JP6209770B2 - Copper colloid catalyst solution for electroless copper plating and electroless copper plating method - Google Patents

Copper colloid catalyst solution for electroless copper plating and electroless copper plating method Download PDF

Info

Publication number
JP6209770B2
JP6209770B2 JP2015030395A JP2015030395A JP6209770B2 JP 6209770 B2 JP6209770 B2 JP 6209770B2 JP 2015030395 A JP2015030395 A JP 2015030395A JP 2015030395 A JP2015030395 A JP 2015030395A JP 6209770 B2 JP6209770 B2 JP 6209770B2
Authority
JP
Japan
Prior art keywords
acid
copper
solution
catalyst solution
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015030395A
Other languages
Japanese (ja)
Other versions
JP2016151056A (en
Inventor
内田 衛
衛 内田
田中 薫
薫 田中
雄也 田中
雄也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Original Assignee
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co Ltd filed Critical Ishihara Chemical Co Ltd
Priority to JP2015030395A priority Critical patent/JP6209770B2/en
Priority to CN201680001548.5A priority patent/CN106414801B/en
Priority to KR1020167035477A priority patent/KR101831100B1/en
Priority to PCT/JP2016/051042 priority patent/WO2016132786A1/en
Priority to TW105103759A priority patent/TWI684673B/en
Publication of JP2016151056A publication Critical patent/JP2016151056A/en
Application granted granted Critical
Publication of JP6209770B2 publication Critical patent/JP6209770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde

Description

本発明は非導電性基板に無電解銅メッキを施すに際し、前処理としての触媒付与をするための銅コロイド触媒液、当該触媒液を用いた無電解銅メッキ方法並びに当該方法で銅皮膜を形成した非導電性基板に関して、銅触媒液の経時安定性を顕著に向上して、銅皮膜に優れた外観を付与できるものを提供する。   The present invention provides a copper colloid catalyst solution for applying a catalyst as a pretreatment when electroless copper plating is applied to a non-conductive substrate, an electroless copper plating method using the catalyst solution, and a copper film formed by the method. With respect to the non-conductive substrate, the one capable of remarkably improving the temporal stability of the copper catalyst solution and imparting an excellent appearance to the copper film is provided.

銅、又は銅合金製の基板を始め、特に、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などの非導電性基板上に無電解銅メッキを施すには、先ず、基板上にパラジウム、銀、白金などの貴金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解銅メッキ液により銅皮膜を基板上に析出させる方式が一般的である。   Starting with copper or copper alloy substrates, especially glass / epoxy resins, glass / polyimide resins, epoxy resins, polyimide resins, polycarbonate resins, ABS resins, PET resins and other resin substrates, glass substrates, ceramic substrates, etc. In order to perform electroless copper plating on a non-conductive substrate, first, a noble metal such as palladium, silver, or platinum is adsorbed on the substrate and used as a catalyst nucleus, and then electroless copper is passed through the catalyst nucleus. In general, a copper film is deposited on a substrate by a plating solution.

一方、貴金属の触媒を使用せず、安価な銅、ニッケル、コバルトなどの特定の金属を使用した触媒付与方式もあり、当該特定金属の触媒液では、可溶性金属塩を還元剤で処理して金属のコロイド粒子を生成させて、これを触媒核とすることが基本原理となっている。   On the other hand, there is also a catalyst application method that uses a specific metal such as copper, nickel, cobalt, etc., which is inexpensive, without using a precious metal catalyst. In the catalyst solution of the specific metal, a soluble metal salt is treated with a reducing agent to form a metal. The basic principle is to produce colloidal particles of this and use them as catalyst nuclei.

このうち、銅コロイド触媒液の従来技術を挙げると、特許文献1には、可溶性銅塩と、分散剤(ゼラチン、ノニオン性界面活性剤)と、錯化剤(ジカルボン酸、オキシカルボン酸など)を添加し、還元剤(水素化ホウ素ナトリウム、ジメチルアミンボランなど)により還元処理した後に安定剤(次亜リン酸ナトリウム、ジメチルアミンボランなど)を添加して無電解銅メッキ用の微細な銅触媒液を製造することが開示される。   Among these, as for the prior art of copper colloid catalyst solution, Patent Document 1 discloses a soluble copper salt, a dispersant (gelatin, nonionic surfactant), and a complexing agent (dicarboxylic acid, oxycarboxylic acid, etc.). After adding a reducing agent (sodium borohydride, dimethylamine borane, etc.) and then adding a stabilizer (sodium hypophosphite, dimethylamine borane, etc.), a fine copper catalyst for electroless copper plating Manufacturing a liquid is disclosed.

特許文献2には、銅塩(製造例2では、銅アンミン錯体)とアニオン性界面活性剤と還元剤からなる無電解メッキ用触媒を被メッキ物に付与し、無電解銅メッキを施した後、電気銅メッキを施すことが開示される(請求項1〜2、段落42)。   In Patent Document 2, after applying an electroless copper plating to an object to be plated, a catalyst for electroless plating composed of a copper salt (copper ammine complex in Production Example 2), an anionic surfactant, and a reducing agent is applied. In addition, it is disclosed to perform electrolytic copper plating (claims 1 and 2, paragraph 42).

特許文献3には、基板に酸化銅(I)コロイド触媒溶液による触媒付与をした後、銅塩と還元剤と錯化剤を含む溶液への浸漬で銅を基板にダイレクトプレーティングすることが開示される。   Patent Document 3 discloses that a substrate is directly plated with copper by immersion in a solution containing a copper salt, a reducing agent, and a complexing agent after the substrate is provided with a catalyst by a copper (I) oxide colloidal catalyst solution. Is done.

特許文献4には、被メッキ物を界面活性剤(カチオン性、両性、ノニオン性など;段落56)を含むコンディショニング剤で前処理し、第一銅塩と次亜リン酸塩と塩素イオン、或いはさらに還元剤(アミンボラン類、水素化ホウ素類など)を含む触媒溶液で触媒処理し、無電解銅メッキをする方法(請求項8〜9、段落70)が開示される。
上記コンディショニング剤のうち、特にカチオン性界面活性剤を用いると、被メッキ物に吸着した界面活性剤の親水基がマイナスに帯電し、上記第一銅イオンが吸着し易くなることが記載される(段落58)。
In Patent Document 4, an object to be plated is pretreated with a conditioning agent containing a surfactant (cationic, amphoteric, nonionic, etc .; paragraph 56), and a cuprous salt, hypophosphite, chloride ion, or Further disclosed is a method (Claims 8 to 9, paragraph 70) in which a catalyst is treated with a catalyst solution containing a reducing agent (amine boranes, borohydrides and the like) and electroless copper plating is performed.
Among the above conditioning agents, it is described that when a cationic surfactant is used in particular, the hydrophilic group of the surfactant adsorbed on the object to be plated is negatively charged and the cuprous ions are easily adsorbed ( Paragraph 58).

特許文献5には、貴金属/金属−コロイド(例えば、パラジウム/スズのコロイド溶液)を含む活性化剤の分散液で非導電性基板を処理し、次いで銅塩溶液と錯化剤と還元剤を含む導電体溶液に接触させた後、無電解メッキ及び電気メッキを行う方法が記載される(段落1、13、24、29、65、表1)。   In Patent Document 5, a non-conductive substrate is treated with a dispersion of an activator containing a noble metal / metal-colloid (for example, a colloidal solution of palladium / tin), and then a copper salt solution, a complexing agent, and a reducing agent are added. A method of performing electroless plating and electroplating after contact with the containing conductor solution is described (paragraphs 1, 13, 24, 29, 65, Table 1).

上記水系触媒液では、可溶性金属塩を還元剤で処理して金属の微細粒子を生成することを基本原理にしているが、この原理の触媒液は、上記特許文献1〜5のものを含めて、一般に経時安定性に問題があるものが多く、触媒付与と無電解メッキの作業の連続性を長時間に亘り円滑に確保することが容易でないという実情がある。
経時安定性が低下すると、触媒付与して無電解銅メッキを施ししても、皮膜が良好に析出しない場合や、部分的に皮膜析出しないメッキ欠け、或いはメッキ皮膜にムラが生じたり、均一性に劣るなどの問題がある。
例えば、建浴初期の触媒液で処理した後に無電解メッキした銅皮膜の場合、建浴時の経時安定性が低いほど皮膜外観は劣るが、建浴後数カ月単位の経時安定性も考慮する必要がある。即ち、建浴初期の触媒液で処理した皮膜外観は良い場合でも、建浴から数カ月経過後の触媒液で処理すると皮膜外観に上記メッキ欠けやムラが生じる場合が少なくないため、触媒液の経時安定性は重要である。
The above-mentioned aqueous catalyst solution is based on the basic principle of producing a fine metal particle by treating a soluble metal salt with a reducing agent. The catalyst solution based on this principle includes those described in Patent Documents 1-5. In general, there are many problems with stability over time, and there is a situation that it is not easy to ensure the continuity of the work of applying a catalyst and electroless plating smoothly over a long period of time.
If the stability over time decreases, even if the catalyst is applied and electroless copper plating is applied, the film does not deposit well, the plating film does not deposit partially, or the plating film becomes uneven, or the uniformity There are problems such as inferior.
For example, in the case of a copper film that has been electrolessly plated after being treated with a catalyst solution at the early stage of the bathing bath, the lower the stability over time during bathing, the worse the coating appearance, but it is also necessary to consider the stability over time of several months after the bathing is there. In other words, even when the appearance of the film treated with the catalyst solution at the early stage of the building bath is good, it is often the case that the above-mentioned plating chipping or unevenness occurs in the appearance of the film when treated with the catalyst solution after several months from the building bath. Stability is important.

そこで、本出願人は、特願2014−022271号(以下、先願発明という)で、銅触媒液に銅塩を安定させるオキシカルボン酸類、アミノカルボン酸類などのコロイド安定剤を含有させるとともに、銅塩と当該安定剤の混合比率を調整し、且つ、界面活性剤の含有量をゼロか、ごく少量以下に抑制することで、触媒液の経時安定性を改善した銅コロイド触媒液を提案した。   In view of this, the present applicant disclosed in Japanese Patent Application No. 2014-022271 (hereinafter referred to as the prior invention) that the copper catalyst solution contains a colloidal stabilizer such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt, and copper. A copper colloidal catalyst solution with improved stability over time of the catalyst solution by adjusting the mixing ratio of the salt and the stabilizer and suppressing the surfactant content to zero or very small amount was proposed.

無電解メッキで得られる銅皮膜の外観の向上や処理コストの軽減を考えると、触媒液の経時安定性をさらに改善することが望まれる。
そこで、触媒液への糖類の添加が液の経時安定性に及ぼす影響の有無に着目するとともに、触媒付与後に無電解銅メッキを行うに際し、糖類を使用する技術的事項を含む特許文献を抽出すると、次の通りである。
(1)特許文献6
非導電性基板に金属塩を還元して触媒付与処理をし、無電解銅メッキ処理をする方法であり(請求項1、段落1)、上記触媒付与を行う組成物には、ブドウ糖(グルコース)、ガラクトース、麦芽糖(マルトース)、果糖(フルクトース)、木糖(キシロース)などの還元糖を含む(請求項1、10、段落1、24)。また、上記組成物にはクエン酸、酒石酸、リンゴ酸などの緩衝剤を含有できる(段落19)。
類似の先行文献に特開2012−127002号公報(ローム&ハース)がある。
In view of improving the appearance of the copper film obtained by electroless plating and reducing the processing cost, it is desired to further improve the temporal stability of the catalyst solution.
Therefore, paying attention to the effect of the addition of saccharides to the catalyst solution on the stability over time of the solution, and extracting the patent literature including technical matters that use saccharides when performing electroless copper plating after catalyst application It is as follows.
(1) Patent Document 6
A method of reducing the metal salt on a non-conductive substrate, applying a catalyst, and performing an electroless copper plating process (Claim 1, paragraph 1). The composition for applying the catalyst includes glucose (glucose). And reducing sugars such as galactose, maltose (maltose), fructose (fructose), and wood sugar (xylose) (claims 1, 10, paragraphs 1 and 24). The composition can contain a buffering agent such as citric acid, tartaric acid, malic acid (paragraph 19).
Similar prior literature includes Japanese Patent Application Laid-Open No. 2012-127002 (Rohm & Haas).

(2)特許文献7
非導電性基板に金属塩(銅塩など)を還元して触媒付与処理をし、無電解銅メッキ処理をする方法であり(請求項1、3、段落29、表1)、上記還元剤にはブドウ糖が挙げられる(段落25)。また、触媒溶液に、酒石酸、クエン酸、コハク酸などのカルボン酸、ショ糖、果糖などの糖類を溶解させることで、基材表面への触媒金属の付着量を高められる(段落31)。
(2) Patent Document 7
This is a method in which a metal salt (such as a copper salt) is reduced on a non-conductive substrate, a catalyst is applied, and an electroless copper plating process is performed (Claims 1 and 3, paragraph 29, Table 1). Includes glucose (paragraph 25). In addition, the amount of catalytic metal attached to the substrate surface can be increased by dissolving carboxylic acids such as tartaric acid, citric acid and succinic acid, and saccharides such as sucrose and fructose in the catalyst solution (paragraph 31).

(3)特許文献8
銅触媒液ではなく、銀コロイドの触媒液(前処理液)で触媒付与処理をした後、無電解銅メッキをする方法である(請求項1、35)。
上記触媒液にはクエン酸、酒石酸、乳酸、リンゴ酸などのオキシカルボン酸の外に(請求項1、3)、セルロース及びその誘導体、単糖類、多糖類及びその誘導体などの公知のコロイド分散剤を添加できる(段落46)。
単糖類、多糖類及びその誘導体は、ショ糖、マンニトール、ソルビトール、グリセロール、デキストリンなどである(段落50)。
(3) Patent Document 8
In this method, electroless copper plating is performed after a catalyst application treatment using a silver colloid catalyst solution (pretreatment solution) instead of a copper catalyst solution (Claims 1 and 35).
In addition to oxycarboxylic acids such as citric acid, tartaric acid, lactic acid and malic acid (Claims 1 and 3), the catalyst solution includes known colloidal dispersants such as cellulose and derivatives thereof, monosaccharides, polysaccharides and derivatives thereof. Can be added (paragraph 46).
Monosaccharides, polysaccharides and derivatives thereof are sucrose, mannitol, sorbitol, glycerol, dextrin, etc. (paragraph 50).

(4)特許文献9
樹脂成形体よりなる非導電性基板にエッチング処理をし、貴金属化合物(金、銀など)と第一スズ塩を含有するコロイド溶液に接触させた後、パラジウム化合物の水溶液に接触させて触媒付与処理をし、無電解銅メッキ処理をする方法である(請求項1〜2)。
上記触媒液ではなく、無電解銅メッキ液に対してブドウ糖、ソルビット、セルロース、ショ糖、マンニット、グルコノラクトンなどの還元性を有する糖類を含有できる(段落73)。
(4) Patent Document 9
Etching is performed on a non-conductive substrate made of a molded resin, and after contact with a colloidal solution containing a precious metal compound (gold, silver, etc.) and stannous salt, it is contacted with an aqueous solution of a palladium compound to give a catalyst. And performing an electroless copper plating process (claims 1 and 2).
Reducing sugars such as glucose, sorbit, cellulose, sucrose, mannitol, gluconolactone and the like can be contained in the electroless copper plating solution instead of the catalyst solution (paragraph 73).

(5)特許文献10
樹脂、セラミックス、ガラスなどの非導電性基板にエッチング処理をし、スズ塩(塩化第一スズなど)を付着させて感応化処理をし、硝酸銀溶液に浸漬してスズ上に銀を置換させてスズ−銀複合物を成長させ、還元性溶液に浸漬して活性化させた後、無電解銅メッキを行う方法であり(請求項1〜6、段落10、22)、上記還元性溶液にはブドウ糖を使用できる。
(5) Patent Document 10
Etching treatment on non-conductive substrates such as resin, ceramics, glass, etc., attaching tin salt (such as stannous chloride) to sensitize, and immersing in silver nitrate solution to replace silver on tin This is a method of growing a tin-silver composite, immersing it in a reducing solution and activating it, followed by electroless copper plating (claims 1 to 6, paragraphs 10 and 22). Glucose can be used.

特開平2−093076号公報Japanese Patent Laid-Open No. 2-093076 特開平10−229280号公報Japanese Patent Laid-Open No. 10-229280 特開平7−197266号公報Japanese Patent Laid-Open No. 7-197266 特開2011−225929号公報JP2011-225929A 特表2013−522476号公報Special table 2013-522476 gazette 特開2012−130910号公報JP 2012-130910 A 特開2003−313670号公報JP 2003-313670 A 特開2004−190042号公報JP 2004-190042 A 特開2006−299366号公報JP 2006-299366 A 特開2005−146330号公報JP 2005-146330 A

上記特許文献6〜10には、前処理剤としての触媒液にブドウ糖、果糖、麦芽糖、セルロースなどの糖類、或いは、マンニトール、ソルビトールなどの糖アルコールが使用されている。
但し、特許文献9では、触媒液ではなく、無電解銅メッキ液に糖類や糖アルコールが使用されている。
本発明は、上記先願発明を基礎としてその特徴的な成分構成を発展させて、銅コロイド触媒液の経時安定性をさらに一段向上させることを技術的課題とする。
In Patent Documents 6 to 10, sugars such as glucose, fructose, maltose, and cellulose, or sugar alcohols such as mannitol and sorbitol are used in the catalyst solution as a pretreatment agent.
However, in Patent Document 9, saccharides and sugar alcohols are used in the electroless copper plating solution instead of the catalyst solution.
It is a technical object of the present invention to further improve the temporal stability of a copper colloid catalyst solution by further developing the characteristic component structure based on the above-mentioned invention of the prior application.

本発明者らは、上記特許文献6〜10を出発点にして、糖類や糖アルコールからなる糖質を添加した銅コロイド触媒液とその経時安定性との関係を鋭意研究した結果、特定の糖質を選択して銅コロイド触媒液に添加すると、糖質のない場合より触媒液の経時安定性を効率よく向上できること、また、特定以外の糖質を添加しても上記経時安定性は向上しないか、逆に低下することを見い出して、本発明を完成した。   As a result of intensive research on the relationship between the copper colloid catalyst solution to which a saccharide or a sugar alcohol-containing saccharide is added and its stability over time, starting from Patent Documents 6 to 10, the present inventors have found that a specific saccharide When the quality is selected and added to the copper colloid catalyst solution, the stability over time of the catalyst solution can be improved more efficiently than when there is no saccharide, and the addition of other saccharides does not improve the above-mentioned stability over time. On the contrary, the present invention was completed by finding that it decreased.

即ち、本発明1は、無電解銅メッキを施す非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液において、
(A)可溶性銅塩と、
(B)還元剤と、
(C)モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれたコロイド安定剤の少なくとも一種と、
(D)ブドウ糖、果糖、乳糖、マルトール、イソマルツロース、キシロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元パラチノース、グルコノラクトンから選ばれた糖質の少なくとも一種
とを添加することで得られる 無電解銅メッキ用の銅コロイド触媒液である。
That is, the present invention 1 is a copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate on which electroless copper plating is performed.
(A) a soluble copper salt;
(B) a reducing agent;
(C) at least one colloidal stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids;
(D) at least one carbohydrate selected from glucose, fructose, lactose, maltol, isomaltulose, xylose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced starch syrup, lactitol, reduced palatinose, and gluconolactone It is a copper colloid catalyst liquid for electroless copper plating obtained by adding .

本発明2は、上記本発明1において、可溶性塩(A)とコロイド安定剤(C)の含有モル比率がA:C=1:0.03〜1:35であることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。   Invention 2 is characterized in that, in the invention 1, the content molar ratio of the soluble salt (A) and the colloid stabilizer (C) is A: C = 1: 0.03 to 1:35. This is a copper colloid catalyst solution for copper plating.

本発明3は、上記本発明1又は2において、さらに、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリエチレンイミンから選ばれた合成系水溶性ポリマーの少なくとも一種を含有することを特徴とする無電解銅メッキ用の銅コロイド触媒液である。   Present invention 3 is characterized in that in the present invention 1 or 2, the composition further contains at least one synthetic water-soluble polymer selected from polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide and polyethyleneimine. A copper colloid catalyst solution for electroless copper plating.

本発明4は、上記本発明1〜3のいずれかにおいて、還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。   Invention 4 is the invention according to any one of the inventions 1 to 3, wherein the reducing agent (B) is a borohydride compound, amine boranes, hypophosphorous acid, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, A copper colloidal catalyst solution for electroless copper plating, which is at least one selected from the group consisting of polyvalent naphthols, phenolsulfonic acids, naphtholsulfonic acids, and sulfinic acids.

本発明5は、上記本発明1〜4のいずれかにおいて、コロイド安定剤(C)のうちの、モノカルボン酸類が、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グルコン酸、グルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
アミノカルボン酸類が、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、エチレンジアミン四プロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
ポリカルボン酸類(C)が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。
Invention 5 is the colloidal stabilizer (C) according to any one of Inventions 1 to 4, wherein the monocarboxylic acid is formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, caprin. At least one selected from the group consisting of acids, lauric acid, myristic acid, palmitic acid, stearic acid, and salts thereof;
Oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and these At least one selected from the group consisting of
Aminocarboxylic acids are hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1, 3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ', N'-4 Selected from the group consisting of acetic acid, diaminopropionic acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid and salts thereof Less It is also a kind,
The polycarboxylic acid (C) is at least one selected from the group consisting of succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid and salts thereof. This is a copper colloid catalyst solution for electroless copper plating.

本発明6は、(a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程(前処理工程)と、
(b)上記本発明1〜5のいずれかの銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイド粒子を吸着させる触媒付与工程と、
(c)吸着処理された上記基板上に無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解銅メッキ方法である。
The present invention 6 is (a) non-conductive to at least one liquid containing an adsorption accelerator selected from the group consisting of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. Adsorption promotion process (pretreatment process) for immersing the substrate;
(B) a catalyst application step of immersing the non-conductive substrate in the copper colloid catalyst solution according to any one of the present inventions 1 to 5 to adsorb the copper colloid particles on the substrate surface;
(C) an electroless plating step of forming a copper film using an electroless copper plating solution on the adsorption-treated substrate.

本発明7は、上記本発明6において、工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする無電解銅メッキ方法である。   The present invention 7 is the electroless copper plating method according to the present invention 6, wherein the adsorption accelerator in the step (a) is a cationic surfactant and / or an amphoteric surfactant.

本発明8は、上記本発明6又は7の無電解銅メッキ方法で非導電性基板に銅皮膜を形成したことを特徴とする非導電性基板の製造方法である。 The present invention 8 is a method for producing a non-conductive substrate, wherein a copper film is formed on the non-conductive substrate by the electroless copper plating method of the present invention 6 or 7.

前記先願発明では、銅塩と還元剤とコロイド安定剤を含有する銅触媒液に非導電性基板を浸漬することで、その触媒活性により、次の無電解銅メッキ工程で良好な外観の銅皮膜を析出させることを提案した。
本発明では、この先願発明の銅触媒液の必須成分に特定の糖質をさらに付加することにより、触媒液の経時安定性を顕著に向上して、無電解メッキにより外観に優れた銅皮膜を得ることができる。
特に、建浴から数カ月経過してもコロイド触媒液は安定であるため、優れた外観の皮膜を得ることができ、触媒液のメンテナンスを軽減して無電解銅メッキの生産性を向上できる。
無電解銅メッキの予備処理としては、従来、スズ−パラジウム等による触媒付与があったが、本発明では貴金属を使用しないため、基板に付与したパラジウムの除去も必要なく基板製造のコストを安価にできる。
また、非導電性基板に触媒付与する前に界面活性剤により吸着促進処理をすると、銅コロイド触媒の効果を改善できる。特に、カチオン系活性剤で処理すると、銅コロイド触媒の効果が著しく向上する。
In the above-mentioned prior application, copper having a good appearance can be obtained in the next electroless copper plating step by immersing the non-conductive substrate in a copper catalyst solution containing a copper salt, a reducing agent and a colloidal stabilizer. It was proposed to deposit a film.
In the present invention, by adding a specific carbohydrate to the essential component of the copper catalyst solution of the prior invention, the aging stability of the catalyst solution is remarkably improved, and a copper film having an excellent appearance by electroless plating is obtained. Can be obtained.
In particular, since the colloidal catalyst solution is stable even after several months have passed since the building bath, it is possible to obtain a film having an excellent appearance, and it is possible to reduce the maintenance of the catalyst solution and improve the electroless copper plating productivity.
As a pretreatment for electroless copper plating, conventionally, there has been a catalyst application by tin-palladium or the like. However, since no precious metal is used in the present invention, it is not necessary to remove the palladium applied to the substrate, and the cost for manufacturing the substrate is reduced. it can.
Moreover, the effect of the copper colloid catalyst can be improved by carrying out adsorption promotion treatment with a surfactant before applying the catalyst to the non-conductive substrate. In particular, when treated with a cationic activator, the effect of the copper colloid catalyst is significantly improved.

本発明は、第一に、非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液であって、(A)可溶性銅塩と(B)還元剤と(C)コロイド安定剤に、さらに(D)特定の糖質を添加することで得られる無電解銅メッキ用の銅コロイド触媒液であり、第二に、上記第一の触媒液を用いた無電解銅メッキ方法であり、予め非導電性基板を界面活性剤の含有液で吸着促進処理し、次いで、上記触媒液により触媒付与した後に無電解銅メッキを行う方法であり、第三に、第二のメッキ方法で銅皮膜を形成した非導電性基板の製造方法である。
上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などをいう。
The present invention firstly provides a copper colloid catalyst solution for bringing a catalyst into contact with a non-conductive substrate, comprising (A) a soluble copper salt, (B) a reducing agent, and (C) a colloid stabilizer. And (D) a copper colloid catalyst solution for electroless copper plating obtained by adding a specific carbohydrate, and secondly, an electroless copper plating method using the first catalyst solution, Adsorption promotion treatment of a non-conductive substrate with a surfactant-containing liquid in advance, followed by electroless copper plating after applying a catalyst with the catalyst solution, and third, a copper film by a second plating method It is a manufacturing method of the nonelectroconductive board | substrate which formed.
Examples of the non-conductive substrate include glass substrates, ceramic substrates, and the like including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.

上記本発明1の銅コロイド触媒液を製造するために添加する必須成分は、(A)可溶性銅塩と、(B)還元剤と、(C)コロイド安定剤と、(D)特定の糖質である。
上記可溶性塩(A)は、水溶液中で第一又は第二銅イオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。具体的には、硫酸銅、酸化銅、塩化銅、ピロリン酸銅、炭酸銅、或いは酢酸銅、シュウ酸銅及びクエン酸銅等のカルボン酸銅塩、又はメタンスルホン酸銅及びヒドロキシエタンスルホン酸銅等の有機スルホン酸銅塩などが挙げられ、硫酸銅、クエン酸銅、メタンスルホン酸銅が好ましい。

The essential components added to produce the copper colloid catalyst solution of the present invention 1 include (A) a soluble copper salt, (B) a reducing agent, (C) a colloid stabilizer, and (D) a specific carbohydrate. It is.
Any soluble salt (A) may be used as long as it is a soluble salt that generates cuprous or cupric ions in an aqueous solution, and there is no particular limitation, and hardly soluble salts are not excluded. Specifically, copper sulfate, copper oxide, copper chloride, copper pyrophosphate, copper carbonate, or carboxylic acid copper salts such as copper acetate, copper oxalate and copper citrate, or copper methanesulfonate and copper hydroxyethanesulfonate And the like, and copper sulfate, copper citrate, and copper methanesulfonate are preferable.

上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類などが挙げられる。アルデヒド類はホルムアルデヒド、グリオキシル酸又はその塩などであり、多価フェノール類はカテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などであり、フェノールスルホン酸類はフェノールスルホン酸、クレゾールスルホン酸又はその塩などである。   Examples of the reducing agent (B) include borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfines. Examples include acids. Aldehydes are formaldehyde, glyoxylic acid or salts thereof, polyhydric phenols are catechol, hydroquinone, resorcin, pyrogallol, phloroglucin, gallic acid, etc., phenol sulfonic acids are phenol sulfonic acid, cresol sulfonic acid or salts thereof, etc. It is.

上記コロイド安定剤(C)はメッキ浴中で銅錯体を形成する化合物であり、触媒液の経時安定性を担保する機能を果たすものである。
当該コロイド安定剤(C)は、モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれる。
上記モノカルボン酸類としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及びこれらの塩などが挙げられる。
The colloid stabilizer (C) is a compound that forms a copper complex in the plating bath, and fulfills the function of ensuring the temporal stability of the catalyst solution.
The colloid stabilizer (C) is selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids.
Examples of the monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and salts thereof.

上記オキシカルボン酸類としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、ゴルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩などが挙げられる。   Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, golcoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, And salts thereof.

上記アミノカルボン酸類としては、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、イミノジプロピオン酸(IDP)、ヒドロキシエチルイミノジ酢酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩などが挙げられる。   Examples of the aminocarboxylic acids include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA). , Iminodiacetic acid (IDA), iminodipropionic acid (IDP), hydroxyethyliminodiacetic acid, 1,3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, meta Phenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethylglutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) )glycine,( , S) - ethylenediamine succinic acid and salts thereof.

上記ポリカルボン酸類としては、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩などが挙げられる。   Examples of the polycarboxylic acids include succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof.

本発明のコロイド触媒液は特定の糖質(D)を選択・添加することに特徴がある。
上記糖質(D)は、主にコロイド触媒液の経時安定性を向上するために添加され、グルコース(ブドウ糖)、フルクトース(果糖)、ラクトース(乳糖)、マルトース(麦芽糖)、イソマルツロース(パラチノース)、キシロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元イソマルツロース、グルコノラクトンから選択される。
上記グルコース、フルクトース、キシロースなどは単糖類、グルコノラクトンは単糖類の誘導体、ラクトース、マルトースなどは二糖類、ソルビトール、キシリトール、マンニトールなどは糖アルコールに属するが、本発明の糖質は上記糖類及びその誘導体、糖アルコールを包含する概念である。
上記還元水飴は、ブドウ糖、マルトースなどの特定の上記糖類のアルデヒド基を水酸基に還元したものをいう。また、上記糖質(D)としては、グルコース、フルクトース、キシロースなどの特定の単糖類が3以上のグリコシド結合で重合したオリゴマーも同じく有効である。
一方、上記糖質は特定の成分から選択されるので、澱粉、デキストリンなどは排除される。
好ましい糖質には、 グルコース、フルクトース、ラクトース、マルトース、ソルビトール、キシリトール、マンニトール、グルコノラクトン が挙げられ、糖アルコールが概ね好ましい。
The colloidal catalyst solution of the present invention is characterized in that a specific carbohydrate (D) is selected and added.
The carbohydrate (D) is added mainly to improve the temporal stability of the colloidal catalyst solution, and glucose (glucose), fructose (fructose), lactose (lactose), maltose (malt sugar), isomaltulose (palatinose). ), Xylose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced starch syrup, lactitol, reduced isomaltulose, gluconolactone.
Glucose, fructose, xylose, etc. belong to monosaccharides, gluconolactone, monosaccharide derivatives, lactose, maltose, etc. belong to disaccharides, sorbitol, xylitol, mannitol, etc. belong to sugar alcohols. It is a concept including its derivatives and sugar alcohols.
The reduced starch syrup refers to a product obtained by reducing an aldehyde group of a specific saccharide such as glucose or maltose to a hydroxyl group. Further, as the carbohydrate (D), an oligomer obtained by polymerizing a specific monosaccharide such as glucose, fructose, xylose or the like with three or more glycosidic bonds is also effective.
On the other hand, since the saccharide is selected from specific components, starch, dextrin and the like are excluded.
Preferred carbohydrates include glucose, fructose, lactose, maltose, sorbitol, xylitol, mannitol, gluconolactone, and sugar alcohols are generally preferred.

本発明の銅コロイド触媒液は水系なので、液の溶媒は水及び/又は親水性アルコールに限定され、有機溶媒(親油性アルコールを含む)単用は排除される。
また、当該触媒液については、中性付近では触媒活性が低下し易いため、液のpHは中性域(pH6〜8)を除く酸性側又はアルカリ側が好ましく、具体的にはpH1〜6及び8〜12が適しており、好ましくはpH2〜5及び8〜11に調整すると銅コロイド粒子は安定化し易い。
Since the copper colloid catalyst solution of the present invention is aqueous, the solvent of the solution is limited to water and / or hydrophilic alcohol, and the use of organic solvents (including lipophilic alcohol) alone is excluded.
Moreover, about the said catalyst liquid, since catalyst activity falls easily near neutrality, the pH of a liquid has the preferable acidic side or alkali side except a neutral region (pH 6-8), Specifically, pH 1-6 and 8 ˜12 is suitable, and when adjusted to pH 2-5 and 8-11, the copper colloid particles are likely to be stabilized.

銅コロイド触媒液において、上記可溶性銅塩(A)は単用又は併用でき、その含有量は0.005〜3モル/L、好ましくは0.05〜2モル/L、より好ましくは0.04〜1.2モル/Lである。
上記還元剤(B)は単用又は併用でき、その含有量は0.005〜4モル/L、好ましくは0.02〜3モル/L、より好ましくは0.03〜2.2モル/Lである。還元剤の含有量が適正量より少ないと銅塩の還元作用が低下し、逆に、多過ぎると無電解メッキで析出する銅皮膜の均質性が低下する恐れがある。
上記コロイド安定剤(C)は単用又は併用でき、その含有量は0.005〜4モル/L、好ましくは0.01〜2モル/L、より好ましくは0.05〜1.6モル/Lである。
上記糖質(D)は単用又は併用でき、その含有量は0.001〜4モル/L、好ましくは0.01〜3モル/L、より好ましくは0.05〜2.2モル/Lである。
In the copper colloid catalyst solution, the soluble copper salt (A) can be used alone or in combination, and the content thereof is 0.005 to 3 mol / L, preferably 0.05 to 2 mol / L, more preferably 0.04. -1.2 mol / L.
The reducing agent (B) can be used alone or in combination, and the content thereof is 0.005 to 4 mol / L, preferably 0.02 to 3 mol / L, more preferably 0.03 to 2.2 mol / L. It is. If the content of the reducing agent is less than the appropriate amount, the reducing action of the copper salt is lowered. Conversely, if the content is too large, the homogeneity of the copper film deposited by electroless plating may be lowered.
The colloid stabilizer (C) can be used alone or in combination, and its content is 0.005 to 4 mol / L, preferably 0.01 to 2 mol / L, more preferably 0.05 to 1.6 mol / L. L.
The carbohydrate (D) can be used alone or in combination, and its content is 0.001 to 4 mol / L, preferably 0.01 to 3 mol / L, more preferably 0.05 to 2.2 mol / L. It is.

銅コロイド触媒液において、上記(A)と(C)の含有モル比率はA:C=1:0.03〜1:35であり、好ましくはA:C=1:0.5〜1:24である。コロイド安定剤(C)の相対含有率が少な過ぎると触媒液の経時安定性が低下し、ひいては無電解メッキにより得られる銅皮膜に析出不良を生じる要因ともなる。逆に、コロイド安定剤(C)の含有率が多過ぎても、触媒液の経時安定性を損ない、得られる銅皮膜の質を低下させることになる(後述の試験例参照)。
銅コロイド触媒液において、上記(A)と(B)の含有モル比率はA:B=1:0.01〜1:6であり、好ましくはA:B=1:0.05〜1:4、より好ましくはA:B=1:0.07〜1:2である。
銅コロイド触媒液において、上記(A)と(D)の含有モル比率はA:D=1:0.01〜1:40であり、好ましくはA:D=1:0.1〜1:25、より好ましくはA:D=1:1〜1:15である。糖質(D)の相対含有率が多すぎると、かえってコロイド触媒液が過剰に安定化して触媒活性を失い、非導電性基板への触媒核の付与、ひいては良好な外観の皮膜形成に支障がでる恐れがある。
In the copper colloid catalyst solution, the molar ratio of (A) and (C) is A: C = 1: 0.03 to 1:35, preferably A: C = 1: 0.5 to 1:24. It is. If the relative content of the colloidal stabilizer (C) is too small, the stability with time of the catalyst solution is lowered, and as a result, the copper film obtained by electroless plating causes a deposition failure. On the other hand, even if the content of the colloid stabilizer (C) is too large, the stability of the catalyst solution over time is impaired, and the quality of the obtained copper film is lowered (see the test examples described later).
In the copper colloid catalyst solution, the molar ratio of (A) to (B) is A: B = 1: 0.01 to 1: 6, preferably A: B = 1: 0.05 to 1: 4. More preferably, A: B = 1: 0.07 to 1: 2.
In the copper colloid catalyst solution, the molar ratio of the above (A) and (D) is A: D = 1: 0.01 to 1:40, preferably A: D = 1: 0.1 to 1:25. More preferably, A: D = 1: 1 to 1:15. If the relative content of the saccharide (D) is too large, the colloidal catalyst solution will be excessively stabilized and lose its catalytic activity, which will impede the formation of a coating film with a good appearance by adding catalyst nuclei to the non-conductive substrate. There is a risk of going out.

当該触媒液の調製に際しては、還元剤から銅イオンに電子を円滑に供与するため、還元剤の溶液を可溶性銅塩(及びコロイド安定剤)の含有溶液に時間をかけて緩やかに滴下して製造することを基本とする。例えば、5〜50℃(好ましくは10〜40℃)の還元剤溶液を銅塩溶液に滴下して20〜1200分間(好ましくは30〜300分間)撹拌し、触媒液を調製する。尚、触媒液の調製では、可溶性銅塩の溶液を還元剤の液に滴下することを排除するものではない。
本発明の触媒液において、還元剤の作用により可溶性銅塩から生じる銅コロイド粒子は適した平均粒径が1〜250nm、好ましくは1〜120nm、より好ましくは1〜100nmの微細粒子である。
銅コロイド粒子の平均粒径が250nm以下になると、触媒液に非導電性基板を浸漬した場合、コロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着し、或いは引っ掛かるなどのアンカー効果により基板表面に銅コロイド核の付与が促進されるものと推定できる。逆に、平均粒径が250nmより大きくなると、凝集、沈殿或いは分離などにより、安定な銅コロイドが得られにくいうえ、アンカー効果も期待できないため、銅コロイド粒子が基板表面に部分的にしか付与できなかったり、付与不良になる恐れがある。
In the preparation of the catalyst solution, in order to smoothly donate electrons from the reducing agent to the copper ions, the reducing agent solution is slowly dropped over the solution containing the soluble copper salt (and colloid stabilizer) over time. Basically to do. For example, a reducing agent solution of 5 to 50 ° C. (preferably 10 to 40 ° C.) is dropped into a copper salt solution and stirred for 20 to 1200 minutes (preferably 30 to 300 minutes) to prepare a catalyst solution. It should be noted that the preparation of the catalyst solution does not exclude dropping the soluble copper salt solution into the reducing agent solution.
In the catalyst solution of the present invention, the copper colloid particles generated from the soluble copper salt by the action of the reducing agent are fine particles having a suitable average particle diameter of 1 to 250 nm, preferably 1 to 120 nm, more preferably 1 to 100 nm.
When the average particle size of the copper colloidal particles is 250 nm or less, when the non-conductive substrate is immersed in the catalyst solution, the colloidal particles enter into the dents on the fine uneven surface of the substrate, and are closely adsorbed or caught. It can be presumed that the application of copper colloid nuclei to the substrate surface is accelerated by Conversely, when the average particle size is larger than 250 nm, it is difficult to obtain a stable copper colloid due to agglomeration, precipitation, or separation, and the anchor effect cannot be expected. Therefore, the copper colloid particles can only be partially applied to the substrate surface. There is a risk that it may not be applied or it may become defective.

本発明1の銅コロイド触媒液には界面活性剤を含有することができるが、触媒活性が低下する恐れがあるため、950mg/L以下の少量に抑える方が好ましい。
上記界面活性剤はノニオン系、両性、カチオン系、或いはアニオン系の各種界面活性剤を意味し、特に、両性、カチオン系、アニオン系、或いは、低分子のノニオン系界面活性剤は好ましくない。
上記ノニオン系界面活性剤としては、C1〜C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1〜C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1〜C25アルキルナフトール、C1〜C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C1〜C22脂肪族アミン、C1〜C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2〜300モル付加縮合させたものや、C1〜C25アルコキシル化リン酸(塩)などが挙げられる。
上記カチオン系界面活性剤としては、第4級アンモニウム塩、或いはピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。また、エチレンオキシド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化、或はスルホン酸化付加物も使用できる。
The copper colloid catalyst solution of the present invention 1 may contain a surfactant, but it may be reduced to a small amount of 950 mg / L or less because the catalyst activity may be reduced.
The above-mentioned surfactants mean various nonionic, amphoteric, cationic or anionic surfactants. In particular, amphoteric, cationic, anionic or low molecular nonionic surfactants are not preferred.
Nonionic surfactants include C1-C20 alkanols, phenols, naphthols, bisphenols, (poly) C1-C25 alkylphenols, (poly) arylalkylphenols, C1-C25 alkylnaphthols, C1-C25 alkoxylated phosphoric acids (salts). ), Sorbitan esters, polyalkylene glycols, C1 to C22 aliphatic amines, C1 to C22 aliphatic amides and the like obtained by addition condensation of 2-300 moles of ethylene oxide (EO) and / or propylene oxide (PO), And C25 alkoxylated phosphoric acid (salt).
Examples of the cationic surfactant include quaternary ammonium salts or pyridinium salts. Specifically, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, octadecyl dimethyl ethyl ammonium salt, Dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt, trimethyl benzyl ammonium salt, triethyl benzyl ammonium salt, dimethyl diphenyl ammonium salt, benzyl dimethyl phenyl ammonium salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecyl pyridinium Salt, stearylamine acetate, laurylamine acetate, octadecylamine Seteto and the like.
Examples of the anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl benzene sulfonates, {(mono, di, tri) alkyl} naphthalene sulfonates, etc. Is mentioned. Examples of the amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Further, sulfation of a condensation product of ethylene oxide and / or propylene oxide and an alkylamine or diamine, or a sulfonated adduct can also be used.

本発明の銅コロイド触媒液には、コロイド粒子の分散性を向上し、無電解銅メッキに際して均一でムラのない皮膜を得るために、合成系の水溶性ポリマーを含有することができる。
当該合成系水溶性ポリマーを触媒液に含有するとコロイド粒子の分散性が向上し、もって無電解銅メッキに際して、優れた均一性とムラのない銅皮膜の析出に寄与する。
上記合成系水溶性ポリマーとは、ゼラチン、澱粉などの天然由来の水溶性ポリマーを排除する意味であり、半合成系のカルボキシメチルセルロース(CMC)、メチルセルロース(MC)などのセルロース誘導体は排除しない。
本発明3の触媒液の含有対象である合成系の水溶性ポリマーは、上記界面活性剤との関係で、その属する成分に一部重複する可能性も考えられるが、本発明では両者は別の概念である。
本発明3の触媒液では、水溶性ポリマー以外の成分の含有については要件としないため、例えば、界面活性剤の含有の有無は問わず、含有しても、或いはしなくても良い。
上記合成系の水溶性ポリマーとしては、本発明3に示すように、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAM)、ポリエチレンイミン(PEI)、ポリアクリル酸塩などが挙げられ、特に、高分子量のPEG、PVP、PVAなどが好ましい。
合成系の水溶性ポリマーは単用又は併用でき、その触媒液に対する含有量は0.05〜100g/Lであり、好ましくは0.5〜50g/L、さらに好ましくは1.0〜30g/Lである。
The copper colloid catalyst solution of the present invention can contain a synthetic water-soluble polymer in order to improve the dispersibility of the colloidal particles and to obtain a uniform and uniform film upon electroless copper plating.
When the synthetic water-soluble polymer is contained in the catalyst solution, the dispersibility of the colloidal particles is improved, thereby contributing to excellent uniformity and uniform copper film deposition during electroless copper plating.
The above-mentioned synthetic water-soluble polymer means to exclude naturally derived water-soluble polymers such as gelatin and starch, and does not exclude semi-synthetic carboxymethyl cellulose (CMC) and cellulose derivatives such as methyl cellulose (MC).
The synthetic water-soluble polymer that is the target of the catalyst solution of the present invention 3 may partially overlap with the component to which the synthetic water-soluble polymer is related because of the above-mentioned surfactant. It is a concept.
In the catalyst solution of the present invention 3, since it is not a requirement for the inclusion of components other than the water-soluble polymer, for example, it may or may not be contained regardless of the presence or absence of a surfactant.
Examples of the synthetic water-soluble polymer include polyethylene glycol (PEG), polypropylene glycol (PPG), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM), polyethylene imine, as shown in the present invention 3. (PEI), polyacrylate, and the like, and high molecular weight PEG, PVP, PVA, and the like are particularly preferable.
The synthetic water-soluble polymer can be used singly or in combination, and its content relative to the catalyst solution is 0.05 to 100 g / L, preferably 0.5 to 50 g / L, more preferably 1.0 to 30 g / L. It is.

本発明6は、上記銅コロイド触媒液を用いた無電解メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解銅メッキ工程
上記吸着促進工程(a)はいわば(b)の触媒付与の前処理(予備処理)工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する工程であり、基板を界面活性剤の含有液に接触させることで基板表面の濡れ性を高めて触媒活性を増強し、次工程での銅コロイド粒子の吸着を促進するものである。
吸着促進工程では、非導電性基板を界面活性剤の含有液を接触させることが必要であるため、液に浸漬させることが基本であるが、含有液を基板に噴霧したり、刷毛で塗布するなどしても差し支えない。
本発明7に示すように、吸着を促進する見地から、正電荷を帯びたカチオン系や両性界面活性剤が好適であり、特にカチオン系界面活性剤がより好ましい。また、カチオン系界面活性剤に少量のノニオン系界面活性剤を併用すると、吸着促進効果がさらに増す。
本発明の触媒液において、可溶性銅塩に還元剤を作用させて生じる銅コロイド粒子はゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン性界面活性剤で接触処理すると、基板がプラス電荷を帯び易く、次工程における銅コロイド粒子の基板への吸着効率が増す。
界面活性剤の具体例は、前記本発明1の触媒液において排除又は抑制対象として述べた界面活性剤の説明の通りである。
界面活性剤の含有量は0.05〜100g/Lであり、好ましくは0.5〜50g/Lである。界面活性剤の含有液の温度は15〜70℃程度、浸漬時間は0.5〜20分間程度が好ましい。
The present invention 6 is an electroless plating method using the above copper colloid catalyst solution, which is formed by sequentially combining the following three steps.
(A) Adsorption promotion step (b) Catalyst application step (c) Electroless copper plating step The adsorption promotion step (a) is, in other words, a pretreatment (pretreatment) step of catalyst application of (b), and is a nonionic surfactant. This is a step of immersing a non-conductive substrate in a liquid containing at least one adsorption accelerator selected from the group consisting of an agent, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. By bringing into contact with the liquid containing the agent, the wettability of the substrate surface is increased to enhance the catalytic activity, and the adsorption of the copper colloid particles in the next step is promoted.
In the adsorption promotion step, it is necessary to bring the non-conductive substrate into contact with the surfactant-containing liquid, so it is basically immersed in the liquid, but the containing liquid is sprayed on the substrate or applied with a brush. There is no problem.
As shown in the present invention 7, from the viewpoint of promoting adsorption, a positively charged cationic or amphoteric surfactant is preferred, and a cationic surfactant is particularly preferred. Further, when a small amount of nonionic surfactant is used in combination with the cationic surfactant, the adsorption promoting effect is further increased.
In the catalyst solution of the present invention, the colloidal copper particles produced by reacting a soluble copper salt with a reducing agent have a negative zeta potential. For example, when a non-conductive substrate is contact-treated with a cationic surfactant, the substrate becomes positive. It is easy to be charged, and the efficiency of adsorption of the copper colloid particles on the substrate in the next step is increased.
Specific examples of the surfactant are as described for the surfactant described as an object to be excluded or suppressed in the catalyst solution of the first invention.
The content of the surfactant is from 0.05 to 100 g / L, preferably from 0.5 to 50 g / L. The temperature of the surfactant-containing liquid is preferably about 15 to 70 ° C., and the immersion time is preferably about 0.5 to 20 minutes.

吸着促進処理を終えた非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
触媒付与工程では、上記銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイドを吸着させる。
当該触媒液の液温は5〜70℃、好ましくは15〜60℃、浸漬時間は0.1〜20分、好ましくは0.2〜10分であり、浸漬処理に際しては、基板を触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行っても良い。
また、当該触媒付与工程(b)の後で、且つ、次の無電解銅メッキ工程(c)の前に、酸洗浄処理の工程を加入すると、酸洗浄なしの場合に比べて当該触媒活性による活性度を更に増進させることができ、ビアやスルホールのある複雑な形状の基板に対してもメッキむらや断線の弊害を確実に防止し、銅皮膜の密着性をより向上できる。
酸洗浄処理にあっては、酸の濃度は10〜200g/L、好ましくは20〜100g/Lであり、酸には硫酸、塩酸などの無機酸、有機スルホン酸、酢酸、酒石酸、クエン酸等のカルボン酸などの有機酸を使用できる。
酸洗浄の処理温度は5〜70℃、好ましくは15〜60℃であり、処理時間は0.1〜20分、好ましくは0.2〜10分である。
The non-conductive substrate that has finished the adsorption promoting process is washed with pure water and then dried or transferred to the next catalyst application step (b) without drying.
In the catalyst application step, the non-conductive substrate is immersed in the copper colloid catalyst solution to adsorb the copper colloid on the substrate surface.
The liquid temperature of the catalyst solution is 5 to 70 ° C., preferably 15 to 60 ° C., and the immersion time is 0.1 to 20 minutes, preferably 0.2 to 10 minutes. It is sufficient to immerse in a stationary state, but stirring or rocking may be performed.
In addition, when an acid washing treatment step is added after the catalyst application step (b) and before the next electroless copper plating step (c), the catalyst activity depends on the catalyst activity compared to the case without acid washing. The degree of activity can be further increased, and the adverse effects of uneven plating and disconnection can be reliably prevented even on a substrate having a complicated shape with vias and through holes, and the adhesion of the copper film can be further improved.
In the acid cleaning treatment, the acid concentration is 10 to 200 g / L, preferably 20 to 100 g / L. The acid includes an inorganic acid such as sulfuric acid and hydrochloric acid, an organic sulfonic acid, acetic acid, tartaric acid, citric acid, and the like. Organic acids such as carboxylic acids can be used.
The acid washing treatment temperature is 5 to 70 ° C., preferably 15 to 60 ° C., and the treatment time is 0.1 to 20 minutes, preferably 0.2 to 10 minutes.

触媒液に浸漬した非導電性基板は純水で洗浄した後、乾燥し、或いは乾燥することなく、無電解銅メッキ工程(c)に移行する。
無電解銅メッキは、従来と同様に処理すれば良く、特段の制約はない。無電解銅メッキ液の液温は一般に15〜70℃、好ましくは20〜60℃である。
銅メッキ液の撹拌では、空気撹拌、急速液流撹拌、撹拌羽根等による機械撹拌等を使用することができる。
本発明8は、上記無電解銅メッキ方法で非導電性基板に銅皮膜を形成した、非導電性基板の製造方法であり、本発明6の吸着促進、触媒付与、無電解メッキの各工程を経て上記基板に銅皮膜を形成する方法をいう。
非導電性基板は、前述した通り、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂などの樹脂基板、或いはガラス基板やセラミックス基板などをいう。
The nonconductive substrate immersed in the catalyst solution is washed with pure water and then dried or transferred to the electroless copper plating step (c) without drying.
The electroless copper plating may be processed in the same manner as in the past, and there are no particular restrictions. The temperature of the electroless copper plating solution is generally 15 to 70 ° C, preferably 20 to 60 ° C.
In stirring the copper plating solution, air stirring, rapid liquid flow stirring, mechanical stirring using a stirring blade, or the like can be used.
The present invention 8 is a method for producing a non-conductive substrate in which a copper film is formed on the non-conductive substrate by the above-mentioned electroless copper plating method, and the steps of adsorption promotion, catalyst application, and electroless plating of the present invention 6 are performed. Then, it refers to a method of forming a copper film on the substrate .
As described above, the non-conductive substrate refers to a resin substrate such as glass / epoxy resin, glass / polyimide resin, epoxy resin or polyimide resin, or a glass substrate or a ceramic substrate.

無電解銅メッキ液の組成に特段の制限はなく、公知の銅メッキ液を使用できる。
無電解銅メッキ液は、基本的に可溶性銅塩と、還元剤と、錯化剤を含有し、或いは、さらに界面活性剤やpH調整剤などの各種添加剤、又は酸を含有できる。
可溶性銅塩については、前記銅コロイド触媒液で述べた通りである。
There is no particular limitation on the composition of the electroless copper plating solution, and a known copper plating solution can be used.
The electroless copper plating solution basically contains a soluble copper salt, a reducing agent, and a complexing agent, or may further contain various additives such as a surfactant and a pH adjusting agent, or an acid.
The soluble copper salt is as described in the copper colloid catalyst solution.

無電解銅メッキ液に含有される還元剤についても、前記銅コロイド触媒液で述べた通りであり、ホルムアルデヒド(ホルマリン水)を初め、次亜リン酸類、亜リン酸類、アミンボラン類、水素化ホウ素類、グリオキシル酸などであり、ホルマリン水が好ましい。   The reducing agent contained in the electroless copper plating solution is also as described in the copper colloid catalyst solution, including formaldehyde (formalin water), hypophosphorous acid, phosphorous acid, amine borane, borohydride. And glyoxylic acid, and formalin water is preferred.

無電解銅メッキ液に含有される錯化剤については、前記銅コロイド触媒液で述べたコロイド安定剤と共通する部分もあり、具体的には、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)などのアミノカルボン酸類、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどのポリアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、クエン酸、酒石酸、乳酸、リンゴ酸などのオキシカルボン酸類、チオグリコール酸、グリシンなどである。   The complexing agent contained in the electroless copper plating solution has a part in common with the colloidal stabilizer described in the copper colloid catalyst solution, specifically, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA). ), Aminocarboxylic acids such as triethylenetetramine hexaacetic acid (TTHA), hydroxyethylethylenediamine triacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, Polyamines such as tetraethylenepentamine and pentaethylenehexamine, aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine, oxycarbons such as citric acid, tartaric acid, lactic acid and malic acid S, thioglycolic acid, glycine and the like.

無電解銅メッキ液には、液のベース成分として有機酸及び無機酸、或いはその塩を含有しても良い。
上記無機酸には、硫酸、ピロリン酸、ホウフッ酸などが挙げられる。また、有機酸には、グリコール酸や酒石酸等のオキシカルボン酸、メタンスルホン酸や2―ヒドロキシエタンスルホン酸等の有機スルホン酸などが挙げられる。
The electroless copper plating solution may contain an organic acid and an inorganic acid or a salt thereof as a base component of the solution.
Examples of the inorganic acid include sulfuric acid, pyrophosphoric acid, and borofluoric acid. Examples of the organic acid include oxycarboxylic acids such as glycolic acid and tartaric acid, and organic sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.

以下、本発明の吸着促進剤の含有液、銅コロイド触媒液、並びに無電解銅メッキ液の調製を含む無電解銅メッキ方法の実施例を述べるとともに、銅コロイド触媒液の経時安定性と上記実施例で得られた銅皮膜の外観についての評価試験例を順次説明する。
尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, examples of the electroless copper plating method including the preparation of the adsorption accelerator, the copper colloid catalyst solution, and the electroless copper plating solution of the present invention will be described. The example of an evaluation test about the external appearance of the copper film obtained by the example is demonstrated sequentially.
The present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.

《無電解銅メッキ方法の実施例》
下記の実施例1〜20のうち、実施例9〜10は触媒液に合成系の水溶性ポリマーを含有する例、それ以外の実施例は当該水溶性ポリマーを含まない例であり、概ね実施例2〜20は実施例1或いは実施例4を基本にして、成分などを変更したものである。
実施例1は触媒液にコロイド安定剤としてクエン酸、糖質としてキシリトール(糖アルコール)、還元剤として水素化ホウ素ナトリウムと次亜リン酸を夫々使用した例である。実施例2は実施例1を基本としてキシリトールの含有量を前記一般的な範囲の下限に調整した例、実施例3は同範囲の上限に調整した例である。実施例4は糖質にソルビトール(糖アルコール)を使用した例、同じく実施例5はマンニトール(糖アルコール)の使用例、実施例6はグルコノラクトン(単糖類の誘導体)の使用例、実施例7はグルコース(単糖類)の使用例、実施例8はマルトース(二糖類)の使用例である。実施例9は糖質にキシリトールを使用し、合成系の水溶性ポリマーにポリビニルピロリドンを使用した例である。実施例10は糖質にソルビトールを使用し、合成系の水溶性ポリマーにポリエチレングリコールを使用した例である。実施例11は糖質にキシリトールとソルビトールを併用した例(糖アルコール同士の併用例)、同じく実施例12は糖質にマンニトールとグルコースを併用した例である(糖アルコールと単糖類の併用例)。実施例13は実施例1を基本として可溶性銅塩を変更した例、実施例14は実施例4を基本として可溶性銅塩を変更した例である。実施例15〜16は実施例1を基本としてコロイド安定剤を変更した例、実施例17は実施例4を基本としてコロイド安定剤を変更した例である。実施例18は実施例4を基本として還元剤を変更した例、実施例19は実施例5を基本として還元剤を変更した例である。実施例20は実施例1を基本として触媒液のpHを弱アルカリ域に変更した例である。
また、実施例4と11は触媒付与工程の後で無電解銅メッキ工程の前に酸洗浄工程を介在させた例であり、他の実施例はすべて、酸洗浄なしで吸着促進→触媒付与→無電解銅メッキの各工程を順番に行った例である。
<< Example of electroless copper plating method >>
Of Examples 1 to 20 below, Examples 9 to 10 are examples in which the catalyst solution contains a synthetic water-soluble polymer, and other examples are examples that do not contain the water-soluble polymer. Nos. 2 to 20 are obtained by changing the components and the like based on Example 1 or Example 4.
Example 1 is an example in which citric acid was used as a colloid stabilizer, xylitol (sugar alcohol) as a saccharide, and sodium borohydride and hypophosphorous acid as reducing agents in the catalyst solution. Example 2 is an example in which the content of xylitol was adjusted to the lower limit of the general range based on Example 1, and Example 3 was an example adjusted to the upper limit of the same range. Example 4 is an example using sorbitol (sugar alcohol) as a saccharide, Example 5 is an example using mannitol (sugar alcohol), Example 6 is an example using gluconolactone (a monosaccharide derivative), Example 7 is a usage example of glucose (monosaccharide), and Example 8 is a usage example of maltose (disaccharide). Example 9 is an example in which xylitol is used as a saccharide and polyvinylpyrrolidone is used as a synthetic water-soluble polymer. Example 10 is an example in which sorbitol is used as a saccharide and polyethylene glycol is used as a synthetic water-soluble polymer. Example 11 is an example in which xylitol and sorbitol are used in combination with a saccharide (an example in which sugar alcohols are used together), and Example 12 is an example in which mannitol and glucose are used in combination with a saccharide (an example in which sugar alcohols and monosaccharides are used together). . Example 13 is an example in which the soluble copper salt is changed on the basis of Example 1, and Example 14 is an example in which the soluble copper salt is changed on the basis of Example 4. Examples 15 to 16 are examples in which the colloidal stabilizer was changed on the basis of Example 1, and Example 17 was an example in which the colloidal stabilizer was changed on the basis of Example 4. Example 18 is an example in which the reducing agent is changed on the basis of Example 4, and Example 19 is an example in which the reducing agent is changed on the basis of Example 5. Example 20 is an example in which the pH of the catalyst solution was changed to a weak alkaline region based on Example 1.
In addition, Examples 4 and 11 are examples in which an acid washing step is interposed after the catalyst application step and before the electroless copper plating step, and all other examples promote adsorption without acid washing → catalyst application → It is the example which performed each process of electroless copper plating in order.

一方、下記の比較例1〜3のうち、比較例1は触媒液にコロイド安定剤と糖質の両成分を含有しないブランク例である。比較例2は触媒液にコロイド安定剤を含み、本発明で規定する糖質とは異なる糖類(デンプン)を含む例である。比較例3は吸着促進工程なしで、直ちに触媒付与工程から無電解メッキ工程を行ったブランク例である。
また、基準例は前記先願発明に準拠したもので、触媒液にコロイド安定剤を含むが本発明で規定する糖質は含まない例である。
On the other hand, among the following Comparative Examples 1 to 3, Comparative Example 1 is a blank example in which the catalyst solution does not contain both the colloid stabilizer and the saccharide component. Comparative Example 2 is an example in which a colloid stabilizer is contained in the catalyst solution and a saccharide (starch) different from the saccharide defined in the present invention is contained. Comparative Example 3 is a blank example in which the electroless plating process is immediately performed from the catalyst application process without the adsorption promotion process.
Further, the reference example is based on the invention of the prior application, and is an example in which the colloid stabilizer is included in the catalyst solution but the carbohydrate defined in the present invention is not included.

(1)実施例1
《吸着促進、触媒付与並びに無電解メッキの処理手順》
先ず、非導電性基板であるガラス・エポキシ樹脂基板(板厚:1.0mm)をもって試料基板とした。
そして、下記(a)の吸着促進剤を用いて試料基板に吸着促進を行った後、下記(b)の触媒液に浸漬して触媒付与を行い、さらに下記(c)のメッキ液で無電解銅メッキを行った。
具体的には、前記吸着促進剤の含有液に前記試料基板を50℃、2分の条件で浸漬し、純水で洗浄した。次いで、吸着促進処理(前処理)を施した試料基板を前記銅コロイド触媒液に25℃、10分の条件で浸漬し、純水で洗浄した。その後、触媒付与を施した試料基板を上記無電解銅メッキ液中に浸漬して、50℃、10分の条件で無電解メッキを施して、試料基板上に銅皮膜を形成した後、純水で洗浄し、乾燥した。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ジアリルアミンポリマーの4級アンモニウム塩 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
pH 10.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
キシリトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(c)無電解銅メッキ液の調製
次の組成で無電解銅メッキ液を建浴した。当該メッキ液は下記の水酸化ナトリウムでpH調整した。
[無電解銅メッキ液]
硫酸銅五水和物(Cu2+として) 2.0g/L
ホルムアルデヒド 5.0g/L
EDTA 30.0g/L
水酸化ナトリウム 9.6g/L
残余 純水
pH(20℃) 12.8

(1) Example 1
《Procedure for adsorption promotion, catalyst application and electroless plating》
First, a glass / epoxy resin substrate (plate thickness: 1.0 mm) which is a non-conductive substrate was used as a sample substrate.
And after carrying out adsorption promotion to a sample substrate using the adsorption promoter of the following (a), it immerses in the catalyst solution of the following (b), gives a catalyst, and also is electroless with the plating solution of the following (c). Copper plating was performed.
Specifically, the sample substrate was immersed in the adsorption accelerator-containing liquid at 50 ° C. for 2 minutes and washed with pure water. Next, the sample substrate subjected to the adsorption promotion treatment (pretreatment) was immersed in the copper colloid catalyst solution at 25 ° C. for 10 minutes and washed with pure water. Thereafter, the sample substrate to which the catalyst is applied is immersed in the electroless copper plating solution, subjected to electroless plating at 50 ° C. for 10 minutes, and a copper film is formed on the sample substrate. Washed with and dried.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 10.0
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.
(C) Preparation of electroless copper plating solution An electroless copper plating solution was constructed with the following composition. The plating solution was pH adjusted with the following sodium hydroxide.
[Electroless copper plating solution]
Copper sulfate pentahydrate (as Cu2 +) 2.0g / L
Formaldehyde 5.0g / L
EDTA 30.0g / L
Sodium hydroxide 9.6g / L
Residual pure water pH (20 ° C) 12.8

(2)実施例2
上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液と無電解銅メッキ液の組成並びに吸着促進、触媒付与、無電解銅メッキの各工程の処理条件は実施例1と同じとした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
キシリトール 0.001モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:0.01、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(2) Example 2
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption accelerator and the composition of the electroless copper plating solution and the steps of adsorption promotion, catalyst application, and electroless copper plating The processing conditions were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Xylitol 0.001 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 2, copper salt: carbohydrate = 1: 0.01, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.

(3)実施例3
上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液と無電解銅メッキ液の組成並びに吸着促進、触媒付与、無電解銅メッキの各工程の処理条件は実施例1と同じとした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
キシリトール 4.0モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:40、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約10nmであった。
(3) Example 3
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption accelerator and the composition of the electroless copper plating solution and the steps of adsorption promotion, catalyst application, and electroless copper plating The processing conditions were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Xylitol 4.0 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 2, copper salt: carbohydrate = 1: 40, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 10 nm.

(4)実施例4
吸着促進、触媒付与、酸洗浄、無電解銅メッキの各工程を順番に行った例である。
但し、吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
また、酸洗浄の処理条件は下記(d)に示す通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
pH 9.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
ソルビトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約40nmであった。
(d)酸洗浄の処理条件
硫酸50g/Lの洗浄液を調製し、上記触媒付与処理をした試料基板を当該洗浄液中に、45℃、1分間の条件で浸漬し、水洗した後、次の無電解銅メッキ工程に供した。
(4) Example 4
In this example, the steps of adsorption promotion, catalyst application, acid cleaning, and electroless copper plating are performed in order.
However, the processing conditions of each step of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and each preparation condition of the liquid containing the adsorption accelerator and the copper colloid catalyst solution Is as follows.
The acid cleaning treatment conditions are as shown in (d) below.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 9.0
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Sorbitol 0.3mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 40 nm.
(D) Treatment conditions for acid cleaning After preparing a cleaning solution of 50 g / L sulfuric acid and immersing the sample substrate subjected to the above-described catalyst application treatment in the cleaning solution at 45 ° C. for 1 minute, washing with water, It used for the electrolytic copper plating process.

(5)実施例5
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルアミノ酢酸ベタイン 5g/L
ポリオキシエチレンオクチルフェニルエーテル 1g/L
pH 10.5
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
マンニトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(5) Example 5
The treatment conditions for the steps of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and the preparation conditions for the solution containing the adsorption accelerator and the copper colloid catalyst solution are as follows. It is as follows.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylaminoacetic acid betaine 5g / L
Polyoxyethylene octyl phenyl ether 1g / L
pH 10.5
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Mannitol 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.

(6)実施例6
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
グルコノラクトン 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約20nmであった。
(6) Example 6
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Gluconolactone 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 20 nm.

(7)実施例7
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
グルコース 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(7) Example 7
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Glucose 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(8)実施例8
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシエチレンオクチルフェニルエーテル 1g/L
pH 10.5
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
マルトース 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して60分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約10nmであった。
(8) Example 8
The treatment conditions for the steps of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and the preparation conditions for the solution containing the adsorption accelerator and the copper colloid catalyst solution are as follows. It is as follows.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyethylene octyl phenyl ether 1g / L
pH 10.5
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Maltose 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 60 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 10 nm.

(9)実施例9
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルアミノ酢酸ベタイン 5g/L
ポリオキシエチレンオクチルフェニルエーテル 1g/L
pH 10.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
キシリトール 0.3モル/L
ポリビニルピロリドン(平均分子量40,000) 2.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH3.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(9) Example 9
The treatment conditions for the steps of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and the preparation conditions for the solution containing the adsorption accelerator and the copper colloid catalyst solution are as follows. It is as follows.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylaminoacetic acid betaine 5g / L
Polyoxyethylene octyl phenyl ether 1g / L
pH 10.0
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Xylitol 0.3 mol / L
Polyvinylpyrrolidone (average molecular weight 40,000) 2.0g / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution adjusted to pH 3.0 at 25 ° C. and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.

(10)実施例10
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
pH 10.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
ソルビトール 0.3モル/L
ポリエチレングリコール(平均分子量10,000) 1.0g/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して90分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約35nmであった。
(10) Example 10
The treatment conditions for the steps of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and the preparation conditions for the solution containing the adsorption accelerator and the copper colloid catalyst solution are as follows. It is as follows.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 10.0
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Sorbitol 0.3mol / L
Polyethylene glycol (average molecular weight 10,000) 1.0g / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 90 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 35 nm.

(11)実施例11
吸着促進、触媒付与、酸洗浄、無電解銅メッキの各工程を順番に行った例である。
但し、吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
また、酸洗浄の処理条件は下記(d)に示す通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
ソルビトール 0.2モル/L
キシリトール 0.1モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(d)酸洗浄の処理条件
硫酸50g/Lの洗浄液を調製し、上記触媒付与処理をした試料基板を当該洗浄液中に、45℃、1分間の条件で浸漬し、水洗した後、次の無電解銅メッキ工程に供した。
(11) Example 11
In this example, the steps of adsorption promotion, catalyst application, acid cleaning, and electroless copper plating are performed in order.
However, the treatment conditions in each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator-containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are It is as follows.
The acid cleaning treatment conditions are as shown in (d) below.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Sorbitol 0.2mol / L
Xylitol 0.1 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.
(D) Treatment conditions for acid cleaning After preparing a cleaning solution of 50 g / L sulfuric acid and immersing the sample substrate subjected to the above-described catalyst application treatment in the cleaning solution at 45 ° C. for 1 minute, washing with water, It used for the electrolytic copper plating process.

(12)実施例12
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに無電解銅メッキ液の組成は実施例1と同じであり、吸着促進剤の含有液と銅コロイド触媒液の各調製条件は次の通りである。
(a)吸着促進剤の含有液の調製
次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシアルキレン分岐デシルエーテル 1g/L
pH 8.5
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
マンニトール 0.2モル/L
グルコース 0.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH3.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:4、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(12) Example 12
The treatment conditions for the steps of adsorption promotion, catalyst application, and electroless copper plating and the composition of the electroless copper plating solution are the same as those in Example 1, and the preparation conditions for the solution containing the adsorption accelerator and the copper colloid catalyst solution are as follows. It is as follows.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 8.5
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Mannitol 0.2 mol / L
Glucose 0.2 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the above copper solution adjusted to pH 3.0 at 35 ° C. and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 2, copper salt: carbohydrate = 1: 4, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(13)実施例13
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
メタンスルホン酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
キシリトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH5.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約10nmであった。
(13) Example 13
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper methanesulfonate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 5.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 10 nm.

(14)実施例14
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
クエン酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
ソルビトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH5.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(14) Example 14
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper citrate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Sorbitol 0.3mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 5.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.

(15)実施例15
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
ギ酸 0.2モル/L
キシリトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(15) Example 15
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Formic acid 0.2 mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(16)実施例16
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
乳酸 0.2モル/L
キシリトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約10nmであった。
(16) Example 16
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Lactic acid 0.2 mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 10 nm.

(17)実施例17
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
ニトリロ三酢酸 0.2モル/L
ソルビトール 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した35℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(17) Example 17
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Nitrilotriacetic acid 0.2 mol / L
Sorbitol 0.3mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(18)実施例18
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
ソルビトール 0.3モル/L
[還元剤溶液]
ジメチルアミンボラン 0.02モル/L
アスコルビン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約25nmであった。
(18) Example 18
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Sorbitol 0.3mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
Ascorbic acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 25 nm.

(19)実施例19
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
マンニトール 0.3モル/L
[還元剤溶液]
ジメチルアミンボラン 0.02モル/L
アスコルビン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約15nmであった。
(19) Example 19
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Mannitol 0.3 mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
Ascorbic acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The average particle diameter of the produced copper colloid particles was about 15 nm.

(20)実施例20
吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
EDTA 0.2モル/L
キシリトール 0.3モル/L
[還元剤溶液]
ジメチルアミンボラン 0.02モル/L
アスコルビン酸 0.18モル/L
pH9.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約30nmであった。
(20) Example 20
The treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are as follows. Street.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
EDTA 0.2 mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
Ascorbic acid 0.18 mol / L
A reducing agent solution was dropped into the above copper solution at 25 ° C. adjusted to pH 9.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloidal stabilizer = 1: 2, copper salt: carbohydrate = 1: 3, copper salt: reducing agent = 1: 2.
The produced copper colloid particles had an average particle size of about 30 nm.

(21)比較例1
上記実施例1を基本とするが、銅コロイド触媒液にコロイド安定剤と糖質を含まないブランク例である。
即ち、吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:0、銅塩:還元剤=1:2
銅コロイド粒子は生成したが、凝集・沈殿した。
(21) Comparative Example 1
Although it is based on the said Example 1, it is a blank example which does not contain a colloid stabilizer and saccharide | sugar in a copper colloid catalyst liquid.
That is, the treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are It is as follows.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 0, copper salt: reducing agent = 1: 2
Copper colloidal particles were formed, but agglomerated and precipitated.

(22)比較例2
上記実施例1を基本として、銅コロイド触媒液にコロイド安定剤と本発明の規定とは異なる糖質(澱粉)を含む例である。
即ち、吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
澱粉 0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質(澱粉)=1:3、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約200nmであった。
(22) Comparative Example 2
On the basis of Example 1 above, this is an example in which a colloidal stabilizer and a sugar (starch) different from the provisions of the present invention are contained in a copper colloid catalyst solution.
That is, the treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are It is as follows.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
Starch 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: colloid stabilizer = 1: 2, copper salt: sugar (starch) = 1: 3, copper salt: reducing agent = 1: 2
The average particle diameter of the produced copper colloidal particles was about 200 nm.

(23)比較例3
上記実施例1を基本として、吸着促進工程を省略した例である。
即ち、試料基板に吸着促進処理を施すことなく、直ちに、実施例1の触媒液(b)に浸漬して触媒付与を行い、さらに実施例1のメッキ液(c)で無電解銅メッキを行った。触媒付与、無電解銅メッキの各工程の処理条件並びに銅コロイド触媒液、無電解銅メッキ液の各調製条件は実施例1と同じである。
(23) Comparative Example 3
This is an example in which the adsorption promotion step is omitted based on the first embodiment.
That is, without subjecting the sample substrate to adsorption adsorption treatment, the sample substrate was immediately immersed in the catalyst solution (b) of Example 1 to give the catalyst, and then electroless copper plating was performed with the plating solution (c) of Example 1. It was. The treatment conditions of each step of catalyst application and electroless copper plating and the preparation conditions of the copper colloid catalyst solution and electroless copper plating solution are the same as in Example 1.

(24)基準例
冒述の先願発明に準拠したもので、上記実施例1を基本として、触媒液にコロイド安定剤を含むが糖質を含まない例である。
即ち、吸着促進、触媒付与、無電解銅メッキの各工程の処理条件並びに吸着促進剤の含有液と無電解銅メッキ液の組成は実施例1と同じであり、銅コロイド触媒液の調製条件は次の通りである。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
クエン酸 0.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
次亜リン酸 0.18モル/L
pH4.0に調整した25℃の上記銅溶液に還元剤溶液を滴下して45分撹拌し、銅コロイド触媒液を調製した。
上記触媒液の各成分のモル比率は、次の通りである。
銅塩:コロイド安定剤=1:2、銅塩:糖質(澱粉)=1:0、銅塩:還元剤=1:2
生成した銅コロイド粒子の平均粒径は約30nmであった。
(24) Reference Example This example is based on the invention of the prior application described above. Based on Example 1, the catalyst solution contains a colloidal stabilizer but does not contain carbohydrates.
That is, the treatment conditions of each step of adsorption promotion, catalyst application, and electroless copper plating, and the composition of the adsorption accelerator containing liquid and the electroless copper plating liquid are the same as in Example 1, and the preparation conditions of the copper colloid catalyst liquid are It is as follows.
(B) Preparation of copper colloid catalyst solution
[Copper solution]
Copper sulfate (as Cu2 +) 0.1 mol / L
Citric acid 0.2 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
Hypophosphorous acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 4.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Copper salt: Colloidal stabilizer = 1: 2, Copper salt: Carbohydrate (starch) = 1: 0, Copper salt: Reducing agent = 1: 2
The produced copper colloid particles had an average particle size of about 30 nm.

《触媒液の経時安定性試験例》
そこで、上記実施例1〜20、比較例1〜3並びに基準例で建浴した各銅コロイド触媒液について、下記の基準でコロイド安定性の優劣を評価した。
◎:建浴後2カ月以上経過しても沈殿、或いは分解が起こらなかった。
○:建浴後1カ月を越え、2カ月経過するまでに沈殿が生じ、或いは分解した。
△:建浴後1カ月以内に沈殿が生じ、或いは分解した。
×:コロイド粒子が生成しないか、建浴後すぐに沈殿、或いは分解した。
<< Example of stability of catalyst solution over time >>
Accordingly, the superiority or inferiority of the colloidal stability was evaluated according to the following criteria for each of the copper colloid catalyst solutions constructed in Examples 1 to 20, Comparative Examples 1 to 3 and the reference example.
(Double-circle): Precipitation or decomposition | disassembly did not occur even if two months passed after the bathing.
○: Precipitation occurred or decomposed by 2 months after the completion of bathing for 1 month.
Δ: Precipitation occurred or decomposed within 1 month after bathing.
X: Colloidal particles were not generated, or precipitated or decomposed immediately after the bathing.

《無電解銅メッキにより析出した銅皮膜の外観評価試験例》
次いで、上記実施例1〜20、比較例1〜3並びに基準例で建浴した各銅コロイド触媒液について、建浴初期の触媒液を使用した場合、得られた銅メッキ皮膜の外観の優劣を目視により下記の基準で評価した。
○:銅メッキ皮膜が均一でムラがなかった。
△:銅メッキ皮膜にムラや一部未析出(メッキ欠け)が認められた。
×:銅皮膜が析出しなかった。
尚、析出皮膜の「ムラ」は、皮膜の緻密性や平滑性などに周囲と異なる部分があると認められる。皮膜の「ムラ」は皮膜の均一性とは別の観点である。
<< External appearance test example of copper film deposited by electroless copper plating >>
Next, for each of the copper colloid catalyst liquids bathed in Examples 1 to 20 and Comparative Examples 1 to 3 and the reference example, when the catalyst liquid at the early stage of the bath was used, the superiority or inferiority of the appearance of the obtained copper plating film was obtained. The following criteria were used for visual evaluation.
○: The copper plating film was uniform and non-uniform.
Δ: Unevenness or partial precipitation (plating failure) was observed in the copper plating film.
X: The copper film did not precipitate.
In addition, it is recognized that the “unevenness” of the deposited film has a portion different from the surroundings in the denseness and smoothness of the film. The “unevenness” of the film is a different viewpoint from the uniformity of the film.

《銅コロイド触媒液の経時安定性と皮膜外観についての試験結果》
皮膜外観 経時安定性 皮膜外観 経時安定性
実施例1 ○ ◎ 比較例1 × ×
実施例2 ○ ◎ 比較例2 △ ×
実施例3 ○ ◎ 比較例3 × ◎
実施例4 ○ ◎ 基準例 ○ ○
実施例5 ○ ◎
実施例6 ○ ◎
実施例7 ○ ◎
実施例8 ○ ◎
実施例9 ○ ◎
実施例10 ○ ◎
実施例11 ○ ◎
実施例12 ○ ◎
実施例13 ○ ◎
実施例14 ○ ◎
実施例15 ○ ◎
実施例16 ○ ◎
実施例17 ○ ◎
実施例18 ○ ◎
実施例19 ○ ◎
実施例20 ○ ◎
《Test results on stability of copper colloid catalyst solution over time and coating appearance》
Film appearance Aging stability Film appearance Aging stability Example 1 ○ ◎ Comparative Example 1 × ×
Example 2 ○ ◎ Comparative Example 2 △ ×
Example 3 ○ ◎ Comparative Example 3 × ◎
Example 4 ○ ◎ Reference example ○ ○
Example 5
Example 6 ○ ◎
Example 7 ○ ◎
Example 8
Example 9
Example 10 ○ ◎
Example 11
Example 12 ○ ◎
Example 13 ○ ◎
Example 14 ○ ◎
Example 15 ○ ◎
Example 16 ○ ◎
Example 17 ○ ◎
Example 18 ○ ◎
Example 19 ○ ◎
Example 20 ○ ◎

《触媒液の経時安定性とメッキ皮膜外観の総合評価》
銅コロイド触媒液にコロイド安定剤と糖質を含まない比較例1では、触媒液の経時安定性に劣り、もって触媒液との接触後に非導電性基板に無電解メッキを施しても銅皮膜の析出はなかった。
一方、触媒液にコロイド安定剤を含んで糖質は含まない基準例では、触媒液の建浴後1カ月を経過しても沈殿を生じない良好な経時安定性を示し、銅皮膜の外観は良好であった。
しかしながら、コロイド安定剤と糖質が共存する触媒液において、当該糖質として本発明で規定する特定の糖質とは異なる澱粉を使用した比較例2では、経時安定性の低下により触媒液に生成した銅粒子は微細ではなく、形成した銅皮膜にメッキ欠けが認められ、皮膜外観に問題が生じた。
非導電性基板を吸着促進処理なしで直ちに触媒付与し、無電解銅メッキを施した比較例3では、触媒液の経時安定性は実施例と同様であったが、析出した銅皮膜にはメッキ欠けが認められたことから、触媒付与の前に吸着促進の予備処理がないことに因り、触媒活性が不足し、基板への銅コロイド粒子の吸着が実施例に比べて劣ることが判断できる。
《Comprehensive evaluation of catalyst solution over time and plating film appearance》
In Comparative Example 1 in which the colloidal copper catalyst solution does not contain a colloidal stabilizer and carbohydrate, the stability of the catalyst solution is poor, so that the copper film can be formed even if the nonconductive substrate is subjected to electroless plating after contact with the catalyst solution. There was no precipitation.
On the other hand, in the reference example in which the catalyst solution contains a colloidal stabilizer but does not contain carbohydrates, the catalyst solution shows good stability over time without causing precipitation even after one month has passed since the catalyst solution was built, and the appearance of the copper film is good Met.
However, in Comparative Example 2 in which a starch different from the specific carbohydrate defined in the present invention is used as the saccharide in the catalyst solution in which the colloid stabilizer and the saccharide coexist, it is generated in the catalyst solution due to a decrease in stability over time. The resulting copper particles were not fine, and plating defects were observed in the formed copper film, resulting in a problem with the film appearance.
In Comparative Example 3 in which a non-conductive substrate was immediately applied with a catalyst without an adsorption promoting treatment and electroless copper plating was performed, the catalyst solution was stable over time as in Example, but the deposited copper film was plated. Since the chipping was recognized, it can be judged that the catalyst activity is insufficient and the adsorption of the copper colloid particles to the substrate is inferior to that of the example due to the absence of pretreatment for promoting the adsorption before the catalyst application.

一方、吸着促進の予備処理をした後、触媒付与処理をし、次いで無電解銅メッキを施した実施例1〜20では、いずれも触媒液の経時安定性に優れ、無電解メッキで析出する銅皮膜は概ねムラやメッキ欠けがなく優れた外観を呈した。
上記基準例を比較例1に対比すると、ムラやメッキ欠けがない良好な外観の銅皮膜を得るためには、触媒液に銅塩と還元剤だけではなく、コロイド安定剤の含有が必須であることが分かる。
一方、上記実施例1〜20をこの基準例に対比すると、優れた外観の銅皮膜を得るには、触媒液にコロイド安定剤と本発明の特定の糖質を共存させることが必要であることが分かる。特に、触媒液の経時安定性に着目すると、基準例では建浴後1カ月以上の安定性を示して○の評価であったが、実施例1〜20の各触媒液では建浴後2カ月を越える安定性を示したことから、当該経時安定性について、基準例に対する実施例1〜20の各触媒液の優位性は明らかであり、触媒液のメンテナンスを基準例より簡略化でき、メッキの処理コストを軽減できる利点がある。
また、本発明で規定する特定の糖質とは異なる澱粉を用いた比較例2を実施例1〜20に対比すると、触媒液にコロイド安定剤と糖質が共存する場合でも、本発明で規定する特定の糖質を選択しないと、触媒液の経時安定性の改善は望めず、逆に、微細な銅コロイド粒子を円滑に形成できず、結果的に皮膜外観を損なうことから、触媒液の経時安定性の向上には特定の糖質を選択することの重要性が判断できる。
On the other hand, in Examples 1 to 20, in which the catalyst application treatment was performed after the adsorption promotion pretreatment, and then the electroless copper plating was performed, all of them were excellent in the stability with time of the catalyst solution, and the copper deposited by the electroless plating The film was generally free from unevenness and lack of plating and had an excellent appearance.
In contrast to Comparative Example 1, the catalyst solution must contain not only a copper salt and a reducing agent but also a colloidal stabilizer in order to obtain a copper film having a good appearance without unevenness or lack of plating. I understand that.
On the other hand, when Examples 1 to 20 are compared with this reference example, in order to obtain a copper film having an excellent appearance, it is necessary that the colloid stabilizer and the specific carbohydrate of the present invention coexist in the catalyst solution. I understand. In particular, focusing on the temporal stability of the catalyst solution, the reference example showed a stability of 1 month or more after the bathing and was evaluated as “good”, but each catalyst solution of Examples 1 to 20 exceeded 2 months after the bathing. Since the stability was shown, the superiority of each catalyst solution of Examples 1 to 20 with respect to the reference example with respect to the stability over time is clear, the maintenance of the catalyst solution can be simplified from the reference example, and the plating processing cost There is an advantage that can be reduced.
Further, when Comparative Example 2 using a starch different from the specific saccharide defined in the present invention is compared with Examples 1 to 20, the present invention stipulates even when a colloidal stabilizer and a saccharide coexist in the catalyst solution. Unless a specific carbohydrate is selected, improvement in the stability of the catalyst solution over time cannot be expected, and conversely, fine copper colloidal particles cannot be formed smoothly, resulting in damage to the film appearance. It is possible to judge the importance of selecting a specific carbohydrate for improving the temporal stability.

次いで、実施例1〜20について詳細に検討する。
実施例1を基準として他の実施例との相対的な評価を説明する。先ず、実施例1はカチオン系界面活性剤であるジアリルアミンポリマーの4級アンモニウム塩を含む吸着促進剤で非導電性基板を予備処理し、硫酸銅を銅塩とし、水素化ホウ素ナトリウムを還元剤とし、クエン酸をコロイド安定剤とし、キシリトールを特定の糖質とする触媒液で触媒付与した後、無電解銅メッキした例であるが、触媒液の経時安定性は良好で、建浴後2カ月経過しても沈殿が生じたり、分解することはなく、また、無電解メッキで得られた銅皮膜は析出ムラやメッキ欠けも認められず、優れた外観を呈した。
実施例2は実施例1に対して糖質の含有量をきわめて減量した例、実施例3は逆にきわめて増量した例であるが、実施例1と同様に触媒液の経時安定性は良好で、得られた銅皮膜は優れた外観を呈した。
Next, Examples 1 to 20 will be discussed in detail.
The relative evaluation with the other examples will be described with reference to the example 1. First, in Example 1, a non-conductive substrate is pretreated with an adsorption accelerator containing a quaternary ammonium salt of diallylamine polymer which is a cationic surfactant, copper sulfate is used as a copper salt, and sodium borohydride is used as a reducing agent. This is an example of electroless copper plating after applying a catalyst with a catalyst solution containing citric acid as a colloidal stabilizer and xylitol as a specific carbohydrate, but the catalyst solution has good stability over time, and two months have passed since the bathing. However, precipitation did not occur or decomposed, and the copper film obtained by electroless plating had no appearance of uneven deposition or lack of plating and exhibited an excellent appearance.
Example 2 is an example in which the saccharide content was significantly reduced compared to Example 1, and Example 3 was an example in which the amount was significantly increased, but the stability over time of the catalyst solution was good as in Example 1. The obtained copper film exhibited an excellent appearance.

糖質をソルビトール(糖アルコール)に変更した実施例4、同じくマンニトール(糖アルコール)に変更した実施例5、グルコノラクトン(単糖類の誘導体)に変更した実施例6、グルコース(単糖類)に変更した実施例7、マルトース(二糖類)に変更した実施例8、ソルビトールとキシリトール(糖アルコール同士の併用)に変更した実施例11、マンニトールとグルコース(糖アルコールと単糖類の併用)に変更した実施例12では、いずれも実施例1と同様に、高い経時安定性と優れた皮膜外観を示した。
キシリトールを含有する実施例1の触媒液を基本として、触媒液に水溶性ポリマーとしてPVP(平均分子量4万)を付加した実施例9では、触媒液の経時安定性とメッキ皮膜の外観について、実施例1と同様の評価であった。
ソルビトールを含有する実施例4の触媒液を基本として、触媒液に水溶性ポリマーとしてPEG(平均分子量1万)を付加した実施例10では、触媒液の経時安定性とメッキ皮膜の外観について、実施例4と同様の評価であった。
また、実施例1、4或いは5を基本として、可溶性銅塩、コロイド安定剤、還元剤を変更しても(実施例13〜19参照)、基本の各実施例と同じく高い経時安定性と優れた皮膜外観を示した。
触媒液をpH4.0に設定した実施例1に対して、弱アルカリ側のpH9に設定した実施例20では、同じく高い経時安定性と優れた皮膜外観を示した。
実施例4と実施例11は、共に触媒付与の処理後に酸洗浄を行ってから無電解銅メッキ処理をした例であり、他の実施例に比べて皮膜外観上の差異は特段見られなかったが、熱処理を施しても皮膜面と基板の間に変化は認められず、高い密着性が確認できた。
Example 4 in which the saccharide was changed to sorbitol (sugar alcohol), Example 5 in which the saccharide was changed to mannitol (sugar alcohol), Example 6 in which gluconolactone (derivative of monosaccharide) was changed, and glucose (monosaccharide) Example 7 changed, Example 8 changed to maltose (disaccharide), Example 11 changed to sorbitol and xylitol (a combination of sugar alcohols), Mannitol and glucose (a combination of sugar alcohol and monosaccharides) In Example 12, as in Example 1, all showed high temporal stability and excellent coating appearance.
In Example 9, in which PVP (average molecular weight 40,000) was added as a water-soluble polymer to the catalyst solution based on the catalyst solution of Example 1 containing xylitol, the stability over time of the catalyst solution and the appearance of the plating film were carried out. The evaluation was the same as in Example 1.
In Example 10 in which PEG (average molecular weight 10,000) was added as a water-soluble polymer to the catalyst solution based on the catalyst solution of Example 4 containing sorbitol, the stability over time of the catalyst solution and the appearance of the plating film were performed. The evaluation was the same as in Example 4.
Moreover, even if it changes soluble copper salt, a colloid stabilizer, and a reducing agent on the basis of Example 1, 4 or 5 (refer Examples 13-19), high stability with time and excellent similarly to each basic example. The film appearance was shown.
In contrast to Example 1 in which the catalyst solution was set to pH 4.0, Example 20 in which the pH was set to 9 on the weak alkali side showed the same high temporal stability and excellent film appearance.
Example 4 and Example 11 are examples in which the electroless copper plating treatment was performed after the acid washing after the catalyst application treatment, and no particular difference in the film appearance was seen compared to the other examples. However, even when heat treatment was performed, no change was observed between the coating surface and the substrate, and high adhesion could be confirmed.

Claims (8)

無電解銅メッキを施す非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液において、
(A)可溶性銅塩と、
(B)還元剤と、
(C)モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、ポリカルボン酸類よりなる群から選ばれたコロイド安定剤の少なくとも一種と、
(D)ブドウ糖、果糖、乳糖、マルトール、パラチノース、キシロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元パラチノース、グルコノラクトンから選ばれた糖質の少なくとも一種
とを添加することで得られる 無電解銅メッキ用の銅コロイド触媒液。
In a copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate to be electrolessly plated with copper,
(A) a soluble copper salt;
(B) a reducing agent;
(C) at least one colloidal stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids;
(D) Add at least one carbohydrate selected from glucose, fructose, lactose, maltol, palatinose, xylose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced starch syrup, lactitol, reduced palatinose, gluconolactone The copper colloid catalyst liquid for electroless copper plating obtained by this .
可溶性塩(A)とコロイド安定剤(C)の含有モル比率がA:C=1:0.03〜1:35であることを特徴とする請求項1に記載の無電解銅メッキ用の銅コロイド触媒液。   2. The copper for electroless copper plating according to claim 1, wherein the molar ratio of the soluble salt (A) to the colloid stabilizer (C) is A: C = 1: 0.03 to 1:35. Colloid catalyst solution. さらに、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリエチレンイミンから選ばれた合成系水溶性ポリマーの少なくとも一種を含有することを特徴とする請求項1又は2に記載の無電解銅メッキ用の銅コロイド触媒液。   The electroless copper according to claim 1 or 2, further comprising at least one synthetic water-soluble polymer selected from polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide, and polyethyleneimine. Copper colloid catalyst solution for plating. 還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1〜3のいずれか1項に記載の無電解銅メッキ用の銅コロイド触媒液。   Reducing agent (B) is from borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfinic acids The copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 3, wherein the copper colloid catalyst solution is at least one member selected from the group consisting of: コロイド安定剤(C)のうちの、モノカルボン酸類が、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グルコン酸、グルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
アミノカルボン酸類が、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四酢酸、エチレンジアミン四プロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3−プロパンジアミン四酢酸、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N−ビス(2−ヒドロキシエチル)グリシン、(S、S)−エチレンジアミンコハク酸及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
ポリカルボン酸類(C)が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする請求項1〜4のいずれか1項に記載の無電解銅メッキ用の銅コロイド触媒液。
Among the colloidal stabilizers (C), monocarboxylic acids are formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and these At least one selected from the group consisting of
Oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and these At least one selected from the group consisting of
Aminocarboxylic acids are hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1, 3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ', N'-4 Selected from the group consisting of acetic acid, diaminopropionic acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid and salts thereof Less It is also a kind,
The polycarboxylic acid (C) is at least one selected from the group consisting of succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid and salts thereof. The copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 4.
(a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤よりなる群から選ばれた吸着促進剤の少なくとも一種の含有液に非導電性基板を浸漬する吸着促進工程(前処理工程)と、
(b)請求項1〜5のいずれか1項の銅コロイド触媒液に非導電性基板を浸漬して、基板表面上に銅コロイド粒子を吸着させる触媒付与工程と、
(c)吸着処理された上記基板上に無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程
とからなることを特徴とする無電解銅メッキ方法。
(A) Adsorption in which a nonconductive substrate is immersed in a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants An acceleration process (pretreatment process);
(B) a catalyst application step of immersing a non-conductive substrate in the copper colloid catalyst solution according to any one of claims 1 to 5 to adsorb copper colloid particles on the substrate surface;
(C) an electroless plating step of forming a copper film using an electroless copper plating solution on the adsorption-treated substrate.
工程(a)の吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする請求項6に記載の無電解銅メッキ方法。   The electroless copper plating method according to claim 6, wherein the adsorption promoter in the step (a) is a cationic surfactant and / or an amphoteric surfactant. 上記請求項6又は7に記載の無電解銅メッキ方法で非導電性基板に銅皮膜を形成したことを特徴とする非導電性基板の製造方法 A method for producing a non-conductive substrate, wherein a copper film is formed on the non-conductive substrate by the electroless copper plating method according to claim 6 or 7.
JP2015030395A 2015-02-19 2015-02-19 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method Active JP6209770B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015030395A JP6209770B2 (en) 2015-02-19 2015-02-19 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN201680001548.5A CN106414801B (en) 2015-02-19 2016-01-14 Electroless copper copper colloid catalyst liquid and electroless copper plating method
KR1020167035477A KR101831100B1 (en) 2015-02-19 2016-01-14 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
PCT/JP2016/051042 WO2016132786A1 (en) 2015-02-19 2016-01-14 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TW105103759A TWI684673B (en) 2015-02-19 2016-02-04 Copper colloidal catalyst solution for electroless copper plating and electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030395A JP6209770B2 (en) 2015-02-19 2015-02-19 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Publications (2)

Publication Number Publication Date
JP2016151056A JP2016151056A (en) 2016-08-22
JP6209770B2 true JP6209770B2 (en) 2017-10-11

Family

ID=56688809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030395A Active JP6209770B2 (en) 2015-02-19 2015-02-19 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Country Status (5)

Country Link
JP (1) JP6209770B2 (en)
KR (1) KR101831100B1 (en)
CN (1) CN106414801B (en)
TW (1) TWI684673B (en)
WO (1) WO2016132786A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268379B2 (en) * 2016-07-08 2018-01-31 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6688183B2 (en) * 2016-07-15 2020-04-28 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating
TWI638821B (en) * 2016-08-24 2018-10-21 李長榮化學工業股份有限公司 Metal catalyst, manufacturing method and applications thereof
JP6343787B1 (en) * 2017-06-01 2018-06-20 石原ケミカル株式会社 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
US10294569B2 (en) * 2017-10-06 2019-05-21 Rohm And Haas Electronic Materials Llc Stable electroless copper plating compositions and methods for electroless plating copper on substrates
CN110592564B (en) * 2019-09-29 2021-07-13 济南大学 Method for spraying mirror surface cupronickel
JP6843455B1 (en) * 2020-04-27 2021-03-17 石原ケミカル株式会社 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6858425B1 (en) * 2020-06-24 2021-04-14 石原ケミカル株式会社 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
CN113684473B (en) * 2021-07-26 2023-04-25 广州三孚新材料科技股份有限公司 Electroless copper plating solution for plastics and preparation method thereof
CN115418632B (en) * 2022-07-27 2023-11-17 深圳市富利特科技有限公司 High-speed high-ductility chemical copper suitable for horizontal line equipment and preparation method thereof
KR102643735B1 (en) 2023-05-08 2024-03-06 가드넥(주) Graphite sheet with excellent heat dissipation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339476A (en) * 1978-08-17 1982-07-13 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
US4261747A (en) * 1978-12-06 1981-04-14 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
JPS6123762A (en) * 1984-07-09 1986-02-01 Nec Corp Copper colloidal catalytic solution for electroless plating and its manufacture
JPH0613753B2 (en) * 1988-09-29 1994-02-23 三晃特殊金属工業株式会社 Method for producing solution containing fine metal body used for electroless plating
JP3337802B2 (en) 1993-12-28 2002-10-28 日本リーロナール株式会社 Direct plating method by metallization of copper (I) oxide colloid
JP3890542B2 (en) 1997-02-17 2007-03-07 奥野製薬工業株式会社 Method for manufacturing printed wiring board
GB0025989D0 (en) * 2000-10-24 2000-12-13 Shipley Co Llc Plating catalysts
JP4143385B2 (en) 2002-03-05 2008-09-03 株式会社大和化成研究所 Pretreatment liquid for imparting catalyst for electroless plating, pretreatment method using the liquid, electroless plating film and / or plating coating produced using the method
JP2003313670A (en) 2002-04-22 2003-11-06 C Uyemura & Co Ltd Method for forming electroless plating film
JP3925724B2 (en) 2003-11-13 2007-06-06 株式会社黒坂鍍金工業所 Surface treatment method for non-conductive materials
JP4617445B2 (en) 2005-04-22 2011-01-26 奥野製薬工業株式会社 Plating method for resin molding
JP2009545671A (en) * 2006-08-03 2009-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for applying metal layer to substrate
DE102010012204B4 (en) 2010-03-19 2019-01-24 MacDermid Enthone Inc. (n.d.Ges.d. Staates Delaware) Improved process for direct metallization of non-conductive substrates
JP5570285B2 (en) * 2010-04-19 2014-08-13 株式会社日本表面処理研究所 Catalyst aqueous solution used in electroless plating method, method for preparing the catalyst aqueous solution, electroless plating method using the catalyst aqueous solution, and metal object to be plated provided with a metal film formed using the electroless plating method
US8591636B2 (en) * 2010-12-14 2013-11-26 Rohm And Haas Electronics Materials Llc Plating catalyst and method
US8591637B2 (en) 2010-12-14 2013-11-26 Rohm And Haas Electronic Materials Llc Plating catalyst and method
JP6013753B2 (en) * 2012-03-30 2016-10-25 タキロン株式会社 Eaves bending joint
JP6047713B2 (en) * 2012-05-11 2016-12-21 石原ケミカル株式会社 Electroless copper plating method

Also Published As

Publication number Publication date
CN106414801B (en) 2019-05-10
KR20170008289A (en) 2017-01-23
WO2016132786A1 (en) 2016-08-25
CN106414801A (en) 2017-02-15
JP2016151056A (en) 2016-08-22
KR101831100B1 (en) 2018-04-04
TW201631208A (en) 2016-09-01
TWI684673B (en) 2020-02-11

Similar Documents

Publication Publication Date Title
JP6209770B2 (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP6343787B1 (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
KR101831099B1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, and electroless nickel or nickel alloy plating method
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP6858425B1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6268379B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170317

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6209770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250