WO2021220788A1 - Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate - Google Patents

Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate Download PDF

Info

Publication number
WO2021220788A1
WO2021220788A1 PCT/JP2021/015190 JP2021015190W WO2021220788A1 WO 2021220788 A1 WO2021220788 A1 WO 2021220788A1 JP 2021015190 W JP2021015190 W JP 2021015190W WO 2021220788 A1 WO2021220788 A1 WO 2021220788A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
electroless
catalyst solution
solution
conductive substrate
Prior art date
Application number
PCT/JP2021/015190
Other languages
French (fr)
Japanese (ja)
Inventor
康二 田中
一生 佐藤
Original Assignee
石原ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原ケミカル株式会社 filed Critical 石原ケミカル株式会社
Publication of WO2021220788A1 publication Critical patent/WO2021220788A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Definitions

  • the present invention relates to a nickel colloid catalyst solution for applying a catalyst as a pretreatment when subjecting a non-conductive substrate to electroless nickel or nickel alloy plating, and a method for plating electroless nickel or nickel alloy using the nickel colloid catalyst solution. , And a method for manufacturing a nickel or nickel alloy plated substrate that forms a nickel or nickel alloy film by the plating method. More specifically, the present invention contains a specific water-soluble polymer under predetermined conditions, effectively promotes stability over time, and thus can effectively improve the uniformity and appearance of nickel or nickel alloy coatings. A colloidal catalyst solution is provided.
  • Electroless nickel or nickel-phosphorus on non-conductive substrates such as glass substrates and ceramics substrates, including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
  • resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
  • a metal such as palladium, gold, silver, copper, or nickel is adsorbed on the substrate to form a catalyst nucleus, and then an electroless nickel or nickel alloy plating solution is used via the catalyst nucleus.
  • a method of depositing a nickel-based film on a substrate is common.
  • Patent Document 1 Regarding the catalyst solution for electroless plating instead of the noble metal catalyst solution, the catalyst solution contains a metal salt selected from nickel, copper, and cobalt, a dispersant selected from a nonionic surfactant, and a gelatin, and a mono. It contains a complexing agent selected from carboxylic acid, dicarboxylic acid, oxycarboxylic acid and salts thereof, a reducing agent such as boron hydride, and a stabilizer such as hypophosphite, and is adjusted to pH 1 to 10.
  • the salt content of the metal is 5 to 50 g / L (page 3, upper left column, line 18), and the content of the complexing agent is 10 to 50 g / L (page 3, upper left column, line 10).
  • Typical examples of complexing agents include benzoic acid, succinic acid, lactic acid, sodium acetate and the like (page 3, upper left column, lines 9 to 10).
  • Examples 1 and 2 are examples of nickel catalyst solutions.
  • Example 3 is an example of a cobalt catalyst solution
  • Example 4 is an example of a copper catalyst solution.
  • Example 1 of the nickel catalyst solution the ABS resin is immersed in a nickel catalyst solution containing nickel sulfate, gelatin (dispersant), sodium boron hydroxide (reducing agent), and sodium hypophosphite. After that, a nickel plating film is formed on the surface of the ABS resin by an electroless nickel plating solution, but this nickel catalyst solution does not contain a complexing agent (that is, a treatment agent for stabilizing colloids) (No. 1). Page 3, lower left column, 3rd line to lower right column, 1st line).
  • a complexing agent that is, a treatment agent for stabilizing colloids
  • the nickel catalyst solution of Example 2 also contains a nickel salt, a reducing agent, and a hypophosphate, but does not contain a complexing agent (colloid stabilizer) (page 3, lower right column, second column). Lines to 10th line).
  • the copper catalyst solution of Example 4 also does not contain a complexing agent (page 4, upper left column, lines 12 to 20).
  • the cobalt catalyst solution of Example 3 contains sodium acetate as a complexing agent (colloidal stabilizer).
  • Patent Document 2 The present invention relates to the manufacture of a solar cell including a step of subjecting a silicon substrate to a catalyst solution and then performing electroless nickel plating.
  • Precious metals such as palladium, gold and silver or their compounds
  • Thickeners selected from ethylene glycol, propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, etc.
  • C Contains water. Therefore, the metal that becomes the catalyst nucleus of the catalyst liquid is a noble metal or a compound thereof, not nickel.
  • Patent Document 3 Using a glass fiber reinforced epoxy resin plate as the object to be plated (A) The object to be plated is treated with a surface conditioning liquid (first a cationic surfactant, then an anionic surfactant), and then treated. (B) After treating the object to be plated with a catalyst solution (an aqueous dispersion of a silver-containing structure) containing a bond of polyethyleneimine and polyethylene glycol (that is, a protective agent) and silver nanoparticles as main components. (C) It is disclosed that the metal film is formed on the catalyst-imparted object to be plated by using an electroless plating solution of a noble metal such as copper, nickel, or gold or palladium (claims 1, 3 to 3).
  • a noble metal such as copper, nickel, or gold or palladium
  • an aqueous dispersion of silver nanoparticles protected by the above-mentioned protective agent having a specific structure is used, and is treated in advance with a specific surface conditioning solution (see step (a)). Therefore, it is stated that excellent catalytic activity can be imparted to the object to be plated (paragraph [0010]). Therefore, the metal that serves as the catalyst nucleus of the catalyst solution is silver, not nickel (claim 1). Further, in Examples 1 to 3, the electroless plating films formed after the catalyst application are all copper films, and there are no examples of nickel films (paragraphs [0055] to [0060]).
  • the nickel catalyst solution is disclosed in Examples 1 and 2 of Patent Document 1, it contains a nickel salt, a reducing agent and a hypophosphate as main components, and the stability of the nickel catalyst solution with time is sufficient. There is a problem that it is not.
  • the nickel solution is disclosed as the electroless plating solution in the above Patent Document 2
  • the catalyst solution used in the catalyst applying step which is a pre-step of the electroless plating, uses a noble metal such as palladium, gold, or silver or a compound thereof as a catalyst nucleus.
  • nickel is not used as the catalyst nucleus.
  • Patent Document 3 although a nickel solution is disclosed as an electroless plating solution, a specific example is only electroless copper plating, and the catalyst solution used in the catalyst application step uses silver as a catalyst nucleus. It does not use nickel as a catalyst nucleus.
  • the present invention is a technique for improving the stability of a nickel catalyst solution over time and applying electroless nickel or nickel alloy plating to a non-conductive substrate to which a catalyst is applied to obtain a nickel or nickel alloy film having excellent uniformity. Make it a target issue.
  • a nickel catalyst for preliminarily contacting an electroless nickel or a non-conductive substrate to be plated with a nickel alloy to impart a catalyst.
  • a liquid Soluble nickel salt and (B) Reducing agent and (C) A nickel colloid catalyst solution for electroless nickel or nickel alloy plating containing at least one colloid stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids. (See claim 1).
  • the stability of the nickel colloidal catalyst solution over time can be improved by containing a specific colloidal stabilizer such as oxycarboxylic acids having a complexing action on the soluble nickel salt, and the colloidal stability is described above.
  • a specific colloidal stabilizer such as oxycarboxylic acids having a complexing action on the soluble nickel salt
  • the stability of the nickel colloidal catalyst solution over time can be further improved.
  • the water-soluble polymer is basically preferably a synthetic water-soluble polymer, but may be a naturally-derived water-soluble polymer or a semi-synthetic polymer such as a cellulose derivative.
  • Examples of the synthetic water-soluble polymer include polyethylene glycol (PEG), polypropylene glycol (PPG), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM), polyethyleneimine (PEI), and polyacrylate. Are listed (see paragraph [0031] of the reference invention).
  • the present inventors have diligently studied a nickel colloidal catalyst solution consisting of four components, which is an essential component (A) to (C) plus a water-soluble polymer, and its stability over time. ..
  • the soluble nickel salt (A) and the reducing agent were added without adding the colloidal stabilizer (C), which is an essential component of the standard invention, provided that a predetermined synthetic water-soluble polymer was used.
  • the colloidal catalyst solution in which the predetermined synthetic water-soluble polymer (D) is combined with (B) is -It is possible to secure the same level of stability over time as the nickel colloidal catalyst solution of the standard invention that requires components (A) to (C).
  • a nickel or nickel alloy film with excellent uniformity can be obtained.
  • the predetermined synthetic water-soluble polymer is different from the polymer in the range disclosed in the above standard invention, and it is necessary to replace a part of the polymer in the disclosed range with a new polymer. Newly found and completed the present invention.
  • the present invention 1 is a nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
  • A Soluble nickel salt and
  • B Reducing agent and
  • D Select from polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and polyacrylamides (PAMs).
  • PVPs polyvinylpyrrolidones
  • PVA polyvinyl alcohols
  • PEIs polyethyleneimines
  • PAs polyamines
  • PVs polyvinylimidazoles
  • PAMs polyacrylamides
  • the content of the synthetic water-soluble polymer (D) is 0.5 g / L to 300 g / L with respect to the nickel colloid catalyst solution, and the nickel colloid for electroless nickel or nickel alloy plating is characterized. It is a catalyst solution.
  • the synthetic water-soluble polymer (D) in the present invention 1 is polyethyleneimines (PEIs) containing an alkylene oxide adduct of polyethyleneimine; polyamines (PAs) containing a diallylamine polymer; A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is at least one of polyacrylamides (PAMs) containing aldehyde-modified polyacrylamide, methylolpolyacrylamide, and polyisopropylacrylamide.
  • PEIs polyethyleneimines
  • PAs polyamines
  • a nickel colloid catalyst solution for electroless nickel or nickel alloy plating which is at least one of polyacrylamides (PAMs) containing aldehyde-modified polyacrylamide, methylolpolyacrylamide, and polyisopropylacrylamide.
  • the reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyvalent.
  • a nickel colloid catalyst solution for electroless nickel or nickel alloy plating which is at least one selected from the group consisting of naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfin acids, and reducing saccharides.
  • the present invention 4 (A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion process to make (B) A catalyst applying step of bringing the adsorption-promoted non-conductive substrate into contact with the nickel colloid catalyst solution according to any one of the present inventions 1 to 3 and adsorbing nickel colloid particles on the surface of the non-conductive substrate. (C) Electroless nickel or nickel-phosphorus, which comprises an electroless plating step of forming a nickel or nickel alloy film on a catalyst-imposed non-conductive substrate using an electroless nickel or nickel alloy plating solution. This is a nickel alloy plating method.
  • the present invention 5 is the above-mentioned invention 4.
  • an etching treatment step (p) is performed in which the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate, and the surface is roughened.
  • the non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence.
  • This is an electroless nickel or nickel alloy plating method.
  • the present invention 6 is characterized in that the adsorption accelerator used in the adsorption promoting step (a) in the present invention 4 or 5 is a cationic surfactant and / or an amphoteric surfactant. Alternatively, it is a nickel alloy plating method.
  • the present invention 7 is characterized in that a nickel or nickel alloy film is formed on a non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of the above 4 to 6 of the present invention. This is a method for manufacturing a substrate.
  • the nickel colloidal catalyst solution of the present invention contains a predetermined synthetic water-soluble polymer in place of the colloidal stabilizer of the above standard invention, stability over time can be effectively promoted. Specifically, in the reference invention, the stability over time of the nickel colloidal catalyst solution is improved by using a colloidal stabilizer, but the nickel colloidal catalyst solution of the present invention does not use a colloidal stabilizer and is predetermined. By substituting with a synthetic water-soluble polymer, the same level of stability over time as the standard invention can be ensured. As a result, the properties of the electroless nickel or nickel alloy film obtained by electroless nickel or nickel alloy plating after the catalyst application can be effectively improved.
  • the synthetic water-soluble polymer used in the present invention does not include the synthetic water-soluble polymer disclosed in the reference invention, and the polymer of the present invention is not included in the polymer of the reference invention. ..
  • the polymer of the present invention has a gap, so to speak, which is not disclosed in the reference invention.
  • the alkylene oxide adduct of polyethyleneimine and the diallylamine polymer are preferred polymers of the present invention.
  • the specification of the reference invention (paragraph [0031]) describes the term polyethyleneimine (PEI), which means a homopolymer of PEI, and a copolymer or adduct of PEI. Does not include.
  • the basic principle is that nickel colloidal particles are adsorbed on a non-conductive substrate to apply a catalyst, and then electroless nickel or nickel alloy plating is applied.
  • the non-conductive substrate is applied.
  • an adsorption promotion treatment in which the mixture is brought into contact with a liquid containing an adsorption accelerator, which is a surfactant. That is, in the present invention, the adsorption promotion step, the catalyst applying step, and the electroless nickel or nickel alloy plating step are sequentially performed to enhance the catalytic activity at the time of applying the catalyst, and the nickel or nickel alloy film precipitated by the electroless plating. It is possible to improve the uniformity of the film and satisfactorily prevent the occurrence of unevenness of the film.
  • the present invention is firstly a nickel colloidal catalyst solution for bringing a non-conductive substrate into contact with each other to impart a catalyst to the non-conductive substrate, wherein (A) a soluble nickel salt and (B) a reducing agent are used. , (D) A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which contains a predetermined synthetic water-soluble polymer and a predetermined amount of the synthetic water-soluble polymer (D) with respect to the catalyst solution. (Corresponding to the present invention 1).
  • the present invention is secondly an electroless nickel or nickel alloy plating method using the nickel colloid catalyst solution, wherein the non-conductive substrate is previously subjected to adsorption promotion treatment with a surfactant-containing solution, and then the non-conductive substrate is subjected to adsorption promotion treatment.
  • This is a method of performing electroless plating after applying a catalyst with the nickel colloid catalyst solution (corresponding to 4 of the present invention).
  • the present invention is thirdly a method for producing a nickel or nickel alloy substrate (corresponding to the present invention 7) in which a nickel or nickel alloy film is formed by the electroless plating method.
  • the non-conductive substrate includes glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate (PC) resin, polyamide (PA) resin, polystyrene (PS) resin, and polyester resin (for example, polybutylene terephthalate (for example, polybutylene terephthalate).
  • PBT polybutylene terephthalate
  • ABS resin ABS resin
  • PET resin PET resin
  • resin substrates such as these polymer alloys (eg, PC / ABS, PBT / ABS, PA / ABS, PC / PS), glass substrates, ceramics substrates, etc. say.
  • the basic composition of the nickel colloid catalyst solution of the present invention 1 is (A) a soluble nickel salt, (B) a reducing agent, and (D) a synthetic water-soluble polymer, and the present invention 1 is the synthetic water-soluble polymer. It differs from the standard invention in that (D) is an essential component and the colloid stabilizer (C) used in the standard invention is not an essential component.
  • the soluble nickel salt (A) any soluble salt that generates nickel ions in an aqueous solution can be used, there is no particular limitation, and the poorly soluble salt is not excluded.
  • nickel sulfate nickel oxide, nickel chloride, nickel ammonium sulfate, nickel acetate, nickel nitrate, nickel carbonate, nickel sulfamate, and nickel salts of organic sulfonic acid and carboxylic acid.
  • Examples of the reducing agent (B) include boron hydride compounds, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, and sulfin. Acids, reducing sugars and the like can be mentioned.
  • the boron hydride compound includes sodium borohydride, potassium borohydride and the like.
  • Amineboranes include dimethylamineborane and diethylamineborane.
  • Aldehydes include formaldehyde, glyoxylic acid or salts thereof.
  • Polyphenols include catechol, hydroquinone, resorcinol, pyrogallol, fluoroglucin, gallic acid and the like.
  • Phenolic sulfonic acids include phenol sulfonic acid, cresol sulfonic acid or a salt thereof.
  • Reducing saccharides include glucose, fructose and the like.
  • the synthetic water-soluble polymer (D) has a function of ensuring the stability of the catalyst solution over time, similarly to the colloidal stabilizer (C) of the reference invention. In this case, the content of the synthetic water-soluble polymer (D) in the catalyst solution needs to be set within an appropriate range described later (see claim 1).
  • Synthetic water-soluble polymers (D) include polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and polyacrylamide. At least one synthetic water-soluble polymer selected from the classes (PAGEs).
  • the synthetic water-soluble polymer (D) does not include naturally-derived water-soluble polymers such as gelatin and starch, or semi-synthetic polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC) and methyl cellulose (MC). However, in the present invention, the combined use of the synthetic water-soluble polymer (D) with the naturally-derived water-soluble polymer and / or semi-synthetic polymer is not excluded.
  • naturally-derived water-soluble polymers such as gelatin and starch
  • semi-synthetic polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC) and methyl cellulose (MC).
  • CMC carboxymethyl cellulose
  • MC methyl cellulose
  • the polyvinylpyrrolidones include a homopolymer of polyvinylpyrrolidone and an alkylene oxide adduct of polyvinylpyrrolidone such as a polymer obtained by adding ethylene oxide (EO) and / or propylene oxide (PO) to polyvinylpyrrolidone.
  • the above-mentioned polyethyleneimines (PEIs) include homopolymers of polyethyleneimine and alkylene oxide adducts of polyethyleneimine such as polymers obtained by adding ethylene oxide and / or propylene oxide to polyethyleneimine.
  • the polyamines are basically diallylamine polymers, and specifically, dialkylammonium chloride polymer, diallyldimethylammonium chloride / sulfur dioxide copolymer, diallylmethylethylammonium ethylsulfate polymer, and diallyldimethylammonium. Chloride-acrylamide copolymer and the like.
  • the polyvinyl imidazoles (PVIs) include homopolymers of polyvinyl imidazole and alkylene oxide adducts of polyvinyl imidazole such as polymers in which ethylene oxide and / or propylene oxide are added to polyvinyl imidazole.
  • the polyacrylamides include acrylamide homopolymers, aldehyde-modified polyacrylamides, methylolpolyacrylamides, polyisopropylacrylamides, and other polymers obtained by copolymerizing acrylamide with hydrophilic polymers such as acrylic acid and methacrylic acid. include.
  • the diallyldimethylammonium chloride / acrylamide copolymer is classified as a copolymer of diallylamine and acrylamide.
  • synthetic water-soluble polymer (D) polyvinylpyrrolidones (PVPs), polyacrylamides (PAMs), polyethyleneimines (PEIs), and polyamines (PAs) are preferable, and PEI is particularly preferable.
  • PEIs containing alkylene oxide adducts of PEI such as ethylene oxide adducts
  • PAs containing diallylamine polymers and at least one of PAMs containing aldehyde-modified polyacrylamide, methylolpolyacrylamide, and polyisopropylacrylamide are preferred.
  • the nickel colloid catalyst solution of the present invention may contain a surfactant, if necessary, in order to increase the dispersibility of the fine metal serving as the catalyst nucleus.
  • a surfactant various nonionic, cationic, anionic, or amphoteric surfactants can be selected.
  • the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenols, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, and C1 to C25 alkoxylated phosphate (salt).
  • Sorbitane ester polyalkylene glycol, C1 to C22 aliphatic amine, C1 to C22 aliphatic amide, etc. with 2 to 300 mol of ethylene oxide (EO) and / or propylene oxide (PO) added and condensed, or C1 to Examples thereof include C25 alkoxylated phosphate (salt).
  • EO ethylene oxide
  • PO propylene oxide
  • Examples of the cationic surfactant include a quaternary ammonium salt or a pyridinium salt, and specifically, a lauryltrimethylammonium salt, a stearyltrimethylammonium salt, a lauryldimethylethylammonium salt, an octadecyldimethylethylammonium salt, and the like.
  • anionic surfactant examples include alkyl sulfate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl phenyl ether sulfate, alkyl benzene sulfonate, ⁇ (mono, di, tri) alkyl ⁇ naphthalene sulfonate, and the like.
  • amphoteric tenside agent examples include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Sulfation of the condensation product of ethylene oxide and / or propylene oxide with alkylamines or diamines, or sulfonated adducts can also be used.
  • the soluble nickel salt (A) can be used alone or in combination, and the content of the soluble nickel salt (A) in the nickel colloid catalyst solution is 0.001 mol / L to 1.
  • 0.0 mol / L is suitable, preferably 0.002 mol / L to 0.5 mol / L, and more preferably 0.0025 mol / L to 0.3 mol / L. If the content of the soluble nickel salt (A) is less than the appropriate amount, the film thickness of the nickel or nickel alloy film may be insufficient or the homogeneity of the film may decrease.
  • the upper limit content is limited.
  • the reducing agent (B) can be used alone or in combination, and the content of the reducing agent (B) in the nickel colloid catalyst solution is preferably 0.002 mol / L to 1.0 mol / L, preferably. It is 0.003 mol / L to 0.7 mol / L, more preferably 0.005 mol / L to 0.6 mol / L. If the content of the reducing agent (B) is less than the appropriate amount, the reducing action of the nickel salt is reduced, and conversely, the upper limit content is limited by the dissolved amount or the like, but if it is too large, it precipitates by electroless plating. There is a risk that the homogeneity of the nickel or nickel alloy film will decrease.
  • the synthetic water-soluble polymer (D) can be used alone or in combination, and the content of the synthetic water-soluble polymer (D) in the nickel colloid catalyst solution must be 0.5 g / L to 300 g / L. (See claim 1), preferably 1 g / L to 200 g / L, and more preferably 1 g / L to 100 g / L. If the content of the synthetic water-soluble polymer (D) is less than the appropriate amount, the nickel colloid catalyst solution impairs the stability over time, and conversely, if it is more than the appropriate amount, the colloid becomes excessively stable and the nickel colloid is excessively stable. The catalytic solution loses catalytic activity.
  • the colloidal stabilizer (C) of the reference invention may be used in combination with the nickel colloidal catalyst solution of the present invention.
  • the colloidal stabilizer (C) is selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, amino acids, and polycarboxylic acids, and includes oxycarboxylic acids, aminocarboxylic acids, amino acids, polycarboxylic acids, and the like. Is preferable.
  • the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, and salts thereof.
  • aminocarboxylic acids examples include diethylenetriamine pentaacetic acid, triethylenetetramine hexaacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, iminodiacetic acid, and salts thereof.
  • amino acids examples include glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, glycine, and salts thereof.
  • polycarboxylic acids include succinic acid, glutaric acid, adipic acid, maleic acid, itaconic acid, and salts thereof.
  • the nickel colloidal catalyst solution of the present invention may be an aqueous system or an organic solvent system such as a lipophilic alcohol.
  • the solvent of the catalyst solution is selected from water and / or hydrophilic alcohol.
  • the pH of the catalyst solution is not particularly limited, but it is preferable to select neutral, weakly acidic, weakly alkaline or the like.
  • a solution containing the soluble nickel salt (A) and a solution containing the reducing agent (B) prepared separately from this solution are mixed to obtain colloidal particles. It is important to generate.
  • the soluble nickel salt (A) and the reducing agent (B) are mixed first, nickel ions are reduced to precipitate metallic nickel, and the synthetic water-soluble polymer (D) functions organically in the catalyst solution. Because there is a risk of not doing it. Therefore, when preparing the catalyst solution, in order to smoothly donate electrons from the reducing agent (B) to nickel ions, a solution containing the reducing agent (B) is mixed with the soluble nickel salt (A) (and synthetic water-soluble).
  • a solution containing the sex polymer (D) is gently added dropwise over time to a solution containing the sex polymer (D).
  • a solution containing the reducing agent (B) at 5 ° C. to 50 ° C. (preferably 10 ° C. to 40 ° C.) is added dropwise to the solution containing the soluble nickel salt (A) for 20 minutes to 1200 minutes (preferably 30 ° C.). Stir for 1 to 300 minutes to prepare the catalyst solution.
  • the preparation of the catalyst solution does not exclude dropping the solution of the soluble nickel salt (A) into the solution of the reducing agent (B).
  • the nickel colloid particles produced from the soluble nickel salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, and more preferably 1 nm. It is a fine particle of ⁇ 100 nm.
  • the average particle size of the nickel colloid particles is 250 nm or less, when the non-conductive substrate is brought into contact with the nickel colloid catalyst solution, the nickel colloid particles enter the dents on the fine uneven surface of the substrate and are densely adsorbed or caught. It can be presumed that the attachment of nickel colloidal nuclei to the surface of the substrate is promoted by the anchor effect such as.
  • the present invention 4 is an electroless plating method using the nickel colloidal catalyst solution, which is a combination of the following three steps in sequence.
  • the adsorption promotion step (a) is, so to speak, a pretreatment step of the catalyst application step (b), and is a nonionic surfactant.
  • This is a step of bringing the non-conductive substrate into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of an activator, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • the wettability of the surface of the substrate is enhanced, the catalytic activity is enhanced, and the adsorption of the nickel colloidal particles in the next catalyst application step (b) is promoted. It is a thing.
  • the adsorption promotion step (a) since it is necessary to bring the non-conductive substrate into contact with the liquid containing the adsorption accelerator, it is basic to immerse the non-conductive substrate in the liquid containing the adsorbent. Treatment such as spraying on a non-conductive substrate or applying with a brush may be used.
  • each surfactant used in the adsorption promotion step (a) are as described in the above-mentioned nickel colloid catalyst solution of the present invention 1.
  • the content of the adsorption accelerator, which is a surfactant is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L.
  • the treatment temperature is preferably about 15 ° C.
  • the contact time is preferably about 0.5 minutes to 20 minutes.
  • the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate. It is preferable to carry out the treatment step (p).
  • the process proceeds to the next catalyst application step (b) with or without drying.
  • the non-conductive substrate is brought into contact with the nickel colloid catalyst liquid, and the nickel colloid particles are adsorbed on the surface of the non-conductive substrate.
  • the temperature of the nickel colloidal catalyst solution is preferably 15 ° C. to 95 ° C., more preferably 15 ° C. to 70 ° C., the contact time is about 0.1 to 20 minutes, and the pH is 3 to 11. preferable.
  • the catalyst application step (b) since it is necessary to bring the non-conductive substrate into contact with the nickel colloid catalyst liquid, it is basic to immerse the non-conductive substrate in the nickel colloid catalyst liquid. Can be sprayed on a non-conductive substrate or applied with a brush. In the dipping treatment, it is sufficient to immerse the non-conductive substrate in the nickel colloid catalyst solution in a stationary state, but stirring or shaking may be performed. Further, between the catalyst application step (b) and the next electroless plating step (c), an activation step (b-1) in which the non-conductive substrate is brought into contact with an activation solution such as an acid solution for cleaning treatment. ) Is preferably added.
  • an activation solution such as an acid solution for cleaning treatment.
  • the catalytic activity can be effectively maintained, and film formation in the next electroless plating step (c) can be smoothly promoted.
  • it is basic to immerse the non-conductive substrate in the activating solution, but the activating solution is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
  • the non-conductive substrate that has completed the catalyst application step (b) or, if necessary, the non-conductive substrate that has completed the activation step (b-1) is washed with pure water and then dried or dried. Instead, the process proceeds to the next electroless plating step (c).
  • the electroless nickel or nickel alloy plating in the electroless plating step (c) may be treated in the same manner as in the conventional case, and there are no particular restrictions.
  • the liquid temperature of the electroless nickel or nickel alloy plating solution is generally 15 ° C. to 100 ° C., preferably 20 ° C. to 90 ° C. When stirring the electroless nickel or nickel alloy plating solution, air stirring, rapid liquid flow stirring, mechanical stirring using a stirring blade or the like can be adopted.
  • the composition of the electroless nickel or nickel alloy plating solution is not particularly limited, and a known plating solution can be used.
  • the electroless nickel plating is substantially nickel-phosphorus plating or nickel-boron plating.
  • the electroless nickel alloy plating includes nickel-cobalt alloy plating, nickel-tin alloy plating, nickel-tin-zinc alloy plating and the like.
  • the known electroless nickel plating solution basically contains a soluble nickel salt and a reducing agent as main components, and if necessary, contains various additives such as a complexing agent, a pH adjuster, and a reaction accelerator.
  • a phosphorus-based reducing agent for example, hypophosphate
  • a boron-based reducing agent for example, dimethylamine borane
  • a boron film is obtained.
  • the soluble nickel salt is as described in the above nickel colloid catalyst solution.
  • the complexing agent has some parts in common with the colloidal stabilizer (C) described in the above nickel colloid catalyst solution. Specifically, ammonia, ethylenediamine, pyrophosphate, citric acid, malic acid, lactic acid, acetic acid, Ethylenediaminetetraacetic acid (EDTA) and the like.
  • the components of the electroless nickel alloy plating solution are basically the same as the components of the electroless nickel plating solution, but include soluble salts of the metal of the other party that forms an alloy with nickel.
  • the nickel alloy include a nickel-cobalt alloy, a nickel-tin alloy, a nickel-tin-zinc alloy, and the like.
  • Soluble cobalt salts such as cobalt salts; soluble stannous salts such as stannous sulfate, stannous chloride, stannous oxide, sodium tinate, stannous borofluoride, and stannous salts of organic sulfonic acid and sulfosuccinic acid.
  • the present invention 7 is a method for manufacturing a nickel or nickel alloy plated substrate, which forms a nickel or nickel alloy film on the non-conductive substrate by the electroless nickel or nickel alloy plating method.
  • Example 1 (item (1) below) will be described as a representative example of the present invention, and a reference example based on the standard invention (item (0) below) will be described in comparison with Example 1.
  • Examples 2 to 18 (items (2) to (18)) will be described in detail in order.
  • Examples 2 to 18 are examples of the electroless nickel plating method, and Example 18 is an example of the electroless nickel-cobalt alloy plating method.
  • Example 1 As will be described later, after the etching treatment step (p) is performed as a preliminary step, the adsorption promotion step (a) ⁇ the catalyst application step (b) ⁇ the activation step (b-1) ⁇ electroless plating.
  • the adsorption accelerator in the adsorption promoting step (a) is a mixture of a cationic surfactant and a nonionic surfactant, and the nickel colloid catalyst solution in the catalyst applying step (b) is reduced.
  • the agent (B) contains a boron hydride compound
  • the synthetic water-soluble polymer (D) contains an ethylene oxide (EO) adsorbent of polyethyleneimine (PEI).
  • EO ethylene oxide
  • PEI polyethyleneimine
  • Example 2 PEI homopolymer
  • Example 3 Dialylamine polymer
  • Example 4 Polyvinylpyrrolidone (PVP)
  • Example 5 Polyvinyl alcohol (PVA)
  • Example 6 Homopolymer of polyacrylamide (PAM)
  • Example 7 Aldehyde-modified PAM
  • Example 8 Polyvinyl imidazole (PVI) homopolymer
  • Examples 9 to 11 are based on Example 1, and the content of the EO adduct of PEI and the number of moles of EO added (hence, the weight average molecular weight) are changed, respectively. This is an example.
  • Example 9 of the steps of Example 1, the activation step (b-1) is omitted, and the etching process step (p) ⁇ adsorption promotion step (a) ⁇ catalyst application step (b) ⁇ .
  • each step of the electroless plating step (c) is sequentially performed.
  • Examples 12 to 14 are examples in which the weight average molecular weight of the diallylamine polymer is changed based on Example 3. However, in Example 14, a copolymer of diallylamine and acrylamide was used.
  • Example 15 is an example in which the content of the soluble nickel salt (A) is changed based on Example 1.
  • Example 16 is an example in which the content of the reducing agent (B) is changed based on Example 1.
  • Example 17 is an example in which an ethylene oxide (EO) / propylene oxide (PO) adduct of PEI is used as the synthetic water-soluble polymer (D) based on Example 1.
  • EO ethylene oxide
  • PO propylene oxide
  • Example 18 is an example in which electroless nickel-cobalt alloy plating is performed instead of electroless nickel plating, and after performing an etching treatment step (p) as a preliminary step, an adsorption promotion step (adsorption promotion step).
  • adsorption promotion step adsorption promotion step
  • the etching treatment step (p), the adsorption promotion step (a), the catalyst application step (b), and the activation step (b-1) were based on Example 1.
  • Comparative Examples 1 to 4 are as follows. Comparative Example 1: An example in which a naturally-derived water-soluble polymer was used instead of the synthetic water-soluble polymer (D) used in the present invention Comparative Example 2: Synthesis other than the synthetic water-soluble polymer (D) specified in the present invention. Example using a water-soluble polymer (polyethylene glycol) Comparative Example 3: Example in which the content of the synthetic water-soluble polymer (D) is less than the range specified in the present invention Comparative Example 4: Synthetic water-soluble polymer (D) ) Content is greater than the range specified in the present invention.
  • Example 1 The electroless nickel plating method of the present invention is based on sequentially performing an adsorption promotion step (a) ⁇ a catalyst application step (b) ⁇ an electroless plating step (c), but in the first embodiment, the adsorption promotion step An etching treatment step (p) was added in advance before (a), and an activation step (b-1) was added between the catalyst application step (b) and the electroless plating step (c). Therefore, the electroless nickel plating method of Example 1 is an etching treatment step (p) ⁇ an adsorption promotion step (a) ⁇ a catalyst application step (b) ⁇ an activation step (b-1) ⁇ an electroless plating step (c). Consists of.
  • an etching treatment is performed under the following condition (p)
  • adsorption promotion is performed under the following condition (a)
  • catalyst application is performed under the following condition (b)
  • activation is performed under the following condition (b-1).
  • electroless nickel-phosphorus plating was performed under the following condition (c).
  • Etching Treatment Step An etching treatment liquid was prepared with the following composition. [Etching liquid] Chromic anhydride 400g / L 98% sulfuric acid 200g / L
  • a liquid containing an adsorption accelerator was prepared with the following composition. Mw is the weight average molecular weight.
  • [Adsorption accelerator] Dialyldimethylammonium chloride polymer (Mw: 30000) 5 g / L Polyoxyalkylene branched decyl ether 1g / L (B) Catalyst application step First, a nickel solution and a reducing agent solution were prepared, and then both solutions were mixed to prepare a nickel colloid catalyst solution.
  • the composition of each solution and the preparation conditions for the nickel colloidal catalyst solution are as follows.
  • Nickel solution Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Preparation conditions for nickel colloidal catalyst solution A reducing agent solution was added dropwise to a nickel solution at 30 ° C. adjusted to pH 7.0 and stirred to obtain a nickel colloidal catalyst solution.
  • B-1) Activation step
  • Activation solution 98% sulfuric acid 5mL / L
  • Electroless plating step An electroless nickel-phosphorus plating solution was bathed with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
  • Electroless nickel-phosphorus plating solution Nickel sulfate hexahydrate (as Ni 2+ ) 0.1 mol / L Sodium hypophosphate monohydrate 30 g / L Succinic acid 25g / L Pure water residual pH (20 ° C) 4.6 (D) All processing conditions in electroless nickel-phosphorus plating
  • the electroless nickel-phosphorus plating of Example 1 comprises steps (p) ⁇ (a) ⁇ (b) ⁇ (b-1) ⁇ (c).
  • the processing conditions of the process are as follows. [Etching conditions] The ABS resin substrate (length: 45 mm, width: 50 mm, plate thickness: 3 mm) was immersed in the etching treatment liquid of the above (p) at 68 ° C.
  • a nickel colloidal catalyst solution was prepared using a colloidal stabilizer (C) (glutaric acid) instead of the synthetic water-soluble polymer (D) used in the present invention. That is, in this reference example, in the catalyst application step (b), a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a colloid stabilizer (C) as essential components is used. Based on Example 1, all settings are the same as in Example 1 including the etching treatment step (p) and the activation step (b-1), except that the composition of the nickel colloid catalyst solution is changed as follows. bottom.
  • Example 2 Based on the above Example 1, all the same as in Example 1 including the etching treatment step (p) and the activation step (b-1) except that the composition of the nickel colloid catalyst solution was changed as follows. I set it. In the examples and comparative examples described later, the reference to the etching treatment step (p) and the activation step (b-1) will be omitted.
  • B Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI homopolymer (Mw: 800) 50g / L [Reducing agent solution] Sodium borohydride 0.25 mol / L
  • Example 3 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L
  • Dialyldimethylammonium chloride polymer (Mw: 30000) 20 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 4 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PVP (Mw: 9000) 50g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 5 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PVA homopolymer (Mw: 1000) 50 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 6 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PAM homopolymer (Mw: 10000) 50g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 7 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L Aldehyde-modified PAM (Mw: 10000) 50g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 8 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PVI homopolymer (Mw: 5000) 50g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 9 Based on the above Example 1, the composition of the nickel colloid catalyst solution is changed as follows, the activation step (b-1) is omitted, and the etching treatment step (p) ⁇ adsorption promotion step (a) ⁇ catalyst addition. All the settings were the same as in Example 1 except that the step (b) ⁇ the electroless plating step (c) were sequentially performed.
  • B Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO adduct (EO: 60 mol, Mw: 4500) 30 g / L [Reducing agent solution] Sodium borohydride 0.25 mol / L
  • Example 10 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO adduct (EO: 140 mol, Mw: 8000) 30 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 11 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO adduct (EO: 440 mol, Mw: 20000) 10 g / L [Reducing agent solution] Sodium borohydride 0.25 mol / L
  • Example 12 Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L
  • Dialyldimethylammonium chloride polymer (Mw: 8500) 35 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 13 Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L Dialyldimethylammonium chloride polymer (Mw: 200,000) 8 g / L [Reducing agent solution] Sodium borohydride 0.25 mol / L
  • Example 14 Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • the synthetic water-soluble polymer (D) used for the nickel colloidal catalyst liquid is a copolymer of diallylamine and acrylamide as described above, and is of the nature of PAs and PAMs. It belongs to both.
  • Example 15 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.3 mol / L PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 16 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
  • Reducing agent solution Sodium borohydride 0.5 mol / L
  • Example 17 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L PEI EO / PO adduct (EO: 40 mol, PO: 40 mol, Mw: 5000) 50 g / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Example 18 Based on the above Example 1, all settings were the same as in Example 1 except that the electroless nickel-cobalt alloy plating described below was performed as the electroless plating step (c) instead of the electroless nickel-phosphorus plating.
  • (C) Electroless plating step An electroless nickel-cobalt alloy plating solution was bathed with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
  • Electroless plating conditions Plating temperature: 90 ° C Plating time: 20 minutes
  • Comparative Example 2 Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows. That is, in Comparative Example 2, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a synthetic water-soluble polymer (polyethylene glycol) other than the synthetic water-soluble polymer (D) used in the present invention. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
  • a nickel colloidal catalyst solution was prepared using a synthetic water-soluble polymer (polyethylene glycol) other than the synthetic water-soluble polymer (D) used in the present invention.
  • nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
  • Table 1 summarizes the types and contents of the synthetic water-soluble polymer (D) in the nickel colloidal catalyst solution for Examples 1 to 18.
  • Table 2 summarizes the types and contents of the synthetic water-soluble polymer (D).
  • Table 3 summarizes the evaluation results of the temporal stability of the nickel colloidal catalyst solution and the appearance of the plating film.
  • the plating film did not precipitate even when electroless plating was applied to the surface. From these, in order to stabilize the nickel colloid catalyst solution over time, a reducing agent (B) is added to the soluble nickel salt (A), and among the synthetic water-soluble polymers, polyethyleneimines, polyamines, and polyacrylamides are added. It can be determined that it is necessary to blend the predetermined synthetic water-soluble polymer (D) specified in the present invention. Further, even if the synthetic water-soluble polymer (D) specified in the present invention is contained, when the content is less than the appropriate range as in Comparative Example 3, the nickel colloid catalyst solution is naturally stable over time.
  • a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a predetermined colloid stabilizer (C) was applied as a catalyst, and electroless plating was performed.
  • the stability over time of the nickel colloid catalyst solution was good (evaluation was ⁇ ), and the plating film precipitated by electroless plating was even and excellent in uniformity (evaluation was ⁇ ). Evaluation is ⁇ ).
  • the colloid stabilizer (C) of the above standard example was replaced with a nickel colloid catalyst solution containing a predetermined synthetic water-soluble polymer (D), and electroless plating was performed.
  • the stability over time of the nickel colloid catalyst solution was good as in the above standard example (all evaluations were ⁇ ), and the plating film precipitated by electroless plating was almost uniform and excellent in uniformity. (Evaluation is ⁇ ⁇ ⁇ ).
  • Examples 1 to 18 will be considered in order.
  • a naturally derived water-soluble polymer is used. Instead, it can be judged that it is important to use a nickel colloidal catalyst solution containing a properly selected synthetic water-soluble polymer (D).
  • Examples 1 to 18 are compared with Comparative Example 2, in order to obtain a plating film having no unevenness and excellent uniformity, it is not always necessary to arbitrarily select from the synthetic water-soluble polymer group, but a predetermined one. It can be determined that it is necessary to appropriately select the synthetic water-soluble polymer (D).
  • Examples 1 to 18 are compared with Comparative Examples 3 to 4, a predetermined synthetic water-soluble polymer (D) is appropriately selected in order to obtain a plating film having no unevenness and excellent uniformity.
  • electroless nickel-phosphorus plating was applied, electroless nickel-cobalt alloy plating was applied in the same manner as in the case where the nickel film could be formed as a plating film having almost no unevenness and excellent uniformity.
  • a nickel alloy film could be formed as a plating film having no unevenness and excellent uniformity.
  • Example 1 the non-conductive substrate is pretreated with a liquid containing a quaternary ammonium salt (adsorption accelerator) of a diallylamine polymer which is a cationic surfactant, and nickel sulfate (soluble nickel salt (A)) is prepared. ), A boron hydride compound (reducing agent (B)), and a nickel colloid catalyst solution containing an EO adduct of PEI (synthetic water-soluble polymer (D)), followed by electrolytic nickel plating.
  • a quaternary ammonium salt adsorption accelerator
  • A nickel sulfate
  • A nickel sulfate
  • A nickel colloid catalyst solution containing an EO adduct of PEI (synthetic water-soluble polymer (D)
  • the nickel colloidal catalyst solution has good stability over time, does not precipitate or decompose even one month after the bath, and the plating film obtained by electroless nickel plating is uniform and uneven. I was not able to admit. That is, the evaluation of the stability over time and the appearance of the plating film of the nickel colloidal catalyst solution were the same as those of the reference example.
  • Example 2 is an example in which a PEI homopolymer is used as the synthetic water-soluble polymer (D).
  • the evaluation of the temporal stability of the nickel colloidal catalyst solution was the same result as in Example 1, but unevenness was partially observed in the plating film, and the evaluation of the appearance of the plating film was a result of giving up one step to Example 1. (Evaluation is ⁇ ).
  • Example 7 in which an aldehyde-modified PAM was used instead of the EO adduct of PEI as the synthetic water-soluble polymer (D) based on Example 1, the evaluation of the appearance of the plating film was the same as in Example 1. There was (evaluation is ⁇ ). On the other hand, in Example 6 using the PAM homopolymer, the evaluation of the temporal stability of the nickel colloidal catalyst solution was the same result as in Example 1, but unevenness was partially observed in the plating film.
  • Example 7 The evaluation of the appearance of the plating film was a result of giving up one step to Example 7 (evaluation is ⁇ ). Therefore, as in the case of PEI, when PAM is used as the synthetic water-soluble polymer (D), selecting an aldehyde-modified product of PAM rather than homopolymer of PAM further improves the uniformity of the plating film. It turns out that it is possible. Further, in Example 3 in which a diallylamine polymer was used instead of the EO adduct of PEI as the synthetic water-soluble polymer (D) based on Example 1, the evaluation of the appearance of the plating film was the same result as in Example 1. (Evaluation is ⁇ ).
  • Example 1 As the synthetic water-soluble polymer (D), Example 4 using PVP, Example 5 using PVA, and Example using PVI instead of the EO adduct of PEI.
  • Example 8 the evaluation of the appearance of the plating film was a result of giving up one step to Example 1 (evaluation is ⁇ ).
  • Example 9 to 11 based on Example 1, the content in the nickel colloid catalyst solution was reduced within an appropriate range by using the EO adduct of PEI in which the number of moles of EO added was gradually increased. The evaluation of the appearance of the plating film was the same as that of Example 1 (evaluation is ⁇ ).
  • Example 11 content: 50 g / L ⁇ 10 g / L
  • the appearance of the plating film was excellent (evaluation was evaluated).
  • Further, based on Example 1, plating is also performed in Example 17 (content: same as Example 1, Mw: twice as much as Example 1 (2500 ⁇ 5000)) using the EO / PO adduct of PEI. The appearance of the film was excellent (evaluation is ⁇ ).
  • Example 9 is an example in which the activation step (b-1) is omitted, but the appearance of the plating film is excellent (evaluation is ⁇ ), and the activation treatment is not performed after the catalyst is applied, and electroless plating is immediately applied.
  • the appearance of the plating film was the same as that of Example 1.
  • the activation step (b-1) is not performed, and the adsorption promotion step (a), the catalyst application step (b), and the electroless plating step (c), which are essential steps of the present invention, are appropriately performed in sequence. It can also be judged that a plating film having no unevenness and excellent uniformity can be formed.
  • Example 12 In both Examples 12 and 14 in which the content in the nickel colloid catalyst solution was increased by using a diallylamine polymer having a reduced weight average molecular weight based on Example 3, the appearance of the plating film was evaluated in Example 3. The result was the same as (Evaluation is ⁇ ).
  • Example 13 (content: 20 g / L ⁇ 8 g / L, Mw: 30,000 ⁇ 200,000) in which the content in the nickel colloid catalyst solution was reduced within an appropriate range by using a diallylamine polymer having an increased weight average molecular weight.
  • the evaluation of the appearance of the plating film was a result of giving up one step to Example 3 (evaluation is ⁇ ).
  • Example 15 the content of the soluble nickel salt (A) in the nickel colloid catalyst solution was increased in Example 15 (content: 0.1 mol / L ⁇ 0.3 mol / L), or the nickel colloid.
  • Example 16 content: 0.25 mol / L ⁇ 0.5 mol / L
  • the evaluation of the appearance of the plating film was the same as in Example 1. It was a result (evaluation is ⁇ ).
  • Example 18 in which the electroless plating step (c) was changed from electroless nickel-phosphorus plating to electroless nickel-cobalt alloy plating based on Example 1, the synthetic water-soluble material contained in the nickel colloid catalyst solution was used. Since the polymer (D) is an EO adduct of PEI as in Example 1, the evaluation of the appearance of the plating film was the same as that of Example 1 (evaluation is ⁇ ).
  • the nickel colloid catalyst solution for electroless nickel or nickel alloy plating and the electroless nickel or nickel alloy plating method of the present invention can be suitably used for electroless plating on a non-conductive substrate.

Abstract

A uniform and even nickel or nickel alloy coating film is produced by bringing a non-conductive substrate into contact with a solution containing an adsorption enhancer comprising a surfactant to enhance the adsorption performance of the non-conductive substrate and thereby enhance the catalytic activity of the non-conductive substrate, then applying a catalyst to the non-conductive substrate using a nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, and then performing an electroless nickel or nickel alloy plating procedure, in which the nickel colloid catalyst solution for electroless nickel or nickel alloy plating use comprises (A) a soluble nickel salt, (B) a reducing agent, and (D) a specified amount of a specific synthetic water-soluble polymer such as a polyethylenimine compound, a polyamine compound and a polyacrylamide compound, and has excellent long-term stability.

Description

無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液、無電解ニッケル又はニッケル合金メッキ方法、及びニッケル又はニッケル合金メッキ基板の製造方法Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, electroless nickel or nickel alloy plating method, and method for manufacturing nickel or nickel alloy plated substrate.
 本発明は、非導電性基板に無電解ニッケル又はニッケル合金メッキを施す際に前処理として触媒付与をするためのニッケルコロイド触媒液、当該ニッケルコロイド触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法、及び当該メッキ方法でニッケル又はニッケル合金皮膜を形成するニッケル又はニッケル合金メッキ基板の製造方法に関する。より詳しくは、本発明は、特定の水溶性ポリマーを所定条件で含有しており、経時安定性が効果的に促進され、もって、ニッケル又はニッケル合金皮膜の均一性及び外観を有効に改善できるニッケルコロイド触媒液を提供する。 INDUSTRIAL APPLICABILITY The present invention relates to a nickel colloid catalyst solution for applying a catalyst as a pretreatment when subjecting a non-conductive substrate to electroless nickel or nickel alloy plating, and a method for plating electroless nickel or nickel alloy using the nickel colloid catalyst solution. , And a method for manufacturing a nickel or nickel alloy plated substrate that forms a nickel or nickel alloy film by the plating method. More specifically, the present invention contains a specific water-soluble polymer under predetermined conditions, effectively promotes stability over time, and thus can effectively improve the uniformity and appearance of nickel or nickel alloy coatings. A colloidal catalyst solution is provided.
 ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などの非導電性基板上に無電解ニッケル又はニッケル合金メッキを施すには、先ず、基板上にパラジウム、金、銀、銅、ニッケルなどの金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解ニッケル又はニッケル合金メッキ液によりニッケル系皮膜を基板上に析出させる方式が一般的である。 Electroless nickel or nickel-phosphorus on non-conductive substrates such as glass substrates and ceramics substrates, including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin. To perform gold plating, first, a metal such as palladium, gold, silver, copper, or nickel is adsorbed on the substrate to form a catalyst nucleus, and then an electroless nickel or nickel alloy plating solution is used via the catalyst nucleus. A method of depositing a nickel-based film on a substrate is common.
 そこで、ニッケル又はニッケル合金メッキを含む無電解メッキを施すに際して、その予備処理として被メッキ物にニッケル触媒核を付与する従来技術を挙げると、次の通りである。
(1)特許文献1
 貴金属触媒液に替わる無電解メッキ用の触媒液に関して、当該触媒液は、ニッケル、銅、及びコバルトから選ばれた金属の塩と、ノニオン性界面活性剤及びゼラチンから選ばれた分散剤と、モノカルボン酸、ジカルボン酸、オキシカルボン酸及びこれらの塩から選ばれた錯化剤と、水素化ホウ素類などの還元剤と、次亜リン酸類などの安定剤とを含み、pH1~10に調整される(特許請求の範囲第1項~第7項)。
 上記金属の塩の含有量は5~50g/Lで(第3頁左上欄第18行)、上記錯化剤の含有量は10~50g/Lであり(第3頁左上欄第10行)、錯化剤の代表例には安息香酸、コハク酸、乳酸、酢酸ナトリウムなどが挙げられる(第3頁左上欄第9行~第10行)。
 上記触媒液を製造する具体的な実施例1~4を見ると(第3頁左下欄第3行~第4頁右上欄第9行)、実施例1~2はニッケル触媒液の例、実施例3はコバルト触媒液の例、実施例4は銅触媒液の例である。
 このうち、ニッケル触媒液の実施例1では、硫酸ニッケルと、ゼラチン(分散剤)と、水酸化ホウ素ナトリウム(還元剤)と、次亜リン酸ナトリウムとを含むニッケル触媒液に、ABS樹脂を浸漬した後、無電解ニッケルメッキ液によりABS樹脂表面にニッケルメッキ皮膜を形成させているが、このニッケル触媒液には、錯化剤(即ち、コロイド安定用の処理剤)は含まれていない(第3頁左下欄第3行~右下欄第1行)。
 同じく、実施例2のニッケル触媒液にも、ニッケル塩と還元剤と次亜リン酸塩とは含まれるが、錯化剤(コロイド安定剤)は含まれない(第3頁右下欄第2行~第10行)。実施例4の銅触媒液にも、錯化剤は含まれない(第4頁左上欄第12行~第20行)。
 一方、実施例3のコバルト触媒液には、錯化剤(コロイド安定剤)として酢酸ナトリウムが含まれる。
Therefore, when performing electroless plating including nickel or nickel alloy plating, the prior art of imparting nickel catalyst nuclei to the object to be plated as a preliminary treatment is as follows.
(1) Patent Document 1
Regarding the catalyst solution for electroless plating instead of the noble metal catalyst solution, the catalyst solution contains a metal salt selected from nickel, copper, and cobalt, a dispersant selected from a nonionic surfactant, and a gelatin, and a mono. It contains a complexing agent selected from carboxylic acid, dicarboxylic acid, oxycarboxylic acid and salts thereof, a reducing agent such as boron hydride, and a stabilizer such as hypophosphite, and is adjusted to pH 1 to 10. (Scope of patent claim, paragraphs 1 to 7).
The salt content of the metal is 5 to 50 g / L (page 3, upper left column, line 18), and the content of the complexing agent is 10 to 50 g / L (page 3, upper left column, line 10). , Typical examples of complexing agents include benzoic acid, succinic acid, lactic acid, sodium acetate and the like (page 3, upper left column, lines 9 to 10).
Looking at specific Examples 1 to 4 for producing the above catalyst solution (page 3, lower left column, line 3 to page 4, upper right column, line 9), Examples 1 and 2 are examples of nickel catalyst solutions. Example 3 is an example of a cobalt catalyst solution, and Example 4 is an example of a copper catalyst solution.
Of these, in Example 1 of the nickel catalyst solution, the ABS resin is immersed in a nickel catalyst solution containing nickel sulfate, gelatin (dispersant), sodium boron hydroxide (reducing agent), and sodium hypophosphite. After that, a nickel plating film is formed on the surface of the ABS resin by an electroless nickel plating solution, but this nickel catalyst solution does not contain a complexing agent (that is, a treatment agent for stabilizing colloids) (No. 1). Page 3, lower left column, 3rd line to lower right column, 1st line).
Similarly, the nickel catalyst solution of Example 2 also contains a nickel salt, a reducing agent, and a hypophosphate, but does not contain a complexing agent (colloid stabilizer) (page 3, lower right column, second column). Lines to 10th line). The copper catalyst solution of Example 4 also does not contain a complexing agent (page 4, upper left column, lines 12 to 20).
On the other hand, the cobalt catalyst solution of Example 3 contains sodium acetate as a complexing agent (colloidal stabilizer).
(2)特許文献2
 シリコン基板を触媒液に接触させた後、無電解ニッケルメッキを施す工程を含む太陽電池の製造に関するもので、上記触媒液は、
(a)パラジウム、金、銀などの貴金属又はその化合物と、
(b)エチレングリコール、プロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などから選ばれた増粘剤と、
(c)水と
を含有する。
 従って、触媒液の触媒核となる金属は、貴金属又はその化合物であり、ニッケルではない。
(2) Patent Document 2
The present invention relates to the manufacture of a solar cell including a step of subjecting a silicon substrate to a catalyst solution and then performing electroless nickel plating.
(A) Precious metals such as palladium, gold and silver or their compounds,
(B) Thickeners selected from ethylene glycol, propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, etc.
(C) Contains water.
Therefore, the metal that becomes the catalyst nucleus of the catalyst liquid is a noble metal or a compound thereof, not nickel.
(3)特許文献3
 ガラス繊維強化エポキシ樹脂板を被メッキ物として、
(a)上記被メッキ物を表面調整液(最初にカチオン性界面活性剤、次いでアニオン性界面活性剤)で処理し、
(b)ポリエチレンイミン及びポリエチレングリコールの結合物(即ち、保護剤)と、銀ナノ粒子とを主成分とする触媒液(銀含有構造体の水性分散液)で当該被メッキ物を処理した後、
(c)触媒付与された被メッキ物に、銅、ニッケル、或いは金やパラジウム等の貴金属の無電解メッキ液を用いて当該金属皮膜を形成する
ことが開示されている(請求項1、3~5、段落[0010][0045])。
 当該発明では、特定構造の上記保護剤(工程(b)参照)で保護されてなる銀ナノ粒子の水性分散液を用いると共に、予め特定の表面調整液(工程(a)参照)で処理することで、被メッキ物に優れた触媒活性を付与できるとしている(段落[0010])。
 従って、触媒液の触媒核となる金属は銀であり、ニッケルではない(請求項1)。また、実施例1~3において、触媒付与後に形成される無電解メッキ皮膜は全て銅皮膜であり、ニッケル皮膜の例はない(段落[0055]~[0060])。
(3) Patent Document 3
Using a glass fiber reinforced epoxy resin plate as the object to be plated
(A) The object to be plated is treated with a surface conditioning liquid (first a cationic surfactant, then an anionic surfactant), and then treated.
(B) After treating the object to be plated with a catalyst solution (an aqueous dispersion of a silver-containing structure) containing a bond of polyethyleneimine and polyethylene glycol (that is, a protective agent) and silver nanoparticles as main components.
(C) It is disclosed that the metal film is formed on the catalyst-imparted object to be plated by using an electroless plating solution of a noble metal such as copper, nickel, or gold or palladium (claims 1, 3 to 3). 5, paragraphs [0010] [0045]).
In the present invention, an aqueous dispersion of silver nanoparticles protected by the above-mentioned protective agent having a specific structure (see step (b)) is used, and is treated in advance with a specific surface conditioning solution (see step (a)). Therefore, it is stated that excellent catalytic activity can be imparted to the object to be plated (paragraph [0010]).
Therefore, the metal that serves as the catalyst nucleus of the catalyst solution is silver, not nickel (claim 1). Further, in Examples 1 to 3, the electroless plating films formed after the catalyst application are all copper films, and there are no examples of nickel films (paragraphs [0055] to [0060]).
特開平02-093076号公報Japanese Unexamined Patent Publication No. 02-093076 特開2011-168889号公報Japanese Unexamined Patent Publication No. 2011-16889 特開2012-255182号公報Japanese Unexamined Patent Publication No. 2012-255182
 上記特許文献1の実施例1~2にはニッケル触媒液が開示されるが、ニッケル塩と還元剤と次亜リン酸塩とを主成分とするもので、ニッケル触媒液の経時安定性について充分でないという問題点がある。
 上記特許文献2では、無電解メッキ液としてニッケル液が開示されるものの、無電解メッキの前工程である触媒付与工程で用いる触媒液は、パラジウム、金、銀などの貴金属又はその化合物を触媒核とするもので、ニッケルを触媒核とするものではない。
 同じく、特許文献3でも、無電解メッキ液としてニッケル液が開示されるものの、具体的な実施例は無電解銅メッキのみであるうえに、触媒付与工程で用いる触媒液は銀を触媒核とするもので、ニッケルを触媒核とするものではない。
Although the nickel catalyst solution is disclosed in Examples 1 and 2 of Patent Document 1, it contains a nickel salt, a reducing agent and a hypophosphate as main components, and the stability of the nickel catalyst solution with time is sufficient. There is a problem that it is not.
Although the nickel solution is disclosed as the electroless plating solution in the above Patent Document 2, the catalyst solution used in the catalyst applying step, which is a pre-step of the electroless plating, uses a noble metal such as palladium, gold, or silver or a compound thereof as a catalyst nucleus. However, nickel is not used as the catalyst nucleus.
Similarly, in Patent Document 3, although a nickel solution is disclosed as an electroless plating solution, a specific example is only electroless copper plating, and the catalyst solution used in the catalyst application step uses silver as a catalyst nucleus. It does not use nickel as a catalyst nucleus.
 本発明は、ニッケル触媒液の経時安定性を向上させるとともに、触媒付与した非導電性基板に無電解ニッケル又はニッケル合金メッキを施して、均一性に優れたニッケル又はニッケル合金皮膜を得ることを技術的課題とする。 The present invention is a technique for improving the stability of a nickel catalyst solution over time and applying electroless nickel or nickel alloy plating to a non-conductive substrate to which a catalyst is applied to obtain a nickel or nickel alloy film having excellent uniformity. Make it a target issue.
 本出願人は、先に、特開2016-056421号公報(以下、基準発明という)で、無電解ニッケル又はニッケル合金メッキを施す非導電性基板に予め接触させて触媒付与を行うためのニッケル触媒液として、
(A)可溶性ニッケル塩と、
(B)還元剤と、
(C)モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、及びポリカルボン酸類よりなる群から選ばれた少なくとも一種のコロイド安定剤と
を含有する、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液を提案している(請求項1参照)。
 この基準発明では、可溶性ニッケル塩に対する錯化作用を有するオキシカルボン酸類などの特定のコロイド安定剤を含有させることで、ニッケルコロイド触媒液の経時安定性を向上させることができ、また、上記コロイド安定剤や還元剤などの含有量を特定すると、ニッケルコロイド触媒液の経時安定性をさらに向上させることができる。
The applicant has previously referred to Japanese Patent Application Laid-Open No. 2016-056421 (hereinafter referred to as a reference invention) to provide a nickel catalyst for preliminarily contacting an electroless nickel or a non-conductive substrate to be plated with a nickel alloy to impart a catalyst. As a liquid
(A) Soluble nickel salt and
(B) Reducing agent and
(C) A nickel colloid catalyst solution for electroless nickel or nickel alloy plating containing at least one colloid stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids. (See claim 1).
In this reference invention, the stability of the nickel colloidal catalyst solution over time can be improved by containing a specific colloidal stabilizer such as oxycarboxylic acids having a complexing action on the soluble nickel salt, and the colloidal stability is described above. By specifying the content of the agent, reducing agent, etc., the stability of the nickel colloidal catalyst solution over time can be further improved.
 一方、上記必須成分(A)~(C)を含むニッケルコロイド触媒液に、さらに所定の水溶性ポリマーを加重的に含有させると、コロイド分散性が向上し、無電解ニッケル又はニッケル合金メッキによって、優れた均一性を有し、ムラのないニッケル系皮膜の形成が期待できることも開示されている(基準発明の段落[0031]参照)。
 この水溶性ポリマーは、基本的に合成系水溶性ポリマーが好ましいが、天然由来の水溶性ポリマー、或いは、セルロース誘導体のような半合成系ポリマーであっても良い。
 上記合成系水溶性ポリマーとしては、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAM)、ポリエチレンイミン(PEI)、ポリアクリル酸塩などが列挙される(基準発明の段落[0031]参照)。
On the other hand, when a predetermined water-soluble polymer is further added to the nickel colloid catalyst solution containing the essential components (A) to (C) in a weighted manner, the colloidal dispersibility is improved, and electroless nickel or nickel alloy plating is used. It is also disclosed that a nickel-based film having excellent uniformity can be expected to be formed evenly (see paragraph [0031] of the reference invention).
The water-soluble polymer is basically preferably a synthetic water-soluble polymer, but may be a naturally-derived water-soluble polymer or a semi-synthetic polymer such as a cellulose derivative.
Examples of the synthetic water-soluble polymer include polyethylene glycol (PEG), polypropylene glycol (PPG), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM), polyethyleneimine (PEI), and polyacrylate. Are listed (see paragraph [0031] of the reference invention).
 本発明者らは、上記基準発明に基づいて、必須成分(A)~(C)に、さらに水溶性ポリマーを加えた4成分からなるニッケルコロイド触媒液並びにその経時安定性について鋭意研究を行った。当該鋭意研究の過程で、所定の合成系水溶性ポリマーを使用することを条件として、基準発明の必須成分であるコロイド安定剤(C)を配合せずに、可溶性ニッケル塩(A)及び還元剤(B)に所定の合成系水溶性ポリマー(D)を組み合わせたコロイド触媒液は、
・成分(A)~(C)を必須とする基準発明のニッケルコロイド触媒液と同レベルの経時安定性を確保できること、
・触媒付与した非導電性基板に無電解ニッケル又はニッケル合金メッキを施すことによって、均一性に優れたニッケル又はニッケル合金皮膜が得られること、
・所定の合成系水溶性ポリマーは、上記基準発明にて開示された範囲のポリマーとは異なり、開示された範囲の一部のポリマーを新たなポリマーで置き換える必要があること
を、本発明者らは新たに見出して、本発明を完成した。
Based on the above-mentioned reference invention, the present inventors have diligently studied a nickel colloidal catalyst solution consisting of four components, which is an essential component (A) to (C) plus a water-soluble polymer, and its stability over time. .. In the process of the diligent research, the soluble nickel salt (A) and the reducing agent were added without adding the colloidal stabilizer (C), which is an essential component of the standard invention, provided that a predetermined synthetic water-soluble polymer was used. The colloidal catalyst solution in which the predetermined synthetic water-soluble polymer (D) is combined with (B) is
-It is possible to secure the same level of stability over time as the nickel colloidal catalyst solution of the standard invention that requires components (A) to (C).
-By applying electroless nickel or nickel alloy plating to the non-conductive substrate to which the catalyst is applied, a nickel or nickel alloy film with excellent uniformity can be obtained.
-The present inventors have stated that the predetermined synthetic water-soluble polymer is different from the polymer in the range disclosed in the above standard invention, and it is necessary to replace a part of the polymer in the disclosed range with a new polymer. Newly found and completed the present invention.
 即ち、本発明1は、無電解ニッケル又はニッケル合金メッキを施す非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、
 (A)可溶性ニッケル塩と、
 (B)還元剤と、
 (D)ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアミン類(PA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーと
を含有しており、
 上記合成系水溶性ポリマー(D)の含有量が、上記ニッケルコロイド触媒液に対して0.5g/L~300g/Lであることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。
That is, the present invention 1 is a nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
(A) Soluble nickel salt and
(B) Reducing agent and
(D) Select from polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and polyacrylamides (PAMs). Contains at least one synthetic water-soluble polymer
The content of the synthetic water-soluble polymer (D) is 0.5 g / L to 300 g / L with respect to the nickel colloid catalyst solution, and the nickel colloid for electroless nickel or nickel alloy plating is characterized. It is a catalyst solution.
 本発明2は、上記本発明1において、上記合成系水溶性ポリマー(D)が、ポリエチレンイミンのアルキレンオキシド付加物を含むポリエチレンイミン類(PEI類);ジアリルアミンポリマーを含むポリアミン類(PA類);並びにアルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミド、及びポリイソプロピルアクリルアミドを含むポリアクリルアミド類(PAM類)の少なくとも一種であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。 In the present invention 2, the synthetic water-soluble polymer (D) in the present invention 1 is polyethyleneimines (PEIs) containing an alkylene oxide adduct of polyethyleneimine; polyamines (PAs) containing a diallylamine polymer; A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is at least one of polyacrylamides (PAMs) containing aldehyde-modified polyacrylamide, methylolpolyacrylamide, and polyisopropylacrylamide.
 本発明3は、上記本発明1又は2において、上記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、及び還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。 In the present invention 3, in the above invention 1 or 2, the reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyvalent. A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is at least one selected from the group consisting of naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfin acids, and reducing saccharides.
 本発明4は、
 (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程と、
 (b)上記本発明1~3のいずれかのニッケルコロイド触媒液に、吸着促進された非導電性基板を接触させて、該非導電性基板の表面にニッケルコロイド粒子を吸着させる触媒付与工程と、
 (c)触媒付与された非導電性基板上に、無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程と
からなることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。
The present invention 4
(A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion process to make
(B) A catalyst applying step of bringing the adsorption-promoted non-conductive substrate into contact with the nickel colloid catalyst solution according to any one of the present inventions 1 to 3 and adsorbing nickel colloid particles on the surface of the non-conductive substrate.
(C) Electroless nickel or nickel-phosphorus, which comprises an electroless plating step of forming a nickel or nickel alloy film on a catalyst-imposed non-conductive substrate using an electroless nickel or nickel alloy plating solution. This is a nickel alloy plating method.
 本発明5は、上記本発明4において、
 先ず、エッチング処理液に非導電性基板を接触させて、該非導電性基板の表面を粗面化するエッチング処理工程(p)を施すとともに、
 該非導電性基板に対して、上記エッチング処理工程(p)の次に上記吸着促進工程(a)を施し、その後、上記触媒付与工程(b)及び上記無電解メッキ工程(c)を順次施す
ことを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。
The present invention 5 is the above-mentioned invention 4.
First, an etching treatment step (p) is performed in which the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate, and the surface is roughened.
The non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence. This is an electroless nickel or nickel alloy plating method.
 本発明6は、上記本発明4又は5において、上記吸着促進工程(a)で用いる吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。 The present invention 6 is characterized in that the adsorption accelerator used in the adsorption promoting step (a) in the present invention 4 or 5 is a cationic surfactant and / or an amphoteric surfactant. Alternatively, it is a nickel alloy plating method.
 本発明7は、上記本発明4~6のいずれかの無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成することを特徴とする、ニッケル又はニッケル合金メッキ基板の製造方法である。 The present invention 7 is characterized in that a nickel or nickel alloy film is formed on a non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of the above 4 to 6 of the present invention. This is a method for manufacturing a substrate.
 本発明のニッケルコロイド触媒液は、上記基準発明のコロイド安定剤に替えて、所定の合成系水溶性ポリマーを含有しているので、経時安定性が効果的に促進され得る。
 具体的には、基準発明では、コロイド安定剤を用いることでニッケルコロイド触媒液の経時安定性を向上させているが、本発明のニッケルコロイド触媒液では、コロイド安定剤を使用せず、所定の合成系水溶性ポリマーで代替することで、基準発明と同レベルの経時安定性を確保できる。
 この結果、触媒付与後の無電解ニッケル又はニッケル合金メッキによって得られる無電解ニッケル又はニッケル合金皮膜の性状を、有効に改善できる。
Since the nickel colloidal catalyst solution of the present invention contains a predetermined synthetic water-soluble polymer in place of the colloidal stabilizer of the above standard invention, stability over time can be effectively promoted.
Specifically, in the reference invention, the stability over time of the nickel colloidal catalyst solution is improved by using a colloidal stabilizer, but the nickel colloidal catalyst solution of the present invention does not use a colloidal stabilizer and is predetermined. By substituting with a synthetic water-soluble polymer, the same level of stability over time as the standard invention can be ensured.
As a result, the properties of the electroless nickel or nickel alloy film obtained by electroless nickel or nickel alloy plating after the catalyst application can be effectively improved.
 なお、前述したように、本発明に用いる合成系水溶性ポリマーが基準発明で開示した合成系水溶性ポリマーを包含するものではなく、本発明のポリマーが基準発明のポリマーに包含されるものでもない。両ポリマーは適用範囲が重複しながらも、本発明のポリマーには、基準発明には開示されない、言わばズレが存在する。
 例えば、ポリエチレンイミンのアルキレンオキシド付加物及びジアリルアミンポリマーは本発明の好ましいポリマーである。一方、基準発明の明細書(段落[0031])には、ポリエチレンイミン(PEI)の用語が記載されているが、これはPEIのホモポリマーを意味しており、PEIの共重合体や付加物まで包含するものではない。また、基準発明の明細書(段落[0031])には、ジアリルアミンポリマーが属するポリアミン類(PA類)やポリビニルイミダゾール類(PVI類)の記載はない。よって、例えばこれらの合成系水溶性ポリマーが基準発明に開示されないポリマーである。
As described above, the synthetic water-soluble polymer used in the present invention does not include the synthetic water-soluble polymer disclosed in the reference invention, and the polymer of the present invention is not included in the polymer of the reference invention. .. Although the scope of application of both polymers overlaps, the polymer of the present invention has a gap, so to speak, which is not disclosed in the reference invention.
For example, the alkylene oxide adduct of polyethyleneimine and the diallylamine polymer are preferred polymers of the present invention. On the other hand, the specification of the reference invention (paragraph [0031]) describes the term polyethyleneimine (PEI), which means a homopolymer of PEI, and a copolymer or adduct of PEI. Does not include. Further, the specification of the reference invention (paragraph [0031]) does not describe polyamines (PAs) and polyvinylimidazoles (PVIs) to which the diallylamine polymer belongs. Therefore, for example, these synthetic water-soluble polymers are polymers not disclosed in the reference invention.
 本発明では、非導電性基板にニッケルコロイド粒子を吸着させて触媒付与した後、無電解ニッケル又はニッケル合金メッキを施すことを基本原理とするが、この触媒付与の前処理として、非導電性基板を界面活性剤である吸着促進剤の含有液に接触させる吸着促進処理を加重的に施す。すなわち、本発明では、吸着促進工程、触媒付与工程、及び無電解ニッケル又はニッケル合金メッキ工程を順次行うことにより、触媒付与時の触媒活性を強化し、無電解メッキにより析出するニッケル又はニッケル合金皮膜の均一性を改善し、且つ、皮膜のムラ発生を良好に防止できる。 In the present invention, the basic principle is that nickel colloidal particles are adsorbed on a non-conductive substrate to apply a catalyst, and then electroless nickel or nickel alloy plating is applied. As a pretreatment for applying the catalyst, the non-conductive substrate is applied. Is weighted to be subjected to an adsorption promotion treatment in which the mixture is brought into contact with a liquid containing an adsorption accelerator, which is a surfactant. That is, in the present invention, the adsorption promotion step, the catalyst applying step, and the electroless nickel or nickel alloy plating step are sequentially performed to enhance the catalytic activity at the time of applying the catalyst, and the nickel or nickel alloy film precipitated by the electroless plating. It is possible to improve the uniformity of the film and satisfactorily prevent the occurrence of unevenness of the film.
 本発明は、第一に、非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、(A)可溶性ニッケル塩と、(B)還元剤と、(D)所定の合成系水溶性ポリマーとを含有し、当該合成系水溶性ポリマー(D)を触媒液に対して所定量で含有する、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である(本発明1に相当)。また本発明は、第二に、上記ニッケルコロイド触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法であって、予め、非導電性基板を界面活性剤の含有液で吸着促進処理し、次いで、当該ニッケルコロイド触媒液により触媒付与した後に、無電解メッキを行う方法である(本発明4に相当)。さらに本発明は、第三に、上記無電解メッキ方法によってニッケル又はニッケル合金皮膜を形成する、ニッケル又はニッケル合金基板の製造方法である(本発明7に相当)。 The present invention is firstly a nickel colloidal catalyst solution for bringing a non-conductive substrate into contact with each other to impart a catalyst to the non-conductive substrate, wherein (A) a soluble nickel salt and (B) a reducing agent are used. , (D) A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which contains a predetermined synthetic water-soluble polymer and a predetermined amount of the synthetic water-soluble polymer (D) with respect to the catalyst solution. (Corresponding to the present invention 1). The present invention is secondly an electroless nickel or nickel alloy plating method using the nickel colloid catalyst solution, wherein the non-conductive substrate is previously subjected to adsorption promotion treatment with a surfactant-containing solution, and then the non-conductive substrate is subjected to adsorption promotion treatment. This is a method of performing electroless plating after applying a catalyst with the nickel colloid catalyst solution (corresponding to 4 of the present invention). Furthermore, the present invention is thirdly a method for producing a nickel or nickel alloy substrate (corresponding to the present invention 7) in which a nickel or nickel alloy film is formed by the electroless plating method.
 上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート(PC)樹脂、ポリアミド(PA)樹脂、ポリスチレン(PS)樹脂、ポリエステル樹脂(例えば、ポリブチレンテレフタレート(PBT)樹脂など)、ABS樹脂、PET樹脂、及びこれらのポリマーアロイ(例えば、PC/ABS、PBT/ABS、PA/ABS、PC/PS)などの樹脂基板を初め、ガラス基板、セラミックス基板などをいう。 The non-conductive substrate includes glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate (PC) resin, polyamide (PA) resin, polystyrene (PS) resin, and polyester resin (for example, polybutylene terephthalate (for example, polybutylene terephthalate). PBT) resin, etc.), ABS resin, PET resin, and resin substrates such as these polymer alloys (eg, PC / ABS, PBT / ABS, PA / ABS, PC / PS), glass substrates, ceramics substrates, etc. say.
 上記本発明1のニッケルコロイド触媒液の基本組成は、(A)可溶性ニッケル塩、(B)還元剤、及び(D)合成系水溶性ポリマーであり、本発明1は、当該合成系水溶性ポリマー(D)を必須成分とし、基準発明で用いられたコロイド安定剤(C)を必須成分としない点で、基準発明と異なる。
 上記可溶性ニッケル塩(A)は、水溶液中でニッケルイオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。具体的には、硫酸ニッケル、酸化ニッケル、塩化ニッケル、硫酸ニッケルアンモニウム、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、スルファミン酸ニッケル、或いは有機スルホン酸やカルボン酸のニッケル塩などが挙げられる。
The basic composition of the nickel colloid catalyst solution of the present invention 1 is (A) a soluble nickel salt, (B) a reducing agent, and (D) a synthetic water-soluble polymer, and the present invention 1 is the synthetic water-soluble polymer. It differs from the standard invention in that (D) is an essential component and the colloid stabilizer (C) used in the standard invention is not an essential component.
As the soluble nickel salt (A), any soluble salt that generates nickel ions in an aqueous solution can be used, there is no particular limitation, and the poorly soluble salt is not excluded. Specific examples thereof include nickel sulfate, nickel oxide, nickel chloride, nickel ammonium sulfate, nickel acetate, nickel nitrate, nickel carbonate, nickel sulfamate, and nickel salts of organic sulfonic acid and carboxylic acid.
 上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、還元糖類などが挙げられる。
 水素化ホウ素化合物は、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどである。アミンボラン類は、ジメチルアミンボラン、ジエチルアミンボランなどである。アルデヒド類は、ホルムアルデヒド、グリオキシル酸又はその塩などである。多価フェノール類は、カテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などである。フェノールスルホン酸類は、フェノールスルホン酸、クレゾールスルホン酸又はその塩などである。還元糖類は、グルコース、フルクトースなどである。
Examples of the reducing agent (B) include boron hydride compounds, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, and sulfin. Acids, reducing sugars and the like can be mentioned.
The boron hydride compound includes sodium borohydride, potassium borohydride and the like. Amineboranes include dimethylamineborane and diethylamineborane. Aldehydes include formaldehyde, glyoxylic acid or salts thereof. Polyphenols include catechol, hydroquinone, resorcinol, pyrogallol, fluoroglucin, gallic acid and the like. Phenolic sulfonic acids include phenol sulfonic acid, cresol sulfonic acid or a salt thereof. Reducing saccharides include glucose, fructose and the like.
 上記合成系水溶性ポリマー(D)は、基準発明のコロイド安定剤(C)と同様に、触媒液の経時安定性を担保する機能を果たすものである。
 この場合、当該合成系水溶性ポリマー(D)の触媒液に対する含有量は、後述の適正範囲内に設定する必要がある(請求項1参照)。
 合成系水溶性ポリマー(D)は、ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアミン類(PA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーである。
 上記合成系水溶性ポリマー(D)には、ゼラチン、澱粉などの天然由来の水溶性ポリマー、或いは、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)などのセルロース誘導体といった半合成系ポリマーは含まれない。但し、本発明において、合成系水溶性ポリマー(D)と、当該天然由来の水溶性ポリマー及び/又は半合成系ポリマーとを併用することは、排除されない。
 上記ポリビニルピロリドン類(PVP類)は、ポリビニルピロリドンのホモポリマー、並びに、ポリビニルピロリドンにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を付加したポリマーなどの、ポリビニルピロリドンのアルキレンオキシド付加物を含む。
 上記ポリエチレンイミン類(PEI類)は、ポリエチレンイミンのホモポリマー、並びに、ポリエチレンイミンにエチレンオキシド及び/又はプロピレンオキシドを付加したポリマーなどの、ポリエチレンイミンのアルキレンオキシド付加物を含む。
 上記ポリアミン類(PA類)は、ジアリルアミンポリマーが基本であり、具体的には、ジアルキルアンモニウムクロリド重合体、ジアリルジメチルアンモニウムクロリド・二酸化硫黄共重合体、ジアリルメチルエチルアンモニウムエチルサルフェート重合体、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体などである。
 上記ポリビニルイミダゾール類(PVI類)は、ポリビニルイミダゾールのホモポリマー、並びに、ポリビニルイミダゾールにエチレンオキシド及び/又はプロピレンオキシドを付加したポリマーなどの、ポリビニルイミダゾールのアルキレンオキシド付加物を含む。
 上記ポリアクリルアミド類(PAM類)は、アクリルアミドのホモポリマー、アルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミド、ポリイソプロピルアクリルアミドなどを初め、アクリルアミドにアクリル酸、メタクリル酸などの親水性ポリマーなどを共重合したポリマーを含む。但し、上記ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体は、ジアリルアミンとアクリルアミドとの共重合体に分類される。
 上記合成系水溶性ポリマー(D)としては、ポリビニルピロリドン類(PVP類)、ポリアクリルアミド類(PAM類)、ポリエチレンイミン類(PEI類)、及びポリアミン類(PA類)が好ましく、特に、PEIのエチレンオキシド付加物などのPEIのアルキレンオキシド付加物を含むPEI類;ジアリルアミンポリマーを含むPA類;並びにアルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミド、及びポリイソプロピルアクリルアミドを含むPAM類の少なくとも一種が好ましい。
The synthetic water-soluble polymer (D) has a function of ensuring the stability of the catalyst solution over time, similarly to the colloidal stabilizer (C) of the reference invention.
In this case, the content of the synthetic water-soluble polymer (D) in the catalyst solution needs to be set within an appropriate range described later (see claim 1).
Synthetic water-soluble polymers (D) include polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and polyacrylamide. At least one synthetic water-soluble polymer selected from the classes (PAGEs).
The synthetic water-soluble polymer (D) does not include naturally-derived water-soluble polymers such as gelatin and starch, or semi-synthetic polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC) and methyl cellulose (MC). However, in the present invention, the combined use of the synthetic water-soluble polymer (D) with the naturally-derived water-soluble polymer and / or semi-synthetic polymer is not excluded.
The polyvinylpyrrolidones (PVPs) include a homopolymer of polyvinylpyrrolidone and an alkylene oxide adduct of polyvinylpyrrolidone such as a polymer obtained by adding ethylene oxide (EO) and / or propylene oxide (PO) to polyvinylpyrrolidone.
The above-mentioned polyethyleneimines (PEIs) include homopolymers of polyethyleneimine and alkylene oxide adducts of polyethyleneimine such as polymers obtained by adding ethylene oxide and / or propylene oxide to polyethyleneimine.
The polyamines (PAs) are basically diallylamine polymers, and specifically, dialkylammonium chloride polymer, diallyldimethylammonium chloride / sulfur dioxide copolymer, diallylmethylethylammonium ethylsulfate polymer, and diallyldimethylammonium. Chloride-acrylamide copolymer and the like.
The polyvinyl imidazoles (PVIs) include homopolymers of polyvinyl imidazole and alkylene oxide adducts of polyvinyl imidazole such as polymers in which ethylene oxide and / or propylene oxide are added to polyvinyl imidazole.
The polyacrylamides (PAMs) include acrylamide homopolymers, aldehyde-modified polyacrylamides, methylolpolyacrylamides, polyisopropylacrylamides, and other polymers obtained by copolymerizing acrylamide with hydrophilic polymers such as acrylic acid and methacrylic acid. include. However, the diallyldimethylammonium chloride / acrylamide copolymer is classified as a copolymer of diallylamine and acrylamide.
As the synthetic water-soluble polymer (D), polyvinylpyrrolidones (PVPs), polyacrylamides (PAMs), polyethyleneimines (PEIs), and polyamines (PAs) are preferable, and PEI is particularly preferable. PEIs containing alkylene oxide adducts of PEI such as ethylene oxide adducts; PAs containing diallylamine polymers; and at least one of PAMs containing aldehyde-modified polyacrylamide, methylolpolyacrylamide, and polyisopropylacrylamide are preferred.
 また、本発明のニッケルコロイド触媒液には、必要に応じて、触媒核となる微細金属の分散性を増すために、界面活性剤を含有させることができる。
 当該界面活性剤は、ノニオン系、カチオン系、アニオン系、或いは両性の各種界面活性剤を選択できる。
 上記ノニオン系界面活性剤としては、C1~C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1~C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1~C25アルキルナフトール、C1~C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C1~C22脂肪族アミン、C1~C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2~300モル付加縮合させたものや、C1~C25アルコキシル化リン酸(塩)などが挙げられる。
 上記カチオン系界面活性剤としては、第4級アンモニウム塩、或いはピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
 上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。
 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。また、エチレンオキシド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化、或いはスルホン酸化付加物も使用できる。
Further, the nickel colloid catalyst solution of the present invention may contain a surfactant, if necessary, in order to increase the dispersibility of the fine metal serving as the catalyst nucleus.
As the surfactant, various nonionic, cationic, anionic, or amphoteric surfactants can be selected.
Examples of the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenols, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, and C1 to C25 alkoxylated phosphate (salt). ), Sorbitane ester, polyalkylene glycol, C1 to C22 aliphatic amine, C1 to C22 aliphatic amide, etc. with 2 to 300 mol of ethylene oxide (EO) and / or propylene oxide (PO) added and condensed, or C1 to Examples thereof include C25 alkoxylated phosphate (salt).
Examples of the cationic surfactant include a quaternary ammonium salt or a pyridinium salt, and specifically, a lauryltrimethylammonium salt, a stearyltrimethylammonium salt, a lauryldimethylethylammonium salt, an octadecyldimethylethylammonium salt, and the like. Dimethylbenzyllaurylammonium salt, cetyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, dimethyldiphenylammonium salt, benzyldimethylphenylammonium salt, hexadecylpyridinium salt, laurylpyridinium salt, dodecylpyridinium Examples thereof include salts, stearylamine acetate, laurylamine acetate and octadecylamine acetate.
Examples of the anionic surfactant include alkyl sulfate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl phenyl ether sulfate, alkyl benzene sulfonate, {(mono, di, tri) alkyl} naphthalene sulfonate, and the like. Can be mentioned.
Examples of the amphoteric tenside agent include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Sulfation of the condensation product of ethylene oxide and / or propylene oxide with alkylamines or diamines, or sulfonated adducts can also be used.
 本発明1のニッケルコロイド触媒液において、上記可溶性ニッケル塩(A)は、単用又は併用でき、当該可溶性ニッケル塩(A)のニッケルコロイド触媒液に対する含有量は、0.001モル/L~1.0モル/Lが適しており、好ましくは0.002モル/L~0.5モル/L、より好ましくは0.0025モル/L~0.3モル/Lである。
 可溶性ニッケル塩(A)の含有量が適正量よりも少ないと、ニッケル又はニッケル合金皮膜の膜厚が不足したり、皮膜の均質性が低下する恐れがあり、逆に、溶解量などに応じて上限含有量は制限される。
 上記還元剤(B)は、単用又は併用でき、当該還元剤(B)のニッケルコロイド触媒液に対する含有量は、0.002モル/L~1.0モル/Lが適しており、好ましくは0.003モル/L~0.7モル/L、より好ましくは0.005モル/L~0.6モル/Lである。
 還元剤(B)の含有量が適正量よりも少ないと、ニッケル塩の還元作用が低下し、逆に、上限含有量は溶解量などで制限されるが、多過ぎると、無電解メッキで析出するニッケル又はニッケル合金皮膜の均質性が低下する恐れがある。
 上記合成系水溶性ポリマー(D)は、単用又は併用でき、当該合成系水溶性ポリマー(D)のニッケルコロイド触媒液に対する含有量は、0.5g/L~300g/Lであることが必須であり(請求項1参照)、好ましくは1g/L~200g/L、より好ましくは1g/L~100g/Lである。
 合成系水溶性ポリマー(D)の含有量が適正量よりも少ないと、ニッケルコロイド触媒液が経時安定性を損い、逆に、適正量よりも多いと、コロイドが過剰に安定してニッケルコロイド触媒液が触媒活性を失う。
In the nickel colloid catalyst solution of the present invention 1, the soluble nickel salt (A) can be used alone or in combination, and the content of the soluble nickel salt (A) in the nickel colloid catalyst solution is 0.001 mol / L to 1. 0.0 mol / L is suitable, preferably 0.002 mol / L to 0.5 mol / L, and more preferably 0.0025 mol / L to 0.3 mol / L.
If the content of the soluble nickel salt (A) is less than the appropriate amount, the film thickness of the nickel or nickel alloy film may be insufficient or the homogeneity of the film may decrease. The upper limit content is limited.
The reducing agent (B) can be used alone or in combination, and the content of the reducing agent (B) in the nickel colloid catalyst solution is preferably 0.002 mol / L to 1.0 mol / L, preferably. It is 0.003 mol / L to 0.7 mol / L, more preferably 0.005 mol / L to 0.6 mol / L.
If the content of the reducing agent (B) is less than the appropriate amount, the reducing action of the nickel salt is reduced, and conversely, the upper limit content is limited by the dissolved amount or the like, but if it is too large, it precipitates by electroless plating. There is a risk that the homogeneity of the nickel or nickel alloy film will decrease.
The synthetic water-soluble polymer (D) can be used alone or in combination, and the content of the synthetic water-soluble polymer (D) in the nickel colloid catalyst solution must be 0.5 g / L to 300 g / L. (See claim 1), preferably 1 g / L to 200 g / L, and more preferably 1 g / L to 100 g / L.
If the content of the synthetic water-soluble polymer (D) is less than the appropriate amount, the nickel colloid catalyst solution impairs the stability over time, and conversely, if it is more than the appropriate amount, the colloid becomes excessively stable and the nickel colloid is excessively stable. The catalytic solution loses catalytic activity.
 尚、本発明のニッケルコロイド触媒液には、基準発明のコロイド安定剤(C)が併用されていてもよい。
 上記コロイド安定剤(C)は、モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、アミノ酸類、及びポリカルボン酸類よりなる群から選ばれ、オキシカルボン酸類、アミノカルボン酸類、アミノ酸類、ポリカルボン酸類などが好ましい。
 上記オキシカルボン酸類には、クエン酸、酒石酸、リンゴ酸、グルコン酸、及びこれらの塩などが挙げられる。
 上記アミノカルボン酸類には、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、ニトリロ三酢酸、イミノジ酢酸、及びこれらの塩などが挙げられる。
 上記アミノ酸類としては、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、グリシン、及びこれらの塩などが挙げられる。
 上記ポリカルボン酸類としては、コハク酸、グルタル酸、アジピン酸、マレイン酸、イタコン酸、及びこれらの塩などが挙げられる。
The colloidal stabilizer (C) of the reference invention may be used in combination with the nickel colloidal catalyst solution of the present invention.
The colloidal stabilizer (C) is selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, amino acids, and polycarboxylic acids, and includes oxycarboxylic acids, aminocarboxylic acids, amino acids, polycarboxylic acids, and the like. Is preferable.
Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, and salts thereof.
Examples of the aminocarboxylic acids include diethylenetriamine pentaacetic acid, triethylenetetramine hexaacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, iminodiacetic acid, and salts thereof.
Examples of the amino acids include glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, glycine, and salts thereof.
Examples of the polycarboxylic acids include succinic acid, glutaric acid, adipic acid, maleic acid, itaconic acid, and salts thereof.
 本発明のニッケルコロイド触媒液は、水系、或いは親油性アルコールなどの有機溶媒系を問わない。
 水系の場合には、触媒液の溶媒は、水及び/又は親水性アルコールから選択される。
 また、当該触媒液のpHについては特に限定はないが、中性、弱酸性、弱アルカリ性などを選択することが好ましい。
The nickel colloidal catalyst solution of the present invention may be an aqueous system or an organic solvent system such as a lipophilic alcohol.
In the case of an aqueous system, the solvent of the catalyst solution is selected from water and / or hydrophilic alcohol.
The pH of the catalyst solution is not particularly limited, but it is preferable to select neutral, weakly acidic, weakly alkaline or the like.
 本発明のニッケルコロイド触媒液の調製手順としては、上記可溶性ニッケル塩(A)を含む溶液と、この溶液とは別に調製した上記還元剤(B)を含む溶液とを混合して、コロイド粒子を生成することが重要である。
 可溶性ニッケル塩(A)と還元剤(B)とを先に混合すると、ニッケルイオンが還元されて金属ニッケルが析出してしまい、合成系水溶性ポリマー(D)が触媒液中で有機的に機能しない恐れがあるからである。
 従って、当該触媒液を調製する際には、還元剤(B)からニッケルイオンに電子を円滑に供与させるため、還元剤(B)を含む溶液を、可溶性ニッケル塩(A)(及び合成系水溶性ポリマー(D))を含む溶液に、時間をかけて緩やかに滴下することを基本とする。例えば、5℃~50℃(好ましくは10℃~40℃)の還元剤(B)を含む溶液を、可溶性ニッケル塩(A)を含む溶液に滴下して、20分間~1200分間(好ましくは30分間~300分間)撹拌し、触媒液を調製する。尚、触媒液の調製では、可溶性ニッケル塩(A)の溶液を還元剤(B)の溶液に滴下することを排除するものではない。
 本発明のニッケルコロイド触媒液において、還元剤(B)の作用により可溶性ニッケル塩(A)から生じるニッケルコロイド粒子は、適した平均粒径が1nm~250nm、好ましくは1nm~120nm、より好ましくは1nm~100nmの微細粒子である。
 ニッケルコロイド粒子の平均粒径が250nm以下になると、ニッケルコロイド触媒液に非導電性基板を接触させた場合、ニッケルコロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着し、或いは引っ掛かるなどのアンカー効果により、基板表面にニッケルコロイド核の付与が促進されるものと推定できる。
As a procedure for preparing the nickel colloidal catalyst solution of the present invention, a solution containing the soluble nickel salt (A) and a solution containing the reducing agent (B) prepared separately from this solution are mixed to obtain colloidal particles. It is important to generate.
When the soluble nickel salt (A) and the reducing agent (B) are mixed first, nickel ions are reduced to precipitate metallic nickel, and the synthetic water-soluble polymer (D) functions organically in the catalyst solution. Because there is a risk of not doing it.
Therefore, when preparing the catalyst solution, in order to smoothly donate electrons from the reducing agent (B) to nickel ions, a solution containing the reducing agent (B) is mixed with the soluble nickel salt (A) (and synthetic water-soluble). Basically, it is gently added dropwise over time to a solution containing the sex polymer (D). For example, a solution containing the reducing agent (B) at 5 ° C. to 50 ° C. (preferably 10 ° C. to 40 ° C.) is added dropwise to the solution containing the soluble nickel salt (A) for 20 minutes to 1200 minutes (preferably 30 ° C.). Stir for 1 to 300 minutes to prepare the catalyst solution. The preparation of the catalyst solution does not exclude dropping the solution of the soluble nickel salt (A) into the solution of the reducing agent (B).
In the nickel colloid catalyst solution of the present invention, the nickel colloid particles produced from the soluble nickel salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, and more preferably 1 nm. It is a fine particle of ~ 100 nm.
When the average particle size of the nickel colloid particles is 250 nm or less, when the non-conductive substrate is brought into contact with the nickel colloid catalyst solution, the nickel colloid particles enter the dents on the fine uneven surface of the substrate and are densely adsorbed or caught. It can be presumed that the attachment of nickel colloidal nuclei to the surface of the substrate is promoted by the anchor effect such as.
 本発明4は、上記ニッケルコロイド触媒液を用いた無電解メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解ニッケル又はニッケル合金メッキ工程
 上記吸着促進工程(a)は、言わば、触媒付与工程(b)の前処理工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる工程である。非導電性基板を界面活性剤の含有液に接触させることで、基板の表面の濡れ性を高めて触媒活性を増強し、次の触媒付与工程(b)でのニッケルコロイド粒子の吸着を促進するものである。
 吸着促進工程(a)では、非導電性基板を吸着促進剤の含有液に接触させることが必要であるため、含有液に非導電性基板を浸漬させることが基本であるが、含有液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
The present invention 4 is an electroless plating method using the nickel colloidal catalyst solution, which is a combination of the following three steps in sequence.
(A) Adsorption promotion step (b) Catalyst application step (c) Electrolytic nickel or nickel alloy plating step The adsorption promotion step (a) is, so to speak, a pretreatment step of the catalyst application step (b), and is a nonionic surfactant. This is a step of bringing the non-conductive substrate into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of an activator, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. By bringing the non-conductive substrate into contact with the liquid containing the surfactant, the wettability of the surface of the substrate is enhanced, the catalytic activity is enhanced, and the adsorption of the nickel colloidal particles in the next catalyst application step (b) is promoted. It is a thing.
In the adsorption promotion step (a), since it is necessary to bring the non-conductive substrate into contact with the liquid containing the adsorption accelerator, it is basic to immerse the non-conductive substrate in the liquid containing the adsorbent. Treatment such as spraying on a non-conductive substrate or applying with a brush may be used.
 本発明6のように、吸着を促進する見地から、正電荷を帯びたカチオン系界面活性剤及び/又は両性界面活性剤が吸着促進剤として好適であり、カチオン系界面活性剤が特に好ましい。また、カチオン系界面活性剤に少量のノニオン系界面活性剤を併用すると、吸着促進効果がさらに増す。
 本発明1のニッケルコロイド触媒液において、可溶性ニッケル塩(A)に還元剤(B)を作用させて生じるニッケルコロイド粒子は、ゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン系界面活性剤の含有液で接触処理すると、非導電性基板がプラス電荷を帯び易く、次の触媒付与工程(b)におけるニッケルコロイド粒子の非導電性基板への吸着効率が上昇する。
 吸着促進工程(a)で用いる各界面活性剤の具体例は、上記本発明1のニッケルコロイド触媒液において述べた界面活性剤の通りである。
 界面活性剤である吸着促進剤の含有量は、好ましくは0.05g/L~100g/Lであり、より好ましくは0.5g/L~50g/Lである。当該吸着促進工程(a)において、処理温度は15℃~70℃程度、接触時間は0.5分間~20分間程度が好ましい。
 尚、本発明5のように、上記吸着促進工程(a)の前に、予備処理として、エッチング処理液に非導電性基板を接触させて、当該非導電性基板の表面を粗面化するエッチング処理工程(p)を行うことが好ましい。非導電性基板をエッチング処理液に接触させるには、エッチング処理液に非導電性基板を浸漬させることが基本であるが、エッチング処理液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
From the viewpoint of promoting adsorption as in the present invention 6, positively charged cationic surfactants and / or amphoteric surfactants are suitable as adsorption accelerators, and cationic surfactants are particularly preferable. Further, when a small amount of nonionic surfactant is used in combination with the cationic surfactant, the adsorption promoting effect is further increased.
In the nickel colloid catalyst solution of the present invention 1, the nickel colloid particles produced by allowing the reducing agent (B) to act on the soluble nickel salt (A) have a negative zeta potential. When the contact treatment is performed with the liquid containing the activator, the non-conductive substrate tends to be positively charged, and the adsorption efficiency of the nickel colloidal particles on the non-conductive substrate in the next catalyst application step (b) is increased.
Specific examples of each surfactant used in the adsorption promotion step (a) are as described in the above-mentioned nickel colloid catalyst solution of the present invention 1.
The content of the adsorption accelerator, which is a surfactant, is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L. In the adsorption promotion step (a), the treatment temperature is preferably about 15 ° C. to 70 ° C., and the contact time is preferably about 0.5 minutes to 20 minutes.
As in the case of the present invention 5, before the adsorption promotion step (a), as a preliminary treatment, the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate. It is preferable to carry out the treatment step (p). In order to bring the non-conductive substrate into contact with the etching treatment liquid, it is basic to immerse the non-conductive substrate in the etching treatment liquid, but the etching treatment liquid is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
 吸着促進工程(a)を終えた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
 触媒付与工程(b)では、上記ニッケルコロイド触媒液に非導電性基板を接触させて、非導電性基板の表面にニッケルコロイド粒子を吸着させる。
 当該ニッケルコロイド触媒液の液温は、好ましくは15℃~95℃、より好ましくは15℃~70℃であり、接触時間は0.1分間~20分間程度、pHは3~11であることが好ましい。
 触媒付与工程(b)では、非導電性基板をニッケルコロイド触媒液に接触させることが必要であるため、ニッケルコロイド触媒液に非導電性基板を浸漬させることが基本であるが、ニッケルコロイド触媒液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。浸漬処理に際しては、非導電性基板をニッケルコロイド触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行っても良い。
 また、当該触媒付与工程(b)と次の無電解メッキ工程(c)との間に、非導電性基板を酸溶液などの活性化溶液に接触させて洗浄処理する活性化工程(b-1)を付加することが好ましい。これにより、触媒活性を効果的に保持して、次の無電解メッキ工程(c)での皮膜形成を円滑に促進できる。非導電性基板を活性化溶液に接触させるには、活性化溶液に非導電性基板を浸漬させることが基本であるが、活性化溶液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
After the non-conductive substrate that has completed the adsorption promotion step (a) is washed with pure water, the process proceeds to the next catalyst application step (b) with or without drying.
In the catalyst application step (b), the non-conductive substrate is brought into contact with the nickel colloid catalyst liquid, and the nickel colloid particles are adsorbed on the surface of the non-conductive substrate.
The temperature of the nickel colloidal catalyst solution is preferably 15 ° C. to 95 ° C., more preferably 15 ° C. to 70 ° C., the contact time is about 0.1 to 20 minutes, and the pH is 3 to 11. preferable.
In the catalyst application step (b), since it is necessary to bring the non-conductive substrate into contact with the nickel colloid catalyst liquid, it is basic to immerse the non-conductive substrate in the nickel colloid catalyst liquid. Can be sprayed on a non-conductive substrate or applied with a brush. In the dipping treatment, it is sufficient to immerse the non-conductive substrate in the nickel colloid catalyst solution in a stationary state, but stirring or shaking may be performed.
Further, between the catalyst application step (b) and the next electroless plating step (c), an activation step (b-1) in which the non-conductive substrate is brought into contact with an activation solution such as an acid solution for cleaning treatment. ) Is preferably added. As a result, the catalytic activity can be effectively maintained, and film formation in the next electroless plating step (c) can be smoothly promoted. In order to bring the non-conductive substrate into contact with the activating solution, it is basic to immerse the non-conductive substrate in the activating solution, but the activating solution is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
 触媒付与工程(b)を終えた非導電性基板、或いは必要に応じて活性化工程(b-1)を終えた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、次の無電解メッキ工程(c)に移行する。
 当該無電解メッキ工程(c)における無電解ニッケル又はニッケル合金メッキは、従来と同様に処理すれば良く、特段の制約はない。無電解ニッケル又はニッケル合金メッキ液の液温は、一般に15℃~100℃、好ましくは20℃~90℃である。
 無電解ニッケル又はニッケル合金メッキ液を撹拌する際には、空気撹拌、急速液流撹拌、撹拌羽根等による機械撹拌等を採用することができる。
The non-conductive substrate that has completed the catalyst application step (b) or, if necessary, the non-conductive substrate that has completed the activation step (b-1) is washed with pure water and then dried or dried. Instead, the process proceeds to the next electroless plating step (c).
The electroless nickel or nickel alloy plating in the electroless plating step (c) may be treated in the same manner as in the conventional case, and there are no particular restrictions. The liquid temperature of the electroless nickel or nickel alloy plating solution is generally 15 ° C. to 100 ° C., preferably 20 ° C. to 90 ° C.
When stirring the electroless nickel or nickel alloy plating solution, air stirring, rapid liquid flow stirring, mechanical stirring using a stirring blade or the like can be adopted.
 無電解ニッケル又はニッケル合金メッキ液の組成に特段の制限はなく、公知のメッキ液を使用できる。
 上記無電解ニッケルメッキは、実質的にはニッケル-リンメッキ、或いはニッケル-ホウ素メッキである。
 上記無電解ニッケル合金メッキは、ニッケル-コバルト合金メッキ、ニッケル-スズ合金メッキ、ニッケル-スズ-亜鉛合金メッキなどである。
 公知の無電解ニッケルメッキ液は、基本的に可溶性ニッケル塩と還元剤とを主成分とし、これに必要に応じて錯化剤、pH調整剤、反応促進剤などの各種添加剤を含有する。
 無電解ニッケルメッキに際して、リン系の還元剤(例えば、次亜リン酸塩)を使用すると、ニッケル-リン皮膜が得られ、ホウ素系の還元剤(例えば、ジメチルアミンボラン)を使用すると、ニッケル-ホウ素皮膜が得られる。
 可溶性ニッケル塩については、上記ニッケルコロイド触媒液で述べた通りである。
 錯化剤については、上記ニッケルコロイド触媒液で述べたコロイド安定剤(C)と共通する部分もあり、具体的には、アンモニア、エチレンジアミン、ピロリン酸塩、クエン酸、リンゴ酸、乳酸、酢酸、エチレンジアミン四酢酸(EDTA)などである。
 一方、無電解ニッケル合金メッキ液の成分は、基本的に無電解ニッケルメッキ液の成分と共通するが、ニッケルと合金を形成する相手方の金属の可溶性塩を含むことになる。
 上述の通り、ニッケル合金には、ニッケル-コバルト合金、ニッケル-スズ合金、ニッケル-スズ-亜鉛合金などが例示されるため、相手方の金属の可溶性塩として、硫酸コバルト、塩化コバルト、有機スルホン酸のコバルト塩などの可溶性コバルト塩;硫酸第一スズ、塩化第一スズ、酸化第一スズ、スズ酸ナトリウム、ホウフッ化第一スズ、有機スルホン酸やスルホコハク酸の第一スズ塩などの可溶性第一スズ塩;塩化亜鉛、硫酸亜鉛、酸化亜鉛、有機スルホン酸やスルホコハク酸の亜鉛塩などの可溶性亜鉛塩などが挙げられる。
 尚、前述したように、本発明7は、当該無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成する、ニッケル又はニッケル合金メッキ基板の製造方法である。
The composition of the electroless nickel or nickel alloy plating solution is not particularly limited, and a known plating solution can be used.
The electroless nickel plating is substantially nickel-phosphorus plating or nickel-boron plating.
The electroless nickel alloy plating includes nickel-cobalt alloy plating, nickel-tin alloy plating, nickel-tin-zinc alloy plating and the like.
The known electroless nickel plating solution basically contains a soluble nickel salt and a reducing agent as main components, and if necessary, contains various additives such as a complexing agent, a pH adjuster, and a reaction accelerator.
In electroless nickel plating, a phosphorus-based reducing agent (for example, hypophosphate) is used to obtain a nickel-phosphorus film, and a boron-based reducing agent (for example, dimethylamine borane) is used to obtain nickel-phosphorus. A boron film is obtained.
The soluble nickel salt is as described in the above nickel colloid catalyst solution.
The complexing agent has some parts in common with the colloidal stabilizer (C) described in the above nickel colloid catalyst solution. Specifically, ammonia, ethylenediamine, pyrophosphate, citric acid, malic acid, lactic acid, acetic acid, Ethylenediaminetetraacetic acid (EDTA) and the like.
On the other hand, the components of the electroless nickel alloy plating solution are basically the same as the components of the electroless nickel plating solution, but include soluble salts of the metal of the other party that forms an alloy with nickel.
As described above, examples of the nickel alloy include a nickel-cobalt alloy, a nickel-tin alloy, a nickel-tin-zinc alloy, and the like. Soluble cobalt salts such as cobalt salts; soluble stannous salts such as stannous sulfate, stannous chloride, stannous oxide, sodium tinate, stannous borofluoride, and stannous salts of organic sulfonic acid and sulfosuccinic acid. Salts: Soluble zinc salts such as zinc chloride, zinc sulfate, zinc oxide, organic sulfonic acid and zinc salt of sulfosuccinic acid.
As described above, the present invention 7 is a method for manufacturing a nickel or nickel alloy plated substrate, which forms a nickel or nickel alloy film on the non-conductive substrate by the electroless nickel or nickel alloy plating method.
 以下、本発明の吸着促進剤の含有液、ニッケルコロイド触媒液、並びに無電解ニッケル又はニッケル合金メッキ液の調製を含む、無電解ニッケル又はニッケル合金メッキ方法の実施例を述べるとともに、ニッケルコロイド触媒液の経時安定性評価及びニッケル又はニッケル合金皮膜の外観評価の試験例を順次説明する。
 尚、本発明は、下記実施例及び試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, examples of the electroless nickel or nickel alloy plating method including the preparation of the adsorption accelerator-containing liquid, the nickel colloid catalyst liquid, and the electroless nickel or nickel alloy plating liquid of the present invention will be described, and the nickel colloid catalyst liquid will be described. Test examples of time-dependent stability evaluation and appearance evaluation of nickel or nickel alloy film will be described in sequence.
It should be noted that the present invention is not limited to the following examples and test examples, and it goes without saying that any modification can be made within the scope of the technical idea of the present invention.
≪無電解ニッケル又はニッケル合金メッキ方法の実施例≫
 冒頭で、本発明のニッケルコロイド触媒液は、基準発明を出発点としたことを述べたが、この基準発明に基づいて、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)とを含有するニッケルコロイド触媒液を「基準例」とすることで、ニッケルコロイド触媒液の経時安定性の見地から、本発明の実施例の有効性を相対的に評価した。
 従って、先ず、本発明の代表例として実施例1(下記の項目(1))を説明するとともに、実施例1との対比で上記基準発明に基づく基準例(下記の項目(0))を説明したうえで、実施例2~18(項目(2)~(18))を順次詳述する。
 下記実施例2~18のうち、実施例2~17は無電解ニッケルメッキ方法の実施例であり、実施例18は無電解ニッケル-コバルト合金メッキ方法の実施例である。
<< Examples of electroless nickel or nickel alloy plating method >>
At the beginning, it was stated that the nickel colloidal catalyst solution of the present invention started from the reference invention. Based on this reference invention, the soluble nickel salt (A), the reducing agent (B) and the colloidal stabilizer (C) ), The effectiveness of the examples of the present invention was relatively evaluated from the viewpoint of the stability of the nickel colloid catalyst solution over time by using the nickel colloid catalyst solution containing the above as a “reference example”.
Therefore, first, Example 1 (item (1) below) will be described as a representative example of the present invention, and a reference example based on the standard invention (item (0) below) will be described in comparison with Example 1. Then, Examples 2 to 18 (items (2) to (18)) will be described in detail in order.
Of the following Examples 2 to 18, Examples 2 to 17 are examples of the electroless nickel plating method, and Example 18 is an example of the electroless nickel-cobalt alloy plating method.
 実施例1は、後述するように、予備工程としてエッチング処理工程(p)を施した後、吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)の各工程を順次施した無電解ニッケルメッキ方法の実施例である。実施例1において、当該吸着促進工程(a)の吸着促進剤は、カチオン系界面活性剤とノニオン系界面活性剤との混合物であり、当該触媒付与工程(b)のニッケルコロイド触媒液は、還元剤(B)として水素化ホウ素化合物を含有し、合成系水溶性ポリマー(D)としてポリエチレンイミン(PEI)のエチレンオキシド(EO)付加物を含有している。
 実施例2~8は、実施例1を基本として、各々、所定の合成系水溶性ポリマー(D)として、PEIのEO付加物に替えて以下のポリマーを用いた例である。
実施例2:PEIのホモポリマー
実施例3:ジアリルアミンポリマー
実施例4:ポリビニルピロリドン(PVP)
実施例5:ポリビニルアルコール(PVA)
実施例6:ポリアクリルアミド(PAM)のホモポリマー
実施例7:アルデヒド変性PAM
実施例8:ポリビニルイミダゾール(PVI)のホモポリマー
 実施例9~11は、実施例1を基本として、各々、PEIのEO付加物の含有量やEO付加モル数(従って、重量平均分子量)を変更した例である。尚、実施例9では、実施例1の各工程のうち、活性化工程(b-1)を省略して、エッチング処理工程(p)→吸着促進工程(a)→触媒付与工程(b)→無電解メッキ工程(c)の各工程を順次施した例である。
 実施例12~14は、実施例3を基本として、各々、ジアリルアミンポリマーの重量平均分子量を変更した例である。但し、実施例14では、ジアリルアミンとアクリルアミドとの共重合体を用いた。
 実施例15は、実施例1を基本として、可溶性ニッケル塩(A)の含有量を変更した例である。
 実施例16は、実施例1を基本として、還元剤(B)の含有量を変更した例である。
 実施例17は、実施例1を基本として、合成系水溶性ポリマー(D)としてPEIのエチレンオキシド(EO)・プロピレンオキシド(PO)付加物を用いた例である。
In Example 1, as will be described later, after the etching treatment step (p) is performed as a preliminary step, the adsorption promotion step (a) → the catalyst application step (b) → the activation step (b-1) → electroless plating. This is an example of an electroless nickel plating method in which each step of step (c) is sequentially performed. In Example 1, the adsorption accelerator in the adsorption promoting step (a) is a mixture of a cationic surfactant and a nonionic surfactant, and the nickel colloid catalyst solution in the catalyst applying step (b) is reduced. The agent (B) contains a boron hydride compound, and the synthetic water-soluble polymer (D) contains an ethylene oxide (EO) adsorbent of polyethyleneimine (PEI).
Examples 2 to 8 are examples based on Example 1 in which the following polymers are used as predetermined synthetic water-soluble polymers (D) in place of the EO adduct of PEI.
Example 2: PEI homopolymer Example 3: Dialylamine polymer Example 4: Polyvinylpyrrolidone (PVP)
Example 5: Polyvinyl alcohol (PVA)
Example 6: Homopolymer of polyacrylamide (PAM) Example 7: Aldehyde-modified PAM
Example 8: Polyvinyl imidazole (PVI) homopolymer Examples 9 to 11 are based on Example 1, and the content of the EO adduct of PEI and the number of moles of EO added (hence, the weight average molecular weight) are changed, respectively. This is an example. In Example 9, of the steps of Example 1, the activation step (b-1) is omitted, and the etching process step (p) → adsorption promotion step (a) → catalyst application step (b) →. This is an example in which each step of the electroless plating step (c) is sequentially performed.
Examples 12 to 14 are examples in which the weight average molecular weight of the diallylamine polymer is changed based on Example 3. However, in Example 14, a copolymer of diallylamine and acrylamide was used.
Example 15 is an example in which the content of the soluble nickel salt (A) is changed based on Example 1.
Example 16 is an example in which the content of the reducing agent (B) is changed based on Example 1.
Example 17 is an example in which an ethylene oxide (EO) / propylene oxide (PO) adduct of PEI is used as the synthetic water-soluble polymer (D) based on Example 1.
 また、上述の通り、実施例18は、無電解ニッケルメッキに替えて無電解ニッケル-コバルト合金メッキを行った例であり、予備工程としてエッチング処理工程(p)を施した後、吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)の各工程を順次施した。これらエッチング処理工程(p)、吸着促進工程(a)、触媒付与工程(b)、及び活性化工程(b-1)は、実施例1を基本とした。 Further, as described above, Example 18 is an example in which electroless nickel-cobalt alloy plating is performed instead of electroless nickel plating, and after performing an etching treatment step (p) as a preliminary step, an adsorption promotion step (adsorption promotion step). Each step of a) → catalyst application step (b) → activation step (b-1) → electroless plating step (c) was sequentially performed. The etching treatment step (p), the adsorption promotion step (a), the catalyst application step (b), and the activation step (b-1) were based on Example 1.
 一方、下記比較例1~4は、各々次の通りである。
比較例1:本発明に用いる合成系水溶性ポリマー(D)に替えて、天然由来の水溶性ポリマーを用いた例
比較例2:本発明で規定の合成系水溶性ポリマー(D)以外の合成系水溶性ポリマー(ポリエチレングリコール)を用いた例
比較例3:合成系水溶性ポリマー(D)の含有量が、本発明で規定の範囲よりも少ない例
比較例4:合成系水溶性ポリマー(D)の含有量が、本発明で規定の範囲よりも多い例
On the other hand, the following Comparative Examples 1 to 4 are as follows.
Comparative Example 1: An example in which a naturally-derived water-soluble polymer was used instead of the synthetic water-soluble polymer (D) used in the present invention Comparative Example 2: Synthesis other than the synthetic water-soluble polymer (D) specified in the present invention. Example using a water-soluble polymer (polyethylene glycol) Comparative Example 3: Example in which the content of the synthetic water-soluble polymer (D) is less than the range specified in the present invention Comparative Example 4: Synthetic water-soluble polymer (D) ) Content is greater than the range specified in the present invention.
(1)実施例1
 本発明の無電解ニッケルメッキ方法は、吸着促進工程(a)→触媒付与工程(b)→無電解メッキ工程(c)を順次施すことを基本とするが、本実施例1では、吸着促進工程(a)の前に、予めエッチング処理工程(p)を付加するとともに、触媒付与工程(b)と無電解メッキ工程(c)との間に活性化工程(b-1)を付加した。
 従って、実施例1の無電解ニッケルメッキ方法は、エッチング処理工程(p)→吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)からなる。
 即ち、先ず、予備処理として下記条件(p)でエッチング処理を行い、次いで、下記条件(a)で吸着促進を、下記条件(b)で触媒付与を、下記条件(b-1)で活性化を行った後、下記条件(c)で無電解ニッケル-リンメッキを行った。
(p)エッチング処理工程
 次の組成でエッチング処理液を調製した。
[エッチング処理液]
無水クロム酸 400g/L
98%硫酸  200g/L
(a)吸着促進工程
 次の組成で吸着促進剤の含有液を調製した。Mwは重量平均分子量である。
[吸着促進剤]
ジアリルジメチルアンモニウムクロリド重合体(Mw:30000) 5g/L
ポリオキシアルキレン分岐デシルエーテル             1g/L
(b)触媒付与工程
 先ず、ニッケル溶液と還元剤溶液とを調製し、次いで、両溶液を混合してニッケルコロイド触媒液を調製した。各溶液の組成及びニッケルコロイド触媒液の調製条件は、次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として)            0.1モル/L
PEIのEO付加物(EO:40モル、Mw:2500)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[ニッケルコロイド触媒液の調製条件]
pH7.0に調整した30℃のニッケル溶液に還元剤溶液を滴下して撹拌し、ニッケルコロイド触媒液を得た。
(b-1)活性化工程
[活性化溶液]
98%硫酸 5mL/L
(c)無電解メッキ工程
 次の組成で無電解ニッケル-リンメッキ液を建浴した。また、当該メッキ液は水酸化ナトリウムでpH調整した。
[無電解ニッケル-リンメッキ液]
硫酸ニッケル六水和物(Ni2+として) 0.1モル/L
次亜リン酸ナトリウム1水和物       30g/L
コハク酸                 25g/L
純水                      残余
pH(20℃)                4.6
(d)無電解ニッケル-リンメッキにおける全処理条件
 本実施例1の無電解ニッケル-リンメッキは、工程(p)→(a)→(b)→(b-1)→(c)からなり、各工程の処理条件は次の通りである。
[エッチング条件]
 ABS樹脂基板(縦:45mm、横:50mm、板厚:3mm)を、上記(p)のエッチング処理液に68℃、10分間の条件で浸漬し、純水で洗浄して、表面が粗面化された試料基板を得た。
[吸着促進条件]
 エッチング処理した試料基板を、上記(a)の吸着促進剤の含有液に40℃、2分間の条件で浸漬し、純水で洗浄した。
[触媒付与条件]
 吸着促進処理した試料基板を、上記(b)のニッケルコロイド触媒液に25℃、10分間の条件で浸漬し、純水で洗浄した。
[活性化条件]
 次いで、試料基板を上記(b-1)の活性化溶液に25℃、5分間の条件で浸漬し、純水で洗浄した。
[無電解メッキ条件]
 その後、試料基板を上記(c)の無電解ニッケル-リンメッキ液中に90℃、20分間の条件で浸漬して無電解メッキを施し、試料基板上にニッケル-リン皮膜を形成した後、純水で洗浄し、乾燥した。
(1) Example 1
The electroless nickel plating method of the present invention is based on sequentially performing an adsorption promotion step (a) → a catalyst application step (b) → an electroless plating step (c), but in the first embodiment, the adsorption promotion step An etching treatment step (p) was added in advance before (a), and an activation step (b-1) was added between the catalyst application step (b) and the electroless plating step (c).
Therefore, the electroless nickel plating method of Example 1 is an etching treatment step (p) → an adsorption promotion step (a) → a catalyst application step (b) → an activation step (b-1) → an electroless plating step (c). Consists of.
That is, first, as a preliminary treatment, an etching treatment is performed under the following condition (p), then adsorption promotion is performed under the following condition (a), catalyst application is performed under the following condition (b), and activation is performed under the following condition (b-1). After that, electroless nickel-phosphorus plating was performed under the following condition (c).
(P) Etching Treatment Step An etching treatment liquid was prepared with the following composition.
[Etching liquid]
Chromic anhydride 400g / L
98% sulfuric acid 200g / L
(A) Adsorption Acceleration Step A liquid containing an adsorption accelerator was prepared with the following composition. Mw is the weight average molecular weight.
[Adsorption accelerator]
Dialyldimethylammonium chloride polymer (Mw: 30000) 5 g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Catalyst application step First, a nickel solution and a reducing agent solution were prepared, and then both solutions were mixed to prepare a nickel colloid catalyst solution. The composition of each solution and the preparation conditions for the nickel colloidal catalyst solution are as follows.
[Nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Preparation conditions for nickel colloidal catalyst solution]
A reducing agent solution was added dropwise to a nickel solution at 30 ° C. adjusted to pH 7.0 and stirred to obtain a nickel colloidal catalyst solution.
(B-1) Activation step [Activation solution]
98% sulfuric acid 5mL / L
(C) Electroless plating step An electroless nickel-phosphorus plating solution was bathed with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
[Electroless nickel-phosphorus plating solution]
Nickel sulfate hexahydrate (as Ni 2+ ) 0.1 mol / L
Sodium hypophosphate monohydrate 30 g / L
Succinic acid 25g / L
Pure water residual pH (20 ° C) 4.6
(D) All processing conditions in electroless nickel-phosphorus plating The electroless nickel-phosphorus plating of Example 1 comprises steps (p) → (a) → (b) → (b-1) → (c). The processing conditions of the process are as follows.
[Etching conditions]
The ABS resin substrate (length: 45 mm, width: 50 mm, plate thickness: 3 mm) was immersed in the etching treatment liquid of the above (p) at 68 ° C. for 10 minutes, washed with pure water, and the surface was roughened. A modified sample substrate was obtained.
[Adsorption promotion conditions]
The etched sample substrate was immersed in the above-mentioned solution containing the adsorption accelerator (a) at 40 ° C. for 2 minutes and washed with pure water.
[Catalyst addition conditions]
The sample substrate subjected to the adsorption promotion treatment was immersed in the nickel colloid catalyst solution of (b) above under the conditions of 25 ° C. for 10 minutes and washed with pure water.
[Activation conditions]
Next, the sample substrate was immersed in the activation solution of (b-1) above at 25 ° C. for 5 minutes and washed with pure water.
[Electroless plating conditions]
Then, the sample substrate is immersed in the electroless nickel-phosphorus plating solution of the above (c) at 90 ° C. for 20 minutes to perform electroless plating, a nickel-phosphorus film is formed on the sample substrate, and then pure water is obtained. Washed with and dried.
(0)基準例
 上記基準発明に基づいて、本発明に用いる合成系水溶性ポリマー(D)に替えて、コロイド安定剤(C)(グルタル酸)を用いてニッケルコロイド触媒液を調製した。
 即ち、本基準例では、触媒付与工程(b)において、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)とを必須成分とするニッケルコロイド触媒液を用いており、上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、エッチング処理工程(p)及び活性化工程(b-1)を含めて、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
グルタル酸            40g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(0) Reference Example Based on the above standard invention, a nickel colloidal catalyst solution was prepared using a colloidal stabilizer (C) (glutaric acid) instead of the synthetic water-soluble polymer (D) used in the present invention.
That is, in this reference example, in the catalyst application step (b), a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a colloid stabilizer (C) as essential components is used. Based on Example 1, all settings are the same as in Example 1 including the etching treatment step (p) and the activation step (b-1), except that the composition of the nickel colloid catalyst solution is changed as follows. bottom.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 40g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(2)実施例2
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、エッチング処理工程(p)及び活性化工程(b-1)を含めて、全て実施例1と同じに設定した。尚、後述の実施例及び比較例では、エッチング処理工程(p)及び活性化工程(b-1)についての言及は省略する。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
PEIのホモポリマー(Mw:800)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(2) Example 2
Based on the above Example 1, all the same as in Example 1 including the etching treatment step (p) and the activation step (b-1) except that the composition of the nickel colloid catalyst solution was changed as follows. I set it. In the examples and comparative examples described later, the reference to the etching treatment step (p) and the activation step (b-1) will be omitted.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI homopolymer (Mw: 800) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(3)実施例3
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)                 0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体(Mw:30000)  20g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(3) Example 3
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Dialyldimethylammonium chloride polymer (Mw: 30000) 20 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(4)実施例4
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
PVP(Mw:9000)     50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(4) Example 4
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PVP (Mw: 9000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(5)実施例5
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
PVAのホモポリマー(Mw:1000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(5) Example 5
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PVA homopolymer (Mw: 1000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(6)実施例6
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)      0.1モル/L
PAMのホモポリマー(Mw:10000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(6) Example 6
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PAM homopolymer (Mw: 10000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(7)実施例7
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)      0.1モル/L
アルデヒド変性PAM(Mw:10000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(7) Example 7
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Aldehyde-modified PAM (Mw: 10000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(8)実施例8
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
PVIのホモポリマー(Mw:5000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(8) Example 8
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PVI homopolymer (Mw: 5000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(9)実施例9
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更し、活性化工程(b-1)を省略してエッチング処理工程(p)→吸着促進工程(a)→触媒付与工程(b)→無電解メッキ工程(c)を順次行った以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)            0.1モル/L
PEIのEO付加物(EO:60モル、Mw:4500)  30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(9) Example 9
Based on the above Example 1, the composition of the nickel colloid catalyst solution is changed as follows, the activation step (b-1) is omitted, and the etching treatment step (p) → adsorption promotion step (a) → catalyst addition. All the settings were the same as in Example 1 except that the step (b) → the electroless plating step (c) were sequentially performed.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 60 mol, Mw: 4500) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(10)実施例10
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)             0.1モル/L
PEIのEO付加物(EO:140モル、Mw:8000)  30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(10) Example 10
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 140 mol, Mw: 8000) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(11)実施例11
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)              0.1モル/L
PEIのEO付加物(EO:440モル、Mw:20000)  10g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(11) Example 11
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 440 mol, Mw: 20000) 10 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(12)実施例12
 上記実施例3を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例3と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)                0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体(Mw:8500)  35g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(12) Example 12
Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Dialyldimethylammonium chloride polymer (Mw: 8500) 35 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(13)実施例13
 上記実施例3を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例3と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)                  0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体(Mw:200000)   8g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(13) Example 13
Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Dialyldimethylammonium chloride polymer (Mw: 200,000) 8 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(14)実施例14
 上記実施例3を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例3と同じに設定した。尚、本実施例14において、ニッケルコロイド触媒液に用いた合成系水溶性ポリマー(D)は、前述したように、ジアリルアミンとアクリルアミドとの共重合体であり、性質上、PA類及びPAM類のいずれにも属する。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)        0.1モル/L
ジアリルジメチルアンモニウムクロリド
-アクリルアミド共重合体(Mw:10000)  30g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(14) Example 14
Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows. In addition, in this Example 14, the synthetic water-soluble polymer (D) used for the nickel colloidal catalyst liquid is a copolymer of diallylamine and acrylamide as described above, and is of the nature of PAs and PAMs. It belongs to both.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Dialyldimethylammonium chloride-acrylamide copolymer (Mw: 10000) 30 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(15)実施例15
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)            0.3モル/L
PEIのEO付加物(EO:40モル、Mw:2500)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(15) Example 15
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.3 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(16)実施例16
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)            0.1モル/L
PEIのEO付加物(EO:40モル、Mw:2500)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.5モル/L
(16) Example 16
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.5 mol / L
(17)実施例17
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)           0.1モル/L
PEIのEO・PO付加物
(EO:40モル、PO:40モル、Mw:5000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(17) Example 17
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
PEI EO / PO adduct (EO: 40 mol, PO: 40 mol, Mw: 5000) 50 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(18)実施例18
 上記実施例1を基本として、無電解ニッケル-リンメッキに替えて、下記無電解ニッケル-コバルト合金メッキを無電解メッキ工程(c)として行った以外は、全て実施例1と同じに設定した。
(c)無電解メッキ工程
 次の組成で無電解ニッケル-コバルト合金メッキ液を建浴した。また、当該メッキ液は水酸化ナトリウムでpH調整した。
[無電解ニッケル-コバルト合金メッキ液]
塩化ニッケル(Ni2+として) 1.5g/L
塩化コバルト(Co2+として) 1.5g/L
酒石酸ナトリウム        78g/L
塩酸ヒドラジン         68g/L
純水                 残余
pH(20℃)          12.0
[無電解メッキ条件]
メッキ温度:90℃
メッキ時間:20分間
(18) Example 18
Based on the above Example 1, all settings were the same as in Example 1 except that the electroless nickel-cobalt alloy plating described below was performed as the electroless plating step (c) instead of the electroless nickel-phosphorus plating.
(C) Electroless plating step An electroless nickel-cobalt alloy plating solution was bathed with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
[Electroless nickel-cobalt alloy plating solution]
Nickel chloride (as Ni 2+ ) 1.5g / L
Cobalt chloride (as Co 2+ ) 1.5g / L
Sodium tartrate 78 g / L
Hydrazine hydrochloride 68g / L
Pure water residual pH (20 ° C) 12.0
[Electroless plating conditions]
Plating temperature: 90 ° C
Plating time: 20 minutes
(19)比較例1
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例1では、触媒付与工程(b)において、本発明に用いる合成系水溶性ポリマー(D)に替えて、天然由来の水溶性ポリマー(ゼラチン)を用いてニッケルコロイド触媒液を調製した。但し、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、後の無電解メッキ工程(c)において、ニッケル-リン皮膜は析出しなかった。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+) 0.1モル/L
ゼラチン          50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(19) Comparative Example 1
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
That is, in Comparative Example 1, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a naturally occurring water-soluble polymer (gelatin) instead of the synthetic water-soluble polymer (D) used in the present invention. bottom. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
(B) Catalyst application step [nickel solution]
Nickel sulfate (Ni 2+ ) 0.1 mol / L
Gelatin 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(20)比較例2
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例2では、触媒付与工程(b)において、本発明に用いる合成系水溶性ポリマー(D)以外の合成系水溶性ポリマー(ポリエチレングリコール)を用いてニッケルコロイド触媒液を調製した。但し、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、後の無電解メッキ工程(c)において、ニッケル-リン皮膜は析出しなかった。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+)         0.1モル/L
ポリエチレングリコール(Mw:1000)  50g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(20) Comparative Example 2
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
That is, in Comparative Example 2, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a synthetic water-soluble polymer (polyethylene glycol) other than the synthetic water-soluble polymer (D) used in the present invention. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
(B) Catalyst application step [nickel solution]
Nickel sulfate (Ni 2+ ) 0.1 mol / L
Polyethylene glycol (Mw: 1000) 50g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(21)比較例3
 上記実施例3を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例3と同じに設定した。
 即ち、本比較例3では、触媒付与工程(b)において、合成系水溶性ポリマー(D)の含有量を本発明で規定の範囲よりも少なくしてニッケルコロイド触媒液を調製した。但し、調製後、ニッケルコロイド触媒液は分解を始めたが、触媒液に浸漬した試料基板の一部に触媒核が付着したことにより、後の無電解メッキ工程(c)において、試料基板のごく一部にニッケル-リン皮膜が析出した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+)                    0.1モル/L
ジアリルジメチルアンモニウムクロリド重合体(Mw:30000) 0.3g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(21) Comparative Example 3
Based on the above-mentioned Example 3, all the settings were the same as in Example 3 except that the composition of the nickel colloid catalyst solution was changed as follows.
That is, in Comparative Example 3, in the catalyst application step (b), the content of the synthetic water-soluble polymer (D) was made smaller than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, after the preparation, the nickel colloid catalyst solution began to decompose, but the catalyst nuclei adhered to a part of the sample substrate immersed in the catalyst solution, so that the sample substrate was very small in the subsequent electroless plating step (c). A nickel-phosphorus film was partially precipitated.
(B) Catalyst application step [nickel solution]
Nickel sulfate (Ni 2+ ) 0.1 mol / L
Dialyldimethylammonium chloride polymer (Mw: 30000) 0.3 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(22)比較例4
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例4では、触媒付与工程(b)において、合成系水溶性ポリマー(D)の含有量を本発明で規定の範囲よりも多くしてニッケルコロイド触媒液を調製した。但し、ニッケルコロイド触媒液は、沈殿も分解もせずに安定していたものの、後の無電解メッキ工程(c)において、ニッケル-リン皮膜は析出しなかった。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+)               0.1モル/L
PEIのEO付加物(EO:40モル、Mw:2500) 350g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(22) Comparative Example 4
Based on the above Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloid catalyst solution was changed as follows.
That is, in Comparative Example 4, in the catalyst application step (b), the content of the synthetic water-soluble polymer (D) was made larger than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, although the nickel colloidal catalyst solution was stable without precipitation or decomposition, the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
(B) Catalyst application step [nickel solution]
Nickel sulfate (Ni 2+ ) 0.1 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500) 350 g / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
 実施例1~18について、ニッケルコロイド触媒液における合成系水溶性ポリマー(D)の種類及び含有量を、表1に纏める。また、基準例及び比較例1~2について、ニッケルコロイド触媒液における合成系水溶性ポリマー(D)に替えて用いた成分の種類及び含有量を、比較例3~4について、ニッケルコロイド触媒液における合成系水溶性ポリマー(D)の種類及び含有量を、表2に纏める。 Table 1 summarizes the types and contents of the synthetic water-soluble polymer (D) in the nickel colloidal catalyst solution for Examples 1 to 18. In addition, the types and contents of the components used in place of the synthetic water-soluble polymer (D) in the nickel colloidal catalyst solution for Reference Examples and Comparative Examples 1 and 2 were shown in the nickel colloidal catalyst solution for Comparative Examples 3 and 4. Table 2 summarizes the types and contents of the synthetic water-soluble polymer (D).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪ニッケルコロイド触媒液の経時安定性評価≫
 実施例1~18、基準例、及び比較例1~4で調製した各ニッケルコロイド触媒液について、下記評価基準に基づいて経時安定性(コロイド安定性)を評価した。
(評価基準)
○:調製後1ヶ月間、沈殿及び分解が起こらなかった。
×:調製後すぐに、沈殿或いは分解した。
≪Evaluation of stability of nickel colloid catalyst solution over time≫
The stability over time (colloidal stability) of each of the nickel colloidal catalyst solutions prepared in Examples 1 to 18, Reference Examples, and Comparative Examples 1 to 4 was evaluated based on the following evaluation criteria.
(Evaluation criteria)
◯: No precipitation or decomposition occurred for 1 month after preparation.
X: Immediately after preparation, precipitation or decomposition occurred.
≪無電解メッキにより析出したニッケル又はニッケル合金皮膜の外観評価≫
 実施例1~18、基準例、及び比較例1~4で得られたニッケル又はニッケル合金皮膜を目視にて観察し、下記評価基準に基づいて評価した。
(評価基準)
◎:メッキ皮膜にムラがなく均一であった。
○:メッキ皮膜に部分的にムラが認められた。
△:メッキ皮膜に一部未析出(メッキ欠け)が認められた。
×:メッキ皮膜が析出しなかった。
 尚、メッキ皮膜に「ムラ」が認められるとは、メッキ皮膜の緻密性や平滑性などについて、周囲と異なる部分が存在することである。メッキ皮膜の「ムラ」は、メッキ皮膜の「均一性」とは別の観点である。
≪Appearance evaluation of nickel or nickel alloy film deposited by electroless plating≫
The nickel or nickel alloy films obtained in Examples 1 to 18, Reference Examples, and Comparative Examples 1 to 4 were visually observed and evaluated based on the following evaluation criteria.
(Evaluation criteria)
⊚: The plating film was even and uniform.
◯: Partial unevenness was observed in the plating film.
Δ: Partial non-precipitation (plating chipping) was observed in the plating film.
X: No plating film was deposited.
The fact that "unevenness" is observed in the plating film means that there is a portion different from the surroundings in terms of the density and smoothness of the plating film. The "unevenness" of the plating film is a different viewpoint from the "uniformity" of the plating film.
≪ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価結果≫
 上記ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価結果を、表3に纏める。
≪Evaluation results of the temporal stability of the nickel colloid catalyst solution and the appearance of the plating film≫
Table 3 summarizes the evaluation results of the temporal stability of the nickel colloidal catalyst solution and the appearance of the plating film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
≪ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の総合評価≫
 本発明に用いる合成系水溶性ポリマー(D)に替えて、天然由来の水溶性ポリマーであるゼラチンを用いた比較例1では、ニッケルコロイド触媒液は経時安定性に劣り、ニッケルコロイド触媒液との接触後に非導電性基板に無電解メッキを施しても、メッキ皮膜は析出しなかった。
 また、本発明で規定の合成系水溶性ポリマー(D)以外の合成系水溶性ポリマーであるポリエチレングリコールを用いた比較例2では、やはりニッケルコロイド触媒液は経時安定性に劣り、非導電性基板に無電解メッキを施しても、メッキ皮膜は析出しなかった。
 これらより、ニッケルコロイド触媒液を経時安定化させるには、可溶性ニッケル塩(A)に還元剤(B)を配合するとともに、合成系水溶性ポリマーのうち、ポリエチレンイミン類、ポリアミン類、ポリアクリルアミド類などの本発明で規定する所定の合成系水溶性ポリマー(D)の配合が必要であると判断できる。
 さらに、本発明で規定の合成系水溶性ポリマー(D)を含有していても、比較例3のように、含有量が適正範囲よりも少ない場合には、当然、ニッケルコロイド触媒液は経時安定性に劣り、非導電性基板に無電解メッキを施しても、基板のごく一部にしかメッキ皮膜が析出せず、メッキ欠けが認められた。
 逆に、合成系水溶性ポリマー(D)の含有量が適正範囲よりも多い比較例4では、ニッケルコロイド触媒液は安定であるにも係らず、無電解メッキを施しても、メッキ皮膜は析出しなかった。これは、コロイド系が過剰に安定し、活性が失われてしまうためであると推定される。
≪Comprehensive evaluation of the stability of the nickel colloid catalyst solution over time and the appearance of the plating film≫
In Comparative Example 1 in which gelatin, which is a naturally occurring water-soluble polymer, was used instead of the synthetic water-soluble polymer (D) used in the present invention, the nickel colloid catalyst solution was inferior in stability over time and was different from the nickel colloid catalyst solution. Even if electroless plating was applied to the non-conductive substrate after contact, the plating film did not precipitate.
Further, in Comparative Example 2 using polyethylene glycol which is a synthetic water-soluble polymer other than the synthetic water-soluble polymer (D) specified in the present invention, the nickel colloid catalyst solution is also inferior in stability with time and is a non-conductive substrate. The plating film did not precipitate even when electroless plating was applied to the surface.
From these, in order to stabilize the nickel colloid catalyst solution over time, a reducing agent (B) is added to the soluble nickel salt (A), and among the synthetic water-soluble polymers, polyethyleneimines, polyamines, and polyacrylamides are added. It can be determined that it is necessary to blend the predetermined synthetic water-soluble polymer (D) specified in the present invention.
Further, even if the synthetic water-soluble polymer (D) specified in the present invention is contained, when the content is less than the appropriate range as in Comparative Example 3, the nickel colloid catalyst solution is naturally stable over time. Even if electroless plating was applied to the non-conductive substrate, the plating film was deposited only on a small part of the substrate, and plating chipping was observed.
On the contrary, in Comparative Example 4 in which the content of the synthetic water-soluble polymer (D) is larger than the appropriate range, the plating film is precipitated even if electroless plating is applied, although the nickel colloid catalyst solution is stable. I didn't. It is presumed that this is because the colloidal system becomes excessively stable and loses its activity.
 これに対して、吸着促進処理した後、可溶性ニッケル塩(A)と還元剤(B)と所定のコロイド安定剤(C)とを含むニッケルコロイド触媒液で触媒付与し、無電解メッキを施した、冒述の基準発明に基づく基準例では、ニッケルコロイド触媒液の経時安定性は良好であり(評価は○)、無電解メッキにより析出したメッキ皮膜は、ムラがなく均一性に優れていた(評価は◎)。
 また、吸着促進処理した後、上記基準例のコロイド安定剤(C)に替えて所定の合成系水溶性ポリマー(D)を含むニッケルコロイド触媒液で触媒付与し、無電解メッキを施した実施例1~18では、ニッケルコロイド触媒液の経時安定性は上記基準例と同様に良好であり(評価は全て○)、無電解メッキにより析出したメッキ皮膜は、概ねムラがなく均一性に優れていた(評価は◎~〇)。
On the other hand, after the adsorption promotion treatment, a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a predetermined colloid stabilizer (C) was applied as a catalyst, and electroless plating was performed. In the reference example based on the above-mentioned reference invention, the stability over time of the nickel colloid catalyst solution was good (evaluation was ◯), and the plating film precipitated by electroless plating was even and excellent in uniformity (evaluation was ◯). Evaluation is ◎).
Further, after the adsorption promotion treatment, the colloid stabilizer (C) of the above standard example was replaced with a nickel colloid catalyst solution containing a predetermined synthetic water-soluble polymer (D), and electroless plating was performed. In Nos. 1 to 18, the stability over time of the nickel colloid catalyst solution was good as in the above standard example (all evaluations were ◯), and the plating film precipitated by electroless plating was almost uniform and excellent in uniformity. (Evaluation is ◎ ~ 〇).
 そこで、実施例1~18について順次考察する。
 まず、実施例1~18を比較例1と対比すると、ニッケルコロイド触媒液で処理した後、無電解メッキでムラがなく均一性に優れたメッキ皮膜を得るためには、天然由来の水溶性ポリマーではなく、適正に選択された合成系水溶性ポリマー(D)を含むニッケルコロイド触媒液を用いることが重要であると判断できる。
 また、実施例1~18を比較例2と対比すると、ムラがなく均一性に優れたメッキ皮膜を得るためには、合成系水溶性ポリマー群から任意に選択すれば良い訳ではなく、所定の合成系水溶性ポリマー(D)を適正に選択する必要があると判断できる。
 さらに、実施例1~18を比較例3~4と対比すると、ムラがなく均一性に優れたメッキ皮膜を得るためには、所定の合成系水溶性ポリマー(D)を適正に選択することに加え、ニッケルコロイド触媒液に対する合成系水溶性ポリマー(D)の含有量を適正範囲に調整することが必要であると判断できる。
 尚、無電解ニッケル-リンメッキを施した実施例1~17において、概ねムラがなく均一性に優れたメッキ皮膜としてニッケル皮膜を形成できたのと同様に、無電解ニッケル-コバルト合金メッキを施した実施例18において、ムラがなく均一性に優れたメッキ皮膜としてニッケル合金皮膜を形成できた。
Therefore, Examples 1 to 18 will be considered in order.
First, comparing Examples 1 to 18 with Comparative Example 1, in order to obtain a plating film having no unevenness and excellent uniformity by electroless plating after treatment with a nickel colloid catalyst solution, a naturally derived water-soluble polymer is used. Instead, it can be judged that it is important to use a nickel colloidal catalyst solution containing a properly selected synthetic water-soluble polymer (D).
Further, when Examples 1 to 18 are compared with Comparative Example 2, in order to obtain a plating film having no unevenness and excellent uniformity, it is not always necessary to arbitrarily select from the synthetic water-soluble polymer group, but a predetermined one. It can be determined that it is necessary to appropriately select the synthetic water-soluble polymer (D).
Further, when Examples 1 to 18 are compared with Comparative Examples 3 to 4, a predetermined synthetic water-soluble polymer (D) is appropriately selected in order to obtain a plating film having no unevenness and excellent uniformity. In addition, it can be determined that it is necessary to adjust the content of the synthetic water-soluble polymer (D) with respect to the nickel colloidal catalyst solution within an appropriate range.
In addition, in Examples 1 to 17 in which electroless nickel-phosphorus plating was applied, electroless nickel-cobalt alloy plating was applied in the same manner as in the case where the nickel film could be formed as a plating film having almost no unevenness and excellent uniformity. In Example 18, a nickel alloy film could be formed as a plating film having no unevenness and excellent uniformity.
 以下、実施例1~18について詳細に検討する。当該検討において、実施例1を基本として他の実施例の評価を対比的に説明する。
 先ず、基本の実施例1は、カチオン系界面活性剤であるジアリルアミンポリマーの4級アンモニウム塩(吸着促進剤)の含有液で非導電性基板を前処理し、硫酸ニッケル(可溶性ニッケル塩(A))、水素化ホウ素化合物(還元剤(B))、及びPEIのEO付加物(合成系水溶性ポリマー(D))を含有したニッケルコロイド触媒液で触媒付与した後、無電解ニッケルメッキを施した例である。ニッケルコロイド触媒液の経時安定性は良好で、建浴後1ヶ月経過しても、沈殿が生じたり、分解することはなく、また、無電解ニッケルメッキで得られたメッキ皮膜は、均一でムラも認められなかった。即ち、ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価は、基準例と同じ結果であった。
 これに対して、実施例2は、合成系水溶性ポリマー(D)としてPEIのホモポリマーを用いた例である。ニッケルコロイド触媒液の経時安定性の評価は、実施例1と同じ結果であったが、メッキ皮膜に部分的にムラが認められ、メッキ皮膜外観の評価は、実施例1に一歩譲る結果であった(評価は○)。即ち、合成系水溶性ポリマー(D)としてPEIを用いる場合、PEIのホモポリマーよりもPEIのEO付加物を選択した方が、メッキ皮膜の均一性をより向上させることが可能であると分かる。
 実施例1を基本として、合成系水溶性ポリマー(D)として、PEIのEO付加物に替えてアルデヒド変性PAMを用いた実施例7では、メッキ皮膜外観の評価は、実施例1と同じ結果であった(評価は◎)。これに対して、PAMのホモポリマーを用いた実施例6では、ニッケルコロイド触媒液の経時安定性の評価は、実施例1と同じ結果であったが、メッキ皮膜に部分的にムラが認められ、メッキ皮膜外観の評価は、実施例7に一歩譲る結果であった(評価は○)。従って、上記PEIの場合と同様に、合成系水溶性ポリマー(D)としてPAMを用いる場合、PAMのホモポリマーよりもPAMのアルデヒド変性物を選択した方が、メッキ皮膜の均一性をより向上させることが可能であると分かる。
 また、実施例1を基本として、合成系水溶性ポリマー(D)として、PEIのEO付加物に替えてジアリルアミンポリマーを用いた実施例3では、メッキ皮膜外観の評価は、実施例1と同じ結果であった(評価は◎)。
Hereinafter, Examples 1 to 18 will be examined in detail. In this study, the evaluation of other examples will be described in comparison with the first example.
First, in the basic Example 1, the non-conductive substrate is pretreated with a liquid containing a quaternary ammonium salt (adsorption accelerator) of a diallylamine polymer which is a cationic surfactant, and nickel sulfate (soluble nickel salt (A)) is prepared. ), A boron hydride compound (reducing agent (B)), and a nickel colloid catalyst solution containing an EO adduct of PEI (synthetic water-soluble polymer (D)), followed by electrolytic nickel plating. This is an example. The nickel colloidal catalyst solution has good stability over time, does not precipitate or decompose even one month after the bath, and the plating film obtained by electroless nickel plating is uniform and uneven. I was not able to admit. That is, the evaluation of the stability over time and the appearance of the plating film of the nickel colloidal catalyst solution were the same as those of the reference example.
On the other hand, Example 2 is an example in which a PEI homopolymer is used as the synthetic water-soluble polymer (D). The evaluation of the temporal stability of the nickel colloidal catalyst solution was the same result as in Example 1, but unevenness was partially observed in the plating film, and the evaluation of the appearance of the plating film was a result of giving up one step to Example 1. (Evaluation is ○). That is, when PEI is used as the synthetic water-soluble polymer (D), it can be seen that the uniformity of the plating film can be further improved by selecting the EO adduct of PEI rather than the homopolymer of PEI.
In Example 7 in which an aldehyde-modified PAM was used instead of the EO adduct of PEI as the synthetic water-soluble polymer (D) based on Example 1, the evaluation of the appearance of the plating film was the same as in Example 1. There was (evaluation is ◎). On the other hand, in Example 6 using the PAM homopolymer, the evaluation of the temporal stability of the nickel colloidal catalyst solution was the same result as in Example 1, but unevenness was partially observed in the plating film. The evaluation of the appearance of the plating film was a result of giving up one step to Example 7 (evaluation is ◯). Therefore, as in the case of PEI, when PAM is used as the synthetic water-soluble polymer (D), selecting an aldehyde-modified product of PAM rather than homopolymer of PAM further improves the uniformity of the plating film. It turns out that it is possible.
Further, in Example 3 in which a diallylamine polymer was used instead of the EO adduct of PEI as the synthetic water-soluble polymer (D) based on Example 1, the evaluation of the appearance of the plating film was the same result as in Example 1. (Evaluation is ◎).
 一方、実施例1を基本として、合成系水溶性ポリマー(D)として、PEIのEO付加物に替えて、PVPを用いた実施例4、PVAを用いた実施例5、及びPVIを用いた実施例8ではいずれも、メッキ皮膜外観の評価は、実施例1に一歩譲る結果であった(評価は○)。
 実施例1を基本として、EOの付加モル数を順次増加させたPEIのEO付加物を用い、ニッケルコロイド触媒液への含有量を適正範囲内で低減させた実施例9~11ではいずれも、メッキ皮膜外観の評価は、実施例1と同じ結果であった(評価は◎)。特に、PEIのEO付加物の含有量を、実施例1と比べてより低減させた実施例11(含有量:50g/L→10g/L)においても、メッキ皮膜外観に優れていた(評価は◎)。また、実施例1を基本として、PEIのEO・PO付加物を用いた実施例17(含有量:実施例1と同じ、Mw:実施例1の2倍(2500→5000))においても、メッキ皮膜外観に優れていた(評価は◎)。
 実施例9は、活性化工程(b-1)を省略した例であるが、メッキ皮膜外観に優れており(評価は◎)、触媒付与後に活性化処理を施さず、直ちに無電解メッキを施しても、メッキ皮膜外観は実施例1と同等であった。これにより、活性化工程(b-1)を行わず、本発明の必須工程である吸着促進工程(a)、触媒付与工程(b)、及び無電解メッキ工程(c)を順次適正に行うことによっても、ムラがなく均一性に優れたメッキ皮膜が形成され得ると判断できる。
 実施例3を基本として、重量平均分子量を減少させたジアリルアミンポリマーを用い、ニッケルコロイド触媒液への含有量を増加させた実施例12及び14ではいずれも、メッキ皮膜外観の評価は、実施例3と同じ結果であった(評価は◎)。一方、重量平均分子量を増加させたジアリルアミンポリマーを用い、ニッケルコロイド触媒液への含有量を適正範囲内で低減させた実施例13(含有量:20g/L→8g/L、Mw:30000→200000)においては、メッキ皮膜外観の評価は、実施例3に一歩譲る結果であった(評価は○)。
 実施例1を基本として、ニッケルコロイド触媒液における可溶性ニッケル塩(A)の含有量を増加させた実施例15(含有量:0.1モル/L→0.3モル/L)、或いはニッケルコロイド触媒液における還元剤(B)の含有量を増加させた実施例16(含有量:0.25モル/L→0.5モル/L)も、メッキ皮膜外観の評価は、実施例1と同じ結果であった(評価は◎)。
 尚、実施例1を基本として、無電解メッキ工程(c)を、無電解ニッケル-リンメッキから無電解ニッケル-コバルト合金メッキに変更した実施例18では、ニッケルコロイド触媒液に含まれる合成系水溶性ポリマー(D)が、実施例1と同じくPEIのEO付加物であることから、メッキ皮膜外観の評価も、実施例1と同じ結果であった(評価は◎)。
On the other hand, based on Example 1, as the synthetic water-soluble polymer (D), Example 4 using PVP, Example 5 using PVA, and Example using PVI instead of the EO adduct of PEI. In each of Example 8, the evaluation of the appearance of the plating film was a result of giving up one step to Example 1 (evaluation is ◯).
In each of Examples 9 to 11, based on Example 1, the content in the nickel colloid catalyst solution was reduced within an appropriate range by using the EO adduct of PEI in which the number of moles of EO added was gradually increased. The evaluation of the appearance of the plating film was the same as that of Example 1 (evaluation is ⊚). In particular, even in Example 11 (content: 50 g / L → 10 g / L) in which the content of the EO adduct of PEI was further reduced as compared with Example 1, the appearance of the plating film was excellent (evaluation was evaluated). ◎). Further, based on Example 1, plating is also performed in Example 17 (content: same as Example 1, Mw: twice as much as Example 1 (2500 → 5000)) using the EO / PO adduct of PEI. The appearance of the film was excellent (evaluation is ◎).
Example 9 is an example in which the activation step (b-1) is omitted, but the appearance of the plating film is excellent (evaluation is ⊚), and the activation treatment is not performed after the catalyst is applied, and electroless plating is immediately applied. However, the appearance of the plating film was the same as that of Example 1. As a result, the activation step (b-1) is not performed, and the adsorption promotion step (a), the catalyst application step (b), and the electroless plating step (c), which are essential steps of the present invention, are appropriately performed in sequence. It can also be judged that a plating film having no unevenness and excellent uniformity can be formed.
In both Examples 12 and 14 in which the content in the nickel colloid catalyst solution was increased by using a diallylamine polymer having a reduced weight average molecular weight based on Example 3, the appearance of the plating film was evaluated in Example 3. The result was the same as (Evaluation is ◎). On the other hand, Example 13 (content: 20 g / L → 8 g / L, Mw: 30,000 → 200,000) in which the content in the nickel colloid catalyst solution was reduced within an appropriate range by using a diallylamine polymer having an increased weight average molecular weight. In), the evaluation of the appearance of the plating film was a result of giving up one step to Example 3 (evaluation is ○).
Based on Example 1, the content of the soluble nickel salt (A) in the nickel colloid catalyst solution was increased in Example 15 (content: 0.1 mol / L → 0.3 mol / L), or the nickel colloid. In Example 16 (content: 0.25 mol / L → 0.5 mol / L) in which the content of the reducing agent (B) in the catalyst solution was increased, the evaluation of the appearance of the plating film was the same as in Example 1. It was a result (evaluation is ◎).
In Example 18, in which the electroless plating step (c) was changed from electroless nickel-phosphorus plating to electroless nickel-cobalt alloy plating based on Example 1, the synthetic water-soluble material contained in the nickel colloid catalyst solution was used. Since the polymer (D) is an EO adduct of PEI as in Example 1, the evaluation of the appearance of the plating film was the same as that of Example 1 (evaluation is ⊚).
 本発明の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液及び無電解ニッケル又はニッケル合金メッキ方法は、非導電性基板への無電解メッキに好適に使用され得る。 The nickel colloid catalyst solution for electroless nickel or nickel alloy plating and the electroless nickel or nickel alloy plating method of the present invention can be suitably used for electroless plating on a non-conductive substrate.

Claims (7)

  1.  無電解ニッケル又はニッケル合金メッキを施す非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、
     (A)可溶性ニッケル塩と、
     (B)還元剤と、
     (D)ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアミン類(PA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーと
    を含有しており、
     上記合成系水溶性ポリマー(D)の含有量が、上記ニッケルコロイド触媒液に対して0.5g/L~300g/Lであることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。
    A nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
    (A) Soluble nickel salt and
    (B) Reducing agent and
    (D) Select from polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyamines (PAs), polyvinylimidazoles (PVIs), and polyacrylamides (PAMs). Contains at least one synthetic water-soluble polymer
    The content of the synthetic water-soluble polymer (D) is 0.5 g / L to 300 g / L with respect to the nickel colloid catalyst solution, and the nickel colloid for electroless nickel or nickel alloy plating is characterized. Catalyst solution.
  2.  上記合成系水溶性ポリマー(D)が、ポリエチレンイミンのアルキレンオキシド付加物を含むポリエチレンイミン類(PEI類);ジアリルアミンポリマーを含むポリアミン類(PA類);並びにアルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミド、及びポリイソプロピルアクリルアミドを含むポリアクリルアミド類(PAM類)の少なくとも一種であることを特徴とする、請求項1に記載の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。 The synthetic water-soluble polymer (D) includes polyethyleneimines (PEIs) containing an alkylene oxide adduct of polyethyleneimine; polyamines (PAs) containing a diallylamine polymer; and aldehyde-modified polyacrylamide, methylolpolyacrylamide, and The nickel colloid catalyst solution for electroless nickel or nickel alloy plating according to claim 1, which is at least one of polyacrylamides (PAMs) containing polyisopropylacrylamide.
  3.  上記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、及び還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1又は2に記載の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。 The reducing agent (B) is a boron hydride compound, amine boranes, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfinic acids. The nickel colloid catalyst solution for electroless nickel or nickel alloy plating according to claim 1 or 2, which is at least one selected from the group consisting of, and a reducing saccharide.
  4.  (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程と、
     (b)請求項1~3のいずれか1項に記載のニッケルコロイド触媒液に、吸着促進された非導電性基板を接触させて、該非導電性基板の表面にニッケルコロイド粒子を吸着させる触媒付与工程と、
     (c)触媒付与された非導電性基板上に、無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程と
    からなることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法。
    (A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion process to make
    (B) The nickel colloidal catalyst solution according to any one of claims 1 to 3 is brought into contact with an adsorption-promoted non-conductive substrate to provide a catalyst for adsorbing nickel colloidal particles on the surface of the non-conductive substrate. Process and
    (C) Electroless nickel or nickel-phosphorus, which comprises an electroless plating step of forming a nickel or nickel alloy film on a catalyst-imposed non-conductive substrate using an electroless nickel or nickel alloy plating solution. Nickel alloy plating method.
  5.  先ず、エッチング処理液に非導電性基板を接触させて、該非導電性基板の表面を粗面化するエッチング処理工程(p)を施すとともに、
     該非導電性基板に対して、上記エッチング処理工程(p)の次に上記吸着促進工程(a)を施し、その後、上記触媒付与工程(b)及び上記無電解メッキ工程(c)を順次施す
    ことを特徴とする、請求項4に記載の無電解ニッケル又はニッケル合金メッキ方法。
    First, an etching treatment step (p) is performed in which the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate, and the surface is roughened.
    The non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence. The electroless nickel or nickel alloy plating method according to claim 4, wherein the method is characterized by the above.
  6.  上記吸着促進工程(a)で用いる吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする、請求項4又は5に記載の無電解ニッケル又はニッケル合金メッキ方法。 The electroless nickel or nickel alloy plating method according to claim 4 or 5, wherein the adsorption accelerator used in the adsorption promotion step (a) is a cationic surfactant and / or an amphoteric surfactant. ..
  7.  請求項4~6のいずれか1項に記載の無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成することを特徴とする、ニッケル又はニッケル合金メッキ基板の製造方法。 A nickel or nickel alloy plated substrate, characterized in that a nickel or nickel alloy film is formed on the non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of claims 4 to 6. Production method.
PCT/JP2021/015190 2020-04-27 2021-04-12 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate WO2021220788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078672 2020-04-27
JP2020078672A JP6843455B1 (en) 2020-04-27 2020-04-27 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method

Publications (1)

Publication Number Publication Date
WO2021220788A1 true WO2021220788A1 (en) 2021-11-04

Family

ID=74860871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015190 WO2021220788A1 (en) 2020-04-27 2021-04-12 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate

Country Status (3)

Country Link
JP (1) JP6843455B1 (en)
TW (1) TW202140852A (en)
WO (1) WO2021220788A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220494B1 (en) 2022-08-26 2023-02-10 石原ケミカル株式会社 Gold concentration measuring device and measuring method in gold-containing plating solution
CN115322014B (en) * 2022-09-14 2023-04-11 东华大学 Ceramic substrate with metal coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179881A (en) * 1988-12-29 1990-07-12 Toda Kogyo Corp Palladium hydrosol catalyst for electroless plating and production thereof
JP2002180110A (en) * 2000-12-08 2002-06-26 Catalysts & Chem Ind Co Ltd Method for manufacturing metallic colloidal solution
JP2013159851A (en) * 2012-02-08 2013-08-19 Ishihara Chem Co Ltd Electroless nickel and nickel alloy plating method, and pretreatment liquid for the nickel alloy plating
JP2016056421A (en) * 2014-09-11 2016-04-21 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and plating method of electroless nickel or nickel alloy
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179881A (en) * 1988-12-29 1990-07-12 Toda Kogyo Corp Palladium hydrosol catalyst for electroless plating and production thereof
JP2002180110A (en) * 2000-12-08 2002-06-26 Catalysts & Chem Ind Co Ltd Method for manufacturing metallic colloidal solution
JP2013159851A (en) * 2012-02-08 2013-08-19 Ishihara Chem Co Ltd Electroless nickel and nickel alloy plating method, and pretreatment liquid for the nickel alloy plating
JP2016056421A (en) * 2014-09-11 2016-04-21 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and plating method of electroless nickel or nickel alloy
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Also Published As

Publication number Publication date
TW202140852A (en) 2021-11-01
JP2021172862A (en) 2021-11-01
JP6843455B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
TWI621736B (en) Nickle colloidal catalyst solution for electroless nickle or nickle alloy plating and electroless nickle or nickle alloy plating method
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TWI684673B (en) Copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
JP6081199B2 (en) Plating catalyst and method
KR102322950B1 (en) Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and manufacturing method of copper plating substrate
JP6047713B2 (en) Electroless copper plating method
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
WO2021261098A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6268379B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796968

Country of ref document: EP

Kind code of ref document: A1