JP6843455B1 - Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method - Google Patents

Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method Download PDF

Info

Publication number
JP6843455B1
JP6843455B1 JP2020078672A JP2020078672A JP6843455B1 JP 6843455 B1 JP6843455 B1 JP 6843455B1 JP 2020078672 A JP2020078672 A JP 2020078672A JP 2020078672 A JP2020078672 A JP 2020078672A JP 6843455 B1 JP6843455 B1 JP 6843455B1
Authority
JP
Japan
Prior art keywords
nickel
catalyst solution
electroless
solution
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020078672A
Other languages
Japanese (ja)
Other versions
JP2021172862A (en
Inventor
康二 田中
康二 田中
佐藤 一生
一生 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Original Assignee
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co Ltd filed Critical Ishihara Chemical Co Ltd
Priority to JP2020078672A priority Critical patent/JP6843455B1/en
Application granted granted Critical
Publication of JP6843455B1 publication Critical patent/JP6843455B1/en
Priority to PCT/JP2021/015190 priority patent/WO2021220788A1/en
Priority to TW110114879A priority patent/TW202140852A/en
Publication of JP2021172862A publication Critical patent/JP2021172862A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Abstract

【課題】 ニッケル触媒液の経時安定性を向上し、触媒付与した非導電性基板に無電解ニッケル又はニッケル合金メッキを施して、均一でムラのないニッケル系皮膜を得る。【解決手段】 界面活性剤の含有液に非導電性基板を浸漬して予備の吸着促進処理をした後、(A)可溶性銅塩と、(B)還元剤と、(D)ポリエチレンイミン類、ポリアミン類などの所定の合成系水溶性ポリマーとを含む無電解ニッケルメッキ用のニッケルコロイド触媒液で非導電性基板に触媒付与し、次いで、無電解ニッケルメッキを行う。吸着促進処理により触媒活性を増強した後、経時安定性に優れた触媒液で触媒付与し、無電解メッキをするため、均一でムラのないニッケル皮膜が得られる。ニッケル合金メッキ方法に適用しても、同様のニッケル合金皮膜が得られる。【選択図】 なしPROBLEM TO BE SOLVED: To improve the stability of a nickel catalyst solution with time and to apply electroless nickel or nickel alloy plating to a non-conductive substrate to which a catalyst is applied to obtain a uniform and even nickel-based film. SOLUTION: After immersing a non-conductive substrate in a liquid containing a surfactant and performing a preliminary adsorption promotion treatment, (A) a soluble copper salt, (B) a reducing agent, and (D) polyethyleneimines, A nickel colloid catalyst solution for electroless nickel plating containing a predetermined synthetic water-soluble polymer such as polyamines is used to catalyze the non-conductive substrate, and then electroless nickel plating is performed. After the catalytic activity is enhanced by the adsorption promotion treatment, the catalyst is applied with a catalyst solution having excellent stability over time and electroless plating is performed, so that a uniform and even nickel film can be obtained. A similar nickel alloy film can be obtained even when applied to the nickel alloy plating method. [Selection diagram] None

Description

本発明は非導電性基板に無電解ニッケル又はニッケル合金メッキを施すに際し、前処理としての触媒付与をするためのニッケルコロイド触媒液、並びに当該触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法に関して、上記触媒液に特定の水溶性ポリマーを所定条件で含有することで、ニッケル触媒液の経時安定性を効果的に促進でき、もって、ニッケル又はニッケル合金皮膜の均一性及び外観を有効に改善できるものを提供する。 The present invention relates to a nickel colloid catalyst solution for imparting a catalyst as a pretreatment when plating a non-conductive substrate with an electroless nickel or a nickel alloy, and a method for plating an electroless nickel or a nickel alloy using the catalyst solution. By containing a specific water-soluble polymer in the above catalyst solution under predetermined conditions, the stability of the nickel catalyst solution over time can be effectively promoted, and thus the uniformity and appearance of the nickel or nickel alloy film can be effectively improved. Provide things.

ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などの非導電性基板上に無電解ニッケル又はニッケル合金メッキを施すには、先ず、基板上にパラジウム、金、銀、銅、ニッケルなどの金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解ニッケル又はニッケル合金メッキ液により同ニッケル系皮膜を基板上に析出させる方式が一般的である。 Electroless nickel or nickel-phosphorus on non-conductive substrates such as glass substrates and ceramics substrates, including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin. To perform gold plating, first, metals such as palladium, gold, silver, copper, and nickel are adsorbed on the substrate to form a catalyst nucleus, and then electroless nickel or a nickel alloy plating solution is used via the catalyst nucleus. A method of depositing the nickel-based film on a substrate is common.

そこで、ニッケル又はニッケル合金メッキを含む無電解メッキを施すに際して、その予備処理として被メッキ物にニッケル触媒核を付与する従来技術を挙げると、次の通りである。
(1)特許文献1
貴金属触媒液に替わる無電解メッキ用の触媒液に関して、当該触媒液はニッケル、銅、コバルトから選ばれた金属の塩と、ノニオン性界面活性剤、ゼラチンから選ばれた分散剤と、モノカルボン酸、ジカルボン酸、オキシカルボン酸及びこれらの塩から選ばれた錯化剤と、水素化ホウ素類などの還元剤と、次亜リン酸類などの安定剤とを含み、pH1〜10に調整される(特許請求の範囲の第1項〜第7項)。
上記金属塩の含有量は5〜50g/L(第3頁左上欄第18行)、上記錯化剤の含有量は10〜50g/Lであり(第3頁左上欄第10行)、錯化剤の代表例には安息香酸、コハク酸、乳酸、酢酸ナトリウムなどが挙げられる(第3頁左上欄第9行〜第10行)。
上記触媒液を製造する具体的な実施例1〜4を見ると(第3頁左下欄第3行〜第4頁右上欄第9行)、実施例1〜2はニッケル触媒液、同じく実施例3はコバルト触媒液、実施例4は銅触媒液の各例である。
このうち、ニッケル触媒液の実施例1では、硫酸ニッケルと、ゼラチン(分散剤)と、水酸化ホウ素ナトリウム(還元剤)と、次亜リン酸ナトリウムを含むニッケル触媒液に、ABS樹脂を浸漬した後、無電解ニッケルメッキ液によりABS樹脂表面にニッケルメッキ皮膜を形成することが開示されるが、このニッケル触媒液には錯化剤(即ち、コロイド安定用の処理剤)は含まれていない(第3頁左下欄第3行〜右下欄第1行)。
同じく、実施例2のニッケル触媒液にも、ニッケル塩と還元剤と次亜リン酸塩は含まれるが、錯化剤(コロイド安定剤)は含まれない(第3頁右下欄第2行〜第10行)。実施例4の銅触媒液にも錯化剤は含まれない(第4頁左上欄第12行〜第20行)。
一方、実施例3のコバルト触媒液には、錯化剤(コロイド安定剤)として酢酸ナトリウムが含まれる。
Therefore, when performing electroless plating including nickel or nickel alloy plating, the prior art of imparting nickel catalyst nuclei to the object to be plated as a preliminary treatment is as follows.
(1) Patent Document 1
Regarding the catalyst solution for electroless plating instead of the noble metal catalyst solution, the catalyst solution contains a metal salt selected from nickel, copper and cobalt, a nonionic surfactant, a dispersant selected from gelatin, and a monocarboxylic acid. , Dicarboxylic acid, oxycarboxylic acid and a complexing agent selected from these salts, a reducing agent such as boron hydride, and a stabilizer such as hypophosphates, and the pH is adjusted to 1-10 (1 to 10). Paragraphs 1 to 7 of the scope of patent claims).
The content of the metal salt is 5 to 50 g / L (page 3, upper left column, line 18), and the content of the complexing agent is 10 to 50 g / L (page 3, upper left column, line 10). Typical examples of the agent include benzoic acid, succinic acid, lactic acid, sodium acetate and the like (page 3, upper left column, lines 9 to 10).
Looking at specific Examples 1 to 4 for producing the above catalyst solution (page 3, lower left column, line 3 to page 4, upper right column, line 9), Examples 1 and 2 are nickel catalyst solutions, and the same Examples. 3 is a cobalt catalyst solution, and Example 4 is a copper catalyst solution.
Of these, in Example 1 of the nickel catalyst solution, the ABS resin was immersed in a nickel catalyst solution containing nickel sulfate, gelatin (dispersant), sodium boron hydroxide (reducing agent), and sodium hypophosphite. Later, it is disclosed that an electroless nickel plating solution forms a nickel plating film on the surface of the ABS resin, but this nickel catalyst solution does not contain a complexing agent (that is, a treatment agent for stabilizing colloids) (that is, a treatment agent for stabilizing colloids). 3rd page, lower left column, 3rd line to lower right column, 1st line).
Similarly, the nickel catalyst solution of Example 2 also contains a nickel salt, a reducing agent, and a hypophosphate, but does not contain a complexing agent (colloidal stabilizer) (page 3, lower right column, line 2). ~ 10th line). The copper catalyst solution of Example 4 also does not contain a complexing agent (page 4, upper left column, lines 12 to 20).
On the other hand, the cobalt catalyst solution of Example 3 contains sodium acetate as a complexing agent (colloidal stabilizer).

(2)特許文献2
シリコン基板を触媒液に接触させた後、無電解ニッケルメッキを施す工程を含む太陽電池の製造に関するもので、上記触媒液は、
(a)パラジウム、金、銀などの貴金属又はその化合物と、
(b)エチレングリコール、プロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などから選ばれた増粘剤と、
(c)水とを含有する。
従って、触媒液の触媒核となる金属は貴金属又はその化合物であり、ニッケルではない。
(2) Patent Document 2
The present invention relates to the manufacture of a solar cell including a step of subjecting a silicon substrate to a catalyst solution and then performing electroless nickel plating.
(A) Precious metals such as palladium, gold and silver or their compounds,
(B) Thickeners selected from ethylene glycol, propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, etc.
(C) Contains water.
Therefore, the metal that becomes the catalyst nucleus of the catalyst solution is a noble metal or a compound thereof, not nickel.

(3)特許文献3
ガラス繊維強化エポキシ樹脂板を被メッキ物として、
(a)上記被メッキ物を表面調整液(最初にカチオン性界面活性剤で、次いでアニオン性界面活性剤)で処理し、
(b)ポリエチレンイミン及びポリエチレングリコールの結合物(即ち、保護剤)と、銀ナノ粒子とを主成分とする触媒液(銀含有構造体の水性分散液)で当該被メッキ物を処理した後、
(c)触媒付与された被メッキ物に銅、ニッケル、或いは金やパラジウム等の貴金属の無電解メッキ液を用いて当該金属皮膜を形成することが開示されている(請求項1、3〜5、[0010]、[0045])。
当該発明では、特定構造の上記保護剤(工程(b)参照)で保護されてなる銀ナノ粒子の水性分散液を用いると共に、予め特定の表面調整液(工程(a)参照)で処理することで、被メッキ物に優れた触媒活性を付与できるとしている([0010]参照)。
従って、触媒液の触媒核となる金属は銀であり、ニッケルではない(請求項1)。また、実施例1〜3において、触媒付与後に形成される無電解メッキ皮膜は全て銅皮膜であり、ニッケル皮膜の例はない([0055]〜[0060])。
(3) Patent Document 3
Using a glass fiber reinforced epoxy resin plate as the object to be plated
(A) The object to be plated is treated with a surface conditioner (first a cationic surfactant and then an anionic surfactant).
(B) After treating the object to be plated with a catalyst solution (an aqueous dispersion of a silver-containing structure) containing a bond of polyethyleneimine and polyethylene glycol (that is, a protective agent) and silver nanoparticles as main components.
(C) It is disclosed that the metal film is formed on the catalyst-imposed object to be plated by using an electroless plating solution of a noble metal such as copper, nickel, or gold or palladium (claims 1, 3 to 5). , [0010], [0045]).
In the present invention, an aqueous dispersion of silver nanoparticles protected by the above-mentioned protective agent having a specific structure (see step (b)) is used, and is treated in advance with a specific surface conditioning solution (see step (a)). Therefore, it is said that excellent catalytic activity can be imparted to the object to be plated (see [0010]).
Therefore, the metal that serves as the catalyst nucleus of the catalyst solution is silver, not nickel (claim 1). Further, in Examples 1 to 3, the electroless plating films formed after the catalyst application are all copper films, and there are no examples of nickel films ([0055] to [0060]).

特開平02−093076号公報Japanese Unexamined Patent Publication No. 02-093076 特開2011−168889号公報Japanese Unexamined Patent Publication No. 2011-168889 特開2012−255182号公報Japanese Unexamined Patent Publication No. 2012-255182

上記特許文献1の実施例1〜2にはニッケル触媒液が開示されるが、ニッケル塩と還元剤と次亜リン酸塩を主成分とするもので、ニッケル触媒液の経時安定性について充分でないという問題点がある。
上記特許文献2では、無電解メッキ液にニッケル液は開示されるが、無電解メッキの前工程である触媒付与工程で用いる触媒液はパラジウム、金、銀などの貴金属又はその化合物を触媒核とするもので、ニッケルを触媒核とするものではない。
同じく、特許文献3でも、無電解メッキ液にニッケル液は開示されるが、具体的な実施例は無電解銅メッキの例だけであるうえ、触媒付与工程で用いる触媒液は銀を触媒核とするもので、ニッケルを触媒核とするものではない。
Although the nickel catalyst solution is disclosed in Examples 1 and 2 of Patent Document 1, it is mainly composed of a nickel salt, a reducing agent and a hypophosphate, and the stability of the nickel catalyst solution with time is not sufficient. There is a problem.
In the above Patent Document 2, a nickel solution is disclosed as an electroless plating solution, but the catalyst solution used in the catalyst application step, which is a pre-step of electroless plating, uses a noble metal such as palladium, gold, or silver or a compound thereof as a catalyst nucleus. It does not use nickel as a catalyst nucleus.
Similarly, in Patent Document 3, a nickel solution is disclosed as an electroless plating solution, but specific examples are only examples of electroless copper plating, and the catalyst solution used in the catalyst application step uses silver as a catalyst nucleus. It does not use nickel as a catalyst nucleus.

本発明は、ニッケル触媒液の経時安定性を向上するとともに、触媒付与した非導電性基板に無電解ニッケルメッキを施して、均一性に優れたニッケル又はニッケル合金皮膜を得ることを技術的課題とする。 The technical subject of the present invention is to improve the stability of the nickel catalyst solution over time and to obtain an nickel or nickel alloy film having excellent uniformity by subjecting the catalyst-imparted non-conductive substrate to electroless nickel plating. To do.

本出願人は先に、特開2016−056421号公報(以下、「基準発明」という)で、無電解ニッケル又はニッケル合金メッキを施すための非導電性基板に接触させて触媒付与を行うためのニッケル触媒液であって、
(A)可溶性ニッケル塩と、
(B)還元剤と、
(C)モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれたコロイド安定剤の少なくとも一種
とを含有する上記無電解メッキ用のニッケルコロイド触媒液を提案した(請求項1参照)。
この基準発明のニッケルコロイド触媒液では、ニッケル塩に錯化作用をするオキシカルボン酸類などの特定のコロイド安定剤を含有することで、当該触媒液の経時安定性を向上でき、また、上記安定剤や還元剤などの含有量を特定化すると、液の経時安定性をさらに向上できる。
The applicant has previously referred to Japanese Patent Application Laid-Open No. 2016-056421 (hereinafter referred to as "reference invention") to apply a catalyst by contacting it with a non-conductive substrate for electroless nickel or nickel alloy plating. Nickel catalyst solution
(A) Soluble nickel salt and
(B) Reducing agent and
(C) A nickel colloid catalyst solution for electroless plating containing at least one colloid stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids was proposed (claimed). See item 1).
The nickel colloidal catalyst solution of the reference invention can improve the stability of the catalyst solution over time by containing a specific colloidal stabilizer such as oxycarboxylic acids that have a complexing effect on the nickel salt, and the above-mentioned stabilizer. By specifying the content of the colloid and the reducing agent, the stability of the liquid over time can be further improved.

一方、上記必須成分(A)〜(C)を含むニッケルコロイド触媒液に、さらに所定の水溶性ポリマーを加重的に含有すると、コロイド分散性が向上し、無電解ニッケルメッキに際して、優れた均一性とムラのないニッケル皮膜の形成が期待できることも開示した(基準発明の[0031]参照)。
この水溶性ポリマーは、基本的に合成系のポリマーが好ましいが、天然由来の水溶性ポリマー、或いは、セルロース誘導体のような半合成系ポリマーであっても良い。
上記合成系の水溶性ポリマーには、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAM)、ポリエチレンイミン(PEI)、ポリアクリル酸塩などが列挙される(基準発明の[0031]参照)。
On the other hand, when a predetermined water-soluble polymer is added to the nickel colloid catalyst solution containing the essential components (A) to (C) in a weighted manner, the colloidal dispersibility is improved and excellent uniformity is obtained in electroless nickel plating. It was also disclosed that the formation of a uniform nickel film can be expected (see [0031] of the reference invention).
The water-soluble polymer is basically preferably a synthetic polymer, but may be a naturally-derived water-soluble polymer or a semi-synthetic polymer such as a cellulose derivative.
The synthetic water-soluble polymers include polyethylene glycol (PEG), polypropylene glycol (PPG), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM), polyethyleneimine (PEI), and polyacrylic acid salt. Etc. are listed (see [0031] of the reference invention).

本発明者らは、上記基準発明に基づいて、必須成分(A)〜(C)に、さらに水溶性ポリマーを加えた4成分からなるニッケルコロイド触媒液並びにその経時安定性を鋭意研究する過程で、水溶性ポリマー(D)として所定の合成系のポリマーを使用することを条件として、基準発明の必須成分であるコロイド安定剤(C)を省略し、成分(A)〜(B)に上記所定の合成系の水溶性ポリマー(D)を組み合わせても、コロイド触媒液の経時安定性については、成分(A)〜(C)を必須とする基準発明のニッケル触媒液を用いた場合に準ずるか、同レベルの安定性を確保できること、触媒付与した非導電性基板に無電解ニッケルメッキを施した場合、均一性に優れたニッケル又はニッケル合金皮膜が得られること、また、当該所定の合成系水溶性ポリマーは上記基準発明に開示された範囲とは異なり、開示範囲の一部のポリマーを新たなポリマーで置き換える必要があることを新たに見い出して、本発明を完成した。 Based on the above standard invention, the present inventors are in the process of diligently studying a nickel colloid catalyst solution consisting of four components, which is an essential component (A) to (C) plus a water-soluble polymer, and its stability over time. On the condition that a predetermined synthetic polymer is used as the water-soluble polymer (D), the colloidal stabilizer (C), which is an essential component of the reference invention, is omitted, and the above-mentioned predetermined components (A) to (B) are used. Even if the synthetic water-soluble polymer (D) of the above is combined, the stability over time of the colloid catalyst solution is the same as when the nickel catalyst solution of the reference invention in which the components (A) to (C) are essential is used. , The same level of stability can be ensured, and when a non-conductive nickel-plated substrate to which a catalyst is applied, a nickel or nickel alloy film having excellent uniformity can be obtained, and the predetermined synthetic water-soluble substrate is used. The present invention has been completed by newly finding that the sex polymer is different from the range disclosed in the above reference invention and it is necessary to replace a part of the polymer in the disclosed range with a new polymer.

本発明1は、無電解ニッケル又はニッケル合金メッキを施す非導電性基板に接触させて触媒付与を行うためのニッケルコロイド触媒液において、
上記触媒液の必須含有成分が、
(A)可溶性ニッケル塩と、
(B)還元剤と、
(D)ポリエチレンイミンのアルキレンオキシド付加物からなるポリエチレンイミン類(PEI類)、ジアリルアミンポリマーからなるポリアミン類(PA類)、アルデヒド変性ポリアクリルアミドからなるポリアクリルアミド類(PAM類)、ポリビニルイミダゾール類(PVI類)から選ばれた合成系の水溶性ポリマーであり、
上記成分(D)を成分(A)及び成分(B)のいずれかに共存させた状態で、成分(A)と成分(B)を混合してなる触媒液であって、
上記水溶性ポリマー(D)を触媒液に対して0.5〜300g/L含有することを特徴とする無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。
The present invention 1 is a nickel colloidal catalyst solution for applying a catalyst by contacting it with a non-conductive substrate to be plated with electroless nickel or nickel alloy.
The essential components of the above catalyst solution are
(A) Soluble nickel salt and
(B) Reducing agent and
(D) Polyethyleneimines (PEIs) composed of alkylene oxide adducts of polyethyleneimine, polyamines (PAs) composed of diallylamine polymers, polyacrylamides (PAMs) composed of aldehyde-modified polyacrylamides, polyvinylimidazoles (PVIs). It is a synthetic water-soluble polymer selected from ( class),
A catalyst solution obtained by mixing the component (A) and the component (B) in a state where the component (D) coexists with either the component (A) or the component (B).
A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which comprises 0.5 to 300 g / L of the water-soluble polymer (D) with respect to the catalyst solution.

本発明2は、本発明1において、還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。 In the present invention 2, in the present invention 1 , the reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenols. A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is at least one selected from the group consisting of sulfonic acids, naphthol sulfonic acids, sulfin acids, and reducing saccharides.

本発明3は、(a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程と、
(b)上記本発明1又は2のニッケルコロイド触媒液に吸着促進された非導電性基板を浸漬して、基板表面上にニッケルコロイド粒子を吸着させる触媒付与工程と、
(c)触媒付与された上記基板上に無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解ニッケル又はニッケル合金メッキ方法である。
The present invention 3 is non-conductive to at least one containing liquid of an adsorption accelerator selected from the group consisting of (a) nonionic surfactant, cationic surfactant, anionic surfactant, and amphoteric surfactant. Adsorption promotion step to immerse the substrate and
(B) A catalyst applying step of immersing the non-conductive substrate whose adsorption has been promoted in the nickel colloid catalyst solution of the present invention 1 or 2 to adsorb nickel colloid particles on the surface of the substrate.
(C) An electroless nickel or nickel alloy plating method comprising an electroless plating step of forming an electroless nickel or nickel alloy film on the catalyst-imposed substrate using an electroless nickel or nickel alloy plating solution. Is.

本発明4は、上記本発明3において、先ず、非導電性基板にエッチング処理液を接触させて、当該基板表面を粗面化するエッチング処理工程(p)を施すとともに、
当該非導電性基板に対して、上記エッチング処理工程(p)の次に吸着促進工程(a)を施し、その後、触媒付与工程(b)及び無電解メッキ工程(c)を順次施すことを特徴とする無電解ニッケル又はニッケル合金メッキ方法である。
In the present invention 4, the present invention 4 first performs an etching treatment step (p) in which an etching treatment liquid is brought into contact with a non-conductive substrate to roughen the surface of the substrate, and at the same time, the etching treatment step (p) is performed.
The non-conductive substrate is characterized in that the etching treatment step (p) is followed by an adsorption promotion step (a), followed by a catalyst application step (b) and an electroless plating step (c). This is an electroless nickel or nickel alloy plating method.

本発明5は、上記本発明3又は4において、工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする無電解ニッケル又はニッケル合金メッキ方法である。 The present invention 5 is an electroless nickel or nickel alloy plating method according to the present invention 3 or 4, wherein the adsorption accelerator in the step (a) is a cationic surfactant and / or an amphoteric surfactant. Is.

本発明6は、上記本発明3〜5のいずれかの無電解メッキ方法により、非導電性基板上に無電解ニッケル又はニッケル合金皮膜を形成することを特徴とする非導電性基板の製造方法である。 The present invention 6 is a method for manufacturing a non-conductive substrate, which comprises forming an electroless nickel or a nickel alloy film on a non-conductive substrate by the electroless plating method according to any one of the above 3 to 5 of the present invention. is there.

本発明のニッケルコロイド触媒液では、上記基準発明のコロイド安定剤に替えて、所定の合成系の水溶性ポリマーを含有することで、ニッケル触媒液の経時安定性を効果的に促進できる。
具体的には、基準発明ではコロイド安定剤を用いることでニッケルコロイド触媒液の経時安定性を向上できるが、本発明のニッケル触媒液では、このコロイド安定剤を使用せず、所定の合成系水溶性ポリマーで代替することで、基準発明に準じるか、同レベルの触媒液の経時安定性を確保できる。
この結果、触媒付与後の無電解ニッケル又はニッケル合金メッキにより、得られる無電解皮膜の性状を有効に改善できる。
The nickel colloidal catalyst solution of the present invention can effectively promote the stability of the nickel catalyst solution over time by containing a predetermined synthetic water-soluble polymer in place of the colloidal stabilizer of the reference invention.
Specifically, in the reference invention, the stability over time of the nickel colloidal catalyst solution can be improved by using a colloidal stabilizer, but the nickel catalyst solution of the present invention does not use this colloidal stabilizer and is a predetermined synthetic water-soluble substance. By substituting with a sex polymer, it is possible to ensure the stability of the catalyst solution over time according to the standard invention or at the same level.
As a result, the properties of the obtained electroless film can be effectively improved by electroless nickel or nickel alloy plating after the catalyst is applied.

本発明の合成系の水溶性ポリマーは、前述したように、基準発明で開示した合成系ポリマーを包含するものでも、本発明のポリマーが基準発明のポリマーに包含されるものでもなく、両ポリマーは適用範囲が重複しながらも、本発明のポリマーには基準発明のポリマーに開示されない云わばズレた部分を有する。
例えば、PEIのエチレンオキシド付加物やジアリルアミンポリマーは本発明の好ましいポリマー成分であるが、基準発明の明細書([0031])には、ポリエチレンイミン(PEI)の用語が記載されているが、通常、これはPEIのホモポリマーを意味し、PEIの共重合体や付加物まで包含するとの記述や示唆はない。
また、基準発明([0031])には、ジアリルアミンポリマーが属するポリアミン類(PA類)やポリビニルイミダゾール類(PVI類)の記載はない。
従って、これらが基準発明に開示されない成分である。
As described above, the synthetic water-soluble polymer of the present invention does not include the synthetic polymer disclosed in the reference invention, nor does the polymer of the present invention include the polymer of the reference invention. Although the scope of application overlaps, the polymer of the present invention has a so-called misaligned portion that is not disclosed in the polymer of the reference invention.
For example, the ethylene oxide adduct of PEI and the diallylamine polymer are preferable polymer components of the present invention, and the specification of the reference invention ([0031]) describes the term polyethyleneimine (PEI), but usually This means a homopolymer of PEI, and there is no description or suggestion that it includes copolymers and additives of PEI.
Further, the reference invention ([0031]) does not describe polyamines (PAs) and polyvinylimidazoles (PVIs) to which the diallylamine polymer belongs.
Therefore, these are components not disclosed in the reference invention.

本発明では、非導電性基板に上記ニッケルコロイド触媒を付与してから無電解ニッケル(又はニッケル合金)メッキを施すことを基本原理とするが、この触媒付与の前処理として、非導電性基板を界面活性剤の含有液に浸漬する吸着促進処理を加重的に施して、当該吸着促進工程、触媒付与工程並びに無電解ニッケル(又はニッケル合金)メッキ工程を順次行うことにより、触媒付与時の触媒活性を強化して無電解メッキにより析出するニッケル(又はニッケル合金)皮膜の均一性を改善し、且つ、皮膜のムラ発生を良好に防止できる。 In the present invention, the basic principle is to apply the nickel colloid catalyst to the non-conductive substrate and then perform electroless nickel (or nickel alloy) plating. However, as a pretreatment for applying the catalyst, the non-conductive substrate is used. By aggravating the adsorption promotion treatment of immersing in the liquid containing the surfactant and sequentially performing the adsorption promotion step, the catalyst application step, and the electroless nickel (or nickel alloy) plating step, the catalytic activity at the time of catalyst application is performed. The uniformity of the nickel (or nickel alloy) film deposited by electroless plating can be improved, and unevenness of the film can be satisfactorily prevented.

本発明は、第一に、非導電性基板に接触させて触媒付与を行うためのニッケルコロイド触媒液であって、(A)可溶性ニッケル塩と、(B)還元剤と、(D)ポリエチレンイミンのアルキレンオキシド付加物からなるポリエチレンイミン類(PEI類)、ジアリルアミンポリマーからなるポリアミン類(PA類)などの所定の合成系の水溶性ポリマーとを含有し、上記成分(D)を成分(A)及び成分(B)のいずれかに共存させた状態で、成分(A)と成分(B)を混合してなるとともに、当該水溶性ポリマー(D)を触媒液に対して所定濃度で含有する無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液であり(本発明1に相当)、第二に、上記第一の触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法であり、予め非導電性基板を界面活性剤の含有液で吸着促進処理し、次いで、上記触媒液により触媒付与した後に無電解メッキを行う方法であり(本発明3に相当)、第三に、当該無電解メッキ方法によりニッケル又はニッケル合金皮膜を形成する非導電性基板の製造方法である(本発明6に相当)。 The present invention is firstly a nickel colloidal catalyst solution for contacting an electroless substrate to apply a catalyst, wherein (A) a soluble nickel salt, (B) a reducing agent, and (D) polyethyleneimine. Contains a predetermined synthetic water-soluble polymer such as polyethyleneimines (PEIs) composed of the alkylene oxide adduct of the above and polyamines (PAs) composed of a diallylamine polymer , and the above component (D) is added to the component (A). In a state of coexisting with any of the components (B) and the component (B), the component (A) and the component (B) are mixed, and the water-soluble polymer (D) is contained in the catalyst solution at a predetermined concentration. It is an electroless nickel or nickel alloy plating method for electroless nickel or nickel alloy plating (corresponding to 1 of the present invention), and secondly, it is an electroless nickel or nickel alloy plating method using the first catalyst solution, and is non-conductive in advance. This is a method in which the substrate is subjected to adsorption promotion treatment with a liquid containing a surfactant, and then electroless plating is performed after applying a catalyst with the above catalyst liquid ( corresponding to 3 of the present invention ), and thirdly, by the electroless plating method. This is a method for manufacturing an electroless substrate that forms a nickel or nickel alloy film (corresponding to 6 of the present invention).

上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート(PC)樹脂、ポリアミド(PA)樹脂、ポリスチレン(PS)樹脂、ポリエステル樹脂(例えば、ポリブチレンタレフタレート(PBT)樹脂など)、ABS樹脂、PET樹脂及びこれらのポリマーアロイ(例えば、PC/ABS、PBT/ABS、PA/ABS、PC/PS)などの樹脂基板を初め、ガラス基板、セラミックス基板などをいう。 The non-conductive substrate is glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate (PC) resin, polyamide (PA) resin, polystyrene (PS) resin, polyester resin (for example, polybutylentale phthalate). (PBT) resin, etc.), ABS resin, PET resin, and resin substrates such as these polymer alloys (for example, PC / ABS, PBT / ABS, PA / ABS, PC / PS), glass substrates, ceramics substrates, etc. Say.

上記本発明1のニッケルコロイド触媒液の基本組成は、(A)可溶性ニッケル塩と、(B)還元剤と、(D)合成系の水溶性ポリマーであり、本発明1は、当該成分(D)を必須成分とし、基準発明のコロイド安定剤(C)を必須成分としない点で、上記基準発明と異なる。
上記可溶性塩(A)は、水溶液中でニッケルイオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。具体的には、硫酸ニッケル、酸化ニッケル、塩化ニッケル、硫酸ニッケルアンモニウム、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、スルファミン酸ニッケル、或いは有機スルホン酸やカルボン酸のニッケル塩などが挙げられる。
The basic composition of the nickel colloidal catalyst solution of the present invention 1 is (A) a soluble nickel salt, (B) a reducing agent, and (D) a synthetic water-soluble polymer, and the present invention 1 is the component (D). ) Is an essential component, and the colloid stabilizer (C) of the standard invention is not an essential component, which is different from the above standard invention.
As the soluble salt (A), any soluble salt that generates nickel ions in an aqueous solution can be used, there is no particular limitation, and the poorly soluble salt is not excluded. Specific examples thereof include nickel sulfate, nickel oxide, nickel chloride, nickel ammonium sulfate, nickel acetate, nickel nitrate, nickel carbonate, nickel sulfamate, and nickel salts of organic sulfonic acid and carboxylic acid.

上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、還元糖類などが挙げられる。
水素化ホウ素化合物は水素化ホウ素ナトリウム、水素化ホウ素カリウムなどであり、アミンボラン類はジメチルアミンボラン、ジエチルアミンボランなどである。アルデヒド類はホルムアルデヒド、グリオキシル酸又はその塩などであり、多価フェノール類はカテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などであり、フェノールスルホン酸類はフェノールスルホン酸、クレゾールスルホン酸又はその塩などである。還元糖類はグルコース、フルクトースなどである。
Examples of the reducing agent (B) include boron hydride compounds, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, and sulfin. Examples include acids and reducing sugars.
The boron borohydride compound is sodium borohydride, potassium borohydride and the like, and the amine boranes are dimethylamine borane, diethylamine borane and the like. The aldehydes are formaldehyde, glyoxylic acid or salts thereof, the polyhydric phenols are catechol, hydroquinone, resorcin, pyrogallol, fluoroglucin, gallic acid and the like, and the phenol sulfonic acids are phenol sulfonic acid, cresol sulfonic acid or salts thereof and the like. Is. Reducing saccharides include glucose and fructose.

上記合成系の水溶性ポリマー(D)は、上記基準発明のコロイド安定剤(C)と同様に、触媒液の経時安定性を担保する機能を果たすものである。
この場合、当該水溶性ポリマー(D)の触媒液に対する含有量は、後述の適正範囲内に設定する必要がある(請求項1参照)。
この水溶性ポリマー(D)は、所定のポリエチレンイミン類(PEI類)、ポリアミン類(PA類)、ポリビニルイミダゾール類(PVI類)、所定のポリアクリルアミド類(PAM類)から選ばれた合成系のポリマーである。
上記水溶性ポリマー(D)は合成系のポリマーを意味するため、ゼラチン、澱粉などの天然由来の水溶性ポリマー、或いは、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)などのセルロース誘導体のような半合成系ポリマーは含まれない。但し、本発明の水溶性ポリマー(D)に当該天然由来、又は半合成系のポリマーを併用することは排除されない。
上記所定のポリエチレンイミン類(PEI類)は、ポリエチレンイミンにエチレンオキシド及び/又はポリプロピレンオキシドを付加したポリマーなどのポリエチレンイミンのアルキレンオキシド付加物を意味する。
上記ポリアミン類(PA類)はジアリルアミンポリマーが基本で、具体的にはジアルキルアンモニウムクロリド重合体、ジアリルジメチルアンモニウムクロリド二酸化硫黄共重合体、ジアリルメチルエチルアンモニウムエチルサルフェート重合体、ジアリルジメチルアンモニウムクロリドアクリルアミド共重合体などである。
上記ポリビニルイミダゾール類(PVI類)はポリビニルイミダゾールのホモポリマー並びにポリビニルイミダゾールにエチレンオキシド及び/又はポリプロピレンオキシドを付加したポリマーを含む。
上記所定のポリアクリルアミド類(PAM類)はアルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミドなどを意味する。ポリイソプロピルアクリルアミド、アクリルアミドにアクリル酸、メタクリル酸などの親水性ポリマーなどを共重合したポリマーも同様の作用を期待できる。但し、前記ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体はジアリルアミンとアクリルアミドの共重合体に分類できる。
上記水溶性ポリマー(D)としては、ポリエチレンイミンのエチレンオキシド付加物(PEI類)、ジアリルアミンポリマーからなるPA類、アルデヒド変性ポリアクリルアミド(PAM類)などが好ましい。
The synthetic water-soluble polymer (D) has a function of ensuring the stability of the catalyst solution over time, similarly to the colloidal stabilizer (C) of the reference invention.
In this case, the content of the water-soluble polymer (D) in the catalyst solution needs to be set within an appropriate range described later (see claim 1).
This water-soluble polymer (D) is a synthetic system selected from predetermined polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and predetermined polyacrylamides (PAMs). It is a polymer.
Since the water-soluble polymer (D) means a synthetic polymer, it is semi-synthesized such as a naturally-derived water-soluble polymer such as gelatin or starch, or a cellulose derivative such as carboxymethyl cellulose (CMC) or methyl cellulose (MC). System polymers are not included. However, it is not excluded that the water-soluble polymer (D) of the present invention is used in combination with the naturally-derived or semi-synthetic polymer.
The above-mentioned predetermined polyethyleneimines (PEIs) mean an alkylene oxide adduct of polyethyleneimine such as a polymer obtained by adding ethylene oxide and / or polypropylene oxide to polyethyleneimine.
The polyamines (PAs) are basically diallylamine polymers, specifically, dialkylammonium chloride polymer, diallyldimethylammonium chloride sulfur dioxide copolymer, diallylmethylethylammonium ethylsulfate polymer, and diallyldimethylammonium chloride acrylamide copolymer. For example, coalescence.
The polyvinyl imidazoles (PVIs) include homopolymers of polyvinyl imidazole and polymers obtained by adding ethylene oxide and / or polypropylene oxide to polyvinyl imidazole.
The above-mentioned predetermined polyacrylamides (PAMs) mean aldehyde-modified polyacrylamide, methylolpolyacrylamide and the like. A polymer obtained by copolymerizing polyisopropylacrylamide or acrylamide with a hydrophilic polymer such as acrylic acid or methacrylic acid can be expected to have the same effect. However, the diallyldimethylammonium chloride / acrylamide copolymer can be classified into a copolymer of diallylamine and acrylamide.
As the water-soluble polymer (D) , ethylene oxide adducts of polyethyleneimine (PEIs) , PAs composed of diallylamine polymers, aldehyde-modified polyacrylamide (PAMs) and the like are preferable.

また、本発明のニッケルコロイド触媒液には、必要に応じて、触媒核となる微細金属の分散性を増すために、界面活性剤を含有することができる。
当該界面活性剤はノニオン系、両性、カチオン系、或はアニオン系の各種界面活性剤を選択できる。
上記ノニオン系界面活性剤としては、C1〜C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1〜C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1〜C25アルキルナフトール、C1〜C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C1〜C22脂肪族アミン、C1〜C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2〜300モル付加縮合させたものや、C1〜C25アルコキシル化リン酸(塩)などが挙げられる。
上記カチオン系界面活性剤としては、第4級アンモニウム塩、或はピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。また、エチレンオキシド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化、或はスルホン酸化付加物も使用できる。
Further, the nickel colloid catalyst solution of the present invention may contain a surfactant, if necessary, in order to increase the dispersibility of the fine metal serving as the catalyst nucleus.
As the surfactant, various nonionic, amphoteric, cationic, or anionic surfactants can be selected.
Examples of the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenols, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, and C1 to C25 alkoxylated phosphate (salt). ), Sorbitane ester, polyalkylene glycol, C1-C22 aliphatic amine, C1-C22 aliphatic amide, etc. with 2 to 300 mol of ethylene oxide (EO) and / or propylene oxide (PO) added and condensed, or C1- Examples thereof include C25 alkoxylated phosphate (salt).
Examples of the cationic surfactant include quaternary ammonium salts and pyridinium salts. Specifically, lauryltrimethylammonium salt, stearyltrimethylammonium salt, lauryldimethylethylammonium salt, and octadecyldimethylethylammonium salt. , Dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt, trimethyl benzyl ammonium salt, triethyl benzyl ammonium salt, dimethyl diphenyl ammonium salt, benzyl dimethyl phenyl ammonium salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecyl Examples thereof include pyridinium salts, stearylamine acetates, laurylamine acetates and octadecylamine acetates.
Examples of the anionic surfactant include alkyl sulfate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl phenyl ether sulfate, alkyl benzene sulfonate, {(mono, di, tri) alkyl} naphthalene sulfonate, and the like. Can be mentioned. Examples of the amphoteric tenside agent include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Sulfation of the condensation product of ethylene oxide and / or propylene oxide with alkylamine or diamine, or sulfonated adduct can also be used.

本発明1のニッケルコロイド触媒液において、上記可溶性ニッケル塩(A)は単用又は併用でき、その含有量は0.001〜1.0モル/Lが適し、好ましくは0.002〜0.5モル/L、より好ましくは0.0025〜0.3モル/Lである。
可溶性ニッケル塩(A)の含有量が適正量より少ないとニッケル皮膜の膜厚が不足したり、皮膜の均質性が低下する恐れがあり、逆に、溶解量などに応じて上限濃度は制限される。
上記還元剤(B)は単用又は併用でき、その含有量は0.002〜1.0モル/Lが適し、好ましくは0.003〜0.7モル/L、より好ましくは0.005〜0.6モル/Lである。
還元剤の含有量が適正量より少ないとニッケル塩の還元作用が低下し、逆に、上限濃度は溶解量などで制限されるが、多過ぎると無電解メッキで析出するニッケル皮膜の均質性が低下する恐れがある。
上記水溶性ポリマー(D)は単用又は併用でき、当該ポリマーの触媒液に対する含有量は0.5〜300g/Lであることが必須であり(請求項1参照)、好ましくは1〜200g/L、より好ましくは1〜100g/Lである。
水溶性ポリマー(D)の含有量が適正量より少ないと経時安定性を損なうとともに、300g/Lを越えるとコロイドが過剰に安定して触媒活性を失う恐れがある。
In the nickel colloidal catalyst solution of the present invention 1, the soluble nickel salt (A) can be used alone or in combination, and the content thereof is preferably 0.001 to 1.0 mol / L, preferably 0.002 to 0.5. It is mol / L, more preferably 0.0025 to 0.3 mol / L.
If the content of the soluble nickel salt (A) is less than the appropriate amount, the film thickness of the nickel film may be insufficient or the homogeneity of the film may decrease. On the contrary, the upper limit concentration is limited depending on the dissolved amount and the like. To.
The reducing agent (B) can be used alone or in combination, and its content is preferably 0.002 to 1.0 mol / L, preferably 0.003 to 0.7 mol / L, and more preferably 0.005 to 0.005. It is 0.6 mol / L.
If the content of the reducing agent is less than the appropriate amount, the reducing action of the nickel salt is reduced, and conversely, the upper limit concentration is limited by the amount of dissolution, etc., but if it is too large, the homogeneity of the nickel film precipitated by electroless plating becomes It may decrease.
The water-soluble polymer (D) can be used alone or in combination, and the content of the polymer in the catalyst solution is essential to be 0.5 to 300 g / L (see claim 1), preferably 1 to 200 g / L. L, more preferably 1 to 100 g / L.
If the content of the water-soluble polymer (D) is less than the appropriate amount, the stability over time is impaired, and if it exceeds 300 g / L, the colloid may become excessively stable and lose the catalytic activity.

尚、本発明のニッケルコロイド触媒液には、上記基準発明のコロイド安定剤(C)を併用することを排除するものではない。
上記コロイド安定剤(C)は、モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、アミノ酸類、ポリカルボン酸類よりなる群から選ばれ、オキシカルボン酸類、アミノカルボン酸類、アミノ酸類、ポリカルボン酸類などが好ましい。
上記オキシカルボン酸類には、クエン酸、酒石酸、リンゴ酸、グルコン酸及びこれらの塩などが挙げられる。
上記アミノカルボン酸類には、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、ニトリロ三酢酸、イミノジ酢酸、及びこれらの塩などが挙げられる。
上記アミノ酸類としては、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、グリシン及びこれらの塩などが挙げられる。
上記ポリカルボン酸類としては、コハク酸、グルタル酸、アジピン酸、マレイン酸、イタコン酸及びこれらの塩などが挙げられる。
It should be noted that the use of the colloidal stabilizer (C) of the above standard invention in combination with the nickel colloidal catalyst solution of the present invention is not excluded.
The colloid stabilizer (C) is selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, amino acids, polycarboxylic acids, and oxycarboxylic acids, aminocarboxylic acids, amino acids, polycarboxylic acids and the like. preferable.
Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid and salts thereof.
Examples of the aminocarboxylic acids include diethylenetriamine pentaacetic acid, triethylenetetramine hexaacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, iminodiacetic acid, and salts thereof.
Examples of the amino acids include glutamic acid, dicarboxymethylglutamate, ornithine, cysteine, glycine and salts thereof.
Examples of the polycarboxylic acids include succinic acid, glutaric acid, adipic acid, maleic acid, itaconic acid and salts thereof.

本発明のニッケルコロイド触媒液は水系、或いは親油性アルコールなどの有機溶媒系を問わない。
水系の場合には、液の溶媒は水及び/又は親水性アルコールから選択される。
また、当該触媒液のpHについては特に限定はないが、中性、弱酸性、弱アルカリ性などを選択することが好ましい。
The nickel colloidal catalyst solution of the present invention may be water-based or an organic solvent-based solution such as lipophilic alcohol.
In the case of an aqueous system, the solvent of the liquid is selected from water and / or hydrophilic alcohol.
The pH of the catalyst solution is not particularly limited, but it is preferable to select neutral, weakly acidic, weakly alkaline or the like.

本発明1の触媒液は、上記成分(D)を成分(A)及び成分(B)のいずれかに共存させた状態で、成分(A)と成分(B)を混合してなる触媒液である。
本発明1のコロイド触媒液の調製手順としては、上記可溶性ニッケル塩(A)を含む溶液と、この溶液とは別途に調製された上記還元剤(B)を含む溶液とを混合してコロイド粒子を生成することが重要である。
可溶性ニッケル塩(A)と還元剤(B)を先に混合すると、ニッケルイオンが還元されて金属ニッケルが析出してしまい、成分(D)が触媒液中で有機的に機能しない恐れがあるからである。
従って、当該触媒液を調製する際には、還元剤からニッケルイオンに電子を円滑に供与するため、還元剤の溶液を可溶性ニッケル塩(及び水溶性ポリマー)の含有溶液に時間をかけて緩やかに滴下して製造することを基本とする。例えば、5〜50℃(好ましくは10〜40℃)の還元剤溶液をニッケル塩溶液に滴下して20〜1200分間(好ましくは30〜300分間)撹拌し、触媒液を調製する。尚、触媒液の調製では、可溶性ニッケル塩の溶液を還元剤の液に滴下することを排除するものではない。
本発明の触媒液において、還元剤の作用により可溶性ニッケル塩から生じるニッケルコロイド粒子は適した平均粒径が1〜250nm、好ましくは1〜120nm、より好ましくは1〜100nmの微細粒子である。
ニッケルコロイド粒子の平均粒径が250nm以下になると、触媒液に非導電性基板を浸漬した場合、コロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着し、或いは引っ掛かるなどのアンカー効果により基板表面にニッケルコロイド核の付与が促進されるものと推定できる。
The catalyst solution of the present invention 1 is a catalyst solution obtained by mixing the component (A) and the component (B) in a state where the above component (D) coexists with either the component (A) or the component (B). is there.
As a procedure for preparing the colloidal catalyst solution of the present invention 1 , a solution containing the soluble nickel salt (A) and a solution containing the reducing agent (B) prepared separately from this solution are mixed and colloidal particles are prepared. Is important to generate.
If the soluble nickel salt (A) and the reducing agent (B) are mixed first, the nickel ions are reduced and metallic nickel is precipitated, and the component (D) may not function organically in the catalyst solution. Is.
Therefore, when preparing the catalyst solution, in order to smoothly donate electrons from the reducing agent to the nickel ions, the solution of the reducing agent is slowly added to the solution containing the soluble nickel salt (and the water-soluble polymer) over time. Basically, it is produced by dropping. For example, a reducing agent solution at 5 to 50 ° C. (preferably 10 to 40 ° C.) is added dropwise to the nickel salt solution and stirred for 20 to 1200 minutes (preferably 30 to 300 minutes) to prepare a catalyst solution. The preparation of the catalyst solution does not exclude dropping the solution of the soluble nickel salt into the solution of the reducing agent.
In the catalyst solution of the present invention, the nickel colloidal particles produced from the soluble nickel salt by the action of the reducing agent are fine particles having a suitable average particle size of 1 to 250 nm, preferably 1 to 120 nm, and more preferably 1 to 100 nm.
When the average particle size of the nickel colloidal particles is 250 nm or less, when the non-conductive substrate is immersed in the catalyst solution, the colloidal particles enter the dents on the fine uneven surface of the substrate and are densely adsorbed or caught. It can be presumed that this promotes the addition of nickel colloidal nuclei to the surface of the substrate.

本発明3は、上記ニッケルコロイド触媒液を用いた無電解メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解ニッケル又はニッケル合金メッキ工程
上記吸着促進工程(a)はいわば(b)の触媒付与の前処理工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する工程であり、基板を界面活性剤の含有液に接触させることで基板表面の濡れ性を高めて触媒活性を増強し、次工程でのニッケルコロイド粒子の吸着を促進するものである。
吸着促進工程では、非導電性基板を界面活性剤の含有液を接触させることが必要であるため、液に浸漬させることが基本であるが、含有液を基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
The present invention 3 is an electroless plating method using the nickel colloidal catalyst solution, which is a combination of the following three steps in sequence.
(A) Adsorption promotion step (b) Catalyst application step (c) Electrolytic nickel or nickel alloy plating step The adsorption promotion step (a) is, so to speak, a pretreatment step for catalyst application of (b), and is a nonionic surfactant. This is a step of immersing the non-conductive substrate in a liquid containing at least one of an adsorption accelerator selected from the group consisting of a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. By contacting with the liquid containing the above, the wettability of the substrate surface is enhanced, the catalytic activity is enhanced, and the adsorption of nickel colloidal particles in the next step is promoted.
In the adsorption promotion step, since it is necessary to bring the non-conductive substrate into contact with the liquid containing the surfactant, it is basically immersed in the liquid, but the liquid contained is sprayed on the substrate or applied with a brush. There is no problem with processing such as.

本発明5に示すように、吸着を促進する見地から、正電荷を帯びたカチオン系や両性界面活性剤が好適であり、特にカチオン系界面活性剤が好ましい。また、カチオン系界面活性剤に少量のノニオン系界面活性剤を併用すると、吸着促進効果がさらに増す。
本発明1の触媒液において、可溶性ニッケル塩に還元剤を作用させて生じるニッケルコロイド粒子はゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン性界面活性剤で接触処理すると、基板がプラス電荷を帯び易く、次工程におけるニッケルコロイド粒子の基板への吸着効率が増す。
吸着促進工程での界面活性剤の具体例は、前記本発明1の触媒液において述べた界面活性剤の記述の通りである。
界面活性剤の含有量は0.05〜100g/Lであり、好ましくは0.5〜50g/Lである。当該吸着促進工程の処理温度は15〜70℃程度、浸漬時間は0.5〜20分間程度が好ましい。
尚、上記吸着促進工程(a)の前に、予備処理として、基板をエッチング溶液に浸漬して、表面を粗面化するエッチングを行うことが好ましい(本発明4参照)。
As shown in the present invention 5 , positively charged cationic surfactants and amphoteric surfactants are preferable from the viewpoint of promoting adsorption, and cationic surfactants are particularly preferable. Further, when a small amount of nonionic surfactant is used in combination with the cationic surfactant, the adsorption promoting effect is further increased.
In the catalyst solution of the present invention 1, the nickel colloidal particles produced by reacting the soluble nickel salt with a reducing agent have a negative zeta potential. Therefore, for example, when a non-conductive substrate is contact-treated with a cationic surfactant, the substrate becomes It tends to be positively charged, and the adsorption efficiency of nickel colloidal particles on the substrate in the next step is increased.
Specific examples of the surfactant in the adsorption promotion step are as described in the surfactant solution of the present invention 1.
The content of the surfactant is 0.05 to 100 g / L, preferably 0.5 to 50 g / L. The treatment temperature of the adsorption promotion step is preferably about 15 to 70 ° C., and the immersion time is preferably about 0.5 to 20 minutes.
Prior to the adsorption promotion step (a), it is preferable to immerse the substrate in an etching solution and perform etching to roughen the surface as a preliminary treatment (see the present invention 4).

吸着促進工程(a)を終えた非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
触媒付与工程では、上記ニッケルコロイド触媒液に非導電性基板を浸漬して、基板表面上にニッケルコロイドを吸着させる。
当該触媒液の液温は15〜95℃、好ましくは15〜70℃、浸漬時間は0.1〜20分程度、pHは3〜11であり、浸漬処理に際しては、基板を触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行っても良い。
また、当該触媒付与工程(b)と次の無電解メッキ工程(c)の間に、非導電性基板を酸溶液に浸漬して洗浄処理する活性化工程(b-1)を付加することが好ましい。これにより、触媒活性を効果的に保持して、次の無電解メッキ工程で皮膜形成を円滑に促進できる。
The non-conductive substrate that has completed the adsorption promotion step (a) is washed with pure water and then dried or not dried, and then the process proceeds to the next catalyst application step (b).
In the catalyst application step, the non-conductive substrate is immersed in the nickel colloid catalyst solution to adsorb the nickel colloid on the surface of the substrate.
The temperature of the catalyst solution is 15 to 95 ° C., preferably 15 to 70 ° C., the immersion time is about 0.1 to 20 minutes, the pH is 3 to 11, and the substrate is allowed to stand in the catalyst solution during the immersion treatment. It is sufficient to immerse in the state, but stirring or shaking may be performed.
Further, an activation step (b-1) of immersing the non-conductive substrate in an acid solution for cleaning treatment may be added between the catalyst application step (b) and the next electroless plating step (c). preferable. As a result, the catalytic activity can be effectively maintained, and film formation can be smoothly promoted in the next electroless plating step.

触媒液に浸漬した非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、無電解ニッケル又はニッケル合金メッキ工程(c)に移行する。
無電解ニッケル又はニッケル合金メッキは、従来と同様に処理すれば良く、特段の制約はない。無電解ニッケル又はニッケル合金メッキ液の液温は一般に15〜100℃、好ましくは20〜90℃である。
ニッケル又はニッケル合金メッキ液の撹拌では、空気撹拌、急速液流撹拌、撹拌羽根等による機械撹拌等を使用することができる。
The non-conductive substrate immersed in the catalyst solution is washed with pure water and then moved to the electroless nickel or nickel alloy plating step (c) without being dried or dried.
Electroless nickel or nickel alloy plating may be treated in the same manner as before, and there are no particular restrictions. The liquid temperature of the electroless nickel or nickel alloy plating solution is generally 15 to 100 ° C, preferably 20 to 90 ° C.
For stirring the nickel or nickel alloy plating solution, air stirring, rapid liquid flow stirring, mechanical stirring with a stirring blade or the like can be used.

無電解ニッケル又はニッケル合金メッキ液の組成に特段の制限はなく、公知のメッキ液を使用できる。
無電解ニッケルメッキは、実質的にはニッケル−リン合金メッキ、或いはニッケル−ホウ素合金メッキである。
上記ニッケル合金はニッケル−コバルト、ニッケル−スズ、ニッケル−スズ−亜鉛などである。
公知の無電解ニッケルメッキ液は、基本的に可溶性ニッケル塩と還元剤を主成分とし、これに必要に応じて錯化剤、pH調整剤、反応促進剤などの各種添加剤を含有する。
無電解メッキに際して、リン系の還元剤(例えば、次亜リン酸塩)を使用すると、ニッケル−リン合金メッキが皮膜が得られ、ホウ素系の還元剤を(例えば、ジメチルアミンボラン)使用すると、ニッケル−ホウ素合金皮膜が得られる。
可溶性ニッケル塩については、前記ニッケルコロイド触媒液で述べた通りである。
上記錯化剤については、前記ニッケルコロイド触媒液で述べたコロイド安定剤と共通する部分もあり、具体的には、アンモニア、エチレンジアミン、ピロリン酸塩、クエン酸、リンゴ酸、乳酸、酢酸、エチレンジアミン四酢酸(EDTA)などである。
尚、前述したように、本発明7は、この無電解メッキ方法により非導電性基板上にニッケル又はニッケル合金皮膜を形成した非導電性基板の製造方法である。
The composition of the electroless nickel or nickel alloy plating solution is not particularly limited, and a known plating solution can be used.
The electroless nickel plating is substantially nickel-phosphorus alloy plating or nickel-boron alloy plating.
The nickel alloys are nickel-cobalt, nickel-tin, nickel-tin-zinc and the like.
The known electroless nickel plating solution basically contains a soluble nickel salt and a reducing agent as main components, and if necessary, contains various additives such as a complexing agent, a pH adjuster, and a reaction accelerator.
When a phosphorus-based reducing agent (for example, hypophosphate) is used for electroless plating, a nickel-phosphorus alloy plating film is obtained, and when a boron-based reducing agent (for example, dimethylamine borane) is used, A nickel-boron alloy film is obtained.
The soluble nickel salt is as described in the nickel colloidal catalyst solution.
The complexing agent has some parts in common with the colloidal stabilizer described in the nickel colloid catalyst solution. Specifically, ammonia, ethylenediamine, pyrophosphate, citric acid, malic acid, lactic acid, acetic acid, ethylenediaminetetraac. Such as acetic acid (EDTA).
As described above, the present invention 7 is a method for manufacturing a non-conductive substrate in which a nickel or nickel alloy film is formed on the non-conductive substrate by this electroless plating method.

以下、本発明の吸着促進剤の含有液、ニッケルコロイド触媒液、並びに無電解ニッケル又はニッケル合金メッキ液の調製を含む無電解ニッケル又はニッケル合金メッキ方法の実施例を述べるとともに、ニッケルコロイド触媒液の経時安定性試験例、上記実施例で得られた析出ニッケル(又はニッケル合金)皮膜の外観評価試験例を順次説明する。
尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, examples of the electroless nickel or nickel alloy plating method including the preparation of the adsorption accelerator-containing liquid, the nickel colloid catalyst liquid, and the electroless nickel or nickel alloy plating liquid of the present invention will be described, and the nickel colloid catalyst liquid will be described. Examples of the stability test over time and the appearance evaluation test examples of the precipitated nickel (or nickel alloy) film obtained in the above examples will be described in sequence.
It should be noted that the present invention is not limited to the following examples and test examples, and it goes without saying that any modification can be made within the scope of the technical idea of the present invention.

《無電解ニッケル及びニッケル合金メッキ方法の実施例》
冒述では、本発明のニッケルコロイド触媒液は基準発明(特開2016−056421号公報)を出発点としたことを述べたが、この基準発明に基づいて、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)を含有するニッケルコロイド触媒液を「基準例」とすることで、触媒液の経時安定性の見地から本発明の実施例の有効性を相対的に測ることにした。
従って、先ず、本発明の代表例として実施例1(下記の項目(1))を述べるとともに、実施例1との対比で上記基準発明に基づく基準例(下記の項目(0))を説明したうえで、実施例2〜13(項目(2)〜(18))を順次詳述する。
下記の実施例2〜13のうち、実施例2〜12は無電解ニッケルメッキ方法の実施例、実施例13は無電解ニッケル−コバルト合金メッキ方法の実施例である。
<< Examples of electroless nickel and nickel alloy plating methods >>
In the introduction, it was stated that the nickel colloidal catalyst solution of the present invention started from the reference invention (Japanese Patent Laid-Open No. 2016-056421), but based on this reference invention, the soluble nickel salt (A) and the reducing agent By using the nickel colloid catalyst solution containing (B) and the colloid stabilizer (C) as a "reference example", the effectiveness of the examples of the present invention can be relatively measured from the viewpoint of the temporal stability of the catalyst solution. I made it.
Therefore, first, Example 1 (the following item (1)) will be described as a representative example of the present invention, and the reference example based on the above-mentioned reference invention (the following item (0)) will be described in comparison with Example 1. In the above, Examples 2 to 13 (items (2) to (18)) will be described in detail in order.
Of the following Examples 2 to 13 , Examples 2 to 12 are examples of the electroless nickel plating method, and Example 13 is an example of the electroless nickel-cobalt alloy plating method.

上記実施例1は後述するように、予備工程としてエッチング処理をした後、吸着促進→触媒付与→活性化→無電解メッキの各工程を順次施した無電解ニッケルメッキ方法の実施例であり、吸着促進工程の吸着促進剤はカチオン性界面活性剤とノニオン性界面活性剤の混合物であり、触媒付与工程のコロイド触媒液は還元剤(B)に水素化ホウ素化合物、合成系の水溶性ポリマー(D)にPEIのエチレンオキシド(EO)付加物を用いた例である。
実施例2〜4は実施例1を基本としながら、所定の水溶性ポリマー(D)としてPEIのエチレンオキシド付加物に替えて、ジアリルアミンポリマー(実施例2)、アルデヒド変性PAM(実施例3)、ポリビニルイミダゾールのホモポリマー(PVI;実施例4)を夫々使用した例である。
実施例5〜7は実施例1を基本として夫々PEIのEO付加物の含有量やEO付加モル数(従って、重量平均分子量)を変えた例である。尚、実施例5は実施例1を基本としながらも、活性化工程を省略して、エッチング工程→吸着促進→触媒付与→無電解メッキの各工程を順次施した例である。
実施例8〜10実施例2を基本として夫々ジアリルアミンポリマーの重量平均分子量を変えた例(但し、実施例10はジアリルアミンとアクリルアミドの共重合体である)。 実施例11は実施例1を基本としてニッケル塩の含有量を変えた例、実施例12は実施例1を基本として還元剤の含有量を変えた例、実施例13は実施例1を基本として水溶性ポリマーにPEIのエチレンオキシドとプロピレンオキシドの付加物を用いた例である。
また、参考例1〜4は実施例1を基本としながら、所定の水溶性ポリマー(D)としてPEIのホモポリマー(実施例2)、ポリビニルピロリドン(PVP;実施例4)、ポリビニルアルコール(PVA;実施例5)、ポリアクリルアミド(PAM)のホモポリマー(実施例6)を夫々用いた例である。
As will be described later, Example 1 is an example of a non-electrolytic nickel plating method in which each step of adsorption promotion → catalyst application → activation → electroless plating is sequentially performed after etching treatment as a preliminary step. The adsorption accelerator in the accelerating step is a mixture of a cationic surfactant and a nonionic surfactant, and the colloidal catalyst solution in the catalyst applying step is a reducing agent (B), a boron hydride compound, and a synthetic water-soluble polymer (D). ) Is an example in which an ethylene oxide (EO) adsorbent of PEI is used.
Examples 2 to 4 are based on Example 1, and instead of the ethylene oxide adduct of PEI as a predetermined water-soluble polymer (D), a diallylamine polymer (Example 2), an aldehyde-modified PAM (Example 3), and polyvinyl. This is an example in which a homopolymer of imidazole (PVI; Example 4) is used respectively.
Examples 5 to 7 are examples in which the content of the EO adduct of PEI and the number of moles of EO added (hence, the weight average molecular weight) are changed based on Example 1. In addition, although Example 5 is based on Example 1, the activation step is omitted and each step of etching step-> adsorption promotion-> catalyst addition-> electroless plating is sequentially performed.
Examples 8 to 10 are examples in which the weight average molecular weight of the diallylamine polymer is changed based on Example 2 (however, Example 10 is a copolymer of diallylamine and acrylamide). Example 11 is an example in which the nickel salt content is changed based on Example 1, Example 12 is an example in which the content of the reducing agent is changed based on Example 1, and Example 13 is based on Example 1. This is an example in which an adduct of ethylene oxide and propylene oxide of PEI is used as a water-soluble polymer.
Further, Reference Examples 1 to 4 are based on Example 1, and as a predetermined water-soluble polymer (D), PEI homopolymer (Example 2), polyvinylpyrrolidone (PVP; Example 4), polyvinyl alcohol (PVA; Examples are examples in which a homopolymer of polyacrylamide (PAM) (Example 6) is used, respectively.

また、上述のように、実施例14は無電解ニッケルメッキに替えて無電解ニッケル−コバルト合金メッキを行った実施例であり、エッチング処理をしてから、吸着促進→触媒付与→活性化→無電解メッキの各工程を順次経たもので、エッチング工程、吸着促進工程、触媒付与工程、活性化工程は上記実施例1を基本とする。 Further, as described above, Example 14 is an example in which electroless nickel-cobalt alloy plating is performed instead of electroless nickel plating, and after etching treatment, adsorption promotion → catalyst application → activation → none. Each step of electroless plating is sequentially performed, and the etching step, the adsorption promotion step, the catalyst application step, and the activation step are based on the above-mentioned Example 1.

一方、下記の比較例1〜4のうち、比較例1は本発明の合成系の水溶性ポリマー(D)に替えてコロイド触媒液に天然由来の水溶性ポリマーを用いた例、比較例2は本発明の規定ポリマーから外れる合成系の水溶性ポリマー(ポリエチレングリコール)を用いた例、比較例3は本発明の合成系の水溶性ポリマー(D)の含有量が本発明の規定範囲より少ない例、比較例4は同じく合成系の水溶性ポリマー(D)の含有量が本発明の規定範囲より多い例である。 On the other hand, among the following Comparative Examples 1 to 4, Comparative Example 1 is an example in which a naturally-derived water-soluble polymer is used as the colloid catalyst solution instead of the synthetic water-soluble polymer (D) of the present invention, and Comparative Example 2 is. An example in which a synthetic water-soluble polymer (polyethylene glycol) that deviates from the specified polymer of the present invention is used, and Comparative Example 3 is an example in which the content of the synthetic water-soluble polymer (D) of the present invention is less than the specified range of the present invention. Comparative Example 4 is also an example in which the content of the synthetic water-soluble polymer (D) is larger than the specified range of the present invention.

(1)実施例1
本発明の無電解ニッケルメッキ方法は吸着促進→触媒付与→無電解メッキの各工程を順次施すことを基本とするが、本実施例1では、吸着促進工程の前に予めエッチング処理を付加するとともに、触媒付与工程と無電解メッキ工程の間に活性化処理を付加した。
従って、実施例1の無電解ニッケルメッキ方法は、エッチング→吸着促進→触媒付与→活性化→無電解メッキの各工程からなる。
即ち、先ず、予備処理として下記条件(p)でエッチング処理をし、次いで、条件(a)で吸着促進を行い、条件(b)で触媒付与を行い、条件(b-1)で活性化を行った後、条件(c)で無電解ニッケル−リンメッキを行った。
(p)エッチング処理工程
先ず、ABS樹脂基板(縦:45mm、横:50mm、板厚:3mm)をエッチング処理し、基板表面を粗面化して試料基板とした。
エッチング処理液の組成は次の通りである。
[エッチング処理液]
無水クロム酸 400g/L
98%硫酸 200g/L
[エッチング処理条件]
試料基板をエッチング処理液に68℃、10分の条件で浸漬し、純水で洗浄、乾燥した。
(a)吸着促進工程
次の組成で吸着促進剤の含有液を調製した。Mwは重量平均分子量である。
[吸着促進剤]
ジアリルジメチルアンモニウムクロリド重合体
(Mw:30,000)5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)触媒付与工程
ニッケル触媒液の調製については、先ず、ニッケル溶液と還元剤溶液を調製し、次いで、両溶液を混合してニッケルコロイド触媒液を調製した。
各液の調製条件は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として0.1モル/L) 0.1モル/L
ポリエチレンイミンEO付加物
(EO40モル、Mw:2,500) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
pH7.0に調整した30℃のニッケル溶液に還元剤溶液を滴下して撹拌し、ニッケルコロイド触媒液を得た。
(b-1)活性化工程
[活性化溶液]
98%硫酸 5mL/L
(c)無電解ニッケルメッキ工程
次の組成で無電解ニッケル‐リンメッキ液を建浴した。また、当該メッキ液は希硫酸もしくは水酸化ナトリウムでpH調整した。
[無電解ニッケルメッキ液]
硫酸ニッケル六水和物(Ni2+として) 0.1モル/L
次亜リン酸ナトリウム1水和物 30g/L
コハク酸 25.0g/L
残余 純水
pH(20℃) 4.6
(d)無電解ニッケル‐リンメッキにおける全処理条件
本実施例1の無電解ニッケル‐リンメッキは工程(p)→(a)→(b)→(b-1)→(c)からなり、各工程の処理条件は次の通りである。
[エッチング条件]
試料基板を前記(p)のエッチング処理液に68℃、10分の条件で浸漬し、純水で洗浄した。
[吸着促進条件]
エッチング処理した試料基板を前記(a)の吸着促進剤の含有液に40℃、2分の条件で浸漬し、純水で洗浄した。
[触媒付与条件]
吸着促進処理した基板を、前記(b)のニッケルコロイド触媒液に25℃、10分の条件で浸漬し、純水で洗浄した。
[活性化条件]
次いで、基板を前記(b-1)の活性化溶液に25℃、5分の条件で浸漬し、純水で洗浄した。
[無電解ニッケルメッキ条件]
その後、上記(c)の無電解ニッケルメッキ液中に90℃、20分の条件で浸漬して無電解メッキを施し、試料基板上にニッケル‐リン皮膜を形成した後、純水で洗浄し、乾燥した。
(1) Example 1
The electroless nickel plating method of the present invention is based on the steps of promoting adsorption → applying a catalyst → electroless plating in sequence. However, in the first embodiment, an etching process is added in advance before the adsorption promoting step. , An activation treatment was added between the catalyst application step and the electroless plating step.
Therefore, the electroless nickel plating method of Example 1 includes each step of etching → adsorption promotion → catalyst application → activation → electroless plating.
That is, first, as a preliminary treatment, the etching treatment is performed under the following condition (p), then the adsorption is promoted under the condition (a), the catalyst is applied under the condition (b), and the activation is performed under the condition (b-1). After that, electroless nickel-phosphorus plating was performed under the condition (c).
(P) Etching Treatment Step First, an ABS resin substrate (length: 45 mm, width: 50 mm, plate thickness: 3 mm) was etched to roughen the surface of the substrate to obtain a sample substrate.
The composition of the etching treatment liquid is as follows.
[Etching solution]
Chromic anhydride 400g / L
98% sulfuric acid 200g / L
[Etching conditions]
The sample substrate was immersed in the etching solution at 68 ° C. for 10 minutes, washed with pure water, and dried.
(A) Adsorption Acceleration Step A liquid containing an adsorption accelerator was prepared with the following composition. Mw is the weight average molecular weight.
[Adsorption accelerator]
Dialyldimethylammonium chloride polymer
(Mw: 30,000) 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Catalyst application step Regarding the preparation of the nickel catalyst solution, first, a nickel solution and a reducing agent solution were prepared, and then both solutions were mixed to prepare a nickel colloid catalyst solution.
The preparation conditions for each solution are as follows.
[Nickel solution]
Nickel sulfate (0.1 mol / L as Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO 40 mol, Mw: 2,500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
A reducing agent solution was added dropwise to a nickel solution at 30 ° C. adjusted to pH 7.0 and stirred to obtain a nickel colloidal catalyst solution.
(B-1) Activation step [Activation solution]
98% sulfuric acid 5mL / L
(C) Electroless nickel plating step An electroless nickel-phosphorus plating solution was bathed with the following composition. The pH of the plating solution was adjusted with dilute sulfuric acid or sodium hydroxide.
[Electroless nickel plating solution]
Nickel sulfate hexahydrate (as Ni2 +) 0.1 mol / L
Sodium hypophosphate monohydrate 30 g / L
Succinic acid 25.0 g / L
Residual pure water pH (20 ° C) 4.6
(D) All treatment conditions in electroless nickel-phosphorus plating The electroless nickel-phosphorus plating of Example 1 comprises steps (p) → (a) → (b) → (b-1) → (c), and each step The processing conditions for are as follows.
[Etching conditions]
The sample substrate was immersed in the etching treatment solution of (p) at 68 ° C. for 10 minutes and washed with pure water.
[Adsorption promotion conditions]
The etched sample substrate was immersed in the solution containing the adsorption accelerator (a) at 40 ° C. for 2 minutes and washed with pure water.
[Catalyst addition conditions]
The substrate subjected to the adsorption promotion treatment was immersed in the nickel colloid catalyst solution of (b) at 25 ° C. for 10 minutes and washed with pure water.
[Activation conditions]
Next, the substrate was immersed in the activation solution of (b-1) at 25 ° C. for 5 minutes and washed with pure water.
[Electroless nickel plating conditions]
Then, it was immersed in the electroless nickel plating solution of (c) above at 90 ° C. for 20 minutes to perform electroless plating, a nickel-phosphorus film was formed on the sample substrate, and then washed with pure water. It was dry.

(0)基準例1
上記基準発明に基づいて、本発明の合成系の水溶性ポリマー(D)に替え、コロイド安定剤(C)(=グルタル酸)を触媒液に含有した例である。
即ち、触媒付与工程(b)では、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)を必須成分とするニッケルコロイド触媒液を用いており、上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、エッチング及び活性化を含めて、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
グルタル酸 40g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(0) Reference example 1
Based on the above standard invention, this is an example in which the colloidal stabilizer (C) (= glutaric acid) is contained in the catalyst solution instead of the synthetic water-soluble polymer (D) of the present invention.
That is, in the catalyst application step (b), a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a colloid stabilizer (C) as essential components is used, and based on the above-mentioned Example 1. , The method for preparing the nickel colloid catalyst solution and the electroless nickel plating solution, including etching and activation, and the treatment conditions for each step are the same as in Example 1, except that the nickel colloid catalyst solution was prepared with the following composition. I set it.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Glutaric acid 40g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(2)参考例1
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、エッチング及び活性化を含めて(以下の実施例及び比較例も同じであり、後述の実施例、比較例ではエッチング及び活性化への言及は省略する)、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンのホモポリマー(Mw:800) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(2) Reference example 1
Including etching and activation (the same applies to the following Examples and Comparative Examples, except that the nickel colloidal catalyst solution was prepared with the following composition based on Example 1 above, and in Examples and Comparative Examples described later, The reference to etching and activation is omitted), the method for preparing the nickel colloid catalyst solution and the electroless nickel plating solution, and the treatment conditions for each step are set to be the same as in Example 1.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethyleneimine homopolymer (Mw: 800) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(3)実施例2
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体
(Mw:30,000)20g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(3) Example 2
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Dialyldimethylammonium chloride polymer
(Mw: 30,000) 20g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(4)参考例2
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリビニルピロリドン(Mw:9,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(4) Reference example 2
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyvinylpyrrolidone (Mw: 9,000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(5)参考例3
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリビニルアルコールのホモポリマー
(Mw:1,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(5) Reference example 3
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyvinyl alcohol homopolymer
(Mw: 1,000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(6)参考例4
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
アクリルアミドのホモポリマー(Mw:10,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(6) Reference example 4
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Acrylamide homopolymer (Mw: 10,000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(7)実施例3
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
アルデヒド変性ポリアクリルアミド(Mw:10,000)50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(7) Example 3
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Aldehyde-modified polyacrylamide (Mw: 10,000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(8)実施例4
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ビニルイミダゾールのホモポリマー(Mw:5,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(8) Example 4
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Vinyl imidazole homopolymer (Mw: 5,000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(9)実施例5
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
但し、前述したように、実施例9では活性化工程(b-1)を省略して、エッチング→吸着促進→触媒付与→無電解メッキの各工程を順次行った。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンEO付加物
(EO60モル、Mw:4,500) 30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(9) Example 5
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
However, as described above, in Example 9, the activation step (b-1) was omitted, and each step of etching → adsorption promotion → catalyst application → electroless plating was sequentially performed.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO60 mol, Mw: 4,500) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(10)実施例6
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンEO付加物
(EO140モル、Mw:8,000) 30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(10) Example 6
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO140 mol, Mw: 8,000) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(11)実施例7
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンEO付加物
(EO440モル、Mw:20,000) 10g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(11) Example 7
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO440 mol, Mw: 20,000) 10 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(12)実施例8
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体
(Mw:8,500) 35g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(12) Example 8
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Dialyldimethylammonium chloride polymer
(Mw: 8,500) 35g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(13)実施例9
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体
(Mw:200,000) 8g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(13) Example 9
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Dialyldimethylammonium chloride polymer
(Mw: 200,000) 8g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(14)実施例10
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
尚、本実施例14の触媒液に用いた水溶性ポリマーは、前述したように、ジアリルアミンとアクリルアミドの共重合体であり、性質上、ジアリルアミンポリマー(PA類)とポリアクリルアミド(PAM類)のいずれにも属する。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ジアリルジメチルアンモニウムクロリド
−アクリルアミド共重合体(Mw:10,000)30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(14) Example 10
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
As described above, the water-soluble polymer used in the catalyst solution of Example 14 is a copolymer of diallylamine and acrylamide, and is either diallylamine polymer (PAs) or polyacrylamide (PAMs) due to its nature. Also belongs to.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Dialyldimethylammonium chloride
-Acrylamide copolymer (Mw: 10,000) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(15)実施例11
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.3モル/L
ポリエチレンイミンEO付加物
(EO40モル、Mw:2,500) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(15) Example 11
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.3 mol / L
Polyethylenimine EO adduct
(EO 40 mol, Mw: 2,500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(16)実施例12
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンEO付加物
(EO40モル、Mw:2,500) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.5モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(16) Example 12
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO 40 mol, Mw: 2,500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.5 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(17)実施例13
上記実施例1を基本として、ニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
(b)触媒付与工程
ニッケルコロイド触媒液の調製は次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
ポリエチレンイミンEO・PO付加物
(EO40モル、PO40モル、Mw:5,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
(17) Example 13
Based on the above Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution and the treatment conditions of each step are set to be the same as in Example 1 except that the nickel colloid catalyst solution is prepared with the following composition. did.
(B) Catalyst application step The preparation of the nickel colloidal catalyst solution is as follows.
[Nickel solution]
Nickel sulfate (as Ni2 +) 0.1 mol / L
Polyethylenimine EO / PO adduct
(EO40 mol, PO40 mol, Mw: 5,000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.

(18)実施例14
上記実施例1を基本として、無電解ニッケル−コバルト合金メッキ液を次の組成で調製した以外は、吸着促進剤及びニッケルコロイド触媒液の調製方法、並びにエッチング処理、吸着促進、触媒付与、無電解メッキの各工程の処理条件は実施例1と同じに設定した。
(c)無電解ニッケル−コバルト合金メッキ液の調製
[無電解ニッケル−コバルト合金メッキ液]
塩化ニッケル(Ni2+として) 1.5g/L
塩化コバルト(Co2+として) 1.5g/L
酒石酸ナトリウム 78g/L
塩酸ヒドラジン 68g/L
残余 純水
pH(20℃) 12.0
[メッキ条件]
メッキ温度:90℃
メッキ時間:20分
(18) Example 14
Based on Example 1 above, except that the electroless nickel-cobalt alloy plating solution was prepared with the following composition, the method for preparing the adsorption accelerator and the nickel colloid catalyst solution, as well as the etching treatment, adsorption promotion, catalyst addition, and electroless electrolysis. The processing conditions for each plating step were set to be the same as in Example 1.
(C) Preparation of electroless nickel-cobalt alloy plating solution [electroless nickel-cobalt alloy plating solution]
Nickel chloride (as Ni2 +) 1.5g / L
Cobalt chloride (as Co2 +) 1.5g / L
Sodium tartrate 78 g / L
Hydrazine hydrochloride 68g / L
Residual pure water pH (20 ° C) 12.0
[Plating conditions]
Plating temperature: 90 ° C
Plating time: 20 minutes

(19)比較例1
上記実施例1を基本として、吸着促進剤の含有液及びニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
即ち、当該比較例1では、ニッケルコロイド触媒液に本発明で規定する合成系の水溶性ポリマーに替えて、天然由来の水溶性ポリマー(ゼラチン)を含有した。
(b)ニッケルコロイド触媒液の調製
[ニッケル溶液]
硫酸ニッケル(Ni2+) 0.1モル/L
ゼラチン 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
但し、ニッケルコロイド粒子は生成したが、凝集・沈殿した。
(19) Comparative Example 1
Based on Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution, and the treatment conditions of each step are as follows, except that the solution containing the adsorption accelerator and the nickel colloid catalyst solution are prepared with the following compositions. It was set to be the same as in Example 1.
That is, in Comparative Example 1, the nickel colloidal catalyst solution contained a naturally-derived water-soluble polymer (gelatin) instead of the synthetic water-soluble polymer specified in the present invention.
(B) Preparation of nickel colloidal catalyst solution [nickel solution]
Nickel sulfate (Ni2 +) 0.1 mol / L
Gelatin 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.
However, although nickel colloidal particles were formed, they aggregated and precipitated.

(20)比較例2
上記実施例1を基本として、吸着促進剤の含有液及びニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
即ち、当該比較例2では、ニッケルコロイド触媒液に本発明で規定する合成系の水溶性ポリマーに替えて、規定から外れる水溶性ポリマー(ポリエチレングリコール)を含有した。
(b)ニッケルコロイド触媒液の調製
[ニッケル溶液]
硫酸ニッケル(Ni2+) 0.1モル/L
ポリエチレングリコール(Mw:1,000) 50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
但し、ニッケルコロイド粒子は生成したが、凝集・沈殿した。
(20) Comparative Example 2
Based on Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution, and the treatment conditions of each step are as follows, except that the solution containing the adsorption accelerator and the nickel colloid catalyst solution are prepared with the following compositions. It was set to be the same as in Example 1.
That is, in Comparative Example 2, the nickel colloidal catalyst solution contained a water-soluble polymer (polyethylene glycol) that did not meet the specifications, instead of the synthetic water-soluble polymer specified in the present invention.
(B) Preparation of nickel colloidal catalyst solution [nickel solution]
Nickel sulfate (Ni2 +) 0.1 mol / L
Polyethylene glycol (Mw: 1,000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.
However, although nickel colloidal particles were formed, they aggregated and precipitated.

(21)比較例3
上記実施例3を基本として、吸着促進剤の含有液及びニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例3と同じに設定した。
但し、当該比較例3では、ニッケルコロイド触媒液に本発明の合成系水溶性ポリマーを規定より少ない濃度で含有した。
(b)ニッケルコロイド触媒液の調製
[ニッケル溶液]
硫酸ニッケル(Ni2+) 0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体
(Mw:30,000)0.3g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例3に同じ。
触媒液を調製した後、液は分解を始めたが、触媒液に浸漬した基板の一部には触媒核が付着したことにより、次の無電解メッキ工程では基板のごく一部にメッキ皮膜が析出した。
(21) Comparative Example 3
Based on Example 3, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution, and the treatment conditions of each step are as follows, except that the solution containing the adsorption accelerator and the nickel colloid catalyst solution are prepared with the following compositions. It was set to be the same as in Example 3.
However, in Comparative Example 3, the synthetic water-soluble polymer of the present invention was contained in the nickel colloidal catalyst solution at a concentration lower than the specified concentration.
(B) Preparation of nickel colloidal catalyst solution [nickel solution]
Nickel sulfate (Ni2 +) 0.1 mol / L
Dialyldimethylammonium chloride polymer
(Mw: 30,000) 0.3g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 3.
After preparing the catalyst solution, the solution began to decompose, but due to the catalyst nuclei adhering to a part of the substrate immersed in the catalyst solution, a plating film was formed on a small part of the substrate in the next electroless plating process. Precipitated.

(22)比較例4
上記実施例1を基本として、吸着促進剤の含有液及びニッケルコロイド触媒液を次の組成で調製した以外は、ニッケルコロイド触媒液及び無電解ニッケルメッキ液の調製方法、並びに各工程の処理条件は実施例1と同じに設定した。
但し、当該比較例4では、ニッケルコロイド触媒液に本発明の合成系水溶性ポリマーを規定より多い濃度で含有した。
(b)ニッケルコロイド触媒液の調製
[ニッケル溶液]
硫酸ニッケル(Ni2+) 0.1モル/L
ポリエチレンイミンEO付加物
(EO40モル、Mw:2,500) 350g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
実施例1に同じ。
触媒液は沈殿も分解することもなく、安定していた。
しかしながら、無電解メッキ工程ではニッケル皮膜は析出しなかった。
(22) Comparative Example 4
Based on Example 1, the preparation method of the nickel colloid catalyst solution and the electroless nickel plating solution, and the treatment conditions of each step are as follows, except that the solution containing the adsorption accelerator and the nickel colloid catalyst solution are prepared with the following compositions. It was set to be the same as in Example 1.
However, in Comparative Example 4, the synthetic water-soluble polymer of the present invention was contained in the nickel colloidal catalyst solution at a concentration higher than the specified concentration.
(B) Preparation of nickel colloidal catalyst solution [nickel solution]
Nickel sulfate (Ni2 +) 0.1 mol / L
Polyethylenimine EO adduct
(EO 40 mol, Mw: 2,500) 350 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
Same as Example 1.
The catalyst solution was stable without precipitation or decomposition.
However, the nickel film did not precipitate in the electroless plating step.

《触媒液の経時安定性試験例》
そこで、上記実施例1〜14、比較例1〜4、並びに参考例1〜4で建浴した各ニッケルコロイド触媒液について、下記の基準でコロイド安定性の優劣を評価した。
○:建浴後1ヶ月間沈殿、或いは分解が起こらなかった。
×:建浴後すぐに沈殿、或いは分解した。
<< Example of stability test of catalyst solution over time >>
Therefore, the superiority or inferiority of the colloidal stability of each of the nickel colloidal catalyst solutions constructed in Examples 1 to 14, Comparative Examples 1 to 4, and Reference Examples 1 to 4 was evaluated according to the following criteria.
◯: No precipitation or decomposition occurred for 1 month after the bath.
X: Precipitated or decomposed immediately after the bath.

《無電解メッキにより析出したニッケル及びニッケル合金皮膜の外観評価試験例》
次いで、上記実施例1〜14、比較例1〜4並びに参考例1〜4の各無電解メッキ方法で得られたニッケル又はニッケル合金の無電解皮膜について、下記の基準で皮膜外観の優劣を目視により評価した。
◎:メッキ皮膜にムラがなく均一であった。
○:メッキ皮膜に部分的にムラが認められた。
△:メッキ皮膜に一部未析出(メッキ欠け)が認められた。
×:メッキ皮膜が析出しなかった。
尚、析出皮膜の「ムラ」は、皮膜の緻密性や平滑性などに周囲と異なる部分があると認められる。皮膜の「ムラ」は皮膜の均一性とは別の観点である。
<< Example of appearance evaluation test of nickel and nickel alloy film deposited by electroless plating >>
Next, with respect to the electroless coatings of nickel or nickel alloy obtained by the electroless plating methods of Examples 1 to 14, Comparative Examples 1 to 4 and Reference Examples 1 to 4 , the superiority or inferiority of the film appearance is visually observed according to the following criteria. Evaluated by.
⊚: The plating film was even and uniform.
◯: Partial unevenness was observed in the plating film.
Δ: Partial unprecipitation (plating chipping) was observed in the plating film.
X: No plating film was deposited.
In addition, it is recognized that the "unevenness" of the precipitated film has a portion different from the surroundings in the density and smoothness of the film. The "unevenness" of the film is a different point of view from the uniformity of the film.

《ニッケルコロイド触媒液の経時安定性と皮膜外観についての試験結果》
下表は、上記コロイド触媒液の経時安定性と皮膜外観の評価試験の結果である。
経時安定性 皮膜外観 経時安定性 皮膜外観
基準例 ○ ◎
実施例1 ○ ◎ 比較例1 × ×
実施例2 ○ ◎ 比較例2 × ×
実施例3 ○ ◎ 比較例3 × △
実施例4 ○ ○ 比較例4 ○ ×
実施例5 ○ ◎
実施例6 ○ ◎
実施例7 ○ ◎
実施例8 ○ ◎
実施例9 ○ ○
実施例10 ○ ◎
実施例11 ○ ◎
実施例12 ○ ◎
実施例13 ○ ◎
実施例14 ○ ◎
参考例1 ○ ○
参考例2 ○ ○
参考例3 ○ ○
参考例4 ○ ○
<< Test results on the stability of nickel colloidal catalyst solution over time and the appearance of the film >>
The table below shows the results of evaluation tests for the stability of the colloidal catalyst solution over time and the appearance of the film.
Stability over time Film appearance Stability over time Film appearance Standard example ○ ◎
Example 1 ○ ◎ Comparative Example 1 ××
Example 2 ○ ◎ Comparative Example 2 ××
Example 3 ○ ◎ Comparative Example 3 × △
Example 4 ○ ○ Comparative Example 4 ○ ×
Example 5 ○ ◎
Example 6 ○ ◎
Example 7 ○ ◎
Example 8 ○ ◎
Example 9 ○ ○
Example 10 ○ ◎
Example 11 ○ ◎
Example 12 ○ ◎
Example 13 ○ ◎
Example 14 ○ ◎
Reference example 1 ○ ○
Reference example 2 ○ ○
Reference example 3 ○ ○
Reference example 4 ○ ○

《触媒液の経時安定性とメッキ皮膜外観の総合評価》
ニッケルコロイド触媒液として本発明の合成系の水溶性ポリマーに替えて、天然系のポリマーであるゼラチンを用いた比較例1では、触媒液の経時安定性に劣り、もって触媒液との接触後に非導電性基板に無電解メッキを施してもニッケル皮膜の析出はなかった。
また、合成系の水溶性ポリマーに属するが、本発明で規定される所定のポリマーとは異なるエチレングリコールを用いた比較例2では、やはり触媒液の経時安定性に劣り、もって無電解メッキにおいてニッケル皮膜の析出はなかった。これにより、触媒液を経時安定化させるには、ニッケル塩に還元剤を含有するとともに、合成系の水溶性ポリマーのうち、ポリエチレンイミン類、ポリアミン類、ポリアクリルアミド類などの本発明で規定する所定のポリマーを選択することが必要であると判断できる。
さらに、本発明の合成系の水溶性ポリマーを含有しても、比較例3のように、含有量が適正範囲より少ない場合には当然にコロイド触媒液の経時安定性に劣り、無電解メッキに際してもメッキ欠けが認められた。
逆に、合成系の水溶性ポリマーが適正範囲を越える比較例4では、コロイド触媒液は安定であるが、無電解メッキ工程ではニッケル皮膜の析出はなかった。これは、コロイド系が過剰に安定し、活性が失われてしまうことが理由と推定される。
<< Comprehensive evaluation of catalyst solution stability over time and appearance of plating film >>
In Comparative Example 1 in which gelatin, which is a natural polymer, was used instead of the synthetic water-soluble polymer of the present invention as the nickel colloidal catalyst solution, the stability of the catalyst solution over time was inferior, and thus it was not after contact with the catalyst solution. No nickel film was deposited even when electroless plating was applied to the conductive substrate.
Further, in Comparative Example 2 using ethylene glycol which belongs to the synthetic water-soluble polymer but is different from the predetermined polymer defined in the present invention, the stability of the catalyst solution with time is also inferior, and nickel is obtained in electroless plating. There was no film precipitation. Thereby, in order to stabilize the catalyst solution over time, a reducing agent is contained in the nickel salt, and among the synthetic water-soluble polymers, polyethyleneimines, polyamines, polyacrylamides and the like specified in the present invention are prescribed. It can be determined that it is necessary to select the polymer of.
Further, even if the synthetic water-soluble polymer of the present invention is contained, the stability of the colloidal catalyst solution with time is naturally inferior when the content is less than the appropriate range as in Comparative Example 3, and electroless plating is performed. Also, chipping of plating was observed.
On the contrary, in Comparative Example 4 in which the synthetic water-soluble polymer exceeded the appropriate range, the colloidal catalyst solution was stable, but no nickel film was precipitated in the electroless plating step. It is presumed that this is because the colloidal system becomes excessively stable and loses its activity.

これに対して、先ず、吸着促進の予備処理をした後、ニッケル塩と還元剤と所定のコロイド安定剤を含む触媒液で触媒付与処理をし、次いで無電解ニッケルメッキを施した冒述の基準発明に基づく基準例では、触媒液の経時安定性の評価は良好(○)であり、無電解メッキで析出するニッケル皮膜の評価は◎であり、ムラがなく均一性に優れていた。
次いで、吸着促進の予備処理をした後、上記基準例のコロイド安定剤に替えて所定の水溶性ポリマーを含む触媒液で触媒付与処理をし、無電解ニッケルメッキを施した実施例1〜14では、触媒液の経時安定性の評価は上記基準例と同様にいずれも良好で、無電解メッキで析出するニッケル皮膜の評価は◎〜○であり、概ねムラがなく均一性に優れていた。
On the other hand, first, a preliminary treatment for promoting adsorption was performed, and then a catalyst solution containing a nickel salt, a reducing agent and a predetermined colloidal stabilizer was used to apply a catalyst, and then electroless nickel plating was performed. In the reference example based on the invention, the evaluation of the stability over time of the catalyst solution was good (◯), and the evaluation of the nickel film deposited by electroless plating was ⊚, and the uniformity was excellent without unevenness.
Next, in Examples 1 to 14 in which the adsorption promotion was pretreated, the catalyst was applied with a catalyst solution containing a predetermined water-soluble polymer instead of the colloidal stabilizer of the above standard example, and electroless nickel plating was performed. The evaluation of the stability over time of the catalyst solution was good as in the above standard example, and the evaluation of the nickel film precipitated by electroless plating was ⊚ to ◯, and there was almost no unevenness and excellent uniformity.

そこで、これら実施例1〜14について順次考察する。
先ず、実施例1〜14を上記比較例1に対比すると、水溶性ポリマーを含む触媒液で処理した後、無電解メッキでムラなく均一なニッケル皮膜を得るためには、天然系の水溶性ポリマーではなく、適正に選択された合成系の水溶性ポリマーを選択することが重要であると判断できる。
また、実施例1〜14を比較例2に対比すると、ムラがなく均一性に優れたニッケル皮膜を得るためには、合成系の水溶性ポリマーから任意に選択すれば良いというだけでは足りず、合成系ポリマー群の中から適正なポリマーを選択することの必要性が判断できる。
さらに、実施例1〜14を比較例3〜4に対比すると、ムラがなく均一性に優れたニッケル皮膜を得るためには、適正な合成系の水溶性ポリマーを選択することに加え、触媒液に対するポリマーの含有量を適正範囲に調整することの必要性が判断できる。
一方、無電解ニッケル−コバルト合金メッキを施した実施例14によれば、無電解皮膜がニッケル皮膜である実施例1〜13と同じく、無電解メッキで析出する皮膜がニッケル合金皮膜の場合であっても、均一でムラのない皮膜を形成できた。
Therefore, these Examples 1 to 14 will be considered one by one.
First, comparing Examples 1 to 14 with Comparative Example 1, a natural water-soluble polymer is used in order to obtain an even and uniform nickel film by electroless plating after treatment with a catalyst solution containing a water-soluble polymer. Instead, it can be judged that it is important to select a properly selected synthetic water-soluble polymer.
Further, when Examples 1 to 14 are compared with Comparative Example 2, in order to obtain a nickel film having no unevenness and excellent uniformity, it is not enough to arbitrarily select from synthetic water-soluble polymers. It can be judged that it is necessary to select an appropriate polymer from the synthetic polymer group.
Further, when Examples 1 to 14 are compared with Comparative Examples 3 to 4, in order to obtain a nickel film having no unevenness and excellent uniformity, in addition to selecting an appropriate synthetic water-soluble polymer, a catalyst solution is used. It can be determined that it is necessary to adjust the polymer content to an appropriate range.
On the other hand, according to Example 14 in which electroless nickel-cobalt alloy plating is applied, the film deposited by electroless plating is a nickel alloy film, as in Examples 1 to 13 in which the electroless film is a nickel film. However, a uniform and even film could be formed.

以下、実施例1〜14並びに参考例1〜4について詳細に検討する。その場合、実施例1を基本として他の実施例の評価を対比的に説明する。
先ず、その基本の実施例1はカチオン系界面活性剤であるジアリルアミンポリマーの4級アンモニウム塩を含む吸着促進剤で非導電性基板を予備処理し、硫酸ニッケルをニッケル塩とし、水素化ホウ素化合物を還元剤とし、水溶性ポリマーにPEIのEO付加物を選択した触媒液で触媒付与した後、無電解ニッケルメッキした例であるが、触媒液の経時安定性は良好で、建浴後1ケ月経過しても沈殿が生じたり、分解することはなく、また、無電解メッキで得られたニッケル皮膜は均一で析出ムラも認められなかった。即ち、コロイド触媒液の経時安定性とニッケルの皮膜外観の評価は基準例と同様に良好であった。
これに対して、参考例1はPEIのホモポリマーを用いた例であるが、触媒液の経時安定性の評価は実施例1に同じであったが、ニッケル皮膜にムラが認められ、ニッケルの皮膜外観の評価は実施例1に準じた結果であった。即ち、水溶性ポリマーにPEIを用いる場合、PEIのホモポリマーよりPEIのEO付加物を選択した方がニッケル皮膜の均一性が向上することが分かる。
実施例1を基本として、水溶性ポリマーをPEIのEO付加物に替えてアルデヒド変性ポリアクリルアミドを用いた実施例3では、実施例1と同じくニッケルの皮膜外観の評価は◎であった。これに対して、ポリアクリルアミドのホモポリマーを用いた参考例4では、触媒液の経時安定性の評価は実施例1に同じであったが、ニッケル皮膜にムラが認められ、ニッケルの皮膜外観の評価は上記実施例3に準じた結果であった。従って、上記PEIの場合と同じく、水溶性ポリマーにアクリルアミドを用いる場合、アクリルアミドのホモポリマーよりアクリルアミドのアルデヒド変性物を選択した方が、ニッケル皮膜の均一性が増すことが分かる。
また、実施例1を基本として、水溶性ポリマーをPEIのEO付加物に替えてジアリルアミンポリマーを用いた実施例2では、実施例1と同じくニッケルの皮膜外観の評価は◎であった。
Hereinafter, Examples 1 to 14 and Reference Examples 1 to 4 will be examined in detail. In that case, the evaluation of other examples will be described in comparison with the first embodiment.
First, in the basic Example 1, the electroless substrate is pretreated with an adsorption accelerator containing a quaternary ammonium salt of diallylamine polymer, which is a cationic surfactant, nickel sulfate is used as a nickel salt, and a boron hydride compound is used. This is an example of electroless nickel plating after catalyzing a water-soluble polymer with an EO adduct of PEI as a reducing agent with a selected catalyst solution, but the stability of the catalyst solution over time is good, and one month has passed since the bath was built. However, precipitation did not occur or decomposition occurred, and the nickel film obtained by electroless plating was uniform and no uneven precipitation was observed. That is, the stability over time of the colloidal catalyst solution and the evaluation of the appearance of the nickel film were as good as those of the reference example.
On the other hand, Reference Example 1 is an example using a PEI homopolymer. The evaluation of the temporal stability of the catalyst solution was the same as in Example 1, but unevenness was observed in the nickel film, and nickel was used. The evaluation of the appearance of the film was a result according to Example 1. That is, when PEI is used as the water-soluble polymer, it can be seen that the uniformity of the nickel film is improved by selecting the EO adduct of PEI rather than the homopolymer of PEI.
EXAMPLE 1 as the basis, in the third embodiment using the aldehyde-modified polyacrylamide instead of a water-soluble polymer in the EO adduct of PEI, also evaluation of the film appearance of nickel as in Example 1 was ◎. On the other hand, in Reference Example 4 using a polyacrylamide homopolymer, the evaluation of the stability over time of the catalyst solution was the same as in Example 1, but unevenness was observed in the nickel film, and the appearance of the nickel film appeared. The evaluation was the result according to the above-mentioned Example 3. Therefore, as in the case of PEI, when acrylamide is used as the water-soluble polymer, it can be seen that the uniformity of the nickel film is increased by selecting the aldehyde-modified product of acrylamide rather than the homopolymer of acrylamide.
Further, Example 1 as a basic, in Example 2 using the diallylamine polymer instead of a water-soluble polymer in the EO adduct of PEI, also evaluation of the film appearance of nickel as in Example 1 was ◎.

一方、実施例1を基本として、水溶性ポリマーにPEIのEO付加物ではなく、ポリビニルピロリドンを用いた参考例2、ポリビニルアルコールを用いた参考例3、ポリビニルイミダゾールを用いた実施例8では、ニッケルの皮膜外観の各評価は○であった。
実施例1を基本として、PEIのEO付加物のEOの付加モル数を順次増し、触媒液への含有量を低減した実施例5〜7では、共にニッケルの皮膜外観の各評価は◎であり、特に、含有量を実施例1より低減した実施例7(50g/L→10g/L)においても、皮膜外観の評価は◎であった。また、実施例1を基本として、PEIにEO及びプロピレンオキシド(PO)を付加した実施例13(含有量は実施例1と同じで、重量平均分子量Mwは実施例1の2倍(Mw=2500→5000))も同様に◎の評価であった。
この場合、前述したように、実施例5は活性化工程を省略した例であるが、ニッケルの皮膜外観の評価は実施例1と同じ◎であり、触媒付与後に活性化処理を施さず、直ちに無電解メッキを行っても、皮膜外観は実施例1と遜色がなかった。これにより、活性化処理を付加せず、本発明の必須工程である吸着促進、触媒付与及び無電解メッキを適正に行うことによっても、均一でムラのない皮膜が得られることが判断できる。
実施例2を基本として、ジアリルアミンポリマーの重量平均分子量を減少させ、含有量を増した実施例8、10では、共にニッケルの皮膜外観の各評価は◎であったが(実施例8、10参照)、当該ジアリルアミンポリマーの含有量を適正範囲内で低減し、重量平均分子量を増した実施例9(含有量=20g/L→8g/L、Mw=3万→20万)では皮膜外観の評価は○であった。
実施例1を基本として、ニッケル塩を増量した実施例11(0.1モル/L→0.3モル/L)、或いは還元剤の含有量を増量した実施例12(0.25モル/L→0.5モル/L)も実施例1と同じくニッケルの皮膜外観の各評価は◎であった。
他方、実施例1を基本として、無電解メッキ工程をニッケル皮膜からニッケル−コバルト合金皮膜に変えた実施例14では、触媒液の水溶性ポリマーがPEIのEO付加物で共通することから、ニッケル皮膜の場合と同じく、ニッケル合金皮膜の外観評価は◎であった。

On the other hand, based on Example 1, in Reference Example 2 in which polyvinylpyrrolidone was used instead of the EO adduct of PEI in the water-soluble polymer, Reference Example 3 in which polyvinyl alcohol was used, and Example 8 in which polyvinyl imidazole was used, nickel was used. Each evaluation of the film appearance of was ○.
Based on Example 1, in Examples 5 to 7 in which the number of moles of EO of the EO adduct of PEI was gradually increased and the content in the catalyst solution was reduced, each evaluation of the nickel film appearance was ⊚. In particular, even in Example 7 (50 g / L → 10 g / L) in which the content was reduced from that of Example 1, the evaluation of the film appearance was ⊚. Further, based on Example 1, EO and propylene oxide (PO) were added to PEI in Example 13 (the content is the same as in Example 1, and the weight average molecular weight Mw is twice that of Example 1 (Mw = 2500). → 5000)) was also evaluated as ◎.
In this case, as described above, Example 5 is an example in which the activation step is omitted, but the evaluation of the appearance of the nickel film is the same as in Example 1, ⊚, and the activation treatment is not performed immediately after the catalyst is applied. Even when electroless plating was performed, the appearance of the film was not inferior to that of Example 1. As a result, it can be determined that a uniform and even film can be obtained even by appropriately performing adsorption promotion, catalyst application, and electroless plating, which are essential steps of the present invention, without adding an activation treatment.
In Examples 8 and 10 in which the weight average molecular weight of the diallylamine polymer was decreased and the content was increased based on Example 2 , each evaluation of the nickel film appearance was ⊚ (see Examples 8 and 10). ), Evaluation of film appearance in Example 9 (content = 20 g / L → 8 g / L, Mw = 30,000 → 200,000) in which the content of the diallylamine polymer was reduced within an appropriate range and the weight average molecular weight was increased. Was ○.
Based on Example 1, Example 11 (0.1 mol / L → 0.3 mol / L) in which the amount of nickel salt was increased , or Example 12 (0.25 mol / L) in which the content of the reducing agent was increased. → 0.5 mol / L) was also evaluated as ⊚ in each evaluation of the appearance of the nickel film as in Example 1.
On the other hand, Example 1 as a base, nickel electroless plating process of nickel coatings - Example 14 was changed to a cobalt alloy film, since the water-soluble polymer of the catalyst solution is common EO adduct of PEI, nickel coating As in the case of, the appearance evaluation of the nickel alloy film was ◎.

Claims (6)

無電解ニッケル又はニッケル合金メッキを施す非導電性基板に接触させて触媒付与を行うためのニッケルコロイド触媒液において、
上記触媒液の必須含有成分が、
(A)可溶性ニッケル塩と、
(B)還元剤と、
(D)ポリエチレンイミンのアルキレンオキシド付加物からなるポリエチレンイミン類(PEI類)、ジアリルアミンポリマーからなるポリアミン類(PA類)、アルデヒド変性ポリアクリルアミドからなるポリアクリルアミド類(PAM類)、ポリビニルイミダゾール類(PVI類)から選ばれた合成系の水溶性ポリマーであり、
上記成分(D)を成分(A)及び成分(B)のいずれかに共存させた状態で、成分(A)と成分(B)を混合してなる触媒液であって、
上記水溶性ポリマー(D)を触媒液に対して0.5〜300g/L含有することを特徴とする無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。
In a nickel colloidal catalyst solution for applying a catalyst by contacting it with a non-conductive substrate to be plated with electroless nickel or nickel alloy.
The essential components of the above catalyst solution are
(A) Soluble nickel salt and
(B) Reducing agent and
(D) Polyethyleneimines (PEIs) composed of alkylene oxide adducts of polyethyleneimine, polyamines (PAs) composed of diallylamine polymers, polyacrylamides (PAMs) composed of aldehyde-modified polyacrylamides, polyvinylimidazoles (PVIs). It is a synthetic water-soluble polymer selected from ( class),
A catalyst solution obtained by mixing the component (A) and the component (B) in a state where the component (D) coexists with either the component (A) or the component (B).
A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which comprises 0.5 to 300 g / L of the water-soluble polymer (D) with respect to the catalyst solution.
還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1に記載の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。 The reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfic acids, The nickel colloid catalyst solution for plating electroless nickel or a nickel alloy according to claim 1 , which is at least one selected from the group consisting of reducing saccharides. (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程と、
(b)請求項1又は2のニッケルコロイド触媒液に吸着促進された非導電性基板を浸漬して、基板表面上にニッケルコロイド粒子を吸着させる触媒付与工程と、
(c)触媒付与された上記基板上に無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解ニッケル又はニッケル合金メッキ方法。
(A) Adsorption in which a non-conductive substrate is immersed in a liquid containing at least one of an adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Acceleration process and
(B) A catalyst applying step of immersing the non-conductive substrate whose adsorption has been promoted in the nickel colloid catalyst solution of claim 1 or 2 to adsorb nickel colloid particles on the surface of the substrate.
(C) An electroless nickel or nickel alloy plating method comprising an electroless plating step of forming an electroless nickel or nickel alloy film on the catalyst-imposed substrate using an electroless nickel or nickel alloy plating solution. ..
先ず、非導電性基板にエッチング処理液を接触させて、当該基板表面を粗面化するエッチング処理工程(p)を施すとともに、
当該非導電性基板に対して、上記エッチング処理工程(p)の次に吸着促進工程(a)を施し、その後、触媒付与工程(b)及び無電解メッキ工程(c)を順次施すことを特徴とする請求項3に記載の無電解ニッケル又はニッケル合金メッキ方法。
First, the non-conductive substrate is brought into contact with the etching treatment liquid to perform an etching treatment step (p) for roughening the surface of the substrate, and at the same time,
The non-conductive substrate is characterized in that the etching treatment step (p) is followed by an adsorption promotion step (a), followed by a catalyst application step (b) and an electroless plating step (c). The electroless nickel or nickel alloy plating method according to claim 3.
工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする請求項3又は4に記載の無電解ニッケル又はニッケル合金メッキ方法。 The electroless nickel or nickel alloy plating method according to claim 3 or 4 , wherein the adsorption accelerator in the step (a) is a cationic surfactant and / or an amphoteric surfactant. 請求項3〜5のいずれか1項に記載の無電解メッキ方法により、非導電性基板上に無電解ニッケル又はニッケル合金皮膜を形成することを特徴とする非導電性基板の製造方法。 A method for producing a non-conductive substrate, which comprises forming an electroless nickel or a nickel alloy film on the non-conductive substrate by the electroless plating method according to any one of claims 3 to 5.
JP2020078672A 2020-04-27 2020-04-27 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method Active JP6843455B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020078672A JP6843455B1 (en) 2020-04-27 2020-04-27 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
PCT/JP2021/015190 WO2021220788A1 (en) 2020-04-27 2021-04-12 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
TW110114879A TW202140852A (en) 2020-04-27 2021-04-26 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, method for electroless nickel or nickel alloy plating, and method for manufacturing nickel plated or nickel alloy substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020078672A JP6843455B1 (en) 2020-04-27 2020-04-27 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method

Publications (2)

Publication Number Publication Date
JP6843455B1 true JP6843455B1 (en) 2021-03-17
JP2021172862A JP2021172862A (en) 2021-11-01

Family

ID=74860871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078672A Active JP6843455B1 (en) 2020-04-27 2020-04-27 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method

Country Status (3)

Country Link
JP (1) JP6843455B1 (en)
TW (1) TW202140852A (en)
WO (1) WO2021220788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220494B1 (en) 2022-08-26 2023-02-10 石原ケミカル株式会社 Gold concentration measuring device and measuring method in gold-containing plating solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322014B (en) * 2022-09-14 2023-04-11 东华大学 Ceramic substrate with metal coating and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736666B2 (en) * 1988-12-29 1998-04-02 戸田工業株式会社 Palladium hydrosol catalyst for electroless plating and method for producing the same
JP4679716B2 (en) * 2000-12-08 2011-04-27 日揮触媒化成株式会社 Method for producing metal colloid solution
JP6047711B2 (en) * 2012-02-08 2016-12-21 石原ケミカル株式会社 Electroless nickel and nickel alloy plating method, and pretreatment liquid for the plating
JP6201153B2 (en) * 2014-09-11 2017-09-27 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6209770B2 (en) * 2015-02-19 2017-10-11 石原ケミカル株式会社 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220494B1 (en) 2022-08-26 2023-02-10 石原ケミカル株式会社 Gold concentration measuring device and measuring method in gold-containing plating solution
JP2024031708A (en) * 2022-08-26 2024-03-07 石原ケミカル株式会社 Gold concentration measuring device and measuring method in gold-containing plating solution

Also Published As

Publication number Publication date
WO2021220788A1 (en) 2021-11-04
TW202140852A (en) 2021-11-01
JP2021172862A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
TWI621736B (en) Nickle colloidal catalyst solution for electroless nickle or nickle alloy plating and electroless nickle or nickle alloy plating method
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TWI684673B (en) Copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
US9228262B2 (en) Plating catalyst and method
JP6047713B2 (en) Electroless copper plating method
KR102322950B1 (en) Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and manufacturing method of copper plating substrate
JP6843455B1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6858425B1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6268379B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201102

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6843455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250