JP6145681B2 - Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method - Google Patents

Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method Download PDF

Info

Publication number
JP6145681B2
JP6145681B2 JP2014022271A JP2014022271A JP6145681B2 JP 6145681 B2 JP6145681 B2 JP 6145681B2 JP 2014022271 A JP2014022271 A JP 2014022271A JP 2014022271 A JP2014022271 A JP 2014022271A JP 6145681 B2 JP6145681 B2 JP 6145681B2
Authority
JP
Japan
Prior art keywords
acid
copper
solution
catalyst solution
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014022271A
Other languages
Japanese (ja)
Other versions
JP2015147987A (en
Inventor
内田 衛
衛 内田
田中 薫
薫 田中
愛 川端
愛 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Original Assignee
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co Ltd filed Critical Ishihara Chemical Co Ltd
Priority to JP2014022271A priority Critical patent/JP6145681B2/en
Priority to KR1020177013993A priority patent/KR101807696B1/en
Priority to PCT/JP2015/050634 priority patent/WO2015118907A1/en
Priority to CN201580000319.7A priority patent/CN105121701B/en
Priority to KR1020157023382A priority patent/KR20150113111A/en
Priority to TW104103873A priority patent/TWI613321B/en
Publication of JP2015147987A publication Critical patent/JP2015147987A/en
Application granted granted Critical
Publication of JP6145681B2 publication Critical patent/JP6145681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Description

本発明は非導電性基板に無電解銅メッキを施すに際し、前処理としての触媒付与をするための水系銅コロイド触媒液並びに当該無電解銅メッキ方法に関して、銅触媒液の経時安定性に優れるとともに、良好な均一性とムラのない外観の銅皮膜を形成できるものを提供する。   The present invention relates to an aqueous copper colloidal catalyst solution for applying a catalyst as a pretreatment when electroless copper plating is applied to a non-conductive substrate, and the electroless copper plating method. It is possible to provide a copper film having a good uniformity and a uniform appearance.

銅、又は銅合金製の基板を始め、特に、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などの非導電性基板上に無電解銅メッキを施すには、先ず、基板上にパラジウム、銀、白金などの貴金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解銅メッキ液により銅皮膜を基板上に析出させる方式が一般的である。   Starting with copper or copper alloy substrates, especially glass / epoxy resins, glass / polyimide resins, epoxy resins, polyimide resins, polycarbonate resins, ABS resins, PET resins and other resin substrates, glass substrates, ceramic substrates, etc. In order to perform electroless copper plating on a non-conductive substrate, first, a noble metal such as palladium, silver, or platinum is adsorbed on the substrate and used as a catalyst nucleus, and then electroless copper is passed through the catalyst nucleus. In general, a copper film is deposited on a substrate by a plating solution.

一方、貴金属の触媒を使用せず、安価な銅、ニッケル、コバルトなどの特定の金属を使用した触媒付与方式もあり、当該特定金属の触媒液では、可溶性金属塩を還元剤で処理して金属のコロイド粒子を生成させて、これを触媒核とすることが基本原理となっている。
このうち、水系銅コロイド触媒液の従来技術を挙げると、次の通りである。
On the other hand, there is also a catalyst application method that uses a specific metal such as copper, nickel, cobalt, etc., which is inexpensive, without using a precious metal catalyst. In the catalyst solution of the specific metal, a soluble metal salt is treated with a reducing agent to form a metal. The basic principle is to produce colloidal particles of this and use them as catalyst nuclei.
Among these, the prior art of the aqueous copper colloid catalyst solution is as follows.

(1)特許文献1
可溶性銅塩と、分散剤と、錯化剤を添加し、還元剤により還元処理した後に安定剤を添加して無電解銅メッキ用の微細な銅触媒液を製造する。
上記分散剤はゼラチン、ノニオン性界面活性剤であり、錯化剤はジカルボン酸、オキシカルボン酸などであり、還元剤は水素化ホウ素ナトリウム、ジメチルアミンボランなどである。安定剤は次亜リン酸ナトリウム、ジメチルアミンボランなどである。
また、実施例4(第4頁左上欄)では、硫酸銅とゼラチンと水素化ホウ素ナトリウムと次亜リン酸塩を含有する触媒液に被メッキ物を浸漬した後、無電解銅メッキを施している。
(1) Patent Document 1
A soluble copper salt, a dispersant, and a complexing agent are added, and after reducing with a reducing agent, a stabilizer is added to produce a fine copper catalyst solution for electroless copper plating.
The dispersant is gelatin or a nonionic surfactant, the complexing agent is dicarboxylic acid, oxycarboxylic acid or the like, and the reducing agent is sodium borohydride, dimethylamine borane or the like. Stabilizers include sodium hypophosphite and dimethylamine borane.
In Example 4 (upper left column on page 4), an object to be plated was immersed in a catalyst solution containing copper sulfate, gelatin, sodium borohydride, and hypophosphite, and then electroless copper plating was performed. Yes.

(2)特許文献2
銅塩とアニオン性界面活性剤と還元剤からなる無電解メッキ用触媒を被メッキ物に付与し、無電解銅メッキを施した後、電気銅メッキを施す(請求項1〜2、段落42)。
銅触媒液の具体例である製造例2(段落52)では、触媒液は硫酸銅及びアンモニアによる銅アンミン錯体と、アニオン性界面活性剤と、水素化ホウ素ナトリウム(還元剤)とを含む。
(2) Patent Document 2
An electroless plating catalyst comprising a copper salt, an anionic surfactant, and a reducing agent is applied to an object to be plated, and after electroless copper plating, electrolytic copper plating is performed (claims 1 and 2, paragraph 42). .
In Production Example 2 (paragraph 52), which is a specific example of the copper catalyst solution, the catalyst solution contains a copper ammine complex of copper sulfate and ammonia, an anionic surfactant, and sodium borohydride (reducing agent).

(3)特許文献3
基板に酸化銅(I)コロイド触媒溶液による触媒付与をした後、銅塩と還元剤と錯化剤を含む溶液への浸漬で銅を基板にダイレクトプレーティングするものであり、上記触媒付与後の溶液には錯化剤や還元剤を含むが、上記触媒溶液の組成は不明である。
(3) Patent Document 3
After applying a catalyst with a copper (I) oxide colloidal catalyst solution to a substrate, copper is directly plated on the substrate by immersion in a solution containing a copper salt, a reducing agent, and a complexing agent. The solution contains a complexing agent and a reducing agent, but the composition of the catalyst solution is unknown.

(4)特許文献4
第一銅塩と次亜リン酸塩と塩素イオンを含み(請求項1)、或いはさらに有機又は無機還元剤(アミンボラン類、水素化ホウ素化合物、ギ酸など)を含む触媒溶液を調製する方法(請求項1〜3)、並びに、被メッキ物を界面活性剤(カチオン性、アニオン性、両性、ノニオン性;段落56)を含むコンディショニング剤で前処理し、触媒溶液で触媒処理し、無電解メッキをする方法(請求項8〜9)が開示される。
上記無電解メッキの種類は銅、ニッケル、金などであり、無電解銅メッキが好ましい(段落70)。
また、上記コンディショニング剤においては、特に、カチオン性界面活性剤を用いると、被メッキ物に吸着した界面活性剤の親水基がマイナスに帯電し、上記第一銅イオンが吸着し易く、均一に銅イオンが吸着した触媒化被メッキ物が得られることが記載される(段落58)。
(4) Patent Document 4
A method for preparing a catalyst solution containing cuprous salt, hypophosphite and chloride ions (Claim 1), or further containing an organic or inorganic reducing agent (amine boranes, borohydride compounds, formic acid, etc.) (Claim) Items 1 to 3), and the object to be plated are pretreated with a conditioning agent containing a surfactant (cationic, anionic, amphoteric, nonionic; paragraph 56), catalyzed with a catalyst solution, and electroless plating is performed. A method (claims 8-9) is disclosed.
The types of electroless plating are copper, nickel, gold, etc., and electroless copper plating is preferred (paragraph 70).
In the conditioning agent, particularly when a cationic surfactant is used, the hydrophilic group of the surfactant adsorbed on the object to be plated is negatively charged, the first copper ion is easily adsorbed, and the copper is uniformly distributed. It is described that a catalyzed plating object on which ions are adsorbed is obtained (paragraph 58).

(5)特許文献5
貴金属/金属−コロイド(例えば、パラジウム/スズのコロイド溶液)を含む活性化剤溶液で非導電性基板を処理し、次いで、銅塩などの金属塩溶液と当該金属イオンの錯化剤と還元剤を含む導電体溶液に接触させた後、無電解メッキ及び電気メッキを行う非導電性基板の直接金属化法が記載される(段落1、13)。
上記導電体溶液の金属塩は活性化剤溶液の金属で還元され、例えば、活性化剤溶液の2価スズ(酸化性カチオン)は導電体溶液の2価銅イオン(還元性カチオン)に作用して、スズは4価に酸化するのに伴い、2価銅イオンは還元されて金属銅になる(段落24、29)。
実施例1では、ABSプラスチック基板をパラジウム−スズ系コロイド含有の活性化剤分散液で活性化処理した後、酒石酸(錯化剤)と次亜リン酸塩(又は、次亜リン酸塩及びヒドロキシメチルスルホン酸塩;還元剤)と銅塩及びリチウム塩などとを含む導電体溶液で処理することが記載される(段落65、段落66の表1)。
(5) Patent Document 5
Treating the non-conductive substrate with an activator solution comprising a noble metal / metal-colloid (eg palladium / tin colloidal solution), and then a metal salt solution such as a copper salt and a complexing agent and reducing agent of the metal ion A direct metallization method of a non-conductive substrate is described (paragraphs 1 and 13), in which electroless plating and electroplating are performed after contact with a conductive solution containing.
The metal salt of the conductor solution is reduced with the metal of the activator solution. For example, divalent tin (oxidizing cation) of the activator solution acts on the divalent copper ion (reducing cation) of the conductor solution. As tin oxidizes to tetravalent, divalent copper ions are reduced to metallic copper (paragraphs 24 and 29).
In Example 1, after activation treatment of an ABS plastic substrate with an activator dispersion containing a palladium-tin colloid, tartaric acid (complexing agent) and hypophosphite (or hypophosphite and hydroxy) Treatment with a conductor solution containing methyl sulfonate (reducing agent), copper salt, lithium salt, and the like is described (Table 1 in paragraphs 65 and 66).

特開平2−093076号公報Japanese Patent Laid-Open No. 2-093076 特開平10−229280号公報Japanese Patent Laid-Open No. 10-229280 特開平7−197266号公報Japanese Patent Laid-Open No. 7-197266 特開2011−225929号公報JP2011-225929A 特表2013−522476号公報Special table 2013-522476 gazette

しかしながら、上記水系触媒液では、可溶性金属塩を還元剤で処理して金属の微細粒子を生成することを基本原理にしているが、上記特許文献の触媒液を初めとして、経時安定性に問題があるものが多く、触媒付与と無電解メッキの作業の連続性を長時間に亘り円滑に確保することが容易でないという実情がある。
また、非導電性基板を銅触媒液で触媒付与した後、無電解メッキを施しても、析出が困難であったり、部分的に皮膜析出しないメッキ欠けが発生したり、メッキ皮膜にムラが生じたり、均一性に劣るなどの問題がある。
However, the above-mentioned aqueous catalyst solution is based on the basic principle of producing a fine metal particle by treating a soluble metal salt with a reducing agent. However, there is a problem in stability over time including the catalyst solution of the above-mentioned patent document. There are many things, and there is a situation that it is not easy to ensure the continuity of work of applying a catalyst and electroless plating smoothly for a long time.
In addition, even after electroless plating after applying a catalyst to a non-conductive substrate with a copper catalyst solution, deposition is difficult, plating defects that do not partially deposit on the film, or uneven plating occurs. Or inferior uniformity.

本発明は、水系銅触媒液の経時安定性を向上するとともに、触媒付与した非導電性基板に無電解銅メッキを施して、均一でムラのない銅皮膜を得ることを技術的課題とする。   An object of the present invention is to improve the temporal stability of a water-based copper catalyst solution and to perform electroless copper plating on a non-conductive substrate provided with a catalyst to obtain a uniform and non-uniform copper film.

本発明者らは、例えば、特許文献1では銅の還元状態を保持するために安定剤を使用していることから、先ず、銅塩に対して錯化機能を有する成分を触媒液に含有するなどしてコロイド粒子を安定化することを着想した。
そして、銅触媒液に銅塩を安定させるオキシカルボン酸類、アミノカルボン酸類などのコロイド安定剤を含有するとともに、銅塩と安定剤の混合比率を調整することで経時安定性を改善できること、次いで、界面活性剤の存在は経時安定性に悪影響があり、添加してもその含有量はごく少量に止めるべきであること、また、所定の水溶性ポリマーの存在は経時安定性に大きく寄与することなどの知見を得た。
さらに、この知見に基づいて、基板を銅触媒液で触媒付与する前に、界面活性剤からなる吸着促進剤の含有液に浸漬するという予備処理を加重的に行うと、触媒付与に際して触媒活性が高まり無電解銅メッキにより得られる析出皮膜の均一性と、皮膜の外観ムラの発生防止に優れることを新たに見い出して、本発明を完成した。
The inventors of the present invention, for example, use a stabilizer in order to maintain the reduced state of copper in Patent Document 1, and therefore, first, a component having a complexing function with respect to the copper salt is contained in the catalyst solution. The idea was to stabilize colloidal particles.
And while containing colloidal stabilizers such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt in the copper catalyst solution, it is possible to improve the temporal stability by adjusting the mixing ratio of the copper salt and the stabilizer, The presence of the surfactant has an adverse effect on the stability over time, and even if it is added, its content should be kept to a very small amount, and the presence of the predetermined water-soluble polymer greatly contributes to the stability over time. I got the knowledge.
Furthermore, based on this knowledge, if the pretreatment of immersing the substrate in a liquid containing an adsorption accelerator made of a surfactant before applying the catalyst with the copper catalyst solution is performed weightwise, the catalyst activity is increased when applying the catalyst. The present invention has been completed by newly finding out that it is excellent in the uniformity of the deposited film obtained by electroless copper plating and the prevention of uneven appearance of the film.

即ち、本発明1は、無電解銅メッキを施す非導電性基板に接触させて触媒付与を行うための水系銅コロイド触媒液において、
(A)可溶性銅塩と、
(B)還元剤と、
(C)オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれたコロイド安定剤の少なくとも一種
からなり、
上記成分(A)と(C)の含有モル比率をA:C=1:0.03〜1:35、上記成分(A)の含有量を0.05〜0.5モル/L、上記成分(A)と(B)の含有モル比率をA:B=1:0.1〜1:5とし、
界面活性剤を含有しないか、或いは界面活性剤の含有量を950mg/L以下とするとともに、
pHが1〜6又は8〜12であり、平均粒径1〜250nmの銅コロイドを有することを特徴とする無電解銅メッキ用の水系銅コロイド触媒液。
That is, the present invention 1 is an aqueous copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate on which electroless copper plating is performed.
(A) a soluble copper salt;
(B) a reducing agent;
(C) at least one colloidal stabilizer selected from the group consisting of oxycarboxylic acids , aminocarboxylic acids, and polycarboxylic acids ,
The content molar ratio of the components (A) and (C) is A: C = 1: 0.03 to 1:35 , the content of the component (A) is 0.05 to 0.5 mol / L, and the components The content molar ratio of (A) and (B) is A: B = 1: 0.1 to 1: 5,
It contains no surfactant or the surfactant content is 950 mg / L or less ,
An aqueous copper colloid catalyst solution for electroless copper plating , having a pH of 1 to 6 or 8 to 12 and a copper colloid having an average particle diameter of 1 to 250 nm .

本発明2は、上記本発明1において、還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の水系銅コロイド触媒液である。 Invention 2 is the invention 1, wherein the reducing agent (B) is a borohydride compound, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, An aqueous copper colloidal catalyst solution for electroless copper plating, which is at least one selected from the group consisting of phenolsulfonic acids, naphtholsulfonic acids, and sulfinic acids.

本発明3は、上記本発明1又は2において、オキシカルボン酸類(C)が、クエン酸、酒石酸、リンゴ酸、グルコン酸、ゴルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の水系銅コロイド触媒液である。
Invention 3 is the invention 1 or 2, wherein the oxycarboxylic acids (C) are citric acid, tartaric acid, malic acid, gluconic acid, golcoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, isocitric acid, tartronic acid, glycerin. An aqueous copper colloidal catalyst solution for electroless copper plating, which is at least one selected from the group consisting of acids, hydroxybutyric acid, leucine acid, citramalic acid, and salts thereof.

本発明4は、上記本発明1〜3のいずれかにおいて、アミノカルボン酸類(C)が、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、エチレンジアミン四プロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の水系銅コロイド触媒液である。 Invention 4 relates to any one of Inventions 1 to 3 , wherein the aminocarboxylic acid (C) is hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraacetic acid, ethylenediaminetetrapropionic acid, nitrilo Triacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1,3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, metaphenylenediaminetetraacetic acid 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethylglutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, ( S, S) -ethylenedia An aqueous copper colloid catalyst solution for electroless copper plating, characterized in that at least one selected from Nkohaku acids and the group consisting of salts thereof.

本発明5は、上記本発明1〜4のいずれかにおいて、ポリカルボン酸類(C)が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の水系銅コロイド触媒液である。 Invention 5 is as described in any one of Inventions 1 to 4 , wherein the polycarboxylic acid (C) is succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid And an aqueous copper colloid catalyst solution for electroless copper plating, which is at least one selected from the group consisting of these salts.

本発明6は、(a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程(前処理工程)と、
(b)上記本発明1〜5のいずれかの水系銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイド粒子を吸着させる触媒付与工程と、
(c)吸着処理された上記基板上に無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解銅メッキ方法である。
The present invention 6 is (a) non-conductive to at least one liquid containing an adsorption accelerator selected from the group consisting of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. Adsorption promotion process (pretreatment process) for immersing the substrate;
(B) a catalyst application step of immersing a non-conductive substrate in the aqueous copper colloid catalyst solution of any one of the present inventions 1 to 5 to adsorb copper colloid particles on the substrate surface;
(C) an electroless plating step of forming a copper film using an electroless copper plating solution on the adsorption-treated substrate.

本発明7は、上記本発明6において、工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする無電解銅メッキ方法である。 The present invention 7 is the electroless copper plating method according to the present invention 6, wherein the adsorption accelerator in the step (a) is a cationic surfactant and / or an amphoteric surfactant.

本発明の銅コロイド触媒液では、銅塩に錯化作用をするコロイド安定剤を含有し、当該安定剤と銅塩の比率を特定化するとともに、界面活性剤を含有しないか、ごく少量しか含有しないことにより、液の経時安定性を顕著に向上できる。
ちなみに、上記特許文献1の金属体含有液(つまり触媒液)では、銅塩の錯化作用をする成分の含有はない。また、特許文献1の実施例4(第4頁左上欄〜右上欄)の触媒液では、分散剤としてのゼラチン1000mg/Lを含有し、或いは、上記特許文献2の製造例2(段落52)の触媒液では、アニオン性界面活性剤を1000mg/L含有しており、共に本発明1の触媒液での界面活性剤の規定量の上限を越えている。
The copper colloid catalyst solution of the present invention contains a colloidal stabilizer that has a complexing action on the copper salt, specifies the ratio of the stabilizer and the copper salt, and does not contain a surfactant or contains only a small amount. By not doing so, the stability over time of the liquid can be significantly improved.
Incidentally, the metal body-containing liquid (that is, the catalyst liquid) of Patent Document 1 does not contain a component that causes a complexing action of a copper salt. In addition, the catalyst solution of Example 4 of Patent Document 1 (upper left column to upper right column on page 4) contains 1000 mg / L of gelatin as a dispersant, or Production Example 2 of Patent Document 2 (paragraph 52). This catalyst solution contains 1000 mg / L of an anionic surfactant, and both exceed the upper limit of the specified amount of the surfactant in the catalyst solution of the present invention 1.

本発明では、非導電性基板に上記銅コロイド触媒を付与してから無電解銅メッキをすることを基本原理とするが、この触媒付与の前処理、或いは予備処理として、非導電性基板を界面活性剤の含有液に浸漬する吸着促進処理を加重して、当該吸着促進工程、触媒付与工程並びに無電解銅メッキ工程を順次行うことにより、触媒付与時の触媒活性を増強して無電解メッキにより析出する銅皮膜の均一性を改善し、且つ、皮膜のムラ発生を良好に防止できる。   In the present invention, the basic principle is to apply electroless copper plating after applying the copper colloid catalyst to the non-conductive substrate. As a pretreatment or pretreatment for applying the catalyst, the non-conductive substrate is used as an interface. By weighting the adsorption promotion treatment immersed in the liquid containing the activator and sequentially performing the adsorption promotion process, the catalyst application process, and the electroless copper plating process, the catalyst activity at the time of catalyst application is enhanced by electroless plating. The uniformity of the deposited copper film can be improved and unevenness of the film can be prevented well.

本発明は、第一に、非導電性基板に接触させて触媒付与を行うための水系銅コロイド触媒液であって、(A)可溶性銅塩と(B)還元剤と(C)コロイド安定剤とからなり、上記成分(A)と(C)の含有モル比率、上記成分(A)の含有量、上記成分(A)と(B)の含有モル比率、並びにpHを特定化し、界面活性剤を含有しないか、或いはごく少量しか含有しない無電解銅メッキ用の水系銅コロイド触媒液であり、第二に、上記第一の触媒液を用いた無電解銅メッキ方法であり、予め非導電性基板を界面活性剤の含有液で吸着促進処理し、次いで、上記触媒液により触媒付与した後に無電解銅メッキを行う方法である。
上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などをいう。
The present invention is, firstly, an aqueous copper colloid catalyst solution for bringing a catalyst into contact with a non-conductive substrate, comprising (A) a soluble copper salt, (B) a reducing agent, and (C) a colloid stabilizer. consists of a, the molar ratio of the above components (a) and (C), the content of the component (a), and specifying the molar ratio, and the pH of the components (a) and (B), surfactant Is an aqueous copper colloid catalyst solution for electroless copper plating containing no or a very small amount, and secondly, an electroless copper plating method using the first catalyst solution , which is non-conductive in advance. In this method, the substrate is subjected to adsorption promotion treatment with a surfactant-containing liquid and then subjected to electroless copper plating after the catalyst is applied with the catalyst liquid.
Examples of the non-conductive substrate include glass substrates, ceramic substrates, and the like including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.

上記本発明1の水系銅コロイド触媒液の基本組成は、(A)可溶性銅塩と、(B)還元剤と、(C)コロイド安定剤とからなる。
上記可溶性塩(A)は、水溶液中で第一又は第二銅イオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。具体的には、硫酸銅、酸化銅、塩化銅、ピロリン酸銅、炭酸銅、或いは酢酸銅、シュウ酸銅及びクエン酸銅等のカルボン酸銅塩、又はメタンスルホン酸銅及びヒドロキシエタンスルホン酸銅等の有機スルホン酸銅塩などが挙げられ、硫酸銅、クエン酸銅、メタンスルホン酸銅が好ましい。
The basic composition of the aqueous copper colloid catalyst solution of the first invention comprises (A) a soluble copper salt, (B) a reducing agent, and (C) a colloid stabilizer .
Any soluble salt (A) may be used as long as it is a soluble salt that generates cuprous or cupric ions in an aqueous solution, and there is no particular limitation, and hardly soluble salts are not excluded. Specifically, copper sulfate, copper oxide, copper chloride, copper pyrophosphate, copper carbonate, or carboxylic acid copper salts such as copper acetate, copper oxalate and copper citrate, or copper methanesulfonate and copper hydroxyethanesulfonate And the like, and copper sulfate, copper citrate, and copper methanesulfonate are preferable.

上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類などが挙げられる。アルデヒド類はホルムアルデヒド、グリオキシル酸又はその塩などであり、多価フェノール類はカテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などであり、フェノールスルホン酸類はフェノールスルホン酸、クレゾールスルホン酸又はその塩などである。   Examples of the reducing agent (B) include borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfines. Examples include acids. Aldehydes are formaldehyde, glyoxylic acid or salts thereof, polyhydric phenols are catechol, hydroquinone, resorcin, pyrogallol, phloroglucin, gallic acid, etc., phenol sulfonic acids are phenol sulfonic acid, cresol sulfonic acid or salts thereof, etc. It is.

上記コロイド安定剤(C)はメッキ浴中で銅錯体を形成する化合物であり、触媒液の経時安定性を担保する機能を果たすものである。
当該コロイド安定剤(C)は、モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれる。
上記モノカルボン酸類としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及びこれらの塩などが挙げられる。
The colloid stabilizer (C) is a compound that forms a copper complex in the plating bath, and fulfills the function of ensuring the temporal stability of the catalyst solution.
The colloid stabilizer (C) is selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids.
Examples of the monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and salts thereof.

上記オキシカルボン酸類としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、ゴルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩などが挙げられる。   Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, golcoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, And salts thereof.

上記アミノカルボン酸類としては、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、イミノジプロピオン酸(IDP)、ヒドロキシエチルイミノジ酢酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩などが挙げられる。   Examples of the aminocarboxylic acids include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA). , Iminodiacetic acid (IDA), iminodipropionic acid (IDP), hydroxyethyliminodiacetic acid, 1,3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, meta Phenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethylglutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) )glycine,( , S) - ethylenediamine succinic acid and salts thereof.

上記ポリカルボン酸類としては、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩などが挙げられる。   Examples of the polycarboxylic acids include succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof.

本発明の銅コロイド触媒液は水系なので、液の溶媒は水及び/又は親水性アルコールに限定され、有機溶媒(親油性アルコールを含む)単用は排除される。
また、当該触媒液については、中性付近では触媒活性が低下し易いため、液のpHは中性域を除く酸性側又はアルカリ側が好ましく、具体的にはpH1〜6及び8〜12が適しており、好ましくはpH2〜5及び8〜11である。
Since the copper colloid catalyst solution of the present invention is aqueous, the solvent of the solution is limited to water and / or hydrophilic alcohol, and the use of organic solvents (including lipophilic alcohol) alone is excluded.
Moreover, about the said catalyst liquid, since catalyst activity tends to fall near neutrality, the pH of the liquid is preferably the acidic side or the alkaline side excluding the neutral range, and specifically, pH 1 to 6 and 8 to 12 are suitable. The pH is preferably 2 to 5 and 8 to 11.

水系銅コロイド触媒液において、上記可溶性銅塩(A)は単用又は併用でき、その含有量は0.05〜0.5モル/L、好ましくは0.04〜0.2モル/Lである。
上記還元剤(B)は単用又は併用でき、その含有量は0.005〜1モル/L、好ましくは0.05〜0.5モル/Lである。還元剤の含有量が適正量より少ないと銅塩の還元作用が低下し、逆に、多過ぎると無電解メッキで析出する銅皮膜の均質性が低下する恐れがある。
上記コロイド安定剤(C)は単用又は併用でき、その含有量は0.005〜2モル/L、好ましくは0.05〜1.5モル/Lである。
また、水系コロイド触媒液では、上記(A)と(C)の含有モル比率はA:C=1:0.03〜1:35であり、好ましくはA:C=1:0.5〜1:24である。コロイド安定剤(C)の相対含有率が少な過ぎると触媒液の経時安定性が低下し、ひいては無電解メッキにより得られる銅皮膜に析出不良を生じる要因ともなる。逆に、コロイド安定剤(C)の含有率が多過ぎても、触媒液の経時安定性を損ない、得られる銅皮膜の質を低下させることになる(後述の試験例参照)。
水系コロイド触媒液では、上記(A)と(B)の含有モル比率はA:B=1:0.1〜1:5である。
当該触媒液の調製に際しては、還元剤から銅イオンに電子を円滑に供与するため、還元剤の溶液を可溶性銅塩(及びコロイド安定剤)の含有溶液に時間をかけて緩やかに滴下して製造することを基本とする。例えば、5〜50℃(好ましくは10〜40℃)の還元剤溶液を銅塩溶液に滴下して20〜1200分間(好ましくは30〜300分間)撹拌し、触媒液を調製する。尚、触媒液の調製では、可溶性銅塩の溶液を還元剤の液に滴下することを排除するものではない。
本発明の触媒液において、還元剤の作用により可溶性銅塩から生じる銅コロイド粒子は適した平均粒径が1〜250nm、好ましくは1〜120nm、より好ましくは1〜100nmの微細粒子である。
銅コロイド粒子の平均粒径が250nm以下になると、触媒液に非導電性基板を浸漬した場合、コロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着し、或いは引っ掛かるなどのアンカー効果により基板表面に銅コロイド核の付与が促進されるものと推定できる。逆に、平均粒径が250nmより大きくなると、凝集、沈殿或いは分離などにより、安定な銅コロイドが得られにくいうえ、アンカー効果も期待できないため、銅コロイド粒子が基板表面に部分的にしか付与できなかったり、付与不良になる恐れがある。
In the aqueous copper colloid catalyst solution, the soluble copper salt (A) can be used alone or in combination, and its content is 0.05 to 0.5 mol / L, preferably 0.04 to 0.2 mol / L. .
The reducing agent (B) can be used alone or in combination, and its content is 0.005 to 1 mol / L, preferably 0.05 to 0.5 mol / L. If the content of the reducing agent is less than the appropriate amount, the reducing action of the copper salt is lowered. Conversely, if the content is too large, the homogeneity of the copper film deposited by electroless plating may be lowered.
The colloid stabilizer (C) can be used alone or in combination, and its content is 0.005 to 2 mol / L, preferably 0.05 to 1.5 mol / L.
In the aqueous colloidal catalyst solution, the molar ratio of (A) to (C) is A: C = 1: 0.03 to 1:35, preferably A: C = 1: 0.5 to 1. : 24. If the relative content of the colloidal stabilizer (C) is too small, the stability with time of the catalyst solution is lowered, and as a result, the copper film obtained by electroless plating causes a deposition failure. On the other hand, even if the content of the colloid stabilizer (C) is too large, the stability of the catalyst solution over time is impaired, and the quality of the obtained copper film is lowered (see the test examples described later).
In the aqueous colloidal catalyst solution, the molar ratio of (A) to (B) is A: B = 1: 0.1 to 1: 5.
In the preparation of the catalyst solution, in order to smoothly donate electrons from the reducing agent to the copper ions, the reducing agent solution is slowly dropped over the solution containing the soluble copper salt (and colloid stabilizer) over time. Basically to do. For example, a reducing agent solution of 5 to 50 ° C. (preferably 10 to 40 ° C.) is dropped into a copper salt solution and stirred for 20 to 1200 minutes (preferably 30 to 300 minutes) to prepare a catalyst solution. It should be noted that the preparation of the catalyst solution does not exclude dropping the soluble copper salt solution into the reducing agent solution.
In the catalyst solution of the present invention, the copper colloid particles generated from the soluble copper salt by the action of the reducing agent are fine particles having a suitable average particle diameter of 1 to 250 nm, preferably 1 to 120 nm, more preferably 1 to 100 nm.
When the average particle size of the copper colloidal particles is 250 nm or less, when the non-conductive substrate is immersed in the catalyst solution, the colloidal particles enter into the dents on the fine uneven surface of the substrate, and are closely adsorbed or caught. It can be presumed that the application of copper colloid nuclei to the substrate surface is accelerated by Conversely, when the average particle size is larger than 250 nm, it is difficult to obtain a stable copper colloid due to agglomeration, precipitation, or separation, and the anchor effect cannot be expected. Therefore, the copper colloid particles can only be partially applied to the substrate surface. There is a risk that it may not be applied or it may become defective.

本発明1の水系銅コロイド触媒液では、界面活性剤を含有しないか、或いは界面活性剤の含有量を950mg/L以下に抑制することが必要である。
触媒液に界面活性剤を含有すると触媒活性が低下する恐れがあり、界面活性剤は添加しない方が好ましい。但し、含有量が950mg/L以下のごく少量の場合には、あまり触媒活性の低下に悪影響はなく、好ましくは700mg/L以下である。
上記界面活性剤はノニオン系、両性、カチオン系、或はアニオン系の各種界面活性剤を意味し、特に、両性、カチオン系、アニオン系、或いは、低分子のノニオン系界面活性剤は好ましくない。
上記ノニオン系界面活性剤としては、C1〜C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1〜C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1〜C25アルキルナフトール、C1〜C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C1〜C22脂肪族アミン、C1〜C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2〜300モル付加縮合させたものや、C1〜C25アルコキシル化リン酸(塩)などが挙げられる。
上記カチオン系界面活性剤としては、第4級アンモニウム塩、或はピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。また、エチレンオキシド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化、或はスルホン酸化付加物も使用できる。
In the aqueous copper colloid catalyst solution of the present invention 1, it is necessary not to contain a surfactant or to suppress the content of the surfactant to 950 mg / L or less.
If a surfactant is contained in the catalyst solution, the catalyst activity may decrease, and it is preferable not to add a surfactant. However, in the case of a very small content of 950 mg / L or less, there is not much adverse effect on the decrease in catalyst activity, and preferably 700 mg / L or less.
The above-mentioned surfactant means various nonionic, amphoteric, cationic, or anionic surfactants. In particular, amphoteric, cationic, anionic, or low-molecular nonionic surfactants are not preferable.
Nonionic surfactants include C1-C20 alkanols, phenols, naphthols, bisphenols, (poly) C1-C25 alkylphenols, (poly) arylalkylphenols, C1-C25 alkylnaphthols, C1-C25 alkoxylated phosphoric acids (salts). ), Sorbitan esters, polyalkylene glycols, C1 to C22 aliphatic amines, C1 to C22 aliphatic amides and the like obtained by addition condensation of 2-300 moles of ethylene oxide (EO) and / or propylene oxide (PO), And C25 alkoxylated phosphoric acid (salt).
Examples of the cationic surfactant include quaternary ammonium salts, pyridinium salts, and the like. Specific examples include lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, octadecyl dimethyl ethyl ammonium salt. Dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt, trimethyl benzyl ammonium salt, triethyl benzyl ammonium salt, dimethyl diphenyl ammonium salt, benzyl dimethyl phenyl ammonium salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecyl Pyridinium salt, stearylamine acetate, laurylamine acetate, octadecylamine acetate Such as the Tate, and the like.
Examples of the anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl benzene sulfonates, {(mono, di, tri) alkyl} naphthalene sulfonates, etc. Is mentioned. Examples of the amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. In addition, sulfation of a condensation product of ethylene oxide and / or propylene oxide and an alkylamine or diamine, or a sulfonated adduct can also be used.

本発明では、水系銅触媒液の経時安定性を向上し、非導電性基板に無電解銅メッキするに際に均一でムラのない皮膜を形成することを課題とするが、本発明1の銅触媒液において、界面活性剤の含有を排除、或は所定量以下に抑制する代わりに、合成系の水溶性ポリマーを含有すると、コロイド粒子の分散性が向上し、もって無電解銅メッキに際して、優れた均一性とムラのない銅皮膜の析出に寄与できる。
上記合成系水溶性ポリマーとは、ゼラチン、澱粉などの天然由来の水溶性ポリマーを排除する意味である。
当該合成系の水溶性ポリマーは、本発明1の触媒液の含有排除又は抑制の対象である界面活性剤との関係で、その属する成分に一部重複する可能性も考えられるが、本発明では両者は別の概念である。
この合成系の水溶性ポリマーを含有する場合、例えば、界面活性剤の含有の有無は問わず、含有しても、或いはしなくても良いが、基本的に本発明1との関係で、界面活性剤は含有しない方が好ましい。
上記合成系の水溶性ポリマーとしては、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAM)、ポリエチレンイミン(PEI)、ポリアクリル酸塩などが挙げられ、特に、高分子量のPEG、PVP、PVAなどが好ましい。
合成系の水溶性ポリマーは単用又は併用でき、その触媒液に対する含有量は0.05〜100g/Lであり、好ましくは0.5〜50g/L、さらに好ましくは1.0〜30g/Lである。
An object of the present invention is to improve the temporal stability of the aqueous copper catalyst solution and to form a uniform and non-uniform film when electroless copper plating is applied to a non-conductive substrate. In the catalyst solution, the inclusion of a synthetic water-soluble polymer instead of eliminating the surfactant or suppressing it to below a predetermined amount improves the dispersibility of the colloidal particles, which is excellent for electroless copper plating. It can contribute to the deposition of a uniform and uniform copper film.
The above synthetic water-soluble polymer means to exclude naturally derived water-soluble polymers such as gelatin and starch .
The synthetic water-soluble polymer may be partially overlapped with the component to which it belongs in relation to the surfactant that is subject to exclusion or suppression of the catalyst solution of the present invention 1. Both are different concepts.
In the case of containing this synthetic water-soluble polymer, for example, it may or may not be contained regardless of the presence or absence of a surfactant. It is preferable that no activator is contained.
Examples of the water-soluble polymer of the synthetic system include polyethylene glycol (PEG) , polypropylene glycol (PPG), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM), polyethylene imine (PEI), and polyacrylate. In particular, high molecular weight PEG, PVP, PVA and the like are preferable.
The synthetic water-soluble polymer can be used singly or in combination, and its content relative to the catalyst solution is 0.05 to 100 g / L, preferably 0.5 to 50 g / L, more preferably 1.0 to 30 g / L. It is.

本発明6は、上記水系銅コロイド触媒液を用いた無電解メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解銅メッキ工程
上記吸着促進工程(a)はいわば(b)の触媒付与の前処理(予備処理)工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する工程であり、基板を界面活性剤の含有液に接触させることで基板表面の濡れ性を高めて触媒活性を増強し、次工程での銅コロイド粒子の吸着を促進するものである。
吸着促進工程では、非導電性基板を界面活性剤の含有液を接触させることが必要であるため、液に浸漬させることが基本であるが、含有液を基板に噴霧したり、刷毛で塗布するなどしても差し支えない。
本発明7に示すように、吸着を促進する見地から、正電荷を帯びたカチオン系や両性界面活性剤が好適であり、特にカチオン系界面活性剤がより好ましい。また、カチオン系界面活性剤に少量のノニオン系界面活性剤を併用すると、吸着促進効果がさらに増す。
本発明1の触媒液において、可溶性銅塩に還元剤を作用させて生じる銅コロイド粒子はゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン性界面活性剤で接触処理すると、基板がプラス電荷を帯び易く、次工程における銅コロイド粒子の基板への吸着効率が増す。
界面活性剤の具体例は、前記本発明1の触媒液において排除又は抑制対象として述べた界面活性剤の説明の通りである。
界面活性剤の含有量は0.05〜100g/Lであり、好ましくは0.5〜50g/Lである。界面活性剤の含有液の温度は15〜70℃程度、浸漬時間は0.5〜20分間程度が好ましい。
The present invention 6 is an electroless plating method using the aqueous copper colloid catalyst solution, which is formed by sequentially combining the following three steps.
(A) Adsorption promotion step (b) Catalyst application step (c) Electroless copper plating step The adsorption promotion step (a) is, in other words, a pretreatment (pretreatment) step of catalyst application of (b), and is a nonionic surfactant. This is a step of immersing a non-conductive substrate in a liquid containing at least one adsorption accelerator selected from the group consisting of an agent, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. By bringing into contact with the liquid containing the agent, the wettability of the substrate surface is increased to enhance the catalytic activity, and the adsorption of the copper colloid particles in the next step is promoted.
In the adsorption promotion step, it is necessary to bring the non-conductive substrate into contact with the surfactant-containing liquid, so it is basically immersed in the liquid, but the containing liquid is sprayed on the substrate or applied with a brush. There is no problem.
As shown in the present invention 7 , from the viewpoint of promoting adsorption, a positively charged cationic or amphoteric surfactant is preferred, and a cationic surfactant is particularly preferred. Further, when a small amount of nonionic surfactant is used in combination with the cationic surfactant, the adsorption promoting effect is further increased.
In the catalyst solution of the present invention 1 , since the colloidal copper particles produced by allowing a reducing agent to act on a soluble copper salt have a negative zeta potential, for example, when a non-conductive substrate is contact-treated with a cationic surfactant, the substrate becomes It is easy to carry a positive charge, and the adsorption efficiency of the copper colloidal particles on the substrate in the next process is increased.
Specific examples of the surfactant are as described for the surfactant described as an object to be excluded or suppressed in the catalyst solution of the first invention.
The content of the surfactant is from 0.05 to 100 g / L, preferably from 0.5 to 50 g / L. The temperature of the surfactant-containing liquid is preferably about 15 to 70 ° C., and the immersion time is preferably about 0.5 to 20 minutes.

吸着促進処理を終えた非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
触媒付与工程では、上記水系銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイドを吸着させる。
当該触媒液の液温は10〜70℃、浸漬時間は0.1〜20分程度であり、浸漬処理に際しては、基板を触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行っても良い。
The non-conductive substrate that has finished the adsorption promoting process is washed with pure water and then dried or transferred to the next catalyst application step (b) without drying.
In the catalyst application step, the non-conductive substrate is immersed in the aqueous copper colloid catalyst solution to adsorb the copper colloid on the substrate surface.
The liquid temperature of the catalyst solution is 10 to 70 ° C., and the immersion time is about 0.1 to 20 minutes. In the immersion treatment, it is sufficient to immerse the substrate in the catalyst solution in a stationary state. You may move.

触媒液に浸漬した非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、無電解銅メッキ工程(c)に移行する。
無電解銅メッキは、従来と同様に処理すれば良く、特段の制約はない。無電解銅メッキ液の液温は一般に15〜70℃、好ましくは20〜60℃である。
銅メッキ液の撹拌では、空気撹拌、急速液流撹拌、撹拌羽根等による機械撹拌等を使用することができる。
The nonconductive substrate immersed in the catalyst solution is washed with pure water and then dried or transferred to the electroless copper plating step (c) without drying.
The electroless copper plating may be processed in the same manner as in the past, and there are no particular restrictions. The temperature of the electroless copper plating solution is generally 15 to 70 ° C, preferably 20 to 60 ° C.
In stirring the copper plating solution, air stirring, rapid liquid flow stirring, mechanical stirring using a stirring blade, or the like can be used.

無電解銅メッキ液の組成に特段の制限はなく、公知の銅メッキ液を使用できる。
無電解銅メッキ液は、基本的に可溶性銅塩と、還元剤と、錯化剤を含有し、或いは、さらに界面活性剤やpH調整剤などの各種添加剤、又は酸を含有できる。
可溶性銅塩については、前記銅コロイド触媒液で述べた通りである。
There is no particular limitation on the composition of the electroless copper plating solution, and a known copper plating solution can be used.
The electroless copper plating solution basically contains a soluble copper salt, a reducing agent, and a complexing agent, or may further contain various additives such as a surfactant and a pH adjusting agent, or an acid.
The soluble copper salt is as described in the copper colloid catalyst solution.

無電解銅メッキ液に含有される還元剤についても、前記銅コロイド触媒液で述べた通りであり、ホルムアルデヒド(ホルマリン水)を初め、次亜リン酸類、亜リン酸類、アミンボラン類、水素化ホウ素類、グリオキシル酸などであり、ホルマリン水が好ましい。   The reducing agent contained in the electroless copper plating solution is also as described in the copper colloid catalyst solution, including formaldehyde (formalin water), hypophosphorous acid, phosphorous acid, amine borane, borohydride. And glyoxylic acid, and formalin water is preferred.

無電解銅メッキ液に含有される錯化剤については、前記銅コロイド触媒液で述べたコロイド安定剤と共通する部分もあり、具体的には、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)などのアミノカルボン酸類、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどのポリアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、クエン酸、酒石酸、乳酸、リンゴ酸などのオキシカルボン酸類、チオグリコール酸、グリシンなどである。   The complexing agent contained in the electroless copper plating solution has a part in common with the colloidal stabilizer described in the copper colloid catalyst solution, specifically, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA). ), Aminocarboxylic acids such as triethylenetetramine hexaacetic acid (TTHA), hydroxyethylethylenediamine triacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, Polyamines such as tetraethylenepentamine and pentaethylenehexamine, aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine, oxycarbons such as citric acid, tartaric acid, lactic acid and malic acid S, thioglycolic acid, glycine and the like.

無電解銅メッキ液には、液のベース成分として有機酸及び無機酸、或いはその塩を含有しても良い。
上記無機酸には、硫酸、ピロリン酸、ホウフッ酸などが挙げられる。また、有機酸には、グリコール酸や酒石酸等のオキシカルボン酸、メタンスルホン酸や2―ヒドロキシエタンスルホン酸等の有機スルホン酸などが挙げられる。
The electroless copper plating solution may contain an organic acid and an inorganic acid or a salt thereof as a base component of the solution.
Examples of the inorganic acid include sulfuric acid, pyrophosphoric acid, and borofluoric acid. Examples of the organic acid include oxycarboxylic acids such as glycolic acid and tartaric acid, and organic sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.

以下、本発明の吸着促進剤の含有液、銅コロイド触媒液、並びに無電解銅メッキ液の調製を含む無電解銅メッキ方法の実施例を述べるとともに、銅コロイド触媒液の経時安定性試験例、上記実施例で得られた析出銅皮膜の外観評価試験例を順次説明する。
尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, the examples of the electroless copper plating method including the preparation of the adsorption promoter of the present invention, the copper colloid catalyst solution, and the electroless copper plating solution will be described, and the temporal stability test example of the copper colloid catalyst solution, Examples of appearance evaluation tests of the deposited copper film obtained in the above examples will be sequentially described.
The present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.

《無電解銅メッキ方法の実施例》
下記の実施例1〜10のうち、実施例5は銅コロイド触媒液にごく少量の界面活性剤を含む例、実施例1〜4、実施例6〜10は触媒液に界面活性剤を含まない例である。参考例1〜8は触媒液に合成系の水溶性ポリマーを含有する例である。
実施例1は触媒液にコロイド安定剤としてクエン酸を使用し、還元剤として水素化ホウ素ナトリウムを使用した例である。以下、実施例1を基本として、実施例2はコロイド安定剤の含有量を低減した例、実施例3はコロイド安定剤の含有量を増量した例、実施例4は還元剤の含有量を低減した例、実施例6はコロイド安定剤の種類と含有量を変更した例、実施例7は還元剤の種類と触媒液の液温を変更した例である。また、実施例7を基本として、実施例8〜10は可溶性銅塩を変更した例である。
実施例5は上述の通り、実施例1を基本として、ノニオン系の界面活性剤をごく少量含有し、コロイド安定剤の種類と触媒液のpHを変更した例である。
そして、実施例1を基本として、参考例1は触媒液にポリビニルピロリドン(PVP)を含有した例、参考例2は同じくポリエチレングリコール(PEG)を含有した例、参考例3参考例5はPVP(平均分子量を変更)を含有した例、参考例4はポリエチレンイミン(PEI)を含有した例、参考例6はポリアクリルアミド(PAM)を含有した例である。
実施例1〜9と参考例1〜6は触媒液のpHが酸性の例であるが、実施例10と参考例7〜8は触媒液のpHがアルカリ側の例である。ちなみに、pHの調整には10〜20%程度の硫酸、或いは水酸化ナトリウムを使用した。
<< Example of electroless copper plating method >>
Of the following Examples 1 to 10 , Example 5 is an example containing a very small amount of surfactant in the copper colloid catalyst solution, Examples 1 to 4 and Examples 6 to 10 do not contain a surfactant in the catalyst solution. It is an example. Reference Examples 1 to 8 are examples in which the catalyst solution contains a synthetic water-soluble polymer.
Example 1 is an example in which citric acid was used as the colloid stabilizer in the catalyst solution and sodium borohydride was used as the reducing agent. Hereinafter, based on Example 1, Example 2 is an example in which the content of colloidal stabilizer is reduced, Example 3 is an example in which the content of colloidal stabilizer is increased, and Example 4 is in which the content of reducing agent is reduced. Example 6 is an example in which the type and content of the colloidal stabilizer are changed, and Example 7 is an example in which the type of the reducing agent and the liquid temperature of the catalyst solution are changed. Moreover, based on Example 7 , Examples 8-10 are examples which changed soluble copper salt.
As described above, Example 5 is an example in which a very small amount of nonionic surfactant is contained on the basis of Example 1, and the kind of colloidal stabilizer and the pH of the catalyst solution are changed.
Based on Example 1, Reference Example 1 is an example in which polyvinyl pyrrolidone (PVP) is contained in the catalyst solution, Reference Example 2 is an example in which polyethylene glycol (PEG) is also contained, and Reference Example 3 and Reference Example 5 are PVP. Examples containing (changing the average molecular weight), Reference Example 4 is an example containing polyethyleneimine (PEI), and Reference Example 6 is an example containing polyacrylamide (PAM).
Examples 1 to 9 and Reference Examples 1 to 6 are examples where the pH of the catalyst solution is acidic, while Examples 10 and Reference Examples 7 to 8 are examples where the pH of the catalyst solution is on the alkali side. Incidentally, about 10 to 20% sulfuric acid or sodium hydroxide was used for pH adjustment.

一方、下記の比較例1〜6のうち、比較例1は触媒液にコロイド安定剤を含有しないブランク例、比較例2は触媒液において銅塩に対するコロイド安定剤の相対含有比率が本発明1〜2の規定量の下限より低い例、比較例3は同含有比率が本発明1〜2の規定量の上限を越える例、比較例4は触媒液に界面活性剤を本発明1の抑制規定量を越えて含有した例、比較例5は同じく触媒液に界面活性剤を比較例4より多く含有した例、比較例6は吸着促進工程なしで、直ちに触媒付与工程から無電解メッキ工程を行ったブランク例である。
また、冒述の特許文献1の実施例4では触媒液に分散剤としてゼラチンを含有するが、比較例7は触媒液に上述の合成系ではなく、天然由来の水溶性ポリマーであるゼラチンを含有したもので、いわば上記特許文献1の準拠例である。
On the other hand, among the following Comparative Examples 1 to 6, Comparative Example 1 is a blank example in which no colloidal stabilizer is contained in the catalyst solution, and Comparative Example 2 is a catalyst solution in which the relative content ratio of the colloidal stabilizer to the copper salt is the present invention 1 to 1. An example in which the content ratio is lower than the lower limit of the specified amount of 2, Comparative Example 3 is an example in which the content ratio exceeds the upper limit of the specified amount of the present invention 1-2, and Comparative Example 4 is a controlled specified amount of the present invention 1 in the catalyst solution. In Comparative Example 5, the catalyst solution contains more surfactant than Comparative Example 4, and in Comparative Example 6, the electroless plating process was immediately performed from the catalyst application process without the adsorption promotion process. This is a blank example.
Further, in Example 4 of Patent Document 1 described above , gelatin is contained as a dispersant in the catalyst solution, but Comparative Example 7 contains gelatin which is a water-soluble polymer derived from nature instead of the above-described synthetic system in the catalyst solution. In other words, this is a conforming example of Patent Document 1 above.

(1)実施例1
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.6モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、水系銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:1
生成した銅コロイド粒子の平均粒径は約10nmであった。
(c)無電解銅メッキ液の調製
次の組成で無電解銅メッキ液を建浴した。当該メッキ液は下記の水酸化ナトリウムでpH調整した。
[無電解銅メッキ液]
硫酸銅五水和物(Cu2+として) 2.0g/L
ホルムアルデヒド 5.0g/L
EDTA 30.0g/L
水酸化ナトリウム 9.6g/L
残余 純水
pH(20℃) 12.8
(d)無電解銅メッキの処理条件
先ず、非導電性基板であるガラス・エポキシ樹脂基板(板厚:1.0mm)をもって試料基板とした。
そして、上記(a)の吸着促進剤を用いて試料基板に吸着促進を行った後、上記(b)の触媒液に浸漬して触媒付与を行い、さらに上記(c)のメッキ液で無電解銅メッキを行った。
具体的には、前記吸着促進剤の含有液に前記試料基板を50℃、2分の条件で浸漬し、純水で洗浄した。次いで、吸着促進処理(前処理)を施した試料基板を前記銅コロイド触媒液に25℃、10分の条件で浸漬し、純水で洗浄した。その後、触媒付与を施した試料基板を上記無電解銅メッキ液中に浸漬して、50℃、10分の条件で無電解メッキを施して、試料基板上に銅皮膜を形成した後、純水で洗浄し、乾燥した。
(1) Example 1
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.6 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare an aqueous copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 3, copper salt: reducing agent = 1: 1
The produced copper colloid particles had an average particle size of about 10 nm.
(C) Preparation of electroless copper plating solution An electroless copper plating solution was constructed with the following composition. The plating solution was pH adjusted with the following sodium hydroxide.
[Electroless copper plating solution]
Copper sulfate pentahydrate (as Cu2 +) 2.0g / L
Formaldehyde 5.0g / L
EDTA 30.0g / L
Sodium hydroxide 9.6g / L
Residual pure water pH (20 ° C) 12.8
(D) Processing conditions for electroless copper plating
First, a glass / epoxy resin substrate (plate thickness: 1.0 mm) which is a non-conductive substrate was used as a sample substrate.
And after carrying out adsorption promotion to a sample substrate using the adsorption promoter of the above (a), it is immersed in the catalyst solution of the above (b) to give a catalyst, and further electroless with the plating solution of the above (c). Copper plating was performed.
Specifically, the sample substrate was immersed in the adsorption accelerator-containing liquid at 50 ° C. for 2 minutes and washed with pure water. Next, the sample substrate subjected to the adsorption promotion treatment (pretreatment) was immersed in the copper colloid catalyst solution at 25 ° C. for 10 minutes and washed with pure water. Thereafter, the sample substrate to which the catalyst is applied is immersed in the electroless copper plating solution, subjected to electroless plating at 50 ° C. for 10 minutes, and a copper film is formed on the sample substrate. Washed with and dried.

(2)実施例2
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:0.2、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.04モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約15nmであった。
(2) Example 2
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 0.2, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.04 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(3)実施例3
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:15、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルアミノ酢酸ベタイン 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 3.0モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約12nmであった。
(3) Example 3
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 15, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylaminoacetic acid betaine 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 3.0 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 12 nm.

(4)実施例4
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:0.05
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.01モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約25nmであった。
(4) Example 4
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 4, copper salt: reducing agent = 1: 0.05
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
[Reducing agent solution]
Sodium borohydride 0.01 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 25 nm.

(5)実施例5
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pH条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分の比率は、次の通りである。
銅塩:コロイド安定剤=1:3.5、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルアミノ酢酸ベタイン 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
グルコン酸 0.7モル/L
ポリオキシエチレン
−スチレン化フェニルエーテル(EO10モル) 0.2g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH3.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約17nmであった。
(5) Example 5
A preparation method of a copper colloid catalyst solution (excluding pH conditions) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the ratio of each component of the said catalyst liquid is as follows.
Copper salt: colloidal stabilizer = 1: 3.5, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylaminoacetic acid betaine 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Gluconic acid 0.7 mol / L
Polyoxyethylene
-Styrenated phenyl ether (EO10 mol) 0.2g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was added dropwise to a 25 ° C. copper solution adjusted to pH 3.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 17 nm.

(6)実施例6
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、撹拌条件を除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
グリコール酸 0.6モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して90分撹拌した。
生成した銅コロイド粒子の平均粒径は約15nmであった。
(6) Example 6
A preparation method of a copper colloid catalyst solution (except for stirring conditions) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 3, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Glycolic acid 0.6 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 90 minutes.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(7)実施例7
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pHと銅溶液の液温条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
メタンスルホン酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
[還元剤溶液]
ジメチルアミンボラン 0.1モル/L
pH3.0にした35℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約16nmであった。
(7) Example 7
Based on Example 1 above, a copper colloid catalyst solution (except for pH and temperature conditions of the copper solution) and electroless, except that the liquid containing the adsorption accelerator and the copper colloid catalyst solution were prepared with the following composition: The method for preparing the copper plating solution and the processing conditions for each step were the same as in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 4, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper methanesulfonate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
[Reducing agent solution]
Dimethylamine borane 0.1 mol / L
The reducing agent solution was added dropwise to a 35 ° C. copper solution adjusted to pH 3.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 16 nm.

(8)実施例8
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pHと銅溶液の液温条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3.5、銅塩:還元剤=1:0.75
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
クエン酸銅2.5水和物(Cu2+として) 0.2モル/L
クエン酸 0.7モル/L
[還元剤溶液]
ジメチルアミンボラン 0.15モル/L
pH5.0にした35℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約14nmであった。
(8) Example 8
Based on Example 1 above, a copper colloid catalyst solution (except for pH and temperature conditions of the copper solution) and electroless, except that the liquid containing the adsorption accelerator and the copper colloid catalyst solution were prepared with the following composition: The method for preparing the copper plating solution and the processing conditions for each step were the same as in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 3.5, copper salt: reducing agent = 1: 0.75
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper citrate 2.5 hydrate (as Cu2 +) 0.2 mol / L
Citric acid 0.7 mol / L
[Reducing agent solution]
Dimethylamine borane 0.15 mol / L
The reducing agent solution was added dropwise to a 35 ° C. copper solution adjusted to pH 5.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 14 nm.

(9)実施例9
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、銅溶液の液温条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルアミノ酢酸ベタイン 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
グルコン酸 0.4モル/L
[還元剤溶液]
ジメチルアミンボラン 0.1モル/L
pH4.0にした35℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約20nmであった。
(9) Example 9
Based on Example 1 above, the copper colloid catalyst solution (except for the temperature condition of the copper solution) or electroless copper plating, except that the liquid containing the adsorption accelerator and the copper colloid catalyst solution were prepared with the following composition: The liquid preparation method and the treatment conditions for each step were the same as in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 2, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylaminoacetic acid betaine 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Gluconic acid 0.4 mol / L
[Reducing agent solution]
Dimethylamine borane 0.1 mol / L
The reducing agent solution was added dropwise to a 35 ° C. copper solution adjusted to pH 4.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 20 nm.

(10)実施例10
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pH条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
ジエチレントリアミン五酢酸 0.6モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.1モル/L
pH10.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約20nmであった。
(10) Example 10
A preparation method of a copper colloid catalyst solution (excluding pH conditions) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 3, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Diethylenetriaminepentaacetic acid 0.6 mol / L
[Reducing agent solution]
Sodium borohydride 0.1 mol / L
The reducing agent solution was added dropwise to a 25 ° C. copper solution adjusted to pH 10.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 20 nm.

(11)参考例1
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:2.25
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリビニルピロリドン(平均分子量40,000) 2.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.45モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約8nmであった。
(11) Reference example 1
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 4, copper salt: reducing agent = 1: 2.25
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyvinylpyrrolidone (average molecular weight 40,000) 2.0 g / L
[Reducing agent solution]
Sodium borohydride 0.45 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 8 nm.

(12)参考例2
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、撹拌時間は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.6モル/L
ポリエチレングリコール(平均分子量10,000) 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.1モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して60分撹拌する。
生成した銅コロイド粒子の平均粒径は約30nmであった。
(12) Reference example 2
A preparation method of a copper colloid catalyst solution (excluding the stirring time) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 3, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.6 mol / L
Polyethylene glycol (average molecular weight 10,000) 1.0 g / L
[Reducing agent solution]
Sodium borohydride 0.1 mol / L
The reducing agent solution is added dropwise to a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 60 minutes.
The produced copper colloid particles had an average particle size of about 30 nm.

(13)参考例3
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、銅溶液の液温条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.6モル/L
ポリビニルピロリドン(分子量300,000) 1.0g/L
[還元剤溶液]
ジメチルアミンボラン 0.1モル/L
pH4.0にした35℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約45nmであった。
(13) Reference example 3
Based on Example 1 above, the copper colloid catalyst solution (except for the temperature condition of the copper solution) or electroless copper plating, except that the liquid containing the adsorption accelerator and the copper colloid catalyst solution were prepared with the following composition: The liquid preparation method and the treatment conditions for each step were the same as in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 3, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.6 mol / L
Polyvinylpyrrolidone (Molecular weight 300,000) 1.0 g / L
[Reducing agent solution]
Dimethylamine borane 0.1 mol / L
The reducing agent solution was added dropwise to a 35 ° C. copper solution adjusted to pH 4.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 45 nm.

(14)参考例4
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリエチレンイミン 1.5g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約17nmであった。
(14) Reference example 4
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyethyleneimine 1.5g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 17 nm.

(15)参考例5
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリビニルピロリドン(分子量300,000) 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約15nmであった。
(15) Reference example 5
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyvinylpyrrolidone (Molecular weight 300,000) 1.0 g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(16)参考例6
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
酢酸銅一水和物(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリアクリルアミド 0.5g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約22nmであった。
(16) Reference example 6
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper acetate monohydrate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyacrylamide 0.5g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 22 nm.

(17)参考例7
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pH条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:3、銅塩:還元剤=1:0.5
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
エチレンジアミン四酢酸 0.6モル/L
ポリビニルピロリドン(分子量300,000) 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.1モル/L
pH9.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約18nmであった。
(17) Reference example 7
A preparation method of a copper colloid catalyst solution (excluding pH conditions) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 3, copper salt: reducing agent = 1: 0.5
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Ethylenediaminetetraacetic acid 0.6 mol / L
Polyvinylpyrrolidone (Molecular weight 300,000) 1.0 g / L
[Reducing agent solution]
Sodium borohydride 0.1 mol / L
The reducing agent solution was added dropwise to a 25 ° C. copper solution adjusted to pH 9.0 and stirred for 45 minutes.
The produced copper colloid particles had an average particle size of about 18 nm.

(18)参考例8
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液(但し、pH条件は除く)や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
ニトリロ三酢酸 0.8モル/L
ポリアクリルアミド 1.0g/L
[還元剤溶液]
ジメチルアミンボラン 0.2モル/L
pH10.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約15nmであった。
(18) Reference example 8
A preparation method of a copper colloid catalyst solution (excluding pH conditions) and an electroless copper plating solution, except that the adsorption accelerator containing solution and the copper colloid catalyst solution were prepared with the following composition on the basis of Example 1 above. The processing conditions for each step were the same as those in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Nitrilotriacetic acid 0.8 mol / L
Polyacrylamide 1.0g / L
[Reducing agent solution]
Dimethylamine borane 0.2 mol / L
The reducing agent solution was added dropwise to a 25 ° C. copper solution adjusted to pH 10.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(19)比較例1
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:0、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
銅コロイド粒子は生成したが、凝集・沈殿した。
(19) Comparative Example 1
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 0, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
Copper colloidal particles were formed, but agglomerated and precipitated.

(20)比較例2
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:0.01、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.002モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
銅コロイド粒子は生成したが、凝集・沈殿した。
(20) Comparative example 2
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 0.01, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.002 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
Copper colloidal particles were formed, but agglomerated and precipitated.

(21)比較例3
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:36、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
乳酸 7.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
銅コロイド粒子は生成しなかった。
(21) Comparative Example 3
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 36, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Lactic acid 7.2 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
Copper colloid particles were not produced.

(22)比較例4
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリオキシエチレン
−オクチルフェニルエーテル(EO15モル) 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約15nmであった。
(22) Comparative Example 4
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyoxyethylene
-Octylphenyl ether (EO15 mol) 1.0 g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(23)比較例5
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ポリオキシエチレン
−オクチルフェニルエーテル(EO15モル) 8.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
銅コロイド粒子は生成したが、凝集・沈殿した。
(23) Comparative Example 5
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Polyoxyethylene
-Octylphenyl ether (EO15 mol) 8.0g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
Copper colloidal particles were formed, but agglomerated and precipitated.

(24)比較例6
上記実施例1を基本として、吸着促進工程を省略した例であり、銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
生成した銅コロイド粒子の平均粒径は約17nmであった。
(24) Comparative Example 6
This is an example in which the adsorption promoting step is omitted based on the above Example 1, except that the copper colloid catalyst solution is prepared with the following composition, and the method for preparing the copper colloid catalyst solution and the electroless copper plating solution and the treatment of each step The conditions were the same as in Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
The average particle diameter of the produced copper colloidal particles was about 17 nm.

(25)比較例7
上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を次の組成で調製した以外は、銅コロイド触媒液や無電解銅メッキ液の調製方法並びに各工程の処理条件は実施例1と同じとした。
尚、上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:4、銅塩:還元剤=1:1
(a)吸着促進剤の含有液の調製
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.2モル/L
クエン酸 0.8モル/L
ゼラチン 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.2モル/L
pH4.0にした25℃の銅溶液に還元剤溶液を滴下して45分撹拌した。
銅コロイド粒子は生成したが、凝集・沈殿した。
(25) Comparative Example 7
Based on the above Example 1, the preparation method of the copper colloid catalyst solution and the electroless copper plating solution and the processing conditions of each step were carried out except that the adsorption accelerator containing liquid and the copper colloid catalyst liquid were prepared with the following composition. Same as Example 1.
In addition, the molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 4, copper salt: reducing agent = 1: 1
(A) Preparation of a liquid containing an adsorption accelerator
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.2 mol / L
Citric acid 0.8 mol / L
Gelatin 1.0g / L
[Reducing agent solution]
Sodium borohydride 0.2 mol / L
The reducing agent solution was dropped into a copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes.
Copper colloidal particles were formed, but agglomerated and precipitated.

《触媒液の経時安定性試験例》
そこで、上記実施例1〜10、比較例1〜7及び参考例1〜8で調製した各銅コロイド触媒液について、
下記の基準でコロイド安定性の優劣を評価した。
○:建浴後1ヶ月間沈殿、或いは分解が起こらなかった。
×:建浴後すぐに沈殿、或いは分解した。
<< Example of stability of catalyst solution over time >>
Then, about each copper colloid catalyst liquid prepared in the said Examples 1-10, Comparative Examples 1-7, and Reference Examples 1-8 ,
The superiority or inferiority of colloidal stability was evaluated according to the following criteria.
○: No precipitation or decomposition occurred for 1 month after bathing.
X: Sedimented or decomposed immediately after bathing.

《無電解銅メッキにより析出した銅皮膜の外観評価試験例》
次いで、上記実施例1〜10、比較例1〜7及び参考例1〜8の無電解銅メッキ方法で得られた銅の無電解皮膜について、下記の基準で皮膜外観の優劣を目視により評価した。
◎:銅メッキ皮膜が均一でムラがなかった。
○:銅メッキ皮膜にムラが認められた。
△:銅メッキ皮膜に一部未析出(メッキ欠け)が認められた。
×:銅皮膜が析出しなかった。
尚、析出皮膜の「ムラ」は、皮膜の緻密性や平滑性などに周囲と異なる部分があると認められる。皮膜の「ムラ」は皮膜の均一性とは別の観点である。
<< External appearance test example of copper film deposited by electroless copper plating >>
Next, regarding the electroless copper film obtained by the electroless copper plating method of Examples 1-10, Comparative Examples 1-7, and Reference Examples 1-8 , the superiority or inferiority of the film appearance was visually evaluated according to the following criteria. .
A: The copper plating film was uniform and non-uniform.
○: Unevenness was observed in the copper plating film.
(Triangle | delta): Some non-precipitation (plating lack) was recognized by the copper plating film | membrane.
X: The copper film did not precipitate.
In addition, it is recognized that the “unevenness” of the deposited film has a portion different from the surroundings in the denseness and smoothness of the film. The “unevenness” of the film is a different viewpoint from the uniformity of the film.

《銅コロイド触媒液の経時安定性と皮膜外観についての試験結果》
皮膜外観 経時安定性 皮膜外観 経時安定性
実施例1 ◎ ○ 比較例1 × ×
実施例2 ◎ ○ 比較例2 × ×
実施例3 ○ ○ 比較例3 × ×
実施例4 ◎ ○ 比較例4 △ ○
実施例5 ○ ○ 比較例5 × ○
実施例6 ◎ ○ 比較例6 △ ○
実施例7 ◎ ○ 比較例7 △ ×
実施例8 ◎ ○
実施例9 ○ ○
実施例10 ◎ ○
参考例1 ◎ ○
参考例2 ◎ ○
参考例3 ◎ ○
参考例4 ◎ ○
参考例5 ◎ ○
参考例6 ◎ ○
参考例7 ◎ ○
参考例8 ◎ ○
《Test results on stability of copper colloid catalyst solution over time and coating appearance》
Film appearance Aging stability Film appearance Aging stability Example 1 ◎ ○ Comparative Example 1 × ×
Example 2 ◎ ○ Comparative Example 2 × ×
Example 3 ○ ○ Comparative Example 3 × ×
Example 4 ◎ ○ Comparative Example 4 △ ○
Example 5 ○ ○ Comparative Example 5 × ○
Example 6 ◎ ○ Comparative Example 6 △ ○
Example 7 ◎ ○ Comparative Example 7 Δ ×
Example 8
Example 9
Example 10 ◎ ○
Reference Example 1 ◎ ○
Reference Example 2 ◎ ○
Reference Example 3 ◎ ○
Reference example 4
Reference Example 5 ◎ ○
Reference Example 6 ◎ ○
Reference Example 7 ◎ ○
Reference Example 8 ◎ ○

《触媒液の経時安定性とメッキ皮膜外観の総合評価》
銅コロイド触媒液にコロイド安定剤を欠く比較例1では、触媒液の経時安定性に劣り、もって触媒液との接触後に非導電性基板に無電解メッキを施しても銅皮膜の析出はなかった。
また、コロイド安定剤と銅塩の比率において、コロイド安定剤の相対量が少な過ぎると比較例2に示すとように、やはり触媒液の経時安定性に劣り、もって無電解メッキにおいて銅皮膜の析出はなかった。これは、コロイド安定剤の相対量が多過ぎる場合も同様で、比較例3に示すように、触媒液の経時安定性に劣り、無電解メッキにおいて銅皮膜の析出はなかった。
非導電性基板を吸着促進処理なしで触媒付与し、無電解銅メッキを施した比較例6では、触媒液の経時安定性は実施例と同様であったが、析出した銅皮膜では一部に未析出の箇所が生じる「メッキ欠け」が認められたことから、触媒付与の前に吸着促進の予備処理がないことに因り、触媒活性が不足し、基板への銅コロイド粒子の吸着が実施例に比べて劣ることが判断できる。
《Comprehensive evaluation of catalyst solution over time and plating film appearance》
In Comparative Example 1 where the colloidal stabilizer was lacking in the copper colloid catalyst solution, the catalyst solution was inferior in stability over time, and therefore no copper film was deposited even when electroless plating was performed on the non-conductive substrate after contact with the catalyst solution. .
Further, when the relative amount of the colloidal stabilizer is too small in the ratio of the colloidal stabilizer to the copper salt, as shown in Comparative Example 2, the stability of the catalyst solution over time is still inferior, so that the copper film is deposited in electroless plating. There was no. This is the same when the relative amount of the colloidal stabilizer is too large. As shown in Comparative Example 3, the catalyst solution was inferior in stability over time, and no copper film was deposited in electroless plating.
In Comparative Example 6 in which the catalyst was applied to the non-conductive substrate without adsorption promoting treatment and electroless copper plating was performed, the temporal stability of the catalyst solution was the same as that of the example. Example of "adhesion of copper colloidal particles to the substrate due to lack of catalytic activity due to the absence of pretreatment for promotion of adsorption prior to catalyst application because of" plating chipping "in which unprecipitated parts occur. It can be judged that it is inferior to.

一方、吸着促進の予備処理をした後、触媒付与処理をし、次いで無電解銅メッキを施した実施例1〜10では、いずれも触媒液の経時安定性は良好であり、無電解メッキで析出する銅皮膜は概ねムラがなく均一性に優れていた。参考例1〜8も同様であった。
当該実施例1〜10を上記比較例1に対比すると、ムラがなく優れた均一性の銅皮膜を得るためには、触媒液には銅塩と還元剤だけではなく、コロイド安定剤の含有が必須であることが分かる。また、実施例1〜10を比較例2〜3に対比すると、ムラがなく優れた均一性の銅皮膜を得るためには、コロイド安定剤を含有するだけでは足りず、コロイド安定剤と銅塩との含有比率の適正化が重要であることが判断できる。
触媒液に界面活性剤を本発明1の抑制規定量を越えて含有した比較例4では、無電解メッキにおいて析出した銅皮膜の一部に未析出が生じる「メッキ欠け」が認められた。そして、触媒液に比較例4より多く界面活性剤を含有させた比較例5では、無電解メッキにおいて銅皮膜は析出しなかった。これに対して、界面活性剤を本発明1の規定量以下のごく少量に抑制した実施例5では、無電解メッキにおいてメッキ欠けなどが生じることなく、銅皮膜は円滑に析出した(但し、皮膜にムラが認められた)。また、触媒液に界面活性剤を含有しない実施例1〜4、実施例6〜10では、当然にムラがなく優れた均一性の銅皮膜が析出した。即ち、触媒液に本発明の規定値を越えて界面活性剤を添加すると、銅コロイド触媒液の触媒活性が低下して無電解メッキで得られる銅皮膜にはメッキ欠けが生じ、さらに界面活性剤の含有量を多くすると液の触媒活性が失われて銅皮膜が析出しなかったことから、界面活性剤の含有量をごく少量に抑制する場合のみ、銅皮膜は円滑に析出するが、触媒液への界面活性剤の含有量が増すほど触媒液の活性は低下するため、銅コロイド触媒液の触媒活性を保持するためには、基本的に界面活性剤を添加しない方が好ましいことが判断できる
また、天然由来の水溶性ポリマーの代表例であるゼラチンを触媒液に含有した比較例7では、本発明1の触媒液にゼラチンがいわば余分に付加された形態であり、触媒液の経時安定性に劣り、もって無電解メッキに際しては、得られた銅皮膜において一部に未析出の「メッキ欠け」が認められた。一方、触媒液に合成系の水溶性ポリマーを含有した参考例1〜8では、ムラがなく優れた均一性の銅皮膜が析出したことから、優れた実用レベルの銅皮膜を得るためには、水溶性ポリマーの中でも、合成系のポリマーを選択する必要があることが裏付けられた。
On the other hand, in Examples 1 to 10 in which the catalyst application treatment was performed after the adsorption promotion pretreatment, and then the electroless copper plating was performed, all of the catalyst solutions had good temporal stability, and were deposited by electroless plating. The copper film to be applied was generally uniform and excellent in uniformity. Reference Examples 1-8 were the same.
When the Examples 1 to 10 are compared with Comparative Example 1 above, the catalyst solution contains not only a copper salt and a reducing agent but also a colloidal stabilizer in order to obtain a uniform and uniform copper film. It turns out to be essential. Further, when Examples 1 to 10 are compared with Comparative Examples 2 to 3, in order to obtain a copper film having no unevenness and excellent uniformity, it is not sufficient to contain a colloid stabilizer, but a colloid stabilizer and a copper salt. It can be judged that optimization of the content ratio is important.
In Comparative Example 4 in which the surfactant was contained in the catalyst solution in excess of the suppression regulation amount of the present invention 1, “plating failure” in which non-deposition occurred in a part of the copper film deposited in electroless plating was observed. And in the comparative example 5 which made the catalyst solution contain more surfactant than the comparative example 4, the copper membrane | film | coat did not precipitate in electroless plating. On the other hand, in Example 5 in which the surfactant was suppressed to a very small amount not more than the specified amount of the present invention 1, the copper film was smoothly deposited without any plating defects in electroless plating (however, the film Was found to be uneven). Moreover, in Examples 1-4 and Examples 6-10 which do not contain a surfactant in the catalyst solution, naturally there was no unevenness and an excellent uniform copper film was deposited. That is, if a surfactant is added to the catalyst solution exceeding the specified value of the present invention, the catalyst activity of the copper colloid catalyst solution is reduced, and the copper film obtained by electroless plating is not plated, and the surfactant is further removed. When the content of the catalyst is increased, the catalytic activity of the liquid is lost and the copper film does not precipitate. Therefore, the copper film is deposited smoothly only when the content of the surfactant is suppressed to a very small amount. Since the activity of the catalyst solution decreases as the surfactant content increases, it can be judged that it is basically preferable not to add a surfactant in order to maintain the catalyst activity of the copper colloid catalyst solution. Further, in Comparative Example 7 in which gelatin, which is a representative example of a naturally derived water-soluble polymer, is contained in a catalyst solution, gelatin is added to the catalyst solution of the present invention 1 in an extra form . Inferior to electroless At the time of cleaning, undeposited “plating defects” were observed in part of the obtained copper film. On the other hand, in Reference Examples 1 to 8 containing a synthetic water-soluble polymer in the catalyst solution, an excellent uniform copper film was deposited without any unevenness. In order to obtain an excellent practical copper film, It was confirmed that it is necessary to select a synthetic polymer among water-soluble polymers.

次いで、実施例1〜10について詳細に検討する。
実施例1を基準として他の実施例との相対的な評価を説明する。先ず、実施例1はカチオン系界面活性剤であるジアリルアミンポリマーの4級アンモニウム塩を含む吸着促進剤で非導電性基板を予備処理し、硫酸銅を銅塩とし、水素化ホウ素ナトリウムを還元剤とし、クエン酸をコロイド安定剤とする触媒液で触媒付与した後、無電解銅メッキした例であるが、触媒液の経時安定性は良好で、建浴後1ケ月経過しても沈殿が生じたり、分解することはなく、また、無電解メッキで得られた銅皮膜は均一性に優れ、析出ムラも認められなかった。
実施例2は実施例1に対してコロイド安定剤の銅塩に対する含有比率を下げた例、実施例4は実施例1に対して還元剤の含有量を下げた例、実施例6はコロイド安定剤を実施例1のクエン酸からグリコール酸に変更した例であるが、触媒液の経時安定性とメッキ皮膜の外観については、夫々実施例1と同様の評価であった。
実施例7は実施例1に対してメタンスルホン酸を銅塩とした例、実施例8クエン酸銅を銅塩とした例であるが、触媒液の経時安定性とメッキ皮膜の外観は実施例1と同様の評価であった。
前述したように、触媒液に界面活性剤を含有しない実施例1〜4、実施例6〜10では、概ねメッキ皮膜は均一性に優れ、ムラも認められなかった。また、界面活性剤が本発明1の規定量以下のごく少量存在する実施例5では、無電解メッキにおいてメッキ欠けなどが生じることなく、銅皮膜は円滑に析出したが、皮膜に析出ムラが認められた。
触媒液に水溶性ポリマーとしてPVP(平均分子量4万)を含有した参考例1、同じくPEGを含有した参考例2、PEIを含有した参考例4、PVP(平均分子量30万)を含有した参考例3と5、PAMを含有した参考例6では、触媒液の経時安定性とメッキ皮膜の外観については、夫々実施例1と同様の評価であった。
触媒液をpH4.0に設定した実施例1に対して、pH3の実施例7、pH5の実施例8、pH10の実施例10では、触媒液の経時安定性とメッキ皮膜の外観については、夫々実施例1と同様の評価であった。
Next, Examples 1 to 10 will be examined in detail.
The relative evaluation with the other examples will be described with reference to the example 1. First, in Example 1, a non-conductive substrate is pretreated with an adsorption accelerator containing a quaternary ammonium salt of diallylamine polymer which is a cationic surfactant, copper sulfate is used as a copper salt, and sodium borohydride is used as a reducing agent. This is an example of electroless copper plating after applying a catalyst with a catalyst solution containing citric acid as a colloidal stabilizer, but the catalyst solution has good stability over time, and precipitation occurs even after one month has passed since building bath, There was no decomposition, and the copper film obtained by electroless plating was excellent in uniformity and no precipitation unevenness was observed.
Example 2 is an example in which the content ratio of the colloidal stabilizer to the copper salt is lowered with respect to Example 1, Example 4 is an example in which the content of the reducing agent is lowered with respect to Example 1, and Example 6 is a colloidal stability. In this example, the agent was changed from citric acid of Example 1 to glycolic acid. The stability with time of the catalyst solution and the appearance of the plating film were evaluated in the same manner as in Example 1.
EXAMPLE 7 in which the copper salt of methanesulfonic acid copper relative to Example 1, but the embodiment 8 is an example of a copper salt copper citrate, the appearance of aging stability and plating film of the catalyst solution The evaluation was the same as in Example 1.
As described above, in Examples 1 to 4 and Examples 6 to 10 in which no surfactant was contained in the catalyst solution, the plating film was generally excellent in uniformity and no unevenness was observed. Further, in Example 5 where the surfactant is present in a very small amount less than or equal to the specified amount of the present invention 1, the copper film was smoothly deposited without the occurrence of chipping or the like in electroless plating, but deposition unevenness was observed in the film. It was.
Reference Example containing the PVP Reference Example containing (average molecular weight: 40,000) 1, similarly Reference Example 4 which contained Reference Example 2, PEI containing the PEG, PVP (average molecular weight 300,000) as a water-soluble polymer to the catalyst solution In Reference Example 6 containing 3 and 5 and PAM, the stability over time of the catalyst solution and the appearance of the plating film were evaluated in the same manner as in Example 1.
In contrast to Example 1 in which the catalyst solution was set to pH 4.0, in Example 7 at pH 3, Example 8 at pH 5, and Example 10 at pH 10 , the stability over time of the catalyst solution and the appearance of the plating film were respectively shown. The evaluation was the same as in Example 1.

Claims (7)

無電解銅メッキを施す非導電性基板に接触させて触媒付与を行うための水系銅コロイド触媒液において、
(A)可溶性銅塩と、
(B)還元剤と、
(C)オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれたコロイド安定剤の少なくとも一種
からなり、
上記成分(A)と(C)の含有モル比率をA:C=1:0.03〜1:35、上記成分(A)の含有量を0.05〜0.5モル/L、上記成分(A)と(B)の含有モル比率をA:B=1:0.1〜1:5とし、
界面活性剤を含有しないか、或いは界面活性剤の含有量を950mg/L以下とするとともに、
pHが1〜6又は8〜12であり、平均粒径1〜250nmの銅コロイドを有することを特徴とする無電解銅メッキ用の水系銅コロイド触媒液。。
In an aqueous copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate to be electrolessly plated with copper,
(A) a soluble copper salt;
(B) a reducing agent;
(C) at least one colloidal stabilizer selected from the group consisting of oxycarboxylic acids , aminocarboxylic acids, and polycarboxylic acids ,
The content molar ratio of the components (A) and (C) is A: C = 1: 0.03 to 1:35 , the content of the component (A) is 0.05 to 0.5 mol / L, and the components The content molar ratio of (A) and (B) is A: B = 1: 0.1 to 1: 5,
It contains no surfactant or the surfactant content is 950 mg / L or less ,
An aqueous copper colloid catalyst solution for electroless copper plating , having a pH of 1 to 6 or 8 to 12 and a copper colloid having an average particle diameter of 1 to 250 nm . .
還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1に記載の無電解銅メッキ用の水系銅コロイド触媒液。 Reducing agent (B) is from borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfinic acids The aqueous copper colloid catalyst solution for electroless copper plating according to claim 1 , wherein the aqueous copper colloid catalyst solution is at least one selected from the group consisting of: オキシカルボン酸類(C)が、クエン酸、酒石酸、リンゴ酸、グルコン酸、ゴルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1又は2に記載の無電解銅メッキ用の水系銅コロイド触媒液。 Oxycarboxylic acids (C) are citric acid, tartaric acid, malic acid, gluconic acid, golcoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and these 3. The aqueous copper colloid catalyst solution for electroless copper plating according to claim 1, wherein the aqueous copper colloid catalyst solution is at least one selected from the group consisting of these salts. アミノカルボン酸類(C)が、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、エチレンジアミン四プロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1〜3のいずれか1項に記載の無電解銅メッキ用の水系銅コロイド触媒液。 Aminocarboxylic acids (C) are hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid. 1,3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N From the group consisting of '-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid and salts thereof Was selected Aqueous copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 3, characterized in that a type even without. ポリカルボン酸類(C)が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1〜4のいずれか1項に記載の無電解銅メッキ用の水系銅コロイド触媒液。 The polycarboxylic acid (C) is at least one selected from the group consisting of succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid and salts thereof. The aqueous copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 4 . (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程(前処理工程)と、
(b)請求項1〜5のいずれか1項の水系銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイド粒子を吸着させる触媒付与工程と、
(c)吸着処理された上記基板上に無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解銅メッキ方法。
(A) Adsorption in which a nonconductive substrate is immersed in a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants An acceleration process (pretreatment process);
(B) a catalyst application step of immersing the non-conductive substrate in the aqueous copper colloid catalyst solution according to any one of claims 1 to 5 to adsorb the copper colloid particles on the substrate surface;
(C) an electroless plating step of forming a copper film using an electroless copper plating solution on the adsorption-treated substrate.
工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする請求項6に記載の無電解銅メッキ方法。 The electroless copper plating method according to claim 6 , wherein the adsorption promoter in the step (a) is a cationic surfactant and / or an amphoteric surfactant.
JP2014022271A 2014-02-07 2014-02-07 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method Active JP6145681B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014022271A JP6145681B2 (en) 2014-02-07 2014-02-07 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
KR1020177013993A KR101807696B1 (en) 2014-02-07 2015-01-13 Aqueous copper colloid catalyst solution and electroless copper plating method for the electroless copper plating
PCT/JP2015/050634 WO2015118907A1 (en) 2014-02-07 2015-01-13 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN201580000319.7A CN105121701B (en) 2014-02-07 2015-01-13 Electroless copper water system copper colloid catalyst liquid and electroless copper plating method
KR1020157023382A KR20150113111A (en) 2014-02-07 2015-01-13 Aqueous copper colloid catalyst solution and electroless copper plating method for the electroless copper plating
TW104103873A TWI613321B (en) 2014-02-07 2015-02-05 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022271A JP6145681B2 (en) 2014-02-07 2014-02-07 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Publications (2)

Publication Number Publication Date
JP2015147987A JP2015147987A (en) 2015-08-20
JP6145681B2 true JP6145681B2 (en) 2017-06-14

Family

ID=53777715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022271A Active JP6145681B2 (en) 2014-02-07 2014-02-07 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Country Status (5)

Country Link
JP (1) JP6145681B2 (en)
KR (2) KR101807696B1 (en)
CN (1) CN105121701B (en)
TW (1) TWI613321B (en)
WO (1) WO2015118907A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735981B2 (en) * 2016-04-08 2020-08-05 石原ケミカル株式会社 Electroless copper plating method and method of manufacturing printed wiring board using the method
CN107434240A (en) * 2016-05-25 2017-12-05 迈奇曼德(北京)科技有限责任公司 A kind of method for producing oxygen through suitable for portable oxygenerator
JP6343787B1 (en) * 2017-06-01 2018-06-20 石原ケミカル株式会社 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN109112585A (en) * 2017-06-22 2019-01-01 海门市源美美术图案设计有限公司 A kind of roller copper plating bath
CN107586989B (en) * 2017-08-15 2019-08-30 中南大学 A kind of copper base high temperature self lubricating composite material
US10294569B2 (en) * 2017-10-06 2019-05-21 Rohm And Haas Electronic Materials Llc Stable electroless copper plating compositions and methods for electroless plating copper on substrates
CN109536934A (en) * 2018-12-25 2019-03-29 杭州东方表面技术有限公司 A kind of metallize for nonmetallic surface adjusts the processing solution of process
CA3135816A1 (en) * 2019-04-04 2020-10-08 Atotech Deutschland Gmbh A method for activating a surface of a non-conductive or carbon-fibres containing substrate for metallization
CN110042372B (en) * 2019-05-07 2021-06-29 广东东硕科技有限公司 Novel use of sulfonic aromatic compounds
CN110385443A (en) * 2019-07-28 2019-10-29 长春黄金研究院烟台贵金属材料研究所有限公司 A kind of preparation method of acid system Nanometer Copper colloidal sol
CN110670050B (en) * 2019-10-24 2021-11-12 深圳市松柏实业发展有限公司 Chemical copper plating activating solution and preparation method thereof
CN113684473B (en) * 2021-07-26 2023-04-25 广州三孚新材料科技股份有限公司 Electroless copper plating solution for plastics and preparation method thereof
CN113737159A (en) * 2021-08-30 2021-12-03 广东东硕科技有限公司 Pre-immersion liquid for inhibiting copper surface chemical plating and diffusion plating and preparation method and application thereof
CN114346254B (en) * 2022-01-21 2023-08-18 重庆科技学院 Method for preparing nanometer copper powder in eutectic ionic liquid
JP7214936B1 (en) 2022-02-22 2023-01-31 悦雄 野村 Antibacterial/antiviral composition and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123762A (en) * 1984-07-09 1986-02-01 Nec Corp Copper colloidal catalytic solution for electroless plating and its manufacture
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film
GB0025990D0 (en) * 2000-10-24 2000-12-13 Shipley Co Llc Plating catalysts and electronic packaging substrates plated therewith
GB0025989D0 (en) * 2000-10-24 2000-12-13 Shipley Co Llc Plating catalysts
JP4493942B2 (en) * 2003-06-26 2010-06-30 旭化成イーマテリアルズ株式会社 Cuprous oxide colloidal dispersion
US20050016416A1 (en) * 2003-07-23 2005-01-27 Jon Bengston Stabilizer for electroless copper plating solution
JP2006322729A (en) * 2005-05-17 2006-11-30 Sumitomo Metal Mining Co Ltd Analyzing method of quantitative form of fatty acid in inorganic colloid solution
JP5570285B2 (en) * 2010-04-19 2014-08-13 株式会社日本表面処理研究所 Catalyst aqueous solution used in electroless plating method, method for preparing the catalyst aqueous solution, electroless plating method using the catalyst aqueous solution, and metal object to be plated provided with a metal film formed using the electroless plating method
US8591636B2 (en) * 2010-12-14 2013-11-26 Rohm And Haas Electronics Materials Llc Plating catalyst and method
TWI546409B (en) * 2011-11-14 2016-08-21 Ishihara Chemical Co Ltd Electroless copper plating solution and electroless copper plating method
JP6047713B2 (en) * 2012-05-11 2016-12-21 石原ケミカル株式会社 Electroless copper plating method

Also Published As

Publication number Publication date
WO2015118907A1 (en) 2015-08-13
CN105121701B (en) 2018-09-28
KR20170059493A (en) 2017-05-30
TWI613321B (en) 2018-02-01
JP2015147987A (en) 2015-08-20
KR20150113111A (en) 2015-10-07
TW201531591A (en) 2015-08-16
KR101807696B1 (en) 2017-12-11
CN105121701A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6209770B2 (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TWI597384B (en) Electroless nickel or electroless nickel alloy pretreatment solution and plating method
JP6047713B2 (en) Electroless copper plating method
JP6343787B1 (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TWI546409B (en) Electroless copper plating solution and electroless copper plating method
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6858425B1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6145681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250