes of multilayer capacitors and conductor patterns of circuit boards, plasma display panels and solar cell boards and circuits. The present invention relates to spherical silver powder and a method for producing the same.

従来、積層コンデンサの内部電極、回路基板の導体パターン、太陽電池やプラズマディスプレイパネル(PDP)用基板の電極や回路などを形成する方法として、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される焼成型の導電性ペーストを基板上に所定のパターンに形成した後、500℃以上の温度で加熱することによって、有機成分を除去し、銀粒子同士を焼結させて導電膜を形成する方法が広く用いられている。   Conventionally, as a method for forming internal electrodes of multilayer capacitors, conductor patterns of circuit boards, electrodes and circuits of substrates for solar cells and plasma display panels (PDP), silver powder is added to an organic vehicle together with glass frit and kneaded. After forming the baking type conductive paste manufactured by the above in a predetermined pattern on the substrate, the organic component is removed by heating at a temperature of 500 ° C. or higher, and the silver particles are sintered together to form the conductive film. The forming method is widely used.

このような方法に使用される導電性ペースト用の銀粉は、電子部品の小型化、導体パターンの高密度化、ファインライン化などに対応するため、粒径が適度に小さく、粒度が揃っていることが要求されている。   Silver powder for conductive paste used in such a method is suitable for reducing the size of electronic components, increasing the density of conductive patterns, making fine lines, etc., so that the particle size is moderately small and the particle size is uniform. It is requested.

このような導電性ペースト用の銀粉を製造する方法として、銀イオンを含有する水性反応系に還元剤を加えることによって球状銀粉を還元析出させる湿式還元法が知られている(例えば、特許文献1参照)。   As a method for producing such silver powder for conductive paste, there is known a wet reduction method in which spherical silver powder is reduced and precipitated by adding a reducing agent to an aqueous reaction system containing silver ions (for example, Patent Document 1). reference).

特開平8−176620号公報(段落番号0008−0013)JP-A-8-176620 (paragraph numbers 0008-0013)

しかし、従来の湿式還元法により製造した球状銀粉と同程度の粒径の球状銀粉を焼成型の導電性ペーストに使用した場合に、600℃程度の温度で加熱しても、銀粒子同士を十分に焼結させることができず、良好な導電膜を形成することができない場合があった。   However, when spherical silver powder having the same particle size as that of spherical silver powder produced by a conventional wet reduction method is used as a baking type conductive paste, the silver particles are sufficiently separated even when heated at a temperature of about 600 ° C. In some cases, a good conductive film could not be formed.

したがって、本発明は、このような従来の問題点に鑑み、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a spherical silver powder having a particle size comparable to that of spherical silver powder produced by a conventional wet reduction method and capable of being fired at a lower temperature, and a method for producing the same. The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させることにより、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉を製造することができることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors mixed a reducing agent-containing solution containing an aldehyde as a reducing agent while generating cavitation in an aqueous reaction system containing silver ions, By reducing and precipitating silver particles, it was found that spherical silver powder having a particle size comparable to that of spherical silver powder produced by a conventional wet reduction method and calcinable at a lower temperature can be produced. It came to be completed.

すなわち、本発明による球状銀粉の製造方法は、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させることを特徴とする。この球状銀粉の製造方法において、銀イオンを含有する水性反応系に超音波を照射することによってキャビテーションを発生させるのが好ましい。また、銀イオンを含有する水性反応系が、銀のアンモニア錯体を含有する水溶液であるのが好ましく、還元剤含有溶液が、ホルムアルデヒドまたはアセトアルデヒドを含有する溶液であるのが好ましい。さらに、還元析出した銀粒子を固液分離し、洗浄した後、100℃以下で乾燥させるのが好ましい。また、球状銀粉が、粒子内部に閉鎖された空隙を有するのが好ましい。   That is, in the method for producing spherical silver powder according to the present invention, an aqueous reaction system containing silver ions is mixed with a reducing agent-containing solution containing an aldehyde as a reducing agent while generating cavitation to reduce and precipitate silver particles. It is characterized by that. In this method for producing spherical silver powder, it is preferable to generate cavitation by irradiating an aqueous reaction system containing silver ions with ultrasonic waves. The aqueous reaction system containing silver ions is preferably an aqueous solution containing a silver ammonia complex, and the reducing agent-containing solution is preferably a solution containing formaldehyde or acetaldehyde. Furthermore, it is preferable that the silver particles that have been reduced and precipitated are separated into solid and liquid, washed, and then dried at 100 ° C. or lower. Moreover, it is preferable that spherical silver powder has the space | gap closed inside the particle | grain.

また、本発明による球状銀粉は、粒子内部に閉鎖された空隙を有することを特徴とする。この球状銀粉において、球状銀粉のレーザー回折法による平均粒径D50が0.1〜10μmであるのが好ましい。また、球状銀粉の真比重が9.8g/cm以下であるのが好ましい。さらに、球状銀粉に含まれる炭素、窒素、酸素および水素を除いた不純物元素の含有量がいずれも100ppm未満であるのが好ましい。 In addition, the spherical silver powder according to the present invention is characterized by having voids closed inside the particles. In the spherical silver powder, the average particle diameter D 50 of the spherical silver powder by a laser diffraction method is preferably in the range of 0.1 to 10 [mu] m. The true specific gravity of the spherical silver powder is preferably 9.8 g / cm 3 or less. Furthermore, it is preferable that the content of impurity elements other than carbon, nitrogen, oxygen and hydrogen contained in the spherical silver powder is less than 100 ppm.

さらに、本発明による導電性ペーストは、上記の球状銀粉を導体として用いたことを特徴とする。   Furthermore, the conductive paste according to the present invention is characterized by using the spherical silver powder as a conductor.

本発明によれば、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させることにより、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉を製造することができる。   According to the present invention, an aqueous reaction system containing silver ions is mixed with a reducing agent-containing solution containing an aldehyde as a reducing agent while generating cavitation, thereby reducing and precipitating silver particles. A spherical silver powder having the same particle size as that of the spherical silver powder produced by the reduction method and capable of being fired at a lower temperature can be produced.

実施例1で得られた球状銀粉の断面の電界放出形走査電子顕微鏡(FE−SEM)写真を示す図である。It is a figure which shows the field emission type | mold scanning electron microscope (FE-SEM) photograph of the cross section of the spherical silver powder obtained in Example 1. FIG. 実施例2で得られた球状銀粉の断面のFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained in Example 2. FIG. 実施例3で得られた球状銀粉の断面のFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained in Example 3. FIG. 比較例1で得られた球状銀粉の断面のFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained by the comparative example 1.

本発明による球状銀粉の製造方法の実施の形態では、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させる。   In the embodiment of the method for producing spherical silver powder according to the present invention, silver particles are reduced by mixing an aqueous reaction system containing silver ions with a reducing agent-containing solution containing aldehyde as a reducing agent while generating cavitation. Precipitate.

キャビテーション(空洞現象)は、液体中に生じた局所的な圧力差により短時間に気泡の発生と消滅が起こる物理現象をいい、超音波の照射や乳化処理用のホモジナイザーなどにより発生させることができるが、銀イオンを含有する水性反応系全体に発生させるためには、銀イオンを含有する水性反応系に超音波を照射することによって発生させるのが好ましい。照射する超音波の発振周波数は、キャビテーションを発生させることができる発振周波数であればよいが、28〜40kHzであるのが好ましい。また、超音波の出力は、銀粒子の還元析出反応に供する液量に応じて設定すればよい。なお、超音波の照射は、還元剤含有溶液を添加して銀粒子を還元析出させる際に行えばよく、その前後にも行ってもよい。   Cavitation (cavity phenomenon) is a physical phenomenon in which bubbles are generated and disappeared in a short time due to a local pressure difference in the liquid, and can be generated by ultrasonic irradiation or a homogenizer for emulsification. However, in order to generate | occur | produce in the whole aqueous reaction system containing silver ion, it is preferable to generate | occur | produce by irradiating an ultrasonic wave to the aqueous reaction system containing silver ion. The oscillation frequency of the ultrasonic wave to be irradiated may be any oscillation frequency that can generate cavitation, but is preferably 28 to 40 kHz. Moreover, what is necessary is just to set the output of an ultrasonic wave according to the liquid quantity with which it uses for the reductive precipitation reaction of silver particle. The ultrasonic irradiation may be performed when the reducing agent-containing solution is added to reduce and precipitate silver particles, and may be performed before and after that.

銀イオンを含有する水性反応系としては、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀錯体を含有する水溶液は、硝酸銀水溶液または酸化銀懸濁液にアンモニア水またはアンモニウム塩を添加することにより生成することができる。これらの中で、銀粉が適当な粒径と球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られる銀アンミン錯体水溶液を使用するのが好ましい。銀アンミン錯体中におけるアンモニアの配位数は2であるため、銀1モル当たりアンモニア2モル以上を添加する。また、アンモニアの添加量が多過ぎると錯体が安定化し過ぎて還元が進み難くなるので、アンモニアの添加量は銀1モル当たりアンモニア8モル以下であるのが好ましい。なお、還元剤の添加量を多くするなどの調整を行えば、アンモニアの添加量が8モルを超えても適当な粒径の球状銀粉を得ることは可能である。   As an aqueous reaction system containing silver ions, an aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used. An aqueous solution containing a silver complex can be produced by adding aqueous ammonia or ammonium salt to an aqueous silver nitrate solution or a silver oxide suspension. Among these, it is preferable to use a silver ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution so that the silver powder has an appropriate particle size and a spherical shape. Since the coordination number of ammonia in the silver ammine complex is 2, 2 mol or more of ammonia is added per 1 mol of silver. Further, if the amount of ammonia added is too large, the complex becomes too stable and the reduction is difficult to proceed. Therefore, the amount of ammonia added is preferably 8 moles or less per mole of silver. If adjustments such as increasing the amount of reducing agent added are made, it is possible to obtain spherical silver powder having an appropriate particle size even if the amount of ammonia added exceeds 8 mol.

還元剤としては、アルデヒド基を有する化合物を使用することができるが、ホルムアルデヒドまたはアセトアルデヒドを使用するのが好ましい。また、アルデヒド単体を使用してもよいし、アルデヒド化合物を組み合わせて使用してもよいし、ホルマリンのように水やアルコールとの混合物を使用してもよい。このような還元剤としてアルデヒドを含有する還元剤含有溶液を添加して銀粒子を還元析出する際に、キャビテーションを発生させることにより、粒子内部に閉鎖された空隙を有する球状銀粉を得ることができる。還元剤の添加量は、銀イオンを含有する水性反応系に対して過剰な量でもよいが、銀イオンを含有する水性反応系中に残留する銀イオンを少なくして貴金属である銀のロスを抑えるためには、銀イオンの未還元分が10ppm以下にするのに必要な還元剤の量であればよい。   As the reducing agent, a compound having an aldehyde group can be used, but formaldehyde or acetaldehyde is preferably used. Moreover, an aldehyde single-piece | unit may be used, an aldehyde compound may be used in combination, and a mixture with water or alcohol like formalin may be used. When a reducing agent-containing solution containing aldehyde is added as such a reducing agent to reduce and precipitate silver particles, spherical silver powder having voids closed inside the particles can be obtained by generating cavitation. . The addition amount of the reducing agent may be excessive with respect to the aqueous reaction system containing silver ions, but the silver ions remaining in the aqueous reaction system containing silver ions are reduced to reduce the loss of silver as a noble metal. In order to suppress it, the amount of the reducing agent required for making the unreduced portion of silver ions 10 ppm or less is sufficient.

また、銀イオンを含有する水性反応系にpH調整剤を添加してもよい。pH調整剤としては、一般的な酸や塩基が使用することができ、例えば、硝酸、水酸化ナトリウムなどを使用することができる。   Moreover, you may add a pH adjuster to the aqueous reaction system containing a silver ion. As the pH adjuster, general acids and bases can be used. For example, nitric acid, sodium hydroxide, and the like can be used.

また、銀イオンを含有する水性反応系に表面処理剤を添加してもよい。表面処理剤としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属化合物、キレート剤、高分子分散剤などを使用することができる。脂肪酸の例としては、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などを挙げることができる。脂肪酸塩の例としては、リチウム、ナトリウム、カリウム、バリウム、マグネシウム、カルシウム、アルミニウム、鉄、コバルト、マンガン、鉛、亜鉛、スズ、ストロンチウム、ジルコニウム、銀、銅などの金属と脂肪酸が塩を形成したものを挙げることができる。界面活性剤の例としては、アルキルベンゼンスルホン酸塩やポリオキシエチレンアルキルエーテルリン酸塩などの陰イオン界面活性剤、脂肪族4級アンモニウム塩などの陽イオン界面活性剤、イミダゾリニウムベタインなどの両性界面活性剤、ポリオキシエチレンアルキルエーテルやポリオキシエチレン脂肪酸エステルなどの非イオン界面活性剤などを挙げることができる。有機金属化合物の例としては、アセチルアセトントリブトキシジルコニウム、クエン酸マグネシウム、ジエチル亜鉛、ジブチルスズオキサイド、ジメチル亜鉛、テトラ−n−ブトキシジルコニウム、トリエチルインジウム、トリエチルガリウム、トリメチルインジウム、トリメチルガリウム、モノブチルスズオキサイド、テトライソシアネートシラン、テトラメチルシラン、テトラメトキシシラン、ポリメトキシシロキサン、モノメチルトリイソシアネートシラン、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などを挙げることができる。キレート剤の例としては、イミダゾール、オキサゾール、チアゾール、セレナゾール、ピラゾール、イソオキサゾール、イソチアゾール、1H−1,2,3−トリアゾール、2H−1,2,3−トリアゾール、1H−1,2,4−トリアゾール、4H−1,2,4−トリアゾール、1,2,3−オキサジアゾール、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,3−チアジアゾール、1,2,4−チアジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、1H−1,2,3,4−テトラゾール、1,2,3,4−オキサトリアゾール、1,2,3,4−チアトリアゾール、2H−1,2,3,4−テトラゾール、1,2,3,5−オキサトリアゾール、1,2,3,5−チアトリアゾール、インダゾール、ベンゾイミダゾール、ベンゾトリアゾールまたはこれらの塩、あるいは、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、乳酸、オキシ酪酸、グリセリン酸、酒石酸、リンゴ酸、タルトロン酸、ヒドロアクリル酸、マンデル酸、クエン酸、アスコルビン酸などを挙げることができる。高分子分散剤の例としては、ペプチド、ゼラチン、コラーゲンペプチド、アルブミン、アラビアゴム、プロタルビン酸、リサルビン酸などを挙げることができる。これらの表面処理剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。   Further, a surface treating agent may be added to an aqueous reaction system containing silver ions. As the surface treatment agent, fatty acids, fatty acid salts, surfactants, organometallic compounds, chelating agents, polymer dispersing agents and the like can be used. Examples of fatty acids include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, arachidonic acid and the like. Examples of fatty acid salts include lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver, copper, and other fatty acids and salts formed. Things can be mentioned. Examples of surfactants include anionic surfactants such as alkylbenzene sulfonates and polyoxyethylene alkyl ether phosphates, cationic surfactants such as aliphatic quaternary ammonium salts, and amphoteric compounds such as imidazolinium betaine. Nonionic surfactants such as surfactants and polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters can be mentioned. Examples of organometallic compounds include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethylindium, triethylgallium, trimethylindium, trimethylgallium, monobutyltin oxide, tetra Examples include isocyanate silane, tetramethyl silane, tetramethoxy silane, polymethoxy siloxane, monomethyl triisocyanate silane, silane coupling agent, titanate coupling agent, aluminum coupling agent and the like. Examples of chelating agents include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4. -Triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxa Diazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H-1,2,3,4-tetrazole, 1,2 , 3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4-tetrazole, 1,2,3,5-oxatriazole, , 3,5-thiatriazole, indazole, benzimidazole, benzotriazole or salts thereof, or oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane Diacid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, glycolic acid, lactic acid, oxybutyric acid, glyceric acid, tartaric acid, malic acid, tartronic acid, hydroacrylic acid, mandelic acid, citric acid, ascorbic acid, etc. Can be mentioned. Examples of the polymer dispersant include peptides, gelatin, collagen peptides, albumin, gum arabic, protalbic acid, lysalbic acid and the like. These surface treatment agents may be used individually by 1 type, and may use 2 or more types together.

銀粒子を還元析出させることによって得られた銀含有スラリーを固液分離し、水洗すると、銀に対して1〜200質量%の水を含み、流動性がほとんどない塊状のケーキが得られる。このケーキの乾燥を早めるために、ケーキ中の水分を低級アルコールなどで置換してもよい。このケーキを強制循環式大気乾燥機、真空乾燥機、気流乾燥装置などの乾燥機により乾燥することによって、乾燥した銀粉が得られるが、銀粉の粒子内部の閉鎖された空隙を保持するために、乾燥温度を100℃以下するのが好ましい。   When the silver-containing slurry obtained by reducing and precipitating the silver particles is solid-liquid separated and washed with water, a lump cake containing 1 to 200% by mass of water with respect to silver and almost no fluidity is obtained. In order to accelerate the drying of the cake, the moisture in the cake may be replaced with a lower alcohol or the like. By drying this cake with a dryer such as a forced circulation air dryer, vacuum dryer, airflow dryer, etc., dry silver powder is obtained, but in order to maintain closed voids inside the silver powder particles, The drying temperature is preferably 100 ° C. or lower.

また、得られた銀粉に乾式解砕処理や分級処理を施してもよい。この解砕の代わりに、粒子を機械的に流動化させることができる装置に銀粉を投入して、銀粉の粒子同士を機械的に衝突させることによって、銀粉の粒子表面の凹凸や角ばった部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕および分級を行うことができる一体型の装置(株式会社ホソカワミクロン製のドライマイスタや、ミクロンドライヤなど)を用いて乾燥、粉砕および分級を行ってもよい。   Moreover, you may give a dry-type crushing process and a classification process to the obtained silver powder. Instead of this crushing, silver powder is put into an apparatus that can fluidize the particles mechanically, and the silver powder particles are mechanically collided with each other, so that irregularities and angular portions on the surface of the silver powder particles are removed. You may perform the surface smoothing process which makes it smooth. Moreover, you may perform a classification process after crushing and a smoothing process. In addition, you may dry, grind | pulverize, and classify | categorize using the integrated apparatus (Drymeister made from Hosokawa Micron Corporation, a micron dryer etc.) which can perform drying, grind | pulverize, and a classification.

上記の球状銀粉の製造方法によって、粒子内部に閉鎖された複数の空隙(複数の密閉孔)を有する球状銀粉を製造することができる。一般に、銀粉を使用する焼成型の導電性ペーストを焼成して導電膜を形成する工程は、(1)希釈溶剤の蒸発、(2)有機成分(表面処理剤および樹脂)の燃焼、(3)焼結助剤であるガラスフリットの軟化、(4)銀粒子の液相焼結から構成されている。導電膜の配線の形成をより低温で行うためには、上記の(2)〜(4)のための温度を低下させる必要がある。通常の球状銀粉を使用する場合、上記の(2)の有機成分の燃焼は、銀粒子の表面のみで起こるので、有機成分の燃焼が銀粒子の焼結に及ぼす効果は限定的であるが、粒子内部に空隙を有する球状銀粉を使用する場合、銀粒子の表面の有機成分の燃焼に加えて、空隙内の物質の膨張とその燃焼のエネルギーが銀粒子の焼結に有利に寄与すると考えられる。一方、粒子内部の空隙が粒子の外部に開放された形状の球状銀粉では、製造中の洗浄および乾燥において粒子内の物質が消失してしまうため、焼成の際に空隙内の物質の膨張および燃焼は起こらず、通常の球状銀粉とほとんど変わらない。なお、粒子内部に空隙を有する銀粉を製造する方法として、銀より卑な金属粒子を母体粒子として、その金属粒子の表面に置換反応により銀を析出させ、母体粒子を溶解除去する方法も考えられるが、この方法では、粒子内部の空隙を閉鎖された空隙とすると、母体粒子の金属成分が残留してしまい、導電性の低下や、酸化による信頼性の低下を招くおそれがあるため、粒子内部の空隙を粒子の外部に開放された空隙にする必要がある。   By the above method for producing spherical silver powder, spherical silver powder having a plurality of voids (a plurality of sealed holes) closed inside the particles can be produced. In general, the steps of baking a conductive paste using silver powder to form a conductive film are as follows: (1) evaporation of diluted solvent, (2) combustion of organic components (surface treatment agent and resin), (3) It consists of softening glass frit as a sintering aid and (4) liquid phase sintering of silver particles. In order to form the conductive film wiring at a lower temperature, it is necessary to lower the temperature for the above (2) to (4). When ordinary spherical silver powder is used, the burning of the organic component (2) above occurs only on the surface of the silver particles, so the effect of the burning of the organic component on the sintering of the silver particles is limited, When spherical silver powder having voids inside the particles is used, in addition to the combustion of the organic components on the surface of the silver particles, it is considered that the expansion of the substance in the voids and the energy of the combustion advantageously contribute to the sintering of the silver particles. . On the other hand, in the spherical silver powder in which the void inside the particle is open to the outside of the particle, the substance in the particle disappears during washing and drying during production, so that the expansion and combustion of the substance in the void during firing Does not occur and is almost the same as ordinary spherical silver powder. In addition, as a method for producing silver powder having voids inside the particles, a method in which metal particles lower than silver are used as base particles, silver is deposited on the surface of the metal particles by a substitution reaction, and the base particles are dissolved and removed can be considered. However, in this method, if the void inside the particle is a closed void, the metal component of the base particle remains, which may lead to a decrease in conductivity and a decrease in reliability due to oxidation. It is necessary to make these voids open to the outside of the particles.

粒子内部に閉鎖された空隙を有する球状銀粉は、電気抵抗の上昇や、酸化による信頼性の低下を防止するため、(還元時の反応母液の巻き込みにより含有する)不純物となる遷移金属、アルカリ土類金属、アルカリ金属元素、アルミニウム、マグネシウムなどの不純物元素の含有量をいずれも100ppm未満にするのが好ましい。   Spherical silver powder with voids closed inside the particles prevents transition metal and alkaline earth as impurities (contained by entrainment of the reaction mother liquor during reduction) in order to prevent an increase in electrical resistance and a decrease in reliability due to oxidation. It is preferable that the content of impurity elements such as metal species, alkali metal elements, aluminum and magnesium is less than 100 ppm.

粒子内部に閉鎖された空隙を有する球状銀粉の真比重は、9.8g/cm以下であるのが好ましい。バルク銀の真比重は10.5g/cmであるため、9.8g/cm以下であれば、バルク銀に対して7%以上密度が低下していることになる。真比重が9.8g/cmより大きいと、空隙が小さ過ぎるか、少な過ぎるか、あるいは、空隙が外部に開放されており、空隙内の物質の膨張とその燃焼による焼結促進効果が不十分になる場合がある。 The true specific gravity of the spherical silver powder having voids closed inside the particles is preferably 9.8 g / cm 3 or less. For a true specific gravity of the bulk silver is 10.5 g / cm 3, if 9.8 g / cm 3 or less, so that the density of 7% or more with respect to the bulk silver is reduced. When the true specific gravity is larger than 9.8 g / cm 3 , the voids are too small or too small, or the voids are opened to the outside, and the effect of promoting the sintering due to the expansion of the material in the voids and the combustion thereof is ineffective. It may be enough.

粒子内部に閉鎖された空隙を有する球状銀粉のレーザー回折法による平均粒径D50は、0.1〜10μmであるのが好ましい。また、細線化が進む導電膜の形成に使用するためには、5μm以下であるのがさらに好ましい。一方、粒径が小さ過ぎると、比表面積が増加するため、導電性ペーストに使用した場合に粘度が上昇したり、感光性ペーストとして使用する場合に紫外線の透過が不十分になり易いため、0.1μm以上であるのが好ましい。 The average particle size D 50 by laser diffraction method of spherical silver powder having voids which are closed inside the particles is preferably from 0.1 to 10 [mu] m. Moreover, in order to use it for formation of the electrically conductive film which thinning progresses, it is more preferable that it is 5 micrometers or less. On the other hand, if the particle size is too small, the specific surface area increases, so that when used as a conductive paste, the viscosity increases, or when used as a photosensitive paste, the transmission of ultraviolet rays tends to be insufficient. It is preferably 1 μm or more.

上記の球状銀粉を導体として使用して導電性ペーストを製造することができる。例えば、上記の球状銀粉を樹脂と混合することにより、導電性ペーストを製造することができる。なお、樹脂の例として、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、エチルセルロースなどを挙げることができる。これら樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。この導電性ペーストは、スクリーン印刷、オフセット印刷、フォトリソグラフィ法などにより、基板上に印刷することができる。スクリーン印刷の場合、導電性ペーストの粘度は、25℃で30〜100Pa・sであることが好ましい。導電性ペーストの粘度が30Pa・s未満であると、印刷時に「にじみ」が発生することがあり、100Pa・sを超えると、印刷むらが発生することがある。   A conductive paste can be produced using the above spherical silver powder as a conductor. For example, a conductive paste can be produced by mixing the above spherical silver powder with a resin. Examples of the resin include an epoxy resin, an acrylic resin, a polyester resin, a polyimide resin, a polyurethane resin, a phenoxy resin, a silicone resin, and ethyl cellulose. These resins may be used alone or in combination of two or more. This conductive paste can be printed on the substrate by screen printing, offset printing, photolithography, or the like. In the case of screen printing, the viscosity of the conductive paste is preferably 30 to 100 Pa · s at 25 ° C. When the viscosity of the conductive paste is less than 30 Pa · s, “bleeding” may occur during printing, and when it exceeds 100 Pa · s, uneven printing may occur.

以下、本発明による球状銀粉およびその製造方法の実施例について詳細に説明する。   Examples of the spherical silver powder and the production method thereof according to the present invention will be described in detail below.

[実施例1]
銀8.63gを含む硝酸銀水溶液753gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
[Example 1]
A 1 L beaker obtained by separating 753 g of an aqueous silver nitrate solution containing 8.63 g of silver is placed in an ultrasonic cleaning machine (US Cleaner USD-4R, output 160 W, manufactured by As One Co., Ltd.) containing water at a water temperature of 35 ° C., and an oscillation frequency of 40 kHz. Then, the ultrasonic irradiation was started and stirring was started.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水29.1g(銀に対して3.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から30秒後に、20質量%の水酸化ナトリウム水溶液0.48gを添加し、アンモニア水の添加から20分後に、ホルマリンを純水で希釈した27.4質量%のホルムアルデヒド溶液48.7g(銀に対して11.1当量相当)を添加し、その30秒後に、1.2質量%のステアリン酸エタノール溶液0.86gを添加して、銀粒子を含むスラリーを得た。   Next, 29.1 g of 28% by mass of ammonia water (equivalent to 3.0 equivalents with respect to silver) is added to the silver nitrate aqueous solution in the above beaker to form a silver ammine complex salt, and 30 seconds after the addition of the ammonia water. 0.48 g of a 20% by mass aqueous sodium hydroxide solution was added, and 20 minutes after the addition of aqueous ammonia, 48.7 g of a 27.4% by mass formaldehyde solution in which formalin was diluted with pure water (11. 30 equivalents later, 0.86 g of a 1.2 mass% stearic acid ethanol solution was added to obtain a slurry containing silver particles.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して球状銀粉を得た。   Next, after the ultrasonic irradiation is finished, the slurry obtained by filtering the slurry containing silver particles and washing with water is dried for 10 hours with a vacuum dryer at 75 ° C., and the dried silver powder is dried with a coffee mill for 30 seconds. Crushing to obtain spherical silver powder.

このようにして得られた球状銀粉について、レーザー回折法による粒度分布、BET比表面積、真比重を測定し、粒子断面を観察し、不純物元素および銀の含有量と、有機成分(炭素、窒素、酸素および水素)の含有量を求めた。   The spherical silver powder thus obtained was measured for particle size distribution, BET specific surface area, true specific gravity by laser diffraction method, observed the particle cross section, and the content of impurity elements and silver, and organic components (carbon, nitrogen, The content of oxygen and hydrogen was determined.

レーザー回折法による粒度分布は、球状銀粉0.3gをイソプロピルアルコール30mLに入れ、出力50Wの超音波洗浄器により5分間分散させ、マイクロトラック粒度分布測定装置(ハネウエル−日機装株式会社製の9320HRA(X−100))を用いて測定した。その結果、D10=1.6μm、D50=3.0μm、D90=5.3μmであった。 The particle size distribution by the laser diffraction method is as follows. 0.3 g of spherical silver powder is placed in 30 mL of isopropyl alcohol, and dispersed for 5 minutes by an ultrasonic cleaner with an output of 50 W, and a microtrack particle size distribution measuring device (Honeywell-Nikkiso 9320HRA (X -100)). As a result, D 10 = 1.6 μm, D 50 = 3.0 μm, and D 90 = 5.3 μm.

BET比表面積は、60℃で10分間脱気した後、比表面積測定装置(カウンタクローム(Quanta Chrome)社製のモノソーブ)を用いて、窒素吸着によるBET1点法により測定した。その結果、BET比表面積は0.35m/gであった。 The BET specific surface area was degassed at 60 ° C. for 10 minutes, and then measured by a BET one-point method by nitrogen adsorption using a specific surface area measuring device (Monosorb manufactured by Quanta Chrome). As a result, the BET specific surface area was 0.35 m 2 / g.

真比重は、球状銀粉10gと、浸液としてイソプロピルアルコールと、容積50mLピクノメーターを使用して測定した。その結果、真比重は9.6g/cmであり、バルク銀の真比重10.5g/cmに対して密度が9%低下していることが確認された。 The true specific gravity was measured using 10 g of spherical silver powder, isopropyl alcohol as an immersion liquid, and a 50 mL volume pycnometer. As a result, the true specific gravity was 9.6 g / cm 3 , and it was confirmed that the density was 9% lower than the true specific gravity of bulk silver of 10.5 g / cm 3 .

粒子断面の観察は、集束イオンビーム(FIB)装置(JEOL社製のJEM−9310FIB)で切断した球状銀粉の断面を電界放出形走査電子顕微鏡(FE−SEM)(JEOL社製JSM−6700F)で観察することによって行った。その結果、図1のFE−SEM写真に示すように、球状銀粉の粒子の内部に閉鎖された空隙が存在することが確認された。また、FE−SEM写真における球状銀粉の全粒子の面積は13.7μm、空隙を有する粒子の面積は0.56μm、全粒子の面積に対する空隙を有する粒子の面積の比率は4.1%であり、観察した球状銀粉の断面が必ずしも粒子の中心を通るとは限らないことを考慮すると、ほとんどの粒子に空隙が存在すると考えられる。また、FE−SEM写真から求めた平均空隙サイズは0.07μmであり、平均粒径D50に対して2.3%に相当し、十分な空隙サイズであることが確認された。 The observation of the particle cross-section was performed using a field emission scanning electron microscope (FE-SEM) (JSM-6700F manufactured by JEOL) on the cross section of the spherical silver powder cut by a focused ion beam (FIB) apparatus (JEM-9310FIB manufactured by JEOL). This was done by observing. As a result, as shown in the FE-SEM photograph of FIG. 1, it was confirmed that a closed void exists inside the spherical silver powder particles. Further, the area of all particles of the spherical silver powder in the FE-SEM photograph is 13.7 μm 2 , the area of the particles having voids is 0.56 μm 2 , and the ratio of the area of the particles having voids to the area of all particles is 4.1%. In view of the fact that the cross section of the observed spherical silver powder does not necessarily pass through the center of the particle, it is considered that there are voids in most of the particles. Further, the average void size determined from the FE-SEM photograph was 0.07 μm, corresponding to 2.3% with respect to the average particle size D 50 , and it was confirmed that the void size was sufficient.

不純物元素の含有量は、球状銀粉1.0gを(1+1)硝酸10mLに溶解し、(1+1)塩酸5mLを添加して塩化銀を析出させ、ろ過して得られたろ液に純水を加えて定容化した後、ICP(サーモサイエンティフィック(Thermo Scientific)社製のiCAP6300)による定量分析によって求めた。その結果、Cr=1ppm、Mn<1ppm、Fe=7ppm、Co<5ppm、Ni<5ppm、Cu<1ppm、Zn<5ppm、Cd<1ppm、Pb<5ppm、Sn<10ppm、Ca<1ppm、Mg<1ppm、S<50ppm、Zr<1ppm、Bi<10ppm、Al<10ppm、Sr<1ppm、Ba<1ppm、Li<100ppm、Na<100ppm、K<100ppm、Rb<100ppm、Cs<100ppmであり、いずれの不純物も100ppm未満であることが確認された。   The impurity element content is as follows: 1.0 g of spherical silver powder is dissolved in 10 mL of (1 + 1) nitric acid, 5 mL of (1 + 1) hydrochloric acid is added to precipitate silver chloride, and pure water is added to the filtrate obtained by filtration. After the volume was fixed, it was determined by quantitative analysis with ICP (iCAP6300 manufactured by Thermo Scientific). As a result, Cr = 1 ppm, Mn <1 ppm, Fe = 7 ppm, Co <5 ppm, Ni <5 ppm, Cu <1 ppm, Zn <5 ppm, Cd <1 ppm, Pb <5 ppm, Sn <10 ppm, Ca <1 ppm, Mg <1 ppm , S <50 ppm, Zr <1 ppm, Bi <10 ppm, Al <10 ppm, Sr <1 ppm, Ba <1 ppm, Li <100 ppm, Na <100 ppm, K <100 ppm, Rb <100 ppm, Cs <100 ppm, any impurity Was also confirmed to be less than 100 ppm.

銀の含有量は、上記のろ過により得られた塩化銀を乾燥させ、その塩化銀の重量を精秤することによって求めた。その結果、銀の含有量は、99.37質量%であった。   The silver content was determined by drying the silver chloride obtained by the above filtration and precisely weighing the weight of the silver chloride. As a result, the silver content was 99.37% by mass.

有機成分(炭素、窒素、酸素および水素)の含有量については、炭素の含有量は、炭素・硫黄分析計(株式会社堀場製作所製のEMIA−U510)を使用して加熱温度1350℃で定量したところ、1700ppmであり、窒素、酸素および水素の含有量は、窒素・酸素・水素分析装置(LECO社製のONH836)を使用して定量したところ、それぞれ745ppm、3020ppm、800ppmであった。   Regarding the content of organic components (carbon, nitrogen, oxygen and hydrogen), the carbon content was quantified at a heating temperature of 1350 ° C. using a carbon / sulfur analyzer (EMIA-U510 manufactured by Horiba, Ltd.). However, the content of nitrogen, oxygen, and hydrogen was 745 ppm, 3020 ppm, and 800 ppm, respectively, as determined using a nitrogen / oxygen / hydrogen analyzer (ONH836 manufactured by LECO).

次に、このようにして得られた球状銀粉83.4質量%と、樹脂(和光純薬工業株式会社製のエチルセルロース、100cps)1.2質量%と、溶剤(和光純薬工業株式会社製のテルピネオール)15.4質量%を、プロペラレス自公転式攪拌脱泡装置(株式会社シンキー社製のAR250)を用いて30秒間混合する操作を2回行った後、3本ロール(オットハーマン社製のEXAKT80S)を用いてロールギャップ100μmから20μmまで通過させて混練することにより、導電性ペーストを得た。   Next, 83.4% by mass of the spherical silver powder thus obtained, 1.2% by mass of resin (ethyl cellulose manufactured by Wako Pure Chemical Industries, Ltd., 100 cps), and solvent (manufactured by Wako Pure Chemical Industries, Ltd.) Terpineol) 15.4% by mass was mixed twice for 30 seconds using a propellerless self-revolving stirring and deaerator (AR250 manufactured by Sinky Corporation), and then three rolls (manufactured by Otto Herman) No. EXAKT80S) was passed through a roll gap of 100 μm to 20 μm and kneaded to obtain a conductive paste.

次に、このようにして得られた導電性ペーストを、2枚の96%アルミナ基板上の各々に、スクリーン印刷機(マイクロテック社製)を用いて、スキージ圧0.3MPaで、8mm×10mmの長方形の膜になるようにスクリーン印刷し、大気循環式乾燥機を用いて200℃で20分間乾燥させた後、ボックス炉を用いてそれぞれの基板を400℃と700℃で10分間加熱処理して導電膜を作製した。   Next, the conductive paste thus obtained is 8 mm × 10 mm at a squeegee pressure of 0.3 MPa on each of two 96% alumina substrates using a screen printing machine (manufactured by Microtech). Screen-printed to form a rectangular film, dried at 200 ° C. for 20 minutes using an air circulation dryer, and then heat-treated each substrate at 400 ° C. and 700 ° C. for 10 minutes using a box furnace. A conductive film was prepared.

このようにして得られた導電膜について、表面粗さ計(株式会社小坂研究所製のサーフコーダSE−30D)を用いてアルミナ基板上の導電膜の表面とその導電膜を印刷していない部分との段差を測定することによって導電膜の膜厚を求めるとともに、導電膜の表面抵抗率を抵抗率測定器(三菱ケミカル株式会社製のMCP−T410)を用いて四探針法で測定し、この表面抵抗率を導電膜の体積(=幅×長さ×膜厚)から導電膜の体積抵抗率を求めたところ、400℃で焼成した導電膜では5.2×10−6Ω・cm、700℃で焼成した導電膜では2.6×10−6Ω・cmであり、400℃で焼成した導電膜でも10−6Ω・cmのオーダーの導電性を確保することができた。 About the conductive film thus obtained, the surface of the conductive film on the alumina substrate and the part on which the conductive film is not printed using a surface roughness meter (Surfcoder SE-30D manufactured by Kosaka Laboratory Ltd.) The film thickness of the conductive film is determined by measuring the level difference between the thickness and the surface resistivity of the conductive film is measured by a four-probe method using a resistivity meter (MCP-T410 manufactured by Mitsubishi Chemical Corporation), When the volume resistivity of the conductive film was determined from the surface resistivity based on the volume of the conductive film (= width × length × film thickness), the conductive film fired at 400 ° C. was 5.2 × 10 −6 Ω · cm, The conductive film fired at 700 ° C. has a density of 2.6 × 10 −6 Ω · cm, and the conductive film fired at 400 ° C. has a conductivity of the order of 10 −6 Ω · cm.

[実施例2]
銀8.63gを含む硝酸銀水溶液753gを分取した1Lビーカーを、水温20℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、攪拌を開始した。
[Example 2]
A 1 L beaker containing 753 g of silver nitrate aqueous solution containing 8.63 g of silver was placed in an ultrasonic cleaning machine (US Cleaner USD-4R, output 160 W, manufactured by As One Co., Ltd.) containing water at a water temperature of 20 ° C., and stirring was started. did.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水26.2g(銀に対して2.7当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から19分後に、発振周波数40kHzで超音波照射を開始し、その1分後に、ホルマリンを純水で希釈した27.4質量%のホルムアルデヒド溶液54.4g(銀に対して12.4当量相当)を添加し、その15秒後に、2.1質量%のベンゾトリアゾールエタノール水溶液1.06gを添加して、銀粒子を含むスラリーを得た。   Next, 26.2 g of 28 mass% ammonia water (equivalent to 2.7 equivalents with respect to silver) is added to the silver nitrate aqueous solution in the above beaker to form a silver ammine complex salt, 19 minutes after the addition of the ammonia water. Then, ultrasonic irradiation was started at an oscillation frequency of 40 kHz, and after 1 minute, 54.4 g of a 27.4 mass% formaldehyde solution obtained by diluting formalin with pure water (corresponding to 12.4 equivalents with respect to silver) was added, 15 seconds later, 2.16% by mass of a benzotriazole ethanol aqueous solution (1.06 g) was added to obtain a slurry containing silver particles.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して球状銀粉を得た。   Next, after the ultrasonic irradiation is finished, the slurry obtained by filtering the slurry containing silver particles and washing with water is dried for 10 hours with a vacuum dryer at 75 ° C., and the dried silver powder is dried with a coffee mill for 30 seconds. Crushing to obtain spherical silver powder.

このようにして得られた球状銀粉について、実施例1と同様の方法により、レーザー回折法による粒度分布、BET比表面積、真比重を測定し、粒子断面を観察し、不純物元素および銀の含有量と、有機成分(炭素、窒素、酸素および水素)の含有量を求めた。   The spherical silver powder thus obtained was measured for particle size distribution, BET specific surface area, and true specific gravity by the laser diffraction method in the same manner as in Example 1, and the particle cross section was observed. Content of impurity elements and silver And the contents of organic components (carbon, nitrogen, oxygen and hydrogen) were determined.

その結果、レーザー回折法による粒度分布は、D10=1.5μm、D50=2.8μm、D90=4.5μmであり、BET比表面積は0.36m/gであった。また、真比重は9.7g/cmであり、バルク銀の真比重10.5g/cmに対して密度が8%低下していることが確認された。 As a result, the particle size distribution according to the laser diffraction method was D 10 = 1.5 μm, D 50 = 2.8 μm, D 90 = 4.5 μm, and the BET specific surface area was 0.36 m 2 / g. Further, the true specific gravity was 9.7 g / cm 3 , and it was confirmed that the density was reduced by 8% with respect to the true specific gravity of 10.5 g / cm 3 of bulk silver.

また、粒子断面の観察では、図2のFE−SEM写真に示すように、球状銀粉の粒子の内部に閉鎖された空隙が存在することが確認された。また、FE−SEM写真における球状銀粉の全粒子の面積は11.8μm、空隙を有する粒子の面積は0.34μm、全粒子の面積に対する空隙を有する粒子の面積の比率は2.9%であり、観察した球状銀粉の断面が必ずしも粒子の中心を通るとは限らないことを考慮すると、ほとんどの粒子に空隙が存在すると考えられる。また、FE−SEM写真から求めた平均空隙サイズは、0.05μmであり、平均粒径D50に対して1.7%に相当し、十分な空隙サイズであることが確認された。 Further, in the observation of the particle cross section, as shown in the FE-SEM photograph in FIG. 2, it was confirmed that a closed void exists inside the spherical silver powder particles. Moreover, the area of all the particles of the spherical silver powder in the FE-SEM photograph is 11.8 μm 2 , the area of the particles having voids is 0.34 μm 2 , and the ratio of the area of the particles having voids to the area of all particles is 2.9%. In view of the fact that the cross section of the observed spherical silver powder does not necessarily pass through the center of the particle, it is considered that there are voids in most of the particles. The average void size determined from the FE-SEM photograph is 0.05 .mu.m, equivalent to 1.7% with respect to the average particle diameter D 50, it was confirmed that sufficient void size.

さらに、不純物元素の含有量については、Cr=1ppm、Mn<1ppm、Fe=6ppm、Co<5ppm、Ni<5ppm、Cu<1ppm、Zn<5ppm、Cd<1ppm、Pb<5ppm、Sn<10ppm、Ca<1ppm、Mg<1ppm、S<50ppm、Zr<1ppm、Bi<10ppm、Al<10ppm、Sr<1ppm、Ba<1ppm、Li<100ppm、Na<100ppm、K<100ppm、Rb<100ppm、Cs<100ppmであり、いずれの不純物も100ppm未満であることが確認された。また、銀の含有量は99.21質量%、炭素、窒素、酸素および水素の含有量は、それぞれ2400ppm、1710ppm、3360ppm、650ppmであった。   Furthermore, for the content of impurity elements, Cr = 1 ppm, Mn <1 ppm, Fe = 6 ppm, Co <5 ppm, Ni <5 ppm, Cu <1 ppm, Zn <5 ppm, Cd <1 ppm, Pb <5 ppm, Sn <10 ppm, Ca <1 ppm, Mg <1 ppm, S <50 ppm, Zr <1 ppm, Bi <10 ppm, Al <10 ppm, Sr <1 ppm, Ba <1 ppm, Li <100 ppm, Na <100 ppm, K <100 ppm, Rb <100 ppm, Cs < 100 ppm, and it was confirmed that all impurities were less than 100 ppm. The silver content was 99.21% by mass, and the carbon, nitrogen, oxygen, and hydrogen contents were 2400 ppm, 1710 ppm, 3360 ppm, and 650 ppm, respectively.

また、得られた球状銀粉を用いて、実施例1と同様の方法により、導電性ペーストから導電膜を作製し、体積抵抗率を求めたところ、400℃で焼成した導電膜では5.7×10−6Ω・cm、700℃で焼成した導電膜では2.4×10−6Ω・cmであり、400℃で焼成した導電膜でも10−6Ω・cmのオーダーの導電性を確保することができた。 Moreover, when the electrically conductive paste was produced and the volume resistivity was calculated | required by the method similar to Example 1 using the obtained spherical silver powder, in the electrically conductive film baked at 400 degreeC, it is 5.7x. The conductive film baked at 10 −6 Ω · cm and 700 ° C. is 2.4 × 10 −6 Ω · cm, and the conductive film baked at 400 ° C. ensures conductivity on the order of 10 −6 Ω · cm. I was able to.

[実施例3]
銀9.00gを含む硝酸銀水溶液688gを分取した1Lビーカーを、水温30℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、発振周波数28kHzで超音波照射を開始するとともに攪拌を開始した。
[Example 3]
A 1 L beaker obtained by separating 688 g of an aqueous silver nitrate solution containing 9.00 g of silver is placed in an ultrasonic cleaning machine (US Cleaner USD-4R, output 160 W, manufactured by As One Co., Ltd.) containing water at a water temperature of 30 ° C., and an oscillation frequency of 28 kHz. Then, the ultrasonic irradiation was started and stirring was started.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水27.6g(銀に対して2.5当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から1分後に、20質量%の水酸化ナトリウム水溶液2.5gを添加し、その20分後に、ホルマリンを純水で希釈した27.4質量%のホルムアルデヒド溶液79.4g(銀に対して13.0当量相当)を添加し、その5秒後に、2.5質量%のステアリン酸溶液2.3gを添加して、銀粒子を含むスラリーを得た。   Next, 27.6 g of 28 mass% ammonia water (corresponding to 2.5 equivalents with respect to silver) is added to the silver nitrate aqueous solution in the above beaker to form a silver ammine complex salt, and 1 minute after the addition of the ammonia water. Then, 2.5 g of a 20 mass% aqueous sodium hydroxide solution was added, and after 20 minutes, 79.4 g of a 27.4 mass% formaldehyde solution obtained by diluting formalin with pure water (corresponding to 13.0 equivalents with respect to silver) 5 seconds later, 2.3 g of a 2.5% by mass stearic acid solution was added to obtain a slurry containing silver particles.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して球状銀粉を得た。   Next, after the ultrasonic irradiation is finished, the slurry obtained by filtering the slurry containing silver particles and washing with water is dried for 10 hours with a vacuum dryer at 75 ° C., and the dried silver powder is dried with a coffee mill for 30 seconds. Crushing to obtain spherical silver powder.

このようにして得られた球状銀粉について、実施例1と同様の方法により、レーザー回折法による粒度分布、BET比表面積、真比重を測定し、粒子断面を観察し、不純物元素および銀の含有量と、有機成分(炭素、窒素、酸素および水素)の含有量を求めた。   The spherical silver powder thus obtained was measured for particle size distribution, BET specific surface area, and true specific gravity by the laser diffraction method in the same manner as in Example 1, and the particle cross section was observed. Content of impurity elements and silver And the contents of organic components (carbon, nitrogen, oxygen and hydrogen) were determined.

その結果、レーザー回折法による粒度分布は、D10=0.7μm、D50=1.3μm、D90=2.3μmであり、BET比表面積は0.77m/gであった。また、真比重は9.3g/cmであり、バルク銀の真比重10.5g/cmに対して密度が11%低下していることが確認された。 As a result, the particle size distribution according to the laser diffraction method was D 10 = 0.7 μm, D 50 = 1.3 μm, D 90 = 2.3 μm, and the BET specific surface area was 0.77 m 2 / g. Further, the true specific gravity was 9.3 g / cm 3 , and it was confirmed that the density was reduced by 11% with respect to the true specific gravity of bulk silver of 10.5 g / cm 3 .

また、粒子断面の観察では、図3のFE−SEM写真に示すように、球状銀粉の粒子の内部に閉鎖された空隙が存在することが確認された。また、FE−SEM写真における球状銀粉の全粒子の面積は2.08μm、空隙を有する粒子の面積は0.21μm、全粒子の面積に対する空隙を有する粒子の面積の比率は10%であり、観察した球状銀粉の断面が必ずしも粒子の中心を通るとは限らないことを考慮すると、ほとんどの粒子に空隙が存在すると考えられる。また、FE−SEM写真から求めた平均空隙サイズは0.11μmであり、平均粒径D50に対して8.5%に相当し、十分な空隙サイズであることが確認された。 Further, in the observation of the particle cross section, as shown in the FE-SEM photograph of FIG. 3, it was confirmed that a closed void exists inside the spherical silver powder particles. Moreover, the area of all the particles of the spherical silver powder in the FE-SEM photograph is 2.08 μm 2 , the area of the particles having voids is 0.21 μm 2 , and the ratio of the area of the particles having voids to the area of all the particles is 10%. Considering that the observed cross section of the spherical silver powder does not always pass through the center of the particle, it is considered that there are voids in most of the particles. The average void size determined from the FE-SEM photograph is 0.11 .mu.m, corresponds to 8.5% of the average particle diameter D 50, it was confirmed that sufficient void size.

さらに、不純物元素の含有量については、Cr=1ppm、Mn<1ppm、Fe=8ppm、Co<5ppm、Ni<5ppm、Cu=1ppm、Zn<5ppm、Cd<1ppm、Pb<5ppm、Sn<10ppm、Ca<1ppm、Mg<1ppm、S<50ppm、Zr<1ppm、Bi<10ppm、Al<10ppm、Sr<1ppm、Ba<1ppm、Li<100ppm、Na<100ppm、K<100ppm、Rb<100ppm、Cs<100ppmであり、いずれの不純物も100ppm未満であることが確認された。また、銀の含有量は99.00質量%、炭素、窒素、酸素および水素の含有量は、それぞれ3700ppm、575ppm、3955ppm、1300ppmであった。   Furthermore, for the content of impurity elements, Cr = 1 ppm, Mn <1 ppm, Fe = 8 ppm, Co <5 ppm, Ni <5 ppm, Cu = 1 ppm, Zn <5 ppm, Cd <1 ppm, Pb <5 ppm, Sn <10 ppm, Ca <1 ppm, Mg <1 ppm, S <50 ppm, Zr <1 ppm, Bi <10 ppm, Al <10 ppm, Sr <1 ppm, Ba <1 ppm, Li <100 ppm, Na <100 ppm, K <100 ppm, Rb <100 ppm, Cs < 100 ppm, and it was confirmed that all impurities were less than 100 ppm. The silver content was 99.00% by mass, and the carbon, nitrogen, oxygen and hydrogen contents were 3700 ppm, 575 ppm, 3955 ppm and 1300 ppm, respectively.

また、得られた球状銀粉を用いて、実施例1と同様の方法により、導電性ペーストから導電膜を作製し、体積抵抗率を求めたところ、400℃で焼成した導電膜では4.5×10−6Ω・cm、700℃で焼成した導電膜では2.3×10−6Ω・cmであり、400℃で焼成した導電膜でも10−6Ω・cmのオーダーの導電性を確保することができた。 In addition, using the obtained spherical silver powder, a conductive film was produced from a conductive paste by the same method as in Example 1, and the volume resistivity was determined. The conductive film baked at 10 −6 Ω · cm and 700 ° C. is 2.3 × 10 −6 Ω · cm, and the conductive film baked at 400 ° C. ensures conductivity on the order of 10 −6 Ω · cm. I was able to.

[比較例1]
銀8.63gを含む硝酸銀水溶液28.6gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
[Comparative Example 1]
A 1 L beaker obtained by separating 28.6 g of silver nitrate aqueous solution containing 8.63 g of silver is placed in an ultrasonic cleaner (US Cleaner USD-4R, output 160 W, manufactured by As One Co., Ltd.) containing water at a water temperature of 35 ° C., and oscillated. Ultrasonic irradiation was started at a frequency of 40 kHz and stirring was started.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水52.7g(銀に対して5.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から5分後に、0.40質量%のポリエチレンイミン(分子量10,000)水溶液2.2gを添加し、アンモニア水の添加から20分後に、6.2質量%の含水ヒドラジン水溶液19.4g(銀に対して1.2当量相当)を添加し、その30秒後に、1.3質量%ステアリン酸溶液0.77gを添加して、銀粒子を含むスラリーを得た。なお、本比較例では、ヒドラジンの使用により小さくなる粒径を調整するためにポリエチレンイミンを添加している。   Next, 52.7 g of 28% by mass of ammonia water (corresponding to 5.0 equivalents with respect to silver) is added to the silver nitrate aqueous solution in the above beaker to form a silver ammine complex salt, and 5 minutes after the addition of the ammonia water. Then, 2.2 g of a 0.40 mass% polyethyleneimine (molecular weight 10,000) aqueous solution was added, and 20 minutes after the addition of aqueous ammonia, 19.4 g of a 6.2 mass% hydrous hydrazine aqueous solution (1 with respect to silver). 30 equivalents), 0.77 g of 1.3 mass% stearic acid solution was added to obtain a slurry containing silver particles. In this comparative example, polyethyleneimine is added in order to adjust the particle size which becomes smaller by using hydrazine.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して球状銀粉を得た。   Next, after the ultrasonic irradiation is finished, the slurry obtained by filtering the slurry containing silver particles and washing with water is dried for 10 hours with a vacuum dryer at 75 ° C., and the dried silver powder is dried with a coffee mill for 30 seconds. Crushing to obtain spherical silver powder.

このようにして得られた球状銀粉について、実施例1と同様の方法により、レーザー回折法による粒度分布、BET比表面積、真比重を測定し、粒子断面を観察し、不純物元素および銀の含有量と、有機成分(炭素、窒素、酸素および水素)の含有量を求めた。   The spherical silver powder thus obtained was measured for particle size distribution, BET specific surface area, and true specific gravity by the laser diffraction method in the same manner as in Example 1, and the particle cross section was observed. Content of impurity elements and silver And the contents of organic components (carbon, nitrogen, oxygen and hydrogen) were determined.

その結果、レーザー回折法による粒度分布は、D10=1.8μm、D50=2.9μm、D90=4.4μmであり、BET比表面積は0.16m/gであった。また、真比重は10.3g/cmであり、バルク銀の真比重10.5g/cmに対して密度が2%しか低下していないことが確認された。 As a result, the particle size distribution according to the laser diffraction method was D 10 = 1.8 μm, D 50 = 2.9 μm, D 90 = 4.4 μm, and the BET specific surface area was 0.16 m 2 / g. In addition, the true specific gravity was 10.3 g / cm 3 , and it was confirmed that the density was reduced by only 2% with respect to the true specific gravity of 10.5 g / cm 3 of bulk silver.

また、粒子断面の観察では、図4のFE−SEM写真に示すように、球状銀粉の粒子の内部に閉鎖された空隙が存在しないことが確認された。   Further, in the observation of the particle cross section, as shown in the FE-SEM photograph of FIG. 4, it was confirmed that there was no closed void inside the spherical silver powder particles.

さらに、不純物元素については、Cr=1ppm、Mn<1ppm、Fe=7ppm、Co<5ppm、Ni<5ppm、Cu=2ppm、Zn<5ppm、Cd<1ppm、Pb<5ppm、Sn<10ppm、Ca<1ppm、Mg<1ppm、S<50ppm、Zr<1ppm、Bi<10ppm、Al<10ppm、Sr<1ppm、Ba<1ppm、Li<100ppm、Na<100ppm、K<100ppm、Rb<100ppm、Cs<100ppmであり、いずれの不純物も100ppm未満であることが確認された。また、銀の含有量は99.80質量%、炭素、窒素、酸素および水素の含有量は、それぞれ900ppm、70ppm、320ppm、200ppmであった。   Further, for impurity elements, Cr = 1 ppm, Mn <1 ppm, Fe = 7 ppm, Co <5 ppm, Ni <5 ppm, Cu = 2 ppm, Zn <5 ppm, Cd <1 ppm, Pb <5 ppm, Sn <10 ppm, Ca <1 ppm Mg <1 ppm, S <50 ppm, Zr <1 ppm, Bi <10 ppm, Al <10 ppm, Sr <1 ppm, Ba <1 ppm, Li <100 ppm, Na <100 ppm, K <100 ppm, Rb <100 ppm, Cs <100 ppm. All of the impurities were confirmed to be less than 100 ppm. The silver content was 99.80% by mass, and the carbon, nitrogen, oxygen and hydrogen contents were 900 ppm, 70 ppm, 320 ppm and 200 ppm, respectively.

また、得られた球状銀粉を用いて、実施例1と同様の方法により、導電性ペーストから導電膜を作製し、体積抵抗率を求めたところ、400℃で焼成した導電膜では1.1×10−5Ω・cm、700℃で焼成した導電膜では3.0×10−6Ω・cmであり、400℃で焼成した導電膜では10−5Ω・cmのオーダーになって実施例1〜3と比べて導電性が劣っていた。 Further, using the obtained spherical silver powder, a conductive film was produced from a conductive paste by the same method as in Example 1, and the volume resistivity was determined. In the case of the conductive film fired at 10 −5 Ω · cm and 700 ° C., it is 3.0 × 10 −6 Ω · cm, and in the conductive film fired at 400 ° C., the order is 10 −5 Ω · cm. Compared with ~ 3, the conductivity was inferior.

これらの実施例および比較例で得られた球状銀粉について、レーザー回折法による粒度分布、BET比表面積および真比重を表1に示し、粒子断面の観察の結果を表2に示す。また、これらの実施例および比較例で得られた導電膜の体積抵抗率を表3に示す。   For the spherical silver powders obtained in these examples and comparative examples, the particle size distribution, the BET specific surface area and the true specific gravity by the laser diffraction method are shown in Table 1, and the observation results of the particle cross section are shown in Table 2. Table 3 shows the volume resistivity of the conductive films obtained in these Examples and Comparative Examples.

Figure 0006129909
Figure 0006129909

Figure 0006129909
Figure 0006129909

Figure 0006129909
Figure 0006129909

これらの実施例および比較例からわかるように、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、アルデヒドを含有する還元剤含有溶液を混合して銀粒子を還元析出させることにより、粒子内部に閉鎖された空隙を有する球状銀粉を製造することができる。   As can be seen from these examples and comparative examples, particles are produced by reducing and precipitating silver particles by mixing an aqueous reaction system containing silver ions with a reducing agent-containing solution containing aldehyde while generating cavitation. A spherical silver powder having voids closed inside can be produced.

本発明による球状銀粉は、粒子内部に閉鎖された空隙を有するため、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉として、導電性ペーストの作製に利用することができる。   Since the spherical silver powder according to the present invention has voids closed inside the particles, the spherical silver powder has the same particle size as the spherical silver powder produced by the conventional wet reduction method, and is conductive as a spherical silver powder that can be fired at a lower temperature. It can be used for the production of an adhesive paste.

Claims (5)

粒子内部に閉鎖された空隙を有することを特徴とする、球状銀粉。 A spherical silver powder characterized by having voids closed inside the particles. 前記球状銀粉のレーザー回折法による平均粒径D50が0.1〜10μmであることを特徴とする、請求項に記載の球状銀粉。 2. The spherical silver powder according to claim 1 , wherein the spherical silver powder has an average particle diameter D 50 by a laser diffraction method of 0.1 to 10 μm. 前記球状銀粉の真比重が9.8g/cm以下であることを特徴とする、請求項またはに記載の球状銀粉。 The spherical silver powder according to claim 1 or 2 , wherein a true specific gravity of the spherical silver powder is 9.8 g / cm 3 or less. 前記球状銀粉に含まれる炭素、窒素、酸素および水素を除いた不純物元素の含有量がいずれも100ppm未満である請求項乃至のいずれかに記載の球状銀粉。 The spherical silver powder according to any one of claims 1 to 3 , wherein the content of impurity elements other than carbon, nitrogen, oxygen and hydrogen contained in the spherical silver powder is less than 100 ppm. 請求項乃至のいずれかに記載の球状銀粉を導体として用いたことを特徴とする、導電性ペースト。 A conductive paste using the spherical silver powder according to any one of claims 1 to 4 as a conductor.
JP2015143643A 2012-02-13 2015-07-21 Spherical silver powder and method for producing the same Active JP6129909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143643A JP6129909B2 (en) 2012-02-13 2015-07-21 Spherical silver powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012028315 2012-02-13
JP2012028315 2012-02-13
JP2015143643A JP6129909B2 (en) 2012-02-13 2015-07-21 Spherical silver powder and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012250271A Division JP5872440B2 (en) 2012-02-13 2012-11-14 Spherical silver powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015232180A JP2015232180A (en) 2015-12-24
JP6129909B2 true JP6129909B2 (en) 2017-05-17

Family

ID=54933799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143643A Active JP6129909B2 (en) 2012-02-13 2015-07-21 Spherical silver powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6129909B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105834449B (en) * 2016-05-04 2017-09-22 苏州思美特表面材料科技有限公司 It is a kind of that the preparation method for producing silver powder is induced by the use of micro-nano bubble as crystal seed
JP6796448B2 (en) * 2016-10-20 2020-12-09 Dowaエレクトロニクス株式会社 Conductive paste and its manufacturing method, and solar cell
JP6810452B2 (en) 2016-11-14 2021-01-06 ナミックス株式会社 Metal coating particles and resin composition
WO2019117234A1 (en) 2017-12-15 2019-06-20 Dowaエレクトロニクス株式会社 Spherical silver powder
JP6900357B2 (en) 2017-12-15 2021-07-07 Dowaエレクトロニクス株式会社 Spherical silver powder
JP6859305B2 (en) 2018-09-28 2021-04-14 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method and conductive paste
KR102308468B1 (en) * 2018-12-28 2021-10-06 대주전자재료 주식회사 Spherical silver powder and preparation method thereof
KR102263618B1 (en) * 2019-03-29 2021-06-10 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862180B2 (en) * 1999-08-13 2012-01-25 Dowaエレクトロニクス株式会社 Method for producing silver powder and method for producing flaky silver powder
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US8137759B2 (en) * 2006-04-07 2012-03-20 The Regents Of The University Of California Gold nanostructures and methods of use
JP4958082B2 (en) * 2006-10-26 2012-06-20 独立行政法人産業技術総合研究所 Nanoparticles for LPR sensor, method for producing nanoparticle, slurry, paint, coating film, and LPR sensor
JP4931001B2 (en) * 2007-03-12 2012-05-16 独立行政法人産業技術総合研究所 Method for accelerating cavitation reaction and method for producing metal nanoparticles using the same
JP2009046708A (en) * 2007-08-15 2009-03-05 Mitsui Mining & Smelting Co Ltd Silver powder

Also Published As

Publication number Publication date
JP2015232180A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5872440B2 (en) Spherical silver powder and method for producing the same
JP6129909B2 (en) Spherical silver powder and method for producing the same
JP5098098B2 (en) Silver powder and method for producing the same
JP5633045B2 (en) Silver powder and method for producing the same
JP4320447B2 (en) Silver powder and method for producing the same
US8992701B2 (en) Silver powder and method for producing same
US20050279970A1 (en) Spherical silver power and method for producing same
JP5847511B2 (en) Conductive silver-coated glass powder, method for producing the same, and conductive paste
JP2005330529A (en) Spherical silver powder and its production method
JP2007270334A (en) Silver powder and its manufacturing method
KR20120099587A (en) Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
JP6791652B2 (en) Silver powder and its manufacturing method
JP5352768B2 (en) Method for producing silver powder for photosensitive conductive paste
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JP5255580B2 (en) Method for producing flake copper powder
JP5925556B2 (en) Silver-coated flaky glass powder and method for producing the same
JP2009231059A (en) Conductive ink for offset printing, and circuit pattern forming method using the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2006097086A (en) Spherical silver powder and its producing method
JP6714466B2 (en) Silver powder manufacturing method and manufacturing apparatus
JP6110464B2 (en) Silver-coated flaky glass powder and method for producing the same
TWI544977B (en) Copper powder for conductive paste and method for producing same
JP5890387B2 (en) Silver powder for conductive paste and conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250