JP2009064603A - Conductive paste for mlcc - Google Patents

Conductive paste for mlcc Download PDF

Info

Publication number
JP2009064603A
JP2009064603A JP2007229759A JP2007229759A JP2009064603A JP 2009064603 A JP2009064603 A JP 2009064603A JP 2007229759 A JP2007229759 A JP 2007229759A JP 2007229759 A JP2007229759 A JP 2007229759A JP 2009064603 A JP2009064603 A JP 2009064603A
Authority
JP
Japan
Prior art keywords
fine particles
conductive paste
mlcc
particle size
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007229759A
Other languages
Japanese (ja)
Inventor
Yuji Wada
雄二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2007229759A priority Critical patent/JP2009064603A/en
Publication of JP2009064603A publication Critical patent/JP2009064603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/26Folded capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/011Electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste for an MLCC in which a metal particulate of a particle diameter within a particle diameter range of several nm to several hundreds nm covered by an organic surface modifier are dispersed. <P>SOLUTION: This conductive paste for the MLCC is characterized in that Ni particulates whose surfaces are covered by organic based surface modifiers formed by heating reduction treatment by microwave irradiation are dispersed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は金属微粒子を用いた導電性ペーストに関し、特に積層セラミックコンデンサ(MLCC)用の導電性ペーストに関する。   The present invention relates to a conductive paste using metal fine particles, and more particularly to a conductive paste for a multilayer ceramic capacitor (MLCC).

導電性ペーストは、プリント基板における電極、配線などの回路形成や層間接合に使用する導電材料として広く知られ、用いられている。そして、近年、プリント基板が組み込まれる電子機器は、高性能化、小型化され、それに伴って、配線回路は狭ピッチ化されて、導電性ペースト内に分散される金属微粒子の粒子径もナノメートルサイズの大きさ(以下、単にナノサイズということもある)のものが求められている。   Conductive paste is widely known and used as a conductive material used for forming circuits such as electrodes and wiring on printed circuit boards and interlayer bonding. In recent years, electronic devices incorporating printed circuit boards have been improved in performance and reduced in size, and accordingly, the wiring circuit has been narrowed in pitch, and the particle size of the metal fine particles dispersed in the conductive paste is also nanometers. There is a demand for a size (hereinafter sometimes simply referred to as nano-size).

従来、金属微粒子を製造する方法として、気相法と液相法が知られている。気相法は金属粒子の形状及び不純物の制御が比較的容易なことから広く使用されてきたが、粒子の微細化と大量生産の面では不都合があった。一方、液相法は、大量生産に適しており、製造設備の初期投資費用及び製造工程費用が低いという長所がある。   Conventionally, a gas phase method and a liquid phase method are known as methods for producing metal fine particles. The vapor phase method has been widely used because it is relatively easy to control the shape and impurities of the metal particles, but has a disadvantage in terms of particle miniaturization and mass production. On the other hand, the liquid phase method is suitable for mass production and has an advantage that the initial investment cost and the manufacturing process cost of the manufacturing equipment are low.

最近の液相法によるナノサイズの粒径をもつ金属微粒子の製造方法として、特許文献1に示すものが知られている。この製造技術は、金属塩を溶解した溶液に所定時間マイクロ波を照射することによって、短時間の内にナノサイズの超微粒子を製造するようにしたものである。この方法では、数nm〜10数nmの粒径範囲の金属微粒子を精度よく製造可能であるが、数十nm〜数百nmの粒径範囲の金属粒子を精度よく製造することは困難であった。   As a method for producing metal fine particles having a nano-sized particle diameter by a recent liquid phase method, the one shown in Patent Document 1 is known. In this production technique, nano-sized ultrafine particles are produced within a short time by irradiating a solution in which a metal salt is dissolved with microwaves for a predetermined time. In this method, metal fine particles having a particle size range of several nanometers to several tens of nanometers can be accurately manufactured, but it is difficult to accurately manufacture metal particles having a particle diameter range of several tens of nanometers to several hundred nanometers. It was.

さらに、有機溶媒中に金属超微粒子を分散させた導電性ペーストとして、例えば特許文献2に示すものが提案されている。特許文献2に示すものは、有機溶媒に金属超微粒子を分散してなる導電性ペーストであって、脂肪酸金属塩またはアルキルスルホン酸金属塩に由来する金属成分から構成された金属コアと、金属コアの周囲を覆う表面修飾剤がその金属塩に由来する有機成分であり、有機溶媒中には、金属塩に由来し、金属超微粒子の合成後に残存する有機成分を含むようにしてある。この方法では、金属コアの周囲を覆う有機成分が金属塩に由来することから、金属コアの周囲を覆う有機成分の種類が制限されるという課題がある。
特許第3005683号公報 特開2007−95527号公報
Furthermore, as a conductive paste in which ultrafine metal particles are dispersed in an organic solvent, for example, the one shown in Patent Document 2 has been proposed. Patent Document 2 shows a conductive paste obtained by dispersing ultrafine metal particles in an organic solvent, a metal core composed of a metal component derived from a fatty acid metal salt or an alkylsulfonic acid metal salt, and a metal core The surface modifier covering the periphery of the metal is an organic component derived from the metal salt, and the organic solvent contains an organic component derived from the metal salt and remaining after the synthesis of the metal ultrafine particles. In this method, since the organic component covering the periphery of the metal core is derived from the metal salt, there is a problem that the type of the organic component covering the periphery of the metal core is limited.
Japanese Patent No. 3005683 JP 2007-95527 A

MLCC用導電性ペーストの内部電極に使用される金属微粒子は、層間剥離やクラック、ワレ等の発生を抑える為に適した粒径がある。例えば、電極膜厚が厚い場合には平均粒径が小さい方が望ましく、電極膜厚が薄い場合には平均粒径が大きい方が望ましい。ところが、従来の製法では、数nm〜数百nmの粒径範囲内において、所定の粒径に精度よく粒径を揃えた金属微粒子を製造することが困難であった。また、金属微粒子の凝縮を抑える表面修飾剤が制限されてしまう問題もあった。   The metal fine particles used for the internal electrode of the conductive paste for MLCC have a particle size suitable for suppressing the occurrence of delamination, cracks, cracks and the like. For example, when the electrode film thickness is large, it is desirable that the average particle diameter is small, and when the electrode film thickness is thin, it is desirable that the average particle diameter is large. However, in the conventional manufacturing method, it has been difficult to produce metal fine particles having a predetermined particle size and a uniform particle size within a range of several nm to several hundred nm. There is also a problem that the surface modifier that suppresses the condensation of the metal fine particles is limited.

本発明はこのような点に鑑み、有機物の表面修飾剤で覆われた数nm〜数百nmの粒径範囲で粒径の揃った金属微粒子が有機溶媒に分散してなるMLCC用導電性ペーストを提供することを目的とする。   In view of the above, the present invention is a conductive paste for MLCC in which metal fine particles having a uniform particle size in a particle size range of several nanometers to several hundred nanometers covered with an organic surface modifier are dispersed in an organic solvent. The purpose is to provide.

上述の目的を達成するために請求項1に記載した本発明は、マイクロ波を照射することによって生成したNi微粒子であって、有機物の表面修飾剤により有機溶媒に高分散していることを特徴とするNi微粒子を用いることを特徴とする。   In order to achieve the above object, the present invention described in claim 1 is characterized in that the Ni fine particles are produced by irradiating with microwaves and are highly dispersed in an organic solvent by an organic surface modifier. Ni fine particles to be used are used.

又、請求項2に記載した本発明は、請求項1に記載の発明での有機物の表面修飾剤で覆われたNi微粒子の粒子径(r)が2nm≦r≦300nmであることを特徴とし、請求項3に記載した発明は、請求項1又は2に記載の発明でのNi微粒子の粒度分布が粒子径(r)と標準偏差(σ)の比率で、0.01≦σ/r≦0.5の範囲内にあることを特徴としている。   The present invention described in claim 2 is characterized in that the particle diameter (r) of the Ni fine particles covered with the organic surface modifier in the invention described in claim 1 is 2 nm ≦ r ≦ 300 nm. In the invention described in claim 3, the particle size distribution of the Ni fine particles in the invention described in claim 1 or 2 is a ratio of the particle diameter (r) to the standard deviation (σ), and 0.01 ≦ σ / r ≦ It is characterized by being in the range of 0.5.

さらに、請求項4に記載した発明では、請求項1〜3のいずれかに記載の発明でのNi微粒子が、Ni金属塩と還元剤と表面修飾剤とを有機溶媒に溶解させた溶液にマイクロ波照射を行い、Ni金属塩を還元することで均一な粒径を有するNi微粒子を生成する加熱・還元工程と、前記加熱・還元工程にて生成したNi微粒子を洗浄・分離することで有機溶媒からNi微粒子を収集する収集工程と、前記収集工程で収集したNi微粒子を有機溶媒に添加しNi微粒子を混練し、導電性ペーストとする混練工程とからなる製造工程により生成されたことを特徴としている。   Furthermore, in the invention described in claim 4, the Ni fine particles in the invention of any one of claims 1 to 3 are added to a solution in which a Ni metal salt, a reducing agent, and a surface modifier are dissolved in an organic solvent. A heating / reduction process that generates Ni fine particles having a uniform particle size by reducing the Ni metal salt by performing wave irradiation, and an organic solvent by washing / separating the Ni fine particles generated in the heating / reduction process Produced by a manufacturing process consisting of a collecting step of collecting Ni fine particles from the mixture, and a kneading step of adding Ni fine particles collected in the collecting step to an organic solvent to knead Ni fine particles to form a conductive paste. Yes.

本発明では、有機物の表面修飾剤で表面が覆われた数nm〜数百nmの粒径範囲で粒径の揃ったNi金属微粒子が有機溶媒に分散するMLCC用導電性ペーストを得ることができる。   In the present invention, a conductive paste for MLCC in which Ni metal fine particles having a uniform particle size in a particle size range of several nanometers to several hundred nanometers covered with an organic surface modifier can be obtained in an organic solvent can be obtained. .

以下、本発明を発明の実施形態に基づき説明する。
本発明のMLCC用導電性ペーストは、Ni金属塩と還元剤と表面修飾剤とを有機溶媒に溶解させた溶液にマイクロ波照射を行い、Ni金属塩を還元することでNi微粒子を生成する加熱・還元工程と、前記加熱・還元工程にて生成したNi微粒子を洗浄・分離することで有機溶媒からNi収集する収集工程と、前記収集工程で収集したNi微粒子を有機溶媒に添加しNi微粒子が均一となるように混練し、導電性ペーストとする混練工程とからなる製造工程により生成される。
Hereinafter, the present invention will be described based on embodiments of the invention.
The conductive paste for MLCC of the present invention is a heating process in which a Ni metal salt, a reducing agent, and a surface modifier are dissolved in an organic solvent by irradiating them with microwaves to reduce the Ni metal salt to generate Ni fine particles. A collecting step for collecting Ni from an organic solvent by washing and separating the Ni fine particles generated in the heating and reducing step; and adding the Ni fine particles collected in the collecting step to the organic solvent to obtain Ni fine particles. It is produced by a production process comprising a kneading process in which the mixture is uniformly kneaded to form a conductive paste.

そして、加熱・還元工程で用いるNi金属塩としては、有機溶媒に可溶な塩化ニッケル、硫酸ニッケル、硝酸ニッケル等が考えられる。 As the Ni metal salt used in the heating / reducing step, nickel chloride, nickel sulfate, nickel nitrate, etc. soluble in an organic solvent can be considered.

また、加熱・還元工程で用いる有機溶媒としては、プロパンジオール、ブタンジオール、ペンタンジオール、オクタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレグリコール、ヘキシレングリコールまたはブチレングリコール等のアルコール系溶媒やグリコール溶媒を用いることができる。   Moreover, as an organic solvent used in the heating / reduction step, alcoholic solvents such as propanediol, butanediol, pentanediol, octanol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, hexylene glycol or butylene glycol A solvent or a glycol solvent can be used.

加熱・還元工程で用いる還元剤としては、ヒドラジン、炭酸ヒドラジン、水素化ホウ素ナトリウム、水素化ホウ素リチウム、アミンボラン、亜ニチオン酸、ホルムアルデヒドスルホキシル酸ナトリウム、ホルムアルデヒドスルホキシル酸亜鉛、二酸化チオ尿素、次亜リン酸、次亜リン酸アルカリ、ハイドロサルファイト等から選択された1種又はこれらの2種以上を選択して用いることができる。   Examples of the reducing agent used in the heating / reduction process include hydrazine, hydrazine carbonate, sodium borohydride, lithium borohydride, amine borane, nitrous acid, sodium formaldehyde sulfoxylate, zinc formaldehyde sulfoxylate, thiourea, hypochlorous acid. One kind selected from phosphoric acid, alkali hypophosphite, hydrosulfite and the like, or two or more kinds thereof can be selected and used.

加熱・還元工程で用いる表面修飾剤としては、PVP(ポリビニルピロリドン)、ポリエチレンイミン、ポリアクリルアミドなどの高分子樹脂、分子量としては2,000から10,000が望ましく、ミリスチン酸、デカン酸、カプリル酸、パルミチン酸、リノール酸、リノレン酸、オレイン酸及びステアリン酸、コール酸 等などの長鎖カルボン酸またはステアリン酸ナトリウムなどの長鎖カルボン酸塩が望ましい。   The surface modifier used in the heating / reduction process is preferably a polymer resin such as PVP (polyvinylpyrrolidone), polyethyleneimine, or polyacrylamide. The molecular weight is preferably 2,000 to 10,000, and myristic acid, decanoic acid, caprylic acid. Long chain carboxylic acids such as palmitic acid, linoleic acid, linolenic acid, oleic acid and stearic acid, cholic acid and the like or long chain carboxylates such as sodium stearate are desirable.

加熱・還元工程でのマイクロ波による加熱は、その照射強度範囲として10W〜2450W、照射時間が1分〜60分の範囲で行うことが好ましい。   The heating by the microwave in the heating / reducing step is preferably performed in the irradiation intensity range of 10 W to 2450 W and the irradiation time of 1 minute to 60 minutes.

収集工程では、加熱・還元工程で生成したNi微粒子を遠心分離機により有機溶媒から分離し、その後メタノール等を用いてNi微粒子に付着している不純物を洗い流す。   In the collecting step, the Ni fine particles generated in the heating / reducing step are separated from the organic solvent by a centrifuge, and then impurities adhering to the Ni fine particles are washed away using methanol or the like.

さらに、混練工程で用いる有機溶媒としては、テルピネオール、デカノール、ヘキサノール、メタノール、エタノール、エチルカルビトール、ブチルカルビトール、ジオール類、グリコール類、ポリオール類などのアルコール類、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)などのアミン類、ヘキサン、トルエン、キシレン、オクタン、デカン、ウンデカン、テトラデカンなどの炭化水素類、メチルエチルケトン(MEK)、メチルイソブチルケトンなどのケトン類、ジプロピレングリコールモノメチルエーテルなどのエーテル類、酢酸エチル、エチルカルビトールアセテート、ブチルカルビトールアセテートなどのエステル類を用いることができる。   Furthermore, as the organic solvent used in the kneading step, terpineol, decanol, hexanol, methanol, ethanol, ethyl carbitol, butyl carbitol, diols, glycols, polyols and other alcohols, dimethylformamide (DMF), N- Amines such as methyl-2-pyrrolidone (NMP), hydrocarbons such as hexane, toluene, xylene, octane, decane, undecane and tetradecane, ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone, dipropylene glycol monomethyl ether And ethers such as ethyl acetate, ethyl carbitol acetate, and butyl carbitol acetate can be used.

本発明の導電性ペーストにおいて、混練するNi微粒子と有機溶媒との重量比率は1:1〜1.1程度である。また、導電性ペーストの物性安定化や品質向上のために、有機バインダーや添加剤を加えることもできる。有機バインダーとしては、例えばエチルセルロースが挙げられる。また、添加剤としては、可塑剤、増粘防止剤、分散剤等が挙げられる。   In the conductive paste of the present invention, the weight ratio of the Ni fine particles to be kneaded and the organic solvent is about 1: 1 to 1.1. Moreover, an organic binder and an additive can also be added in order to stabilize the physical properties and improve the quality of the conductive paste. Examples of the organic binder include ethyl cellulose. Examples of the additive include a plasticizer, a thickening inhibitor, and a dispersant.

核発生粒子成長過程を通して生成する金属微粒子において、通常の加熱合成では熱伝導ならびに対流による影響により熱勾配が生じ、反応容器壁面と中心とでは粒子の生成・成長に差があるが、マイクロ波加熱では、電磁波の一種であるマイクロ波が被加熱物内に浸透し、誘電損失により発熱する内部加熱により急速な昇温且つ均一に加熱されることから、粒子の生成・成長の差が小さく粒径制御された単分散な金属微粒子が合成できる。 In the fine metal particles generated through the nucleation particle growth process, thermal gradients occur due to the effects of heat conduction and convection in normal heating synthesis, and there is a difference in the generation and growth of particles between the reaction vessel wall and the center. In this case, microwaves, which are a type of electromagnetic wave, penetrate into the object to be heated and are heated rapidly and uniformly by internal heating that generates heat due to dielectric loss, so the difference in particle generation and growth is small. Controlled monodisperse metal fine particles can be synthesized.

そして、本発明が適用しようとするMLCC用の導電性ペーストに使用するNi微粒子では、その粒子径としては平均粒子径が2nm〜300nmの粒径範囲内であることが望ましい。   The Ni fine particles used in the MLCC conductive paste to be applied by the present invention preferably have an average particle size in the range of 2 nm to 300 nm.

本発明で製造するNi微粒子の粒径は数nm〜数百nmにわたるが、平均粒子径が数nm程度と小さいときは標準偏差の値が小さく、平均粒子径が数百nm程度まで大きくなると標準偏差の値も大きくなり、標準偏差(σ)のみでは粒子径に即した評価ができない。そこで異なる平均粒子径においても粒径分布の評価ができるようにする為に、単位平均粒径に対する標準偏差(σ)を平均粒子径(r)で除するσ/rを使用することとした。   The particle size of the Ni fine particles produced in the present invention ranges from several nm to several hundreds of nm. When the average particle size is as small as several nm, the standard deviation value is small, and when the average particle size is large up to several hundred nm, it is standard. The value of the deviation also increases, and evaluation based on the particle diameter cannot be performed only with the standard deviation (σ). Therefore, in order to be able to evaluate the particle size distribution even at different average particle sizes, σ / r, which is obtained by dividing the standard deviation (σ) with respect to the unit average particle size by the average particle size (r), was used.

以下、研究室段階での実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described by examples in the laboratory stage, but the present invention is not limited to these examples.

100ml石英製丸底フラスコに塩化ニッケル6水和物2.33g(18mmol)とポリビリルピロリドン(PVP)(Mw=10,000)0.4gをエチレングリコール50mlに加えて攪拌・溶解した後、水素化ホウ素ナトリウム1.36g(36mmol)を添加し400rpmで攪拌した。それを電子レンジ型マイクロ波反応装置(四国計測工業社製、MICRO RANGE−PRO)にてマイクロ波照射により室温から120℃まで45secで急速に加熱したのち、その温度で10min保持した。なお温度の制御は、光ファイバー温度計(安立計器(株)社製「AMOTHTM-5886」)を用いて温度を測定しながらマイクロ波照射出力を制御しながら、反応を行った。得られた反応溶液を冷却した後、久保田製作所社製遠心機(KUBOTA6930)を用いて15,000GによりNi微粒子粉体とエチレングリコール溶媒を分離した。同様に50mlメタノールを用いて洗浄を2回実施し、Ni微粒子粉体と不純物を除去した。得られた黒色粉体を真空乾燥装置で40℃に加熱乾燥して、Ni微粒子粉体を取り出した。   In a 100 ml quartz round bottom flask, 2.33 g (18 mmol) of nickel chloride hexahydrate and 0.4 g of polybilylpyrrolidone (PVP) (Mw = 10,000) were added to 50 ml of ethylene glycol and stirred and dissolved. 1.36 g (36 mmol) of sodium borohydride was added and stirred at 400 rpm. This was rapidly heated from room temperature to 120 ° C. in 45 seconds by microwave irradiation in a microwave oven type microwave reactor (MICRO RANGE-PRO, manufactured by Shikoku Keiki Kogyo Co., Ltd.), and held at that temperature for 10 minutes. The temperature was controlled by measuring the temperature using an optical fiber thermometer (“AMOTHTM-5886” manufactured by Anritsu Keiki Co., Ltd.) while controlling the microwave irradiation output. After cooling the obtained reaction solution, the Ni fine particle powder and the ethylene glycol solvent were separated by 15,000 G using a centrifuge (KUBOTA 6930) manufactured by Kubota Corporation. Similarly, washing was performed twice using 50 ml of methanol to remove Ni fine particle powder and impurities. The obtained black powder was dried by heating at 40 ° C. with a vacuum dryer, and the Ni fine particle powder was taken out.

(評価結果)
(Ni微粒子の同定)
得られたNi微粒子の同定をX線回折(XRD)(理学電気(株)社製、MultiFlex)により評価した。
X線解析の回折角度(2θ)=44.7°、52.5°、76.6°にそれぞれニッケルの(111)、(200)、(220)面のピークを有することより、得られた粉体が面心立方構造(face-centered cubic(fcc))を有するNi微粒子であることが確認され、ニッケル酸化物は確認されなかった。このX線回折図を図1に表す。
(Evaluation results)
(Identification of Ni fine particles)
Identification of the obtained Ni fine particles was evaluated by X-ray diffraction (XRD) (manufactured by Rigaku Corporation, MultiFlex).
X-ray analysis diffraction angle (2θ) = 44.7 °, 52.5 °, and 76.6 °, respectively having nickel (111), (200), (220) plane peaks. The powder was confirmed to be Ni fine particles having a face-centered cubic (fcc), and nickel oxide was not confirmed. This X-ray diffraction diagram is shown in FIG.

(表面修飾剤の量及びNi微粒子の収率)
Ni微粒子に修飾されている表面修飾剤の量は、熱重量測定(島津社製TGA−50)により評価を行った。10mgのNi微粒子を窒素雰囲気下(50ml/min)、昇温速度10℃/minで20℃から600℃まで、操作し、熱重量変化を調べたところ、約24%の重量減少が確認された。
この熱重量測定図を図2に表す。
(Amount of surface modifier and yield of Ni fine particles)
The amount of the surface modifier modified with the Ni fine particles was evaluated by thermogravimetry (TGA-50 manufactured by Shimadzu Corporation). When 10 mg of Ni fine particles were operated from 20 ° C. to 600 ° C. under a nitrogen atmosphere (50 ml / min) at a rate of temperature increase of 10 ° C./min, and the thermogravimetric change was examined, a weight loss of about 24% was confirmed. .
This thermogravimetric diagram is shown in FIG.

(Ni微粒子形状)
得られたNi微粒子粉体の形状をヘキサン・メタノール溶媒に分散した後、エラスティックカーボン支持体を貼った銅グリッドに滴下し、減圧乾燥したものを透過型電子顕微鏡((株)日立ハイテクノロジーズ社製、日立透過型電子顕微鏡H-9000)にて観察した。
観察試料のTEM像を図3に示す。
尚、図3のTEM像より見積もられたNi微粒子の粒径を表1に示す。
(Ni fine particle shape)
After the shape of the obtained Ni fine particle powder was dispersed in a hexane / methanol solvent, it was dropped on a copper grid with an elastic carbon support and dried under reduced pressure to obtain a transmission electron microscope (Hitachi High-Technologies Corporation). Manufactured by Hitachi Transmission Electron Microscope H-9000).
A TEM image of the observation sample is shown in FIG.
Table 1 shows the particle diameter of the Ni fine particles estimated from the TEM image of FIG.

又、図3のTEM画像より768個カウントし粒径を計測した。粒子径に対する出現頻度を図4に示す。
この結果、平均粒子径(r)が5.6nm、標準偏差(σ)が1.87nmで粒子径に対する標準偏差(σ/r)は0.33であった。
Further, 768 particles were counted from the TEM image in FIG. The appearance frequency with respect to the particle diameter is shown in FIG.
As a result, the average particle size (r) was 5.6 nm, the standard deviation (σ) was 1.87 nm, and the standard deviation (σ / r) with respect to the particle size was 0.33.

500ml石英製丸底フラスコに硫酸ニッケル六水和物2.37g(9mmol)をエチレングリコール120mlに加えて攪拌・溶解した後、ヒドラジン一水和物2.88g(90mmol)を添加し室温で30min、400rpmで攪拌した。得られた桃色溶液に10mlのイオン交換水に溶解させた水酸化ナトリウム1.5g(37.5mmol)水溶液を滴下したのち10分間室温で攪拌した。それを電子レンジ型マイクロ波反応装置(四国計測工業社製、MICRO RANGE−PRO)にてマイクロ波照射により室温から120℃まで45secで急速に加熱したのち、その温度で30min保持した。得られたNi微粒子粉体は実施例1と同様に洗浄したのち評価を行った。評価結果、X線回折図およびTEM像をそれぞれ表1、図5、図6に示す。   To a 500 ml quartz round bottom flask, 2.37 g (9 mmol) of nickel sulfate hexahydrate was added to 120 ml of ethylene glycol, stirred and dissolved, then 2.88 g (90 mmol) of hydrazine monohydrate was added, and 30 minutes at room temperature. Stir at 400 rpm. An aqueous solution of 1.5 g (37.5 mmol) of sodium hydroxide dissolved in 10 ml of ion-exchanged water was added dropwise to the resulting pink solution, and the mixture was stirred for 10 minutes at room temperature. It was rapidly heated from room temperature to 120 ° C. by microwave irradiation in a microwave oven type microwave reactor (MICRO RANGE-PRO, manufactured by Shikoku Keiki Kogyo Co., Ltd.) in 45 seconds, and held at that temperature for 30 minutes. The obtained Ni fine particle powder was washed and evaluated in the same manner as in Example 1. The evaluation results, X-ray diffraction patterns and TEM images are shown in Table 1, FIG. 5 and FIG. 6, respectively.

硫酸ニッケル六水和物をステアリン酸ニッケルとして用いた以外は実施例2と同様な方法で行った。評価結果及びTEM像をそれぞれ表1、図7に示す。   The same procedure as in Example 2 was performed except that nickel sulfate hexahydrate was used as nickel stearate. The evaluation results and TEM images are shown in Table 1 and FIG. 7, respectively.

500ml石英製丸底フラスコに硫酸ニッケル六水和物2.37g(9mmol)とポリビリルピロリドン(PVP)(Mw=10,000)0.8gをエチレングリコール120mlに加えて攪拌・溶解した後、ヒドラジン一水和物2.88g(90mmol)を添加し室温で30min、400rpmで攪拌した。その後の操作は実施例3と同様な方法で行った。評価結果及びTEM像をそれぞれ表1、図8に示す。   In a 500 ml quartz round bottom flask, 2.37 g (9 mmol) of nickel sulfate hexahydrate and 0.8 g of polybilylpyrrolidone (PVP) (Mw = 10,000) were added to 120 ml of ethylene glycol, stirred and dissolved, and then hydrazine. 2.88 g (90 mmol) of monohydrate was added and stirred at room temperature for 30 min and 400 rpm. Subsequent operations were performed in the same manner as in Example 3. The evaluation results and TEM images are shown in Table 1 and FIG.

500ml石英製丸底フラスコに硫酸ニッケル六水和物2.37g(9mmol)とコール酸7.35g(18mmol)をエチレングリコール120mlに加えて攪拌・溶解した後、ヒドラジン一水和物2.88g(90mmol)を添加し室温で30min、400rpmで攪拌した。その後の操作は実施例3と同様な方法で行った。評価結果及びTEM像をそれぞれ表1、図9に示す。   In a 500 ml quartz round bottom flask, 2.37 g (9 mmol) of nickel sulfate hexahydrate and 7.35 g (18 mmol) of cholic acid were added to 120 ml of ethylene glycol, stirred and dissolved, and then 2.88 g of hydrazine monohydrate ( 90 mmol) was added and stirred at room temperature for 30 min and 400 rpm. Subsequent operations were performed in the same manner as in Example 3. The evaluation results and TEM images are shown in Table 1 and FIG.

又、図3のTEM画像より33サンプルを抽出しその粒子径を計測した。粒子径に対する出現頻度を図10に示す。
この結果、平均粒子径(r)が260nm、標準偏差(σ)が33.4nmで粒子径に対する標準偏差(σ/r)は0.13であった。
Moreover, 33 samples were extracted from the TEM image of FIG. 3 and the particle diameter was measured. The appearance frequency with respect to the particle diameter is shown in FIG.
As a result, the average particle size (r) was 260 nm, the standard deviation (σ) was 33.4 nm, and the standard deviation (σ / r) with respect to the particle size was 0.13.

実施例1及び5の粒度分布から、平均粒子径が5nm程度と小さい時には、標準偏差の値は小さいが、平均粒子径が260nm程度まで大きくなると、標準偏差の値も大きくなる。
そこで、単位平均粒径に対する標準偏差を求めると、前記したように、0.33と0.13となる。平均粒子径が260nmで単位平均粒径に対する標準偏差が0.4とすると、260±100nm程度の分布となることから、Ni微粒子の粒度分布が粒子径(r)と標準偏差(σ)の比率で、0.01≦σ/r≦0.5の範囲内にあることが望ましい。
[比較例1]
From the particle size distributions of Examples 1 and 5, when the average particle size is as small as about 5 nm, the standard deviation value is small, but when the average particle size is increased up to about 260 nm, the standard deviation value becomes large.
Therefore, when the standard deviation with respect to the unit average particle diameter is obtained, as described above, they are 0.33 and 0.13. If the average particle size is 260 nm and the standard deviation with respect to the unit average particle size is 0.4, the distribution is about 260 ± 100 nm, so the Ni particle size distribution is the ratio of the particle size (r) to the standard deviation (σ). Therefore, it is desirable to be within the range of 0.01 ≦ σ / r ≦ 0.5.
[Comparative Example 1]

100ml石英製丸底フラスコに塩化ニッケル6水和物2.33g(18mmol)をエチレングリコール50mlに加えて攪拌・溶解した後、水素化ホウ素ナトリウム1.36g(36mmol)を添加し、70℃のオイルバスにおいて400rpmで30min攪拌した。得られたNi微粒子粉体は実施例1と同様に洗浄したのち評価を行った。評価結果、X線回折図及びTEM像をそれぞれ表1、図11、図12に示す。   To a 100 ml quartz round bottom flask, 2.33 g (18 mmol) of nickel chloride hexahydrate was added to 50 ml of ethylene glycol, stirred and dissolved, then 1.36 g (36 mmol) of sodium borohydride was added, and an oil at 70 ° C. The mixture was stirred for 30 minutes at 400 rpm in a bath. The obtained Ni fine particle powder was washed and evaluated in the same manner as in Example 1. The evaluation results, X-ray diffraction diagrams and TEM images are shown in Table 1, FIG. 11 and FIG. 12, respectively.

本発明は、積層セラミックコンデンサに使用することができる。   The present invention can be used for multilayer ceramic capacitors.

実施例1で得られたNi微粒子でのX線回折図である。2 is an X-ray diffraction pattern of Ni fine particles obtained in Example 1. FIG. 実施例1で得られたNi微粒子での熱重量測定図である。2 is a thermogravimetric measurement diagram of Ni fine particles obtained in Example 1. FIG. 実施例1で得られたNi微粒子でのTEM像である。2 is a TEM image of Ni fine particles obtained in Example 1. FIG. 実施例1で得られたNi微粒子での粒子径に対する出現頻度を示すグラフである。4 is a graph showing the appearance frequency with respect to the particle diameter of Ni fine particles obtained in Example 1. 実施例2で得られたNi微粒子でのX線回折図である。3 is an X-ray diffraction pattern of Ni fine particles obtained in Example 2. FIG. 実施例2で得られたNi微粒子でのTEM像である。4 is a TEM image of Ni fine particles obtained in Example 2. FIG. 実施例3で得られたNi微粒子のTEM像である。4 is a TEM image of Ni fine particles obtained in Example 3. FIG. 実施例4で得られたNi微粒子でのTEM像である。4 is a TEM image of Ni fine particles obtained in Example 4. FIG. 実施例5で得られたNi微粒子でのTEM像である。6 is a TEM image of Ni fine particles obtained in Example 5. FIG. 実施例5で得られたNi微粒子での粒子径に対する出現頻度を示すグラフである。6 is a graph showing the appearance frequency with respect to the particle diameter of Ni fine particles obtained in Example 5. 比較例で得られたNi微粒子でのX線回折図である。FIG. 4 is an X-ray diffraction diagram of Ni fine particles obtained in a comparative example. 比較例で得られたNi微粒子でのTEM像である。It is a TEM image in Ni fine particles obtained by the comparative example.

Claims (4)

マイクロ波を照射することによって生成したNi微粒子であって、有機物の表面修飾剤により有機溶媒に高分散していることを特徴とするNi微粒子を用いることを特徴とするMLCC用導電性ペースト。   A conductive paste for MLCC, characterized by using Ni fine particles produced by irradiating microwaves, wherein the fine particles are highly dispersed in an organic solvent by an organic surface modifier. Ni微粒子の粒子径(r)が2nm≦r≦300nmである請求項1に記載したMLCC用導電性ペースト。   The conductive paste for MLCC according to claim 1, wherein the particle diameter (r) of the Ni fine particles is 2 nm ≦ r ≦ 300 nm. Ni微粒子の粒度分布が粒子径(r)と標準偏差(σ)の比率で、0.01≦σ/r≦0.5の範囲内にある請求項1又は2に記載したMLCC用導電性ペースト。   The conductive paste for MLCC according to claim 1 or 2, wherein the particle size distribution of the Ni fine particles is in the range of 0.01≤σ / r≤0.5 in terms of the ratio of the particle diameter (r) to the standard deviation (σ). . Ni微粒子が、以下の3つの工程により生成されたことを特徴とする請求項1〜3のいずれか1項に記載したMLCC用導電ペースト。
a.Ni金属塩と還元剤と表面修飾剤とを有機溶媒に溶解させた溶液にマイクロ波照射を行い、Ni金属塩を還元することで均一な粒径を有するNi微粒子を生成する加熱・還元工程。、
b.前記加熱・還元工程にて生成したNi微粒子を洗浄・分離することで有機溶媒からNi微粒子を収集する収集工程。
c.前記収集工程で収集したNi微粒子を有機溶媒に添加しNi微粒子を混練し、導電性ペーストとする混練工程。
4. The MLCC conductive paste according to claim 1, wherein the Ni fine particles are generated by the following three steps.
a. A heating / reduction process in which a Ni metal salt, a reducing agent and a surface modifier dissolved in an organic solvent are irradiated with microwaves to reduce the Ni metal salt to produce Ni fine particles having a uniform particle size. ,
b. A collecting step of collecting Ni fine particles from the organic solvent by washing and separating the Ni fine particles generated in the heating / reducing step.
c. A kneading step in which the Ni fine particles collected in the collecting step are added to an organic solvent to knead the Ni fine particles to obtain a conductive paste.
JP2007229759A 2007-09-05 2007-09-05 Conductive paste for mlcc Pending JP2009064603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229759A JP2009064603A (en) 2007-09-05 2007-09-05 Conductive paste for mlcc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229759A JP2009064603A (en) 2007-09-05 2007-09-05 Conductive paste for mlcc

Publications (1)

Publication Number Publication Date
JP2009064603A true JP2009064603A (en) 2009-03-26

Family

ID=40559022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229759A Pending JP2009064603A (en) 2007-09-05 2007-09-05 Conductive paste for mlcc

Country Status (1)

Country Link
JP (1) JP2009064603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
JP2013184830A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd Surface-modified metal oxide nanoparticle and method for producing the same
WO2016129686A1 (en) * 2015-02-13 2016-08-18 株式会社カネカ Solar cell, method for manufacturing same, and solar cell module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
JP2001167631A (en) * 1999-12-07 2001-06-22 Sumitomo Metal Mining Co Ltd Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
JP2001167631A (en) * 1999-12-07 2001-06-22 Sumitomo Metal Mining Co Ltd Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
JP2013184830A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd Surface-modified metal oxide nanoparticle and method for producing the same
WO2016129686A1 (en) * 2015-02-13 2016-08-18 株式会社カネカ Solar cell, method for manufacturing same, and solar cell module
JPWO2016129686A1 (en) * 2015-02-13 2017-11-24 株式会社カネカ SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
CN107408583A (en) * 2015-02-13 2017-11-28 株式会社钟化 Solar cell and its manufacture method and solar cell module
CN107408583B (en) * 2015-02-13 2019-09-03 株式会社钟化 Solar battery and its manufacturing method and solar cell module
US10522704B2 (en) 2015-02-13 2019-12-31 Kaneka Corporation Solar cell, method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5826435B1 (en) Copper powder
JP6274444B2 (en) Method for producing copper powder
JP4801958B2 (en) Conductive paste
JP2008258147A (en) Paste material
JP2005314755A (en) Flake copper powder, production method therefor and conductive paste
TW201619400A (en) Silver powder, method for producing the same, and electrically conductive paste
JP6130209B2 (en) Conductive film
WO2020067282A1 (en) Silver powder, production method thereof, and conductive paste
JP2006152439A (en) Surface treatment method of nickel nanoparticle
JP5993764B2 (en) Composite nickel particles
CN113677458A (en) Mixed silver powder and conductive paste containing the same
TWI825594B (en) copper powder
JP2009064603A (en) Conductive paste for mlcc
JP5707133B2 (en) Method for producing composite nanoparticles
JP2012140661A (en) Flat copper particle
JP4575867B2 (en) Conductive paste
JP2017133083A (en) Manufacturing method of copper powder and manufacturing method of conductive paste
JP6814529B2 (en) Silver powder and its manufacturing method
JP2008159498A (en) Conductive paste and manufacturing method thereof
JP2007095525A (en) Conductive paste
JP2007095527A (en) Conductive paste and method of manufacturing same
JP5993763B2 (en) Composite nickel particles
JP2017137530A (en) Copper powder and manufacturing method therefor
JP4906301B2 (en) Conductive paste
WO2017179524A1 (en) Silver-coated copper powder and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02