JP6823294B2 - エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物 - Google Patents

エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物 Download PDF

Info

Publication number
JP6823294B2
JP6823294B2 JP2017548697A JP2017548697A JP6823294B2 JP 6823294 B2 JP6823294 B2 JP 6823294B2 JP 2017548697 A JP2017548697 A JP 2017548697A JP 2017548697 A JP2017548697 A JP 2017548697A JP 6823294 B2 JP6823294 B2 JP 6823294B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
epoxy
resin composition
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017548697A
Other languages
English (en)
Other versions
JPWO2017077846A1 (ja
Inventor
祐揮 上田
祐揮 上田
勇樹 遠藤
勇樹 遠藤
剛史 諏訪
剛史 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2017077846A1 publication Critical patent/JPWO2017077846A1/ja
Application granted granted Critical
Publication of JP6823294B2 publication Critical patent/JP6823294B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はエポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物に関する。
従来、エポキシ樹脂は、硬化剤又は酸発生剤と組合わせたエポキシ樹脂組成物として、塗料、接着剤、封止剤、成形材料、注型材料など、土木・建築用、電気・電子部品用、輸送機用の材料として各種の分野で広く用いられている。そしてこれら適用分野や適用箇所に応じて様々な種類のエポキシ樹脂が採用されている。
キャスティング成形などの液状成形においては、ビスフェノールA型エポキシ樹脂に代表される液状のエポキシ樹脂が採用されている。しかしこうした液状エポキシ樹脂のほとんどは粘度の高いものであり、作業性が良好とは言い難いことから、粘度の調製を目的としてエポキシ樹脂用の反応性希釈剤が広く採用されている。
このような反応性希釈剤の代表例として、ブチルグリシジルエーテルや2−エチルヘキシルグリシジルエーテルなどのアルキルグリシジルエーテル類が挙げられ、例えば電子部品向けなど、その用途への対応を図った製法なども提案されている(例えば特許文献1)。
一方、電気・電子部品材料の技術分野では、近年、各種電子機器における信号の高速化、高周波数化が進んでおり、これに伴って、低誘電率を実現する材料が求められている。
低誘電率材料の一例として、多分岐の高級アルキル基を有するアルキル(メタ)アクリレートを含有する(メタ)アクリル系ポリマーが提案されている(特許文献2)。しかし、一般的にアクリル樹脂はエポキシ樹脂に比べ、耐熱性や密着性に劣るとされる。
特開2002−293755号公報 特開2012−246477号公報
上述のアルキルグリシジルエーテル類からなる反応性希釈剤は沸点が低いために揮発性が高く、エポキシ樹脂の硬化時や樹脂の溶融成形時の加熱条件によっては、希釈剤自体が揮発してしまうという問題や、これらの反応性希釈剤をエポキシ樹脂に添加した場合、硬化物の耐熱性や硬化性が大きく低下するなどの問題があった。
一方、各種電子機器の高性能化に伴い、その構成材料には耐熱性などの従来からの要求性に加えて、より低い誘電率を実現できる点も求められるようになっている。一般にエポキシ樹脂は一分子あたりのエポキシ基の増加によって耐熱性や強度は向上するものの、反面、極性の高いエポキシ基の増加は誘電率の増加をもたらす傾向にある。
本発明は、その硬化物の耐熱性や硬化性などの物性をできるだけ低減させず、さらには、誘電率を下げる効果を付与できる、低揮発性のエポキシ樹脂用反応性希釈剤を含むエポキシ樹脂組成物を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討した結果、分岐したアルキル部位を有する単官能エポキシエステル又はエーテル化合物が、これまでの液状エポキシ化合物の中では極めて低粘度の液状化合物であり、また従来のエポキシ樹脂との相溶性にも優れることを見出し、その結果から、エポキシ化合物の反応性希釈剤として有用であること、また従来市販の反応性希釈剤(アルキルグリシジルエーテル類)と比べて低揮発性であることを見出した。そして上記分岐したアルキル部位を有する単官能エポキシ化合物とエポキシ樹脂とを配合したエポキシ樹脂組成物は、それに硬化剤や硬化触媒を配合して硬化性組成物を為し、これを硬化させて得られた硬化物において、元のエポキシ樹脂の硬化物よりも誘電率を低減できるとともに、吸水率も低い状態を維持できることを見出し、本発明を完成させた。
すなわち本発明は、第1観点として、式[1]で表される少なくとも一種のエポキシ化合物、及びエポキシ樹脂を含むエポキシ樹脂組成物に関する。
Figure 0006823294
(式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし−CR基の炭素原子数の合計は10乃至30であり、Xは、*−C(=O)O−、*−CHO−又は*−CHOC(=O)−を表し(ここで*は−CR基に結合する端を示す。)、Lは単結合、又はエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、Eは式[2]又は式[3]で表される基を表す。)
Figure 0006823294
(式中、R乃至R15はそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表す。)
第2観点として、前記−CR基が炭素原子数14乃至26の基である、第1観点に記載のエポキシ樹脂組成物に関する。
第3観点として、前記−CR基が炭素原子数14乃至20の基である、第2観点に記載のエポキシ樹脂組成物に関する。
第4観点として、前記Xが*−C(=O)O−である、第1観点乃至第3観点のうち何れか一項に記載のエポキシ樹脂組成物に関する。
第5観点として、前記Xが*−CHO−である、第1観点乃至第3観点のうち何れか一項に記載のエポキシ樹脂組成物に関する。
第6観点として、前記Eが式[2]で表される基である、第1観点乃至第5観点のうち何れか一項に記載のエポキシ樹脂組成物に関する。
第7観点として、前記Lが、単結合又はメチレン基である、第1観点乃至第6観点のうち何れか一項に記載のエポキシ樹脂組成物に関する。
第8観点として、(a)第1観点乃至第7観点のうち何れか一項に記載のエポキシ樹脂組成物、及び(b)硬化剤を含む、硬化性組成物に関する。
第9観点として、前記(b)硬化剤が、酸無水物、アミン、フェノール樹脂、ポリアミド樹脂、イミダゾール類、及びポリメルカプタンからなる群から選ばれる少なくとも一種である、第8観点に記載の硬化性組成物に関する。
第10観点として、前記(a)エポキシ樹脂組成物のエポキシ基1当量に対して、0.5〜1.5当量の前記(b)硬化剤を含む、第8観点又は第9観点に記載の硬化性組成物に関する。
第11観点として、(a)第1観点乃至第7観点のうち何れか一項に記載のエポキシ樹脂組成物、及び(c1)酸発生剤及び/又は(c2)塩基発生剤からなる(c)硬化触媒を含む、硬化性組成物に関する。
第12観点として、前記(c)硬化触媒が(c1)酸発生剤である、第11観点に記載の硬化性組成物に関する。
第13観点として、前記(c1)酸発生剤が、光酸発生剤、及び熱酸発生剤からなる群
から選ばれる少なくとも一種である、第12観点に記載の硬化性組成物に関する。
第14観点として、前記(c1)酸発生剤がオニウム塩である、第13観点に記載の硬化性組成物に関する。
第15観点として、前記(c1)酸発生剤が、スルホニウム塩、又はヨードニウム塩である、第14観点に記載の硬化性組成物に関する。
第16観点として、前記(a)エポキシ樹脂組成物100質量部に対して、前記(c1)酸発生剤0.1〜20質量部を含む、第12観点乃至第15観点のうち何れか一項に記載の硬化性組成物に関する。
第17観点として、式[1]で表される少なくとも一種のエポキシ化合物の、エポキシ樹脂組成物における反応性希釈剤としての使用に関する。
Figure 0006823294
(式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし−CR基の炭素原子数の合計は10乃至30であり、Xは、*−C(=O)O−、*−CHO−又は*−CHOC(=O)−を表し(ここで*は−CR基に結合する端を示す。)、Lは単結合、又はエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、Eは式[2]又は式[3]で表される基を表す。)
Figure 0006823294
(式中、R乃至R15はそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表す。)
第18観点として、式[1a]で表されるエポキシ化合物に関する。
Figure 0006823294
(式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし−CR基の炭素原子数は10乃至30であり、R乃至Rはそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表す。)
また、上記第1観点のうち、好ましい態様の1つとして、式[1’]で表されるエポキシ化合物、及びエポキシ樹脂を含むエポキシ樹脂組成物が挙げられる。
Figure 0006823294
(式中、R は3,5,5−トリメチルヘキシル基を表し、R は4,4−ジメチルペンタン−2−イル基を表し、R は水素原子を表し、Xは、*−C(=O)O−を表し(ここで*は−CR 基に結合する端を示す。)、Lはメチレン基を表し、Eは式[2’]で表される基を表す(ここで式[2’]中の**はLに結合する端を示す。)。)
Figure 0006823294
(式中、R 乃至R は水素原子を表す。)
また、上記第17観点のうち、好ましい態様の1つとして、式[1’]で表されるエポキシ化合物の、エポキシ樹脂組成物における反応性希釈剤としての使用が挙げられる。
Figure 0006823294
(式中、R は3,5,5−トリメチルヘキシル基を表し、R は4,4−ジメチルペンタン−2−イル基を表し、R は水素原子を表し、Xは、*−C(=O)O−を表し(ここで*は−CR 基に結合する端を示す。)、Lはメチレン基を表し、Eは式[2’]で表される基を表す(ここで式[2’]中の**はLに結合する端を示す。)。)
Figure 0006823294
(式中、R 乃至R は水素原子を表す。)
さらに、上記第18観点のうち、好ましい態様の1つとして、式[1a’]で表されるエポキシ化合物が挙げられる。
Figure 0006823294
(式中、R は3,5,5−トリメチルヘキシル基を表し、R は4,4−ジメチルペンタン−2−イル基を表し、R は水素原子を表し、R 乃至R は水素原子を表し、Lはメチレン基を表す。)
本発明のエポキシ樹脂組成物は、エポキシ樹脂と反応性希釈剤として分岐したアルキル部位を有する単官能エポキシ化合物とを配合することにより、相溶性及びハンドリング性に優れる組成物とすることができるだけでなく、従来のエポキシ系反応性希釈剤を用いた組成物と比べて、高い耐熱性を有する硬化物を作製できる。また本発明のエポキシ樹脂組成物は、それに硬化剤や硬化触媒を配合して硬化性組成物を為し、これを硬化させて得られた硬化物において、前記分岐したアルキル部位を有する単官能エポキシ化合物(反応性希釈剤)を配合しない組成物から作製した硬化物と比べて、低い誘電率を有するとともに、吸水率の低い硬化物を作製することができる。
また上記分岐したアルキル部位を有する単官能エポキシ化合物は、液状エポキシ化合物の中でも極めて低粘度のエポキシ化合物(およそ100mPa・s以下)であり、また従来市販のエポキシ系反応性希釈剤と比べて低揮発性の化合物であり、他の液状エポキシ樹脂との相溶性にも優れる。さらに該エポキシ化合物を配合して作製したエポキシ硬化性組成物は、低誘電率の硬化物を作製できる。そのため、上記分岐したアルキル部位を有する単官能エポキシ化合物は、エポキシ樹脂組成物の反応性希釈剤として好適に使用することができ、そしてそれにより、エポキシ樹脂組成物におけるハンドリング性及び硬化性の向上のみならず、該組成物を用いて作製した硬化物において、耐熱性さらには低誘電特性を付与することができる。
本発明のエポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物は、半導体封止材料、透明封止剤、電子材料用接着剤、光学用接着剤、プリント配線基板材料、層間絶縁膜材料、繊維強化プラスチック、光造形用インク、塗料用インク、撥水性コーティング材料、滑水性コーティング材料、親油性コーティング材料、自己修復性材料、生体親和性材料、複屈折制御材料、顔料分散剤、フィラー分散剤、ゴム改質剤などの各種材料の、主剤、架橋剤、希釈剤、レベリング剤、相溶化剤として好適に使用できる。
[(a)エポキシ樹脂組成物]
本発明は、下記式[1]で表される少なくとも一種のエポキシ化合物、及びエポキシ樹脂を含むエポキシ樹脂組成物に関し、また下記式[1]で表されるエポキシ化合物のエポキシ樹脂組成物における反応性希釈剤としての使用も本発明の対象である。
<エポキシ化合物>
本発明のエポキシ樹脂組成物に含まれるエポキシ化合物は、下記式[1]で表される。
Figure 0006823294
上記式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし−CR基の炭素原子数の合計は10乃至30であり、Xは、*−C(=O)O−、*−CHO−又は*−CHOC(=O)−を表し(ここで*は−CR基に結合する端を示す。)、Lは単結合、又はエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、Eは式[2]又は式[3]で表される基を表す。
Figure 0006823294
上記式中、R乃至R15はそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表す。
上記R及びRにおける炭素原子数2乃至27のアルキル基としては、直鎖構造のみならず、分岐構造、環状構造を有していてもよい。
具体的には、エチル基、プロピル基、ブチル基、ペンチル基(アミル基)、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(マルガリル基)、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基(アラキル基)、ヘンイコシル基、ドコシル基(ベヘニル基)、トリコシル基、テトラコシル基(リグノセリル基)、ペンタコシル基、ヘキサコシル基、ヘプタコシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、sec−イソアミル基、イソヘキシル基、テキシル基、4−メチルヘキシル基、5−メチルヘキシル基、2−エチルペンチル基、ヘプタン−3−イル基、ヘプタン−4−イル基、4−メチルヘキサン−2−イル基、3−メチルヘキサン−3−イル基、2,3−ジメチルペンタン−2−イル基、2,4−ジメチルペンタン−2−イル基、4,4−ジメチルペンタン−2−イル基、6−メチルヘプチル基、2−エチルヘキシル基、オクタン−2−イル基、6−メチルヘプタン−2−イル基、6−メチルオクチル基、3,5,5−トリメチルヘキシル基、ノナン−4−イル基、2,6−ジメチルヘプタン−3−イル基、3,6−ジメチルヘプタン−3−イル基、3−エチルヘプタン−3−イル基、3,7−ジメチルオクチル基、8−メチルノニル基、3−メチルノナン−3−イル基、4−エチルオクタン−4−イル基、9−メチルデシル基、ウンデカン−5−イル基、3−エチルノナン−3−イル基、5−エチルノナン−5−イル基、2,2,4,5,5−ペンタメチルヘキサン−4−イル基、10−メチルウンデシル基、11−メチルドデシル基、トリデカン−6−イル基、トリデカン−7−イル基、7−エチルウンデカン−2−イル基、3−エチルウンデカン−3−イル基、5−エチルウンデカン−5−イル基、12−メチルトリデシル基、13−メチルテトラデシル基、ペンタデカン−7−イル基、ペンタデカン−8−イル基、14−メチルペンタデシル基、15−メチルヘキサデシル基、ヘプタデカン−8−イル基、ヘプタデカン−9−イル基、3,13−ジメチルペンタデカン−7−イル基、2,2,4,8,10,10−ヘキサメチルウンデカン−5−イル基、16−メチルヘプタデシル基、17−メチルオクタデシル基、ノナデカン−9−イル基、ノナデカン−10−イル基、2,6,10,14−テトラメチルペンタデカン−7−イル基、18−メチルノナデシル基、19−メチルイコシル基、ヘンイコサン−10−イル基、20−メチルヘンイコシル基、21−メチルドコシル基、トリコサン−11−イル基、22−メチルトリコシル基、23−メチルテトラコシル基、ペンタコサン−12−イル基、ペンタコサン−13−イル基、2,22−ジメチルトリコサン−11−イル基、3,21−ジメチルトリコサン−11−イル基、9,15−ジメチルトリコサン−11−イル基、24−メチルペンタコシル基、25−メチルヘキサコシル基、ヘプタコサン−13−イル基等の分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4−tert−ブチルシクロヘキシル基、1,6−ジメチルシクロヘキシル基、メンチル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2.2.1]ヘプタン−2−イル基、ボルニル基、イソボルニル基、1−アダマンチル基、2−アダマンチル基、トリシクロ[5.2.1.02,6]デカン−4−イル基、トリシクロ[5.2.1.02,6]デカン−8−イル基、シクロドデシル基等の脂環式アルキル基が挙げられる。
上記R及びRはそれぞれ独立して、好ましくは炭素原子数4乃至16のアルキル基であり、より好ましくは炭素原子数6乃至10のアルキル基である。
中でも、R及びRはそれぞれ独立して、分岐鎖状のアルキル基であることが好ましく、より好ましくは炭素原子数4乃至16の分岐鎖状アルキル基、さらに好ましくは炭素原子数6乃至10の分枝鎖状アルキル基である。
具体的には、R及びRはそれぞれ独立して、ヘキシル基、ヘプチル基、オクチル基、ノニル基、4,4−ジメチルペンタン−2−イル基、6−メチルヘプタン−2−イル基、6−メチルオクチル基、3,5,5−トリメチルヘキシル基、3,7−ジメチルオクチル基であることが特に好ましい。
上記Rにおける炭素原子数1乃至25のアルキル基としては、直鎖構造のみならず、分岐構造、環状構造を有していてもよい。
このような炭素原子数1乃至25のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基(アミル基)、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(マルガリル基)、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基(アラキル基)、ヘンイコシル基、ドコシル基(ベヘニル基)、トリコシル基、テトラコシル基(リグノセリル基)、ペンタコシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、sec−イソアミル基、イソヘキシル基、テキシル基、4−メチルヘキシル基、5−メチルヘキシル基、2−エチルペンチル基、ヘプタン−3−イル基、ヘプタン−4−イル基、4−メチルヘキサン−2−イル基、3−メチルヘキサン−3−イル基、2,3−ジメチルペンタン−2−イル基、2,4−ジメチルペンタン−2−イル基、4,4−ジメチルペンタン−2−イル基、6−メチルヘプチル基、2−エチルヘキシル基、オクタン−2−イル基、6−メチルヘプタン−2−イル基、6−メチルオクチル基、3,5,5−トリメチルヘキシル基、ノナン−4−イル基、2,6−ジメチルヘプタン−3−イル基、3,6−ジメチルヘプタン−3−イル基、3−エチルヘプタン−3−イル基、3,7−ジメチルオクチル基、8−メチルノニル基、3−メチルノナン−3−イル基、4−エチルオクタン−4−イル基、9−メチルデシル基、ウンデカン−5−イル基、3−エチルノナン−3−イル基、5−エチルノナン−5−イル基、2,2,4,5,5−ペンタメチルヘキサン−4−イル基、10−メチルウンデシル基、11−メチルドデシル基、トリデカン−6−イル基、トリデカン−7−イル基、7−エチルウンデカン−2−イル基、3−エチルウンデカン−3−イル基、5−エチルウンデカン−5−イル基、12−メチルトリデシル基、13−メチルテトラデシル基、ペンタデカン−7−イル基、ペンタデカン−8−イル基、14−メチルペンタデシル基、15−メチルヘキサデシル基、ヘプタデカン−8−イル基、ヘプタデカン−9−イル基、3,13−ジメチルペンタデカン−7−イル基、2,2,4,8,10,10−ヘキサメチルウンデカン−5−イル基、16−メチルヘプタデシル基、17−メチルオクタデシル基、ノナデカン−9−イル基、ノナデカン−10−イル基、2,6,10,14−テトラメチルペンタデカン−7−イル基、18−メチルノナデシル基、19−メチルイコシル基、ヘンイコサン−10−イル基、20−メチルヘンイコシル基、21−メチルドコシル基、トリコサン−11−イル基、22−メチルトリコシル基、23−メチルテトラコシル基、ペンタコサン−12−イル基、ペンタコサン−13−イル基、2,22−ジメチルトリコサン−11−イル基、3,21−ジメチルトリコサン−11−イル基、9,15−ジメチルトリコサン−11−イル基等の分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4−tert−ブチルシクロヘキシル基、1,6−ジメチルシクロヘキシル基、メンチル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2.2.1]ヘプタン−2−イル基、ボルニル基、イソボルニル基、1−アダマンチル基、2−アダマンチル基、トリシクロ[5.2.1.02,6]デカン−4−イル基、トリシクロ[5.2.1.02,6]デカン−8−イル基、シクロドデシル基等の脂環式アルキル基が挙げられる。
中でもRは、水素原子であることが好ましい。
上記R、R及びRを有する基:−CR基は、その炭素原子数の合計が10乃至30であり、好ましくは炭素原子数14乃至26の基であり、特に好ましくは炭素原子数14乃至20の基である。
上記−CR基の具体例としては、3−メチルノナン−3−イル基、4−エチルオクタン−4−イル基、ウンデカン−5−イル基、3−エチルノナン−3−イル基、5−エチルノナン−5−イル基、2,2,4,5,5−ペンタメチルヘキサン−4−イル基、トリデカン−6−イル基、トリデカン−7−イル基、7−エチルウンデカン−2−イル基、3−エチルウンデカン−3−イル基、5−エチルウンデカン−5−イル基、ペンタデカン−7−イル基、ペンタデカン−8−イル基、ヘプタデカン−8−イル基、ヘプタデカン−9−イル基、3,13−ジメチルペンタデカン−7−イル基、2,2,4,8,10,10−ヘキサメチルウンデカン−5−イル基、ノナデカン−9−イル基、ノナデカン−10−イル基、2,6,10,14−テトラメチルペンタデカン−7−イル基、ヘンイコサン−10−イル基、トリコサン−11−イル基、ペンタコサン−12−イル基、ペンタコサン−13−イル基、2,22−ジメチルトリコサン−11−イル基、3,21−ジメチルトリコサン−11−イル基、9,15−ジメチルトリコサン−11−イル基、ヘプタコサン−13−イル基、ノナコサン−14−イル基等が挙げられる。
上記Xは、中でも*−C(=O)O−又は*−CHO−基であることが好ましく、特に*−C(=O)O−基であることが好ましい。
上記Lにおけるエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1−メチルトリメチレン基、ペンタメチレン基、2,2−ジメチルトリメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、2−オキサテトラメチレン基、2,5−ジオキサヘプタメチレン基、2,5,8−トリオキサデカメチレン基、2−オキサ−3−メチルテトラメチレン基、2,5−ジオキサ−3,6−ジメチルヘプタメチレン基等が挙げられる。
上記Lとしては、好ましくはメチレン基、トリメチレン基、ヘキサメチレン基、2−オキサテトラメチレン基、より好ましくはメチレン基が挙げられる。
上記式[1]中のEである式[2]又は式[3]で表される基はエポキシ含有基である。
式[2]又は式[3]中のR乃至R15における炭素原子数1乃至10のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基(アミル基)、イソペンチル基、ネオペンチル基、tert−ペンチル基、sec−イソアミル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロへキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基等が挙げられる。
中でもR乃至R15は、水素原子であることが好ましい。
なお上記式[1]で表されるエポキシ化合物のうち、下記式[1a]で表される化合物も発明の対象とする。
Figure 0006823294
式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし−CR基の炭素原子数は10乃至30であり、R乃至Rはそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表す。
上記R乃至R、及びLの具体的な基は、上述したとおりである。
上記式[1]で表される化合物は、カルボン酸類やアルコール類を出発原料として、従来公知(例えば、国際公開2012/128325号パンフレット、特開2012−25688号公報等に記載)のエポキシドの合成方法によって製造可能である。
例えばXが*−C(=O)−O−基を表すエステル化合物の場合には、一例として、RC−COOHで表されるカルボン酸又はその活性化体(酸ハロゲン化物、酸無水物、酸アジド、活性エステルなど)と、ハロゲン化アリルやアリル基を有するアルコールとを反応させて不飽和結合を有するエステル化合物(中間体)を形成した後、該中間体と過酸化物とを反応させて不飽和結合をエポキシ化する方法によって製造できる。また、RC−COOHで表されるカルボン酸とエピクロロヒドリンを反応させ、閉環する方法によっても製造可能である。一例として、Eが式[2]で表される基である場合の合成スキームを以下に示す。
Figure 0006823294
また、上記式[1]においてXが*−CH−O−基を表すエーテル化合物の場合には、例えば、RC−CHOHで表されるアルコールと、ハロゲン化アリルと反応させて不飽和結合を有するエーテル化合物(中間体)を形成した後、該中間体と過酸化物とを反応させて不飽和結合をエポキシ化する方法によって製造できる。
上記RC−COOHにて表されるカルボン酸及びRC−CHOHにて表されるアルコールは市販品を使用し得、例えば、上記RC−COOHで表される化合物としては、日産化学工業(株)製 ファインオキソコール(登録商標)イソパルミチン酸、同イソステアリン酸、同イソステアリン酸N、同イソステアリン酸T、及び同イソアラキン酸が挙げられる。また上記RC−CHOHで表される化合物としては、日産化学工業(株)製 ファインオキソコール(登録商標)1600、同180、同180N、同180T、及び同2000等が挙げられる。
<エポキシ樹脂>
本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂は、一般に分子内に少なくとも2個のエポキシ基を有するエポキシ化合物を指し、本発明においては特に限定されることなく市販品を含め種々のエポキシ樹脂を使用可能である。
本発明のエポキシ樹脂組成物には、取り扱い作業上の観点から、好ましくは液状のエポキシ樹脂を使用することが望ましい。なお該エポキシ樹脂が固体であったり、粘度が非常に高い場合、取り扱い作業上の便宜を図るため溶剤に溶解したり、或いは後述するように、エポキシ樹脂組成物の調製時に硬化反応が進まない程度に加熱することができる。但し溶剤の添加は、溶剤の蒸発により硬化物の密度低下や細孔の生成により強度低下、耐水性の低下を生ずる虞がある。このため、該エポキシ樹脂自体が常温、常圧下で液状のものを採用することが好ましい。
本発明で使用可能なエポキシ樹脂としては、1,4−ブタンジオールジグリシジルエーテル、1,6−へキサンジオールジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,4−シクロヘキサンジメタノールジグリシジルエーテル、1,2−エポキシ−4−(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジグリセロールポリジグリシジルエーテル、2,6−ジグリシジルフェニルグリシジルエーテル、1,1,3−トリス(4−グリシジルオキシフェニル)プロパン、1,2−シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’−メチレンビス(N,N−ジグリシジルアニリン)、3,4−エポキシシクロヘキサンカルボン酸3’,4’−エポキシシクロヘキシルメチル、トリグリシジル−p−アミノフェノール、テトラグリシジルメタキシレンジアミン、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、ビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、フタル酸ジグリシジル、テトラヒドロフタル酸ジグリシジル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、トリグリシジルイソシアヌレート、トリス−(3,4−エポキシブチル)イソシアヌレート、トリス−(4,5−エポキシペンチル)イソシアヌレート、トリス−(5,6−エポキシヘキシル)イソシアヌレート、トリス−(7,8−エポキシオクチル)イソシアヌレート、トリス(2−グリシジルオキシエチル)イソシアヌレート、モノアリルジグリシジルイソシアヌレート、N,N’−ジグリシジルN’’−(2,3−ジプロピオニルオキシプロピル)イソシアヌレート、N,N’−ビス(2,3−ジプロピオニルオキシプロピル)N’’−グリシジルイソシアヌレート、トリス(2,2−ビス(グリシジルオキシメチル)ブチル)3,3’,3’’−(2,4,6−トリオキソ−1,3,5−トリアジン−1,3,5−トリイル)トリプロパノエート、ソルビトールポリグリシジルエーテル、アジピン酸ジグリシジル、o−フタル酸ジグリシジル、ジブロモフェニルグリシジルエーテル、1,2,7,8−ジエポキシオクタン、1,6−ジメチロールパーフルオロヘキサンジグリシジルエーテル、4−(スピロ[3,4−エポキシシクロヘキサン−1,5’−[1,3]ジオキサン]−2’−イル)−1,2−エポキシシクロヘキサン、1,2−ビス(3,4−エポキシシクロヘキシルメトキシ)エタン、4,5−エポキシ−2−メチルシクロヘキサンカルボン酸4’,5’−エポキシ−2’−メチルシクロヘキシルメチル、エチレングリコールビス(3,4−エポキシシクロヘキサンカルボキシレート)、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(2,3−エポキシシクロペンチル)エーテル等が挙げられるが、これらに限定されるものではない。
これらのエポキシ樹脂は単独で又は二種以上の混合物として使用することが出来る。
なお上記エポキシ樹脂の一例として、以下の市販品を挙げることができる。
固体エポキシ樹脂としては、TEPIC(登録商標)−G、同S、同L、同HP[何れも日産化学工業(株)製]等が挙げられる。
また、液状エポキシ樹脂としては、TEPIC(登録商標)−PAS B22、同PAS B26、同PAS B26L、同VL、同UC、同FL[何れも日産化学工業(株)製]、jER(登録商標)828、同YX8000[何れも三菱化学(株)製]、リカレジン(登録商標)DME100[新日本理化(株)製]、セロキサイド2021P[(株)ダイセル製]等が挙げられる。
本発明のエポキシ樹脂組成物において、式[1]で表されるエポキシ化合物と、エポキシ樹脂との配合割合は、質量比で、式[1]で表されるエポキシ化合物:エポキシ樹脂=3:97〜60:40の範囲とすることが好ましく、5:95〜40:60の範囲とすることがより好ましい。式[1]で表されるエポキシ化合物の配合量を上記割合以上とすることで、十分な粘度低下効果が得られ、また得られる樹脂組成物において十分な誘電率の低減につながる。また式[1]で表されるエポキシ化合物の配合量を上記割合以下とすることで、架橋密度の低下を抑え、後に得られる硬化物の耐熱性や機械的物性を維持することがてきる。
本発明のエポキシ樹脂組成物は上記式[1]で表されるエポキシ化合物及び上記エポキシ樹脂を混合することにより製造し得、該混合は均一に混合できれば、特に限定されるものではないが、例えばミキサーや混練機を使用し、また粘度を考慮して、必要に応じて加熱下で実施され得、例えば10〜150℃の温度で0.5〜10時間程度混合することにより調製し得る。
[(b)硬化剤及びそれを含む硬化性組成物]
本発明は、上述のエポキシ樹脂組成物、及び(b)硬化剤を含む硬化性組成物を対象とする。本硬化性組成物には、(b)硬化剤に加えて、硬化促進剤を併用することができる。
硬化剤としては、酸無水物、アミン、フェノール樹脂、ポリアミド樹脂、イミダゾール類、又はポリメルカプタンを用いることができる。これらの中でも、特に酸無水物及びアミンが好ましい。これら硬化剤は、固体であっても溶剤に溶解することによって使用することができる。しかし、溶剤の蒸発により硬化物の密度低下や細孔の生成により強度低下、耐水性の低下を生ずるため、硬化剤自体が常温、常圧下で液状のものが好ましい。
硬化剤は、(a)エポキシ樹脂組成物、すなわち、前述の式[1]で表されるエポキシ化合物及びエポキシ樹脂の全体における、エポキシ基1当量に対して0.5〜1.5当量、好ましくは0.8〜1.2当量の割合で含有することができる。エポキシ化合物に対する硬化剤の当量は、エポキシ基に対する硬化剤の硬化性基の当量比で示される。
酸無水物としては一分子中に複数のカルボキシル基を有する化合物の無水物が好ましい。これらの酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、クロレンド酸無水物等が挙げられる。
これらの中でも常温、常圧で液状であるメチルテトラヒドロ無水フタル酸、メチル−5−ノルボルネン−2,3−ジカルボン酸無水物(メチルナジック酸無水物、無水メチルハイミック酸)、水素化メチルナジック酸無水物、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸との混合物が好ましい。これら液状の酸無水物は粘度が25℃での測定で10〜1,000mPa・s程度である。酸無水物基において、1つの酸無水物基は1当量として計算される。
アミンとしては、例えば、ピペリジン、N,N−ジメチルピペラジン、トリエチレンジアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、ジ(1−メチル−2−アミノシクロヘキシル)メタン、メンタンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、1,3−ビス(アミノメチル)シクロヘキサン、キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。これらの中でも、液状であるジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、ビス(1−メチル−2−アミノシクロヘキシル)メタン、メンタンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン等を好ましく用いることができる。
フェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。
ポリアミド樹脂は、ダイマー酸とポリアミンの縮合により生成するもので、分子中に一級アミンと二級アミンを有するポリアミドアミンである。
イミダゾール類としては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、エポキシイミダゾールアダクト等が挙げられる。
ポリメルカプタンは、例えば、ポリプロピレングリコール鎖の末端にメルカプタン基が存在するものや、ポリエチレングリコール鎖の末端にメルカプタン基が存在するものであり、液状のものが好ましい。
また、本発明の硬化性組成物から硬化物を得る際、適宜、硬化促進剤(硬化助剤ともいう)が併用されてもよい。
硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン等の有機リン化合物;エチルトリフェニルホスホニウムブロミド、テトラブチルホスホニウムO,O−ジエチルホスホロジチオエート等の第4級ホスホニウム塩;1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エンとオクチル酸との塩、オクチル酸亜鉛、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩などが挙げられる。また前述の硬化剤として挙げた2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類や、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類も他の種類の硬化剤に対する硬化促進剤として用いることができる。
これらの硬化促進剤は、硬化剤1質量部に対して、0.001〜0.1質量部の割合で用いることができる。
本発明では、上記式[1]で表されるエポキシ化合物及びエポキシ樹脂とを含むエポキシ樹脂組成物に、上記(b)硬化剤と所望により硬化促進剤とを混合することにより、硬化性組成物が得られる。
これら成分の混合は、均一に混合できれば特に限定されるものではないが、例えば反応フラスコと撹拌羽根若しくはミキサー等を用いて、或いは混練機を使用することが好ましく、例えば自転公転式撹拌機による十分な撹拌下にて行うことが好ましい。
混合は粘度を考慮して必要に応じて加熱下で行われ、10〜100℃の温度で0.5〜1時間行われる。エポキシ樹脂組成物の粘度が高く、均一な混合が速やかに進行しない場合は、硬化反応が進まない程度に加熱を行うことで粘度が低減化し、操作性が向上する。
また、前述したように、エポキシ化合物として溶剤に溶解したエポキシ化合物を用いたり、硬化剤に溶剤が含まれる場合、得られる硬化性組成物においても前記溶剤が含まれ得るが、該溶剤はその蒸発によって硬化物の種々の性能低下を生ずる要因となり得るため、硬化性組成物の調製中に或いは調製後に、減圧又は加熱処理することによって、硬化物を形成する前に硬化性組成物から溶剤を除去することが好ましい。
得られた硬化性組成物は、例えば液状封止材として用いるための適切な粘度を有する。本発明の硬化性組成物は、任意の粘度に調整が可能であり、キャスティング法、ポッティング法、ディスペンサー法、印刷法等によりLED等の透明封止材として用いるために、その任意箇所に部分的封止ができる。硬化性組成物を上述の方法で液状のまま直接、LED等に実装した後、乾燥し、硬化することによりエポキシ樹脂硬化物が得られる。
上記硬化性組成物から得られる硬化物は、該硬化性組成物を基材に塗布、もしくは離型剤を塗布した注型板に注ぎ込んで、100〜120℃の温度で予備硬化し、そして120〜200℃の温度で本硬化(後硬化)することにより得られる。
加熱時間は、1〜12時間、例えば予備硬化及び本硬化ともにそれぞれ2〜5時間程度である。
本発明の硬化性組成物から得られる塗膜の厚みは、硬化物の用途に応じて、0.01μm〜10mm程度の範囲から選択できる。
[(c)硬化触媒及びそれを含む硬化性組成物]
本発明は、上述のエポキシ樹脂組成物、及び(c)硬化触媒を含む硬化性組成物も対象とする。(c)硬化触媒は、(c1)酸発生剤及び/又は(c2)塩基発生剤からなる。
<(c1)酸発生剤>
(c1)酸発生剤としては、光酸発生剤又は熱酸発生剤を用いることができ、これらは、光照射又は加熱により直接又は間接的に酸(ルイス酸あるいはブレンステッド酸)を生成するものであれば特に限定されない。
光酸発生剤の具体例としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、セレニウム塩等のオニウム塩、メタロセン錯体化合物、鉄アレーン錯体化合物、ジスルホン系化合物、スルホン酸誘導体化合物、トリアジン系化合物、アセトフェノン誘導体化合物、ジアゾメタン系化合物、などを挙げることができる。
上記オニウム塩のうち、ヨードニウム塩としては、例えば、ジフェニルヨードニウム、4,4’−ジクロロジフェニルヨードニウム、4,4’−ジメトキシジフェニルヨードニウム、4,4’−ジ−tert−ブチルジフェニルヨードニウム、4−メチルフェニル(4−(2−メチルプロピル)フェニル)ヨードニウム、3,3’−ジニトロフェニルヨードニウム、4−(1−エトキシカルボニルエトキシ)フェニル(2,4,6−トリメチルフェニル)ヨードニウム、4−メトキシフェニル(フェニル)ヨードニウム等のヨードニウムの、クロリド、ブロミド、メシレート、トシレート、トリフルオロメタンスルホネート、テトラフルオロボレート、テトラキス(ペンタフルオロフェニル)ボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネートなどのジアリールヨードニウム塩が挙げられる。
上記スルホニウム塩としては、例えば、トリフェニルスルホニウム、ジフェニル(4−tert−ブチルフェニル)スルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、ジフェニル(4−メトキシフェニル)スルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−メトキシフェニル)スルホニウム、トリス(4−エトキシフェニル)スルホニウム、ジフェニル(4−(フェニルチオ)フェニル)スルホニウム、トリス(4−(フェニルチオ)フェニル)スルホニウム等のスルホニウムの、クロリド、ブロミド、トリフルオロメタンスルホネート、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネートなどのトリアリールスルホニウム塩が挙げられる。
上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム、エチルトリフェニルホスホニウム、テトラ(p−メトキシフェニル)ホスホニウム、エチルトリ(p−メトキシフェニル)ホスホニウム、ベンジルトリフェニルホスホニウム等のホスホニウムの、クロリド、ブロミド、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネートなどのアリールホスホニウム塩が挙げられる。
上記セレニウム塩としては、トリフェニルセレニウムヘキサフルオロホスフェートなどのトリアリールセレニウム塩が挙げられる。
上記鉄アレーン錯体化合物としては、例えば、ビス(η−シクロペンタジエニル)(η−イソプロピルベンゼン)鉄(II)ヘキサフルオロホスフェート等が挙げられる。
これらの光酸発生剤は単独で、又は二種以上を組み合わせて用いることができる。
熱酸発生剤としては、スルホニウム塩及びホスホニウム塩が挙げられ、これらの例示化合物としては、上述の光酸発生剤において各種オニウム塩の例示として挙げた化合物を挙げることができる。また、ベンジル(4−ヒドロキシフェニル)(メチル)スルホニウムヘキサフルオロアンチモネート等を好適に用いることができる。
これらの熱酸発生剤は単独で、又は二種以上を組み合わせて用いることができる。
これらの中でも、(c1)酸発生剤として、スルホニウム塩化合物又はヨードニウム塩化合物が好ましく、例えば強酸性を示すヘキサフルオロホスフェートやヘキサフルオロアンチモネート等のアニオン種を有する化合物が好ましい。
(c1)酸発生剤は、(a)エポキシ樹脂組成物100質量部に対して、0.1〜20質量部、好ましくは0.1〜10質量部、さらに好ましくは0.5〜10質量部の割合で含有することができる。
<(c2)塩基発生剤>
(c2)塩基発生剤としては、光塩基発生剤又は熱塩基発生剤を用いることができ、これらは、光照射又は加熱により直接又は間接的に塩基(ルイス塩基あるいはブレンステッド塩基)を生成するものであれば特に限定されない。
光塩基発生剤としては、例えば、9−アントリルメチル=N,N−ジエチルカルバメート等のアルキルアミン系光塩基発生剤;9−アントリル=N,N−ジシクロヘキシルカルバメート、1−(9,10−アントラキノン−2−イル)エチル=N,N−ジシクロヘキシルカルバメート、ジシクロヘキシルアンモニウム=2−(3−ベンゾイルフェニル)プロピオネート、9−アントリル=N−シクロヘキシルカルバメート、1−(9,10−アントラキノン−2−イル)エチル=N−シクロヘキシルカルバメート、シクロヘキシルアンモニウム=2−(3−ベンゾイルフェニル)プロピオネート、(E)−N−シクロヘキシル−3−(2−ヒドロキシフェニル)アクリルアミド等のシクロアルキルアミン系光塩基発生剤;9−アントリルメチル=ピペリジン−1−カルボキシレート、(E)−1−ピペリジノ−3−(2−ヒドロキシフェニル)−2−プロペン−1−オン、(2−ニトロフェニル)メチル=4−ヒドロキシピペリジン−1−カルボキシレート、(2−ニトロフェニル)メチル=4−(メタクリロイルオキシ)ピペリジン−1−カルボキシレート等のピペリジン系光塩基発生剤;グアニジニウム=2−(3−ベンゾイルフェニル)プロピオネート、1,2−ジイソプロピル−3−(ビス(ジメチルアミノ)メチレン)グアニジニウム=2−(3−ベンゾイルフェニル)プロピオネート、1,2−ジシクロヘキシル−4,4,5,5−テトラメチルビグアニジウム=n−ブチルトリフェニルボラート、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エニウム=2−(9−オキソキサンテン−2−イル)プロピオネート等のグアニジン系光塩基発生剤;1−(9,10−アントラキノン−2−イル)エチル=イミダゾール−1−カルボキシレート等のイミダゾール系光塩基発生剤等が挙げられる。
これら光塩基発生剤は、一種を単独で、又は二種以上を組み合わせて用いることができる。
また、光塩基発生剤は市販品として入手可能であり、例えば、和光純薬工業(株)製の光塩基発生剤WPBGシリーズ(WPBG−018、同027、同082、同140、同266、同300など)等を好適に用いることができる。
熱塩基発生剤としては、例えば、1−メチル−1−(4−ビフェニリル)エチルカルバメート、2−シアノ−1,1−ジメチルエチルカルバメート等のカルバメート類;尿素、N,N−ジメチル−N’−メチル尿素等の尿素類;トリクロロ酢酸グアニジン、フェニルスルホニル酢酸グアニジン、フェニルプロピオール酸グアニジン等のグアニジン類;1,4−ジヒドロニコチンアミド等のジヒドロピリジン類;N−(イソプロポキシカルボニル)−2,6−ジメチルピペリジン、N−(tert−ブトキシカルボニル)−2,6−ジメチルピペリジン、N−(ベンジルオキシカルボニル)−2,6−ジメチルピペリジン等のジメチルピペリジン類;フェニルスルホニル酢酸テトラメチルアンモニウム、フェニルプロピオール酸テトラメチルアンモニウム等の四級化アンモニウム塩;ジシアンジアミドなどが挙げられる。また、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(DBU)の塩である、U−CAT(登録商標)SA810、同SA831、同SA841、同SA851[以上、サンアプロ(株)製]等が挙げられる。
これら熱塩基発生剤は、一種を単独で、又は二種以上を組み合わせて用いることができる。
(c2)塩基発生剤は、(a)エポキシ樹脂組成物100質量部に対して、0.1〜20質量部、好ましくは0.1〜10質量部、さらに好ましくは0.5〜10質量部の割合で含有することができる。
本発明では、上記式[1]で表されるエポキシ化合物及びエポキシ樹脂とを含むエポキシ樹脂組成物に、上記(c)硬化触媒を混合することにより、硬化性組成物が得られる。該硬化性組成物を得るための混合の操作条件は前述したとおりである。
本発明では、前記エポキシ樹脂組成物と(c)硬化触媒を含む硬化性組成物を基板上に塗布し、光照射或いは加熱することにより硬化することができる。また光照射の前後にさらに加熱することもできる。
本発明の硬化性組成物を基板上に塗布する方法としては、例えば、フローコーティング法、スピンコーティング法、スプレーコーティング法、スクリーン印刷法、フレキソ印刷法、インクジェット印刷法、キャスト法、バーコーティング法、カーテンコーティング法、ロールコーティング法、グラビアコーティング法、ディッピング法、スリット法などを挙げることができる。
本発明の硬化性組成物から形成される塗膜の厚みは、硬化物の用途に応じて、0.01μm〜10mm程度の範囲から選択でき、例えば、フォトレジストに用いる場合は0.05〜10μm(特に0.1〜5μm)程度とすることができ、プリント配線基板に用いる場合は10μm〜5mm(特に100μm〜1mm)程度とすることができ、光学薄膜に用いる場合は0.1〜100μm(特に0.3〜50μm)程度とすることができる。
(c)硬化触媒を含有する硬化性組成物において、光酸発生剤又は光塩基発生剤を用いる場合の照射又は露光する光としては、例えば、ガンマー線、X線、紫外線、可視光線などが挙げられ、通常、可視光線又は紫外線、特に紫外線が用いられる場合が多い。
光の波長は、例えば、150〜800nm、好ましくは150〜600nm、さらに好ましくは200〜400nm、特に300〜400nm程度である。
露光量は、塗膜の厚みにより異なるが、例えば、2〜20,000mJ/cm、好ましくは5〜5,000mJ/cm程度とすることができる。
光源としては、露光する光線の種類に応じて選択でき、例えば、紫外線の場合は低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、重水素ランプ、ハロゲンランプ、レーザー光(ヘリウム−カドミウムレーザー、エキシマレーザーなど)、UV−LEDなどを用いることができる。このような光照射により、前記組成物の硬化反応が進行する。
(c)硬化触媒を含有する硬化性組成物において、熱酸発生剤又は熱塩基発生剤を用いる場合や、光酸発生剤又は光塩基発生剤を用い光照射後に必要により行われる塗膜の加熱は、例えば、室温(およそ23℃)〜250℃程度で行われる。加熱時間は、3秒以上(例えば、3秒〜5時間程度)の範囲から選択でき、例えば、5秒〜2時間程度である。
さらに、パターンや画像を形成する場合(例えば、プリント配線基板などを製造する場合)、基材上に形成した塗膜をパターン露光してもよい。このパターン露光は、レーザー光の走査により行ってもよく、フォトマスクを介して光照射することにより行ってもよい。このようなパターン露光により生成した非照射領域(未露光部)を現像液で現像(又は溶解)することによりパターン又は画像を形成できる。
現像液としては、アルカリ水溶液や有機溶剤を用いることができる。
アルカリ水溶液としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金属水酸化物の水溶液;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリン等の水酸化四級アンモニウムの水溶液;エタノールアミン、プロピルアミン、エチレンジアミン等のアミン水溶液などを挙げることができる。
前記アルカリ現像液は、10質量%以下の水溶液であることが一般的で、好ましくは0.1〜3質量%の水溶液などが用いられる。さらに上記現像液にアルコール類や界面活性剤を添加して使用することもでき、これらの添加量はそれぞれ、現像液100質量部に対して、好ましくは0.05〜10質量部である。具体的には、0.1〜2.38質量%の水酸化テトラメチルアンモニウム水溶液等を用いることができる。
また、現像液としての有機溶剤は、一般的な有機溶剤を用いることが可能であり、例えば、トルエン等の芳香族炭化水素類;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のエステル類;N,N−ジメチルホルムアミド(DMF)等のアミド類;アセトニトリル等のニトリル類;アセトン、シクロヘキサノン等のケトン類;メタノール、エタノール、2−プロパノール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のアルコール類などが挙げられる。これらは、単独で又は二種以上の混合物として用いることができる。
中でも、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)等を好ましく使用することができる。
[溶剤]
上記のエポキシ樹脂組成物及び(b)硬化剤を含む硬化性組成物、並びに、エポキシ樹脂組成物及び(c)硬化触媒を含む硬化性組成物は、必要により溶剤を含むことができる。
本発明の(a)エポキシ樹脂組成物において、式[1]で表されるエポキシ化合物は反応性希釈剤としての役割を果たし、ここに前述の(b)硬化剤或いは(c)硬化触媒を混合して本発明の硬化性組成物は得られることから、溶剤を用いる必要性は基本的に少ないものの、必要により溶剤を添加することは可能である。
例えば、前述の(b)硬化剤が固体である場合と同様に、(c)硬化触媒が固体であり、硬化触媒を炭酸プロピレン等の溶剤に溶解し液状エポキシ樹脂と混合して硬化性組成物を製造することができる。また、(a)エポキシ樹脂組成物に酸発生剤等を溶解させる場合でも、得られる硬化性組成物の粘度調整のために一般的な溶剤を添加してもよい。
溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3−ヒドロキシプロピオン酸メチル、3−ヒドロキシプロピオン酸エチル、3−ヒドロキシプロピオン酸プロピル、3−ヒドロキシプロピオン酸ブチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル等のヒドロキシエステル類;メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−メトキシプロピオン酸ブチル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−エトキシプロピオン酸プロピル、2−エトキシプロピオン酸ブチル、2−ブトキシプロピオン酸メチル、2−ブトキシプロピオン酸エチル、2−ブトキシプロピオン酸プロピル、2−ブトキシプロピオン酸ブチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸プロピル、3−エトキシプロピオン酸ブチル、3−プロポキシプロピオン酸メチル、3−プロポキシプロピオン酸エチル、3−プロポキシプロピオン酸プロピル、3−プロポキシプロピオン酸ブチル、3−ブトキシプロピオン酸メチル、3−ブトキシプロピオン酸エチル、3−ブトキシプロピオン酸プロピル、3−ブトキシプロピオン酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、プロピレングリコールモノプロピルエーテルプロピオネート、プロピレングリコールモノブチルエーテルプロピオネート等のエーテルエステル類;メチルエチルケトン(MEK)、4−ヒドロキシ−4−メチル−2−ペンタノン、シクロヘキサノン等のケトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のアルコール類;テトラヒドロフラン(THF)、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類などが挙げられる。
本発明の硬化性組成物において溶剤を配合した場合の固形分の割合は、1〜100質量%、又は5〜100質量%、又は50〜100質量%、又は80〜100質量%とすることができる。固形分とは、硬化性組成物より溶剤を除去した残りの成分の割合である。
[その他硬化性モノマー]
上記本発明の硬化性組成物には、粘度調整や硬化性の向上を目的として、エポキシ樹脂以外のカチオン硬化性モノマーとして、ビニル基含有化合物、オキセタニル基含有化合物等を配合してもよい。
ビニル基含有化合物としては、ビニル基を有する化合物であれば特に限定されず、例えば、2−ヒドロキシエチルビニルエーテル(HEVE)、ジエチレングリコールモノビニルエーテル(DEGV)、2−ヒドロキシブチルビニルエーテル(HBVE)、トリエチレングリコールジビニルエーテル等のビニルエーテル化合物などが挙げられる。また、α位及び/又はβ位にアルキル基、アリル基等の置換基を有するビニル化合物も使用することができる。また、エポキシ基及び/又はオキセタニル基等の環状エーテル基を含むビニルエーテル化合物を使用することができ、例えば、オキシノルボルネンジビニルエーテル、3、3−ジメタノールオキセタンジビニルエーテル等が挙げられる。
また、ビニル基と(メタ)アクリル基を有する化合物を使用することができ、例えば、(メタ)アクリル酸2−(2−ビニルオキシエトキシ)エチル等が挙げられる。
これらビニル基含有化合物は、単独で又は二種以上を組み合わせて使用することができる。
オキセタニル基含有化合物としては、オキセタニル基を有する化合物であれば特に限定されず、3−エチル−3−(ヒドロキシメチル)オキセタン(OXA)、3−エチル−3−(フェノキシメチル)オキセタン(POX)、ビス((3−エチル−3−オキセタニル)メチル)エーテル(DOX)、1,4−ビス(((3−エチル−3−オキセタニル)メトキシ)メチル)ベンゼン(XDO)、3−エチル−3−(2−エチルヘキシルオキシメチル)オキセタン(EHOX)、3−エチル−3−((3−トリエトキシシリルプロポキシ)メチル)オキセタン(TESOX)、オキセタニルシルセスキオキサン(OX−SQ)、フェノールノボラックオキセタン(PNOX−1009)等のオキセタン化合物などが挙げられる。
また、オキセタニル基と(メタ)アクリル基を有する化合物を使用することができ、例えば、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート等が挙げられる。
これらのオキセタニル基含有化合物は、単独で又は二種以上を組み合わせて使用することができる。
[その他成分]
上記のエポキシ樹脂組成物及び(b)硬化剤を含む硬化性組成物、並びに、エポキシ樹脂組成物及び(c)硬化触媒を含む硬化性組成物は、必要に応じて慣用の添加剤を含んでいてもよい。このような添加剤としては、例えば、顔料、着色剤、増粘剤、酸発生剤、消泡剤、レベリング剤、塗布性改良剤、潤滑剤、安定剤(酸化防止剤、熱安定剤、耐光安定剤など)、可塑剤、界面活性剤、密着促進剤、溶解促進剤、充填剤、帯電防止剤、硬化剤などが挙げられる。これらの添加剤は単独で又は二種以上組み合わせてもよい。
例えば本発明の硬化性組成物には、塗布性を向上させる目的で界面活性剤を添加してもよい。このような界面活性剤は、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤などが挙げられるが、特にこれらに限定されるものではない。前記界面活性剤は、単独で又は二種類以上を組み合わせて用いることができる。
これらの界面活性剤の中で、塗布性改善効果の高さからフッ素系界面活性剤が好ましい。フッ素系界面活性剤の具体例としては、例えば、エフトップ(登録商標)EF−301、同EF−303、同EF−352[何れも三菱マテリアル電子化成(株)製]、メガファック(登録商標)F−171、同F−173、同F−482、同R−08、同R−30、同R−90、同BL−20[何れもDIC(株)製]、フロラードFC−430、同FC−431[何れもスリーエムジャパン(株)製]、アサヒガード(登録商標)AG−710[旭硝子(株)製]、サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106[何れもAGCセイミケミカル(株)製]等が挙げられるが、これらに限定されるものではない。
本発明の硬化性組成物における界面活性剤の添加量は、該硬化性組成物の固形分(溶剤を除いた全成分)の質量に基づいて、0.01〜5質量%、好ましくは0.01〜3質量%、より好ましくは0.01〜2質量%である。
また本発明の硬化性組成物には、現像後の基板との密着性を向上させる目的で、密着促進剤を添加することができる。これらの密着促進剤としては、例えば、クロロトリメチルシラン、トリクロロ(ビニル)シラン、クロロ(ジメチル)(ビニル)シラン、クロロ(メチル)(ジフェニル)シラン、クロロ(クロロメチル)(ジメチル)シラン等のクロロシラン類;メトキシトリメチルシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、エトキシ(ジメチル)(ビニル)シラン、ジメトキシジフェニルシラン、トリエトキシ(フェニル)シラン、3−クロロプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、トリメトキシ(3−(N−ピペリジニル)プロピル)シラン等のアルコキシシラン類;ヘキサメチルジシラザン、N,N’−ビス(トリメチルシリル)ウレア、ジメチル(トリメチルシリル)アミン、トリメチルシリルイミダゾール等のシラザン類;イミダゾール、インダゾール、ベンゾイミダゾール、ベンゾトリアゾール、メルカプトイミダゾール、メルカプトピリミジン2−メルカプトベンゾイミダゾール、2−メルカプトベンゾオキサゾール、2−メルカプトベンゾチアゾール、ウラゾール、チオウラシル等の含窒素ヘテロ環化合物;1,1−ジメチルウレア、1,3−ジメチルウレア等の尿素類又はチオ尿素類などを挙げることができる。これら密着促進剤は、単独で又は二種類以上を組み合わせて用いることができる。
本発明の硬化性組成物における密着促進剤の添加量は、該硬化性組成物の固形分(溶剤を除いた全成分)の質量に基づいて、通常20質量%以下、好ましくは0.01〜10質量%、より好ましくは0.05〜5質量%である。
さらに本発明の硬化性組成物は、増感剤を含んでいてもよい。使用できる増感剤としては、アントラセン、フェノチアゼン、ぺリレン、チオキサントン、ベンゾフェノンチオキサントン等が挙げられる。更に、増感色素としては、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、ピリリウム塩系色素等が例示される。特に好ましいのは、アントラセン系の増感剤であり、カチオン硬化触媒(感放射性カチオン重合開始剤)と併用する事により、感度が飛躍的に向上すると共に、ラジカル重合開始機能も有しており、例えば、カチオン硬化システムとラジカル硬化システムを併用するハイブリッドタイプを採用する場合には、触媒種をシンプルにできる。具体的なアントラセンの化合物としては、ジブトキシアントラセン、ジプロポキシアントラキノン等が有効である。
また、硬化触媒として塩基発生剤を用いる場合の増感剤としては、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、アントラキノン類、キサントン類、チオキサントン類、ケタール類、3級アミン類等を挙げることができる。
本発明の硬化性組成物における増感剤の添加量は、該硬化性組成物の固形分(溶剤を除いた全成分)の質量に基づいて、0.01〜20質量%、好ましくは0.01〜10質量%である。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下のとおりである。
(1)H NMRスペクトル(300MHz)
装置:(株)JEOL RESONANCE製 JNM−ECX300
基準:テトラメチルシラン(0.00ppm)
(2)H NMRスペクトル(400MHz)
装置:Varian社製 INOVA−400
基準:テトラメチルシラン(0.00ppm)
(3)GC(ガスクロマトグラフ)
装置:(株)島津製作所製 GC−2010 Plus
検出器:FID
カラム:アジレント・テクノロジー(株)製 Agilent J&W GCカラム HP−5(長さ30m、内径0.32mm、膜厚0.25μm)
注入量:1.0μL
注入口温度:250℃
カラム温度:40℃(5分間)、20℃/分で300℃まで昇温、300℃(12分間)
(4)GC−MS(ガスクロマトグラフ質量分析)
装置:(株)島津製作所製 GCMS−QP2010 Ultra
カラム:アジレント・テクノロジー(株)製 Agilent J&W GCカラム HP−5(長さ30m、内径0.32mm、膜厚0.25μm)
注入量:2.0μL
注入口温度:250℃
カラム温度:40℃(5分間)、20℃/分で300℃まで昇温、300℃(12分間)
(5)粘度
装置:東機産業(株)製 TVE−22L、TVE−25H
(6)融点
装置:NETZSCH社製 DSC 204 F1 Phoenix
(7)エポキシ当量
装置:京都電子工業(株)製 電位差自動滴定装置AT−510
(8)5%重量減少温度(Td5
装置:(株)リガク製 Thermo plus EVO/TG−DTA TG8120
(9)比誘電率
装置:キーサイト・テクノロジーズ社製 E4980A プレシジョンLCRメータ
サンプルホルダー:(株)東陽テクニカ製 12962型室温サンプルホルダー
(10)ガラス転移点(Tg)
装置:ティー・エイ・インスツルメント・ジャパン(株)製 熱機械測定装置 Q400
変形モード:膨張
荷重:0.05N
昇温速度:5℃/分
(11)撹拌脱泡
装置:(株)シンキー製 自転・公転ミキサー あわとり練太郎(登録商標)ARE−310
(12)オーブン
装置:ヤマト科学(株)製 送風低温恒温器DNF400
(13)ホットプレート
装置:ヤマト科学(株)製 送風低温恒温器DNF400
(14)UV露光
装置:アイグラフィックス(株)製 US5−0201
ランプ:アイグラフィックス(株)製 H02−L41
また、略記号は以下の意味を表す。
IAA:5,9−ジメチル−2−(1,5−ジメチルヘキシル)デカン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソアラキン酸]
IPA:2−ヘキシルデカン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソパルミチン酸]
ISA:2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソステアリン酸]
ISAN:8−メチル−2−(4−メチルヘキシル)デカン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソステアリン酸N]
ISAT:2−オクチルデカン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソステアリン酸T]
ISOL:2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン−1−オール[日産化学工業(株)製 ファインオキソコール(登録商標)180]
PA:パルミチン酸[東京化成工業(株)製]
ωIPA:14−メチルペンタデカン酸[Aldrich社製]
ωISA:16−メチルヘプタデカン酸[Aldrich社製]
AllBr:アリルブロミド[関東化学(株)製]
CHMA:3−シクロヘキセニルメタノ−ル[Aldrich社製]
ECH:エピクロロヒドリン[東京化成工業(株)製]
EGMAE:エチレングリコールモノアリルエ−テル[東京化成工業(株)製]
OEO:7−オクテン−1−オール[(株)クラレ製、純度95%]
PEO:4−ペンテン−1−オール[東京化成工業(株)製]
DMAP:4−ジメチルアミノピリジン[和光純薬工業(株)製]
EDC:1−エチル−3−(3−(ジメチルアミノ)プロピル)カルボジイミド塩酸塩[東京化成工業(株)製]
TMAC:塩化テトラメチルアンモニウム[東京化成工業(株)製]
mCPBA:m−クロロ過安息香酸[和光純薬工業(株)製、純度70%]
BGE:ブチルグリシジルエーテル[東京化成工業(株)製]
EHGE:2−エチルヘキシル=グリシジル=エーテル[東京化成工業(株)製]
SGEs:ステアリン酸グリシジル[東京化成工業(株)製]
BPA:ビスフェノールA型エポキシ樹脂[三菱化学(株)製 jER(登録商標)828]
CEL:3,4−エポキシシクロヘキサンカルボン酸(3,4−エポキシシクロヘキシル)メチル[(株)ダイセル製 セロキサイド2021P]
TEPIC:トリグリシジルイソシアヌレート[日産化学工業(株)製 TEPIC(登録商標)−L]
DOX:ビス((3−エチル−3−オキセタニル)メチル)エーテル[東亞合成(株)製 アロンオキセタン(登録商標)OXT−221]
MH700:4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(モル比70:30)[新日本理化(株)製 リカシッド(登録商標)MH−700]
PX4ET:テトラブチルホスホニウムO,O−ジエチルホスホロジチオエート[日本化学工業(株)製 ヒシコーリン(登録商標)PX−4ET]
C101A:ジフェニル(4−(フェニルチオ)フェニル)スルホニウムヘキサフルオロアンチモネート(V)/50質量%プロピレンカーボネート溶液[サンアプロ(株)製 CPI(登録商標)−101A]
SI100:ベンジル(4−ヒドロキシフェニル)(メチル)スルホニウムヘキサフルオロアンチモネート(V)[三新化学工業(株)製 サンエイドSI−100]
2EHA:2−エチルヘキサン酸[純正化学(株)製]
NMP:N−メチル−2−ピロリドン
THF:テトラヒドロフラン
[実施例1]2−ヘキシルデカン酸グリシジル(IPGEs)の製造
反応フラスコに、IPA 30.0g(117mmol)、AllBr 17.0g(141mmol)、炭酸カリウム19.4g(140mmol)及びNMP 300gを仕込んだ。これを70℃で1時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン260gを加え、水300gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、2−ヘキシルデカン酸アリル(IPAEs)33.6gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.96〜5.86(m,1H),5.34〜5.20(m,2H),4.59〜4.57(m,2H),2.32(m,1H),1.56〜1.26(m,24H),0.88(t,J=7.2Hz,6H)(ppm)
GC−MS(CI):m/z=297(M+1)
反応フラスコに、上記IPAEs 33.2g(112mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 55.2g(正味224mmol)を撹拌しながら加え、室温(およそ23℃)で4日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である2−ヘキシルデカン酸グリシジル(IPGEs)30.7gを無色透明液体として得た。得られたIPGEsの、粘度は11mPa・s(25℃)、JIS K7236:2009に準じて測定したエポキシ当量は315であった。
H NMR(300MHz,CDCl):δ=4.43〜4.38(m,1H),3.96〜3.90(m,1H),3.21〜3.18(m,1H),2.85〜2.82(m,1H),2.65〜2.63(m,1H),2.41〜2.35(m,1H),1.60〜0.85(m,30H)(ppm)
GC−MS(CI):m/z=313(M+1)
[実施例2]2−オクチルデカン酸グリシジル(ISTGEs)の製造
反応フラスコに、ISAT 30.0g(105mmol)、AllBr 15.2g(126mmol)、炭酸カリウム17.4g(126mmol)及びNMP 300gを仕込んだ。これを70℃で3時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン260gを加え、水300gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、2−オクチルデカン酸アリル(ISTAEs)33.3gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.97〜5.86(m,1H),5.35〜5.21(m,2H),4.60〜4.57(m,2H),2.35(m,1H),1.57〜1.25(m,28H),0.88(t,J=6.9Hz,6H)(ppm)
GC−MS(CI):m/z=325(M+1)
反応フラスコに、上記ISTAEs 32.9g(101mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 62.4g(正味253mmol)を撹拌しながら加え、室温(およそ23℃)で4日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である2−オクチルデカン酸グリシジル(ISTGEs)30.0gを無色透明液体として得た。得られたISTGEsの、粘度は14mPa・s(25℃)、エポキシ当量は341であった。
H NMR(300MHz,CDCl):δ=4.43〜4.38(m,1H),3.96〜3.90(m,1H),3.20(m,1H),2.85〜2.82(m,1H),2.65〜2.63(m,1H),2.38(m,1H),1.57〜0.85(m,34H)(ppm)
GC−MS(CI):m/z=341(M+1)
[実施例3]8−メチル−2−(4−メチルヘキシル)デカン酸グリシジル(ISNGEs)の製造
反応フラスコに、ISAN 30.0g(105mmol)、AllBr 15.2g(126mmol)、炭酸カリウム17.4g(126mmol)及びNMP 300gを仕込んだ。これを70℃で3.5時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン260gを加え、水300gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、8−メチル−2−(4−メチルヘキシル)デカン酸アリル(ISNAEs)33.9gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.99〜5.86(m,1H),5.35〜5.21(m,2H),4.58(d,J=2.7Hz,2H),2.36(m,1H),1.58〜0.71(m,34H)(ppm)
GC−MS(CI):m/z=325(M+1)
反応フラスコに、上記ISNAEs 33.4g(103mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 48.3g(正味253mmol)を撹拌しながら加え、室温(およそ23℃)で5日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である8−メチル−2−(4−メチルヘキシル)デカン酸グリシジル(ISNGEs)28.4gを無色透明液体として得た。得られたISNGEsの、粘度は18mPa・s(25℃)、エポキシ当量は340であった。
H NMR(300MHz,CDCl):δ=4.41(m,1H),3.96〜3.89(m,1H),3.22〜3.18(m,1H),2.85〜2.83(m,1H),2.66〜2.64(m,1H),2.54〜2.33(m,1H),1.60〜0.72(m,34H)(ppm)
GC−MS(CI):m/z=341(M+1)
[実施例4]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸グリシジル(ISGEs)の製造
反応フラスコに、ISA 28.4g(100mmol)、ECH 62.5g(676mmol)及びTMAC 0.3g(2.7mmol)を仕込んだ。これを100℃で2時間撹拌した後、室温(およそ23℃)まで冷却した。ここへ、48質量%水酸化ナトリウム水溶液25.0g(mmol)を加え、室温(およそ23℃)で24時間撹拌した。この反応液に、10質量%リン酸二水素ナトリウム水溶液20mLを加えて水酸化ナトリウムを中和した。この有機層を、水で洗浄した後、ECHを留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸グリシジル(ISGEs)30.0gを無色透明液体として得た。得られたISGEsの、粘度は41mPa・s(25℃)、エポキシ当量は334であった。
H NMR(300MHz,CDCl):δ=4.45〜4.34(m,1H),4.39〜3.94(m,1H),3.20(m,1H),2.86〜2.83(m,1H),2.66〜2.65(m,1H),2.19(m,1H),1.75〜0.88(m,34H)(ppm)
GC−MS(CI):m/z=341(M+1)
[実施例5]5,9−ジメチル−2−(1,5−ジメチルヘキシル)デカン酸グリシジル(IAGEs)の製造
反応フラスコに、IAA 30.0g(96mmol)、AllBr 13.9g(115mmol)、炭酸カリウム21.0g(152mmol)及びNMP 300gを仕込んだ。これを70℃で1時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン260gを加え、水300gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、5,9−ジメチル−2−(1,5−ジメチルヘキシル)デカン酸アリル(IAAEs)33.0gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.97〜5.86(m,1H),5.35〜5.21(m,2H),4.58(m,2H),2.36(m,1H),1.56〜0.73(m,38H)(ppm)
GC−MS(CI):m/z=353(M+1)
反応フラスコに、上記IAAEs 32.6g(93mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 52.4g(正味213mmol)を撹拌しながら加え、室温(およそ23℃)で6日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である5,9−ジメチル−2−(1,5−ジメチルヘキシル)デカン酸グリシジル(IAGEs)28.4gを無色透明液体として得た。得られたIAGEsの、粘度は32mPa・s(25℃)、エポキシ当量は371であった。
H NMR(300MHz,CDCl):δ=4.40(m,1H),3.95(m,1H),3.19(m,1H),2.85〜2.82(m,1H),2.64(m,1H),2.35(m,1H),0.87〜0.75(m,38H)(ppm)
GC−MS(CI):m/z=369(M+1)
[実施例6]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸4,5−エポキシペンチル(ISEPEs)の製造
反応フラスコに、ISA 30.0g(105mmol)、PEO 10.0g(116mmol)及びジクロロメタン800gを仕込んだ。この溶液へ、DMAP 15.4g(126mmol)及びEDC 24.2g(126mmol)を撹拌しながら加え、室温(およそ23℃)で3日間撹拌した。この反応液を、1N塩酸及び5質量%食塩水で洗浄した後、溶媒を留去することで、2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸5−ペンテニル(ISPEs)の粗物を得た。
得られた粗物を、クロロホルム440gに溶解させた。この溶液へ、mCPBA 12.7g(正味52mmol)を撹拌しながら加え、室温(およそ23℃)で5日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(溶媒グラジエント、ヘキサン:酢酸エチル=99:1から95:5(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸4,5−エポキシペンチル(ISEPEs)13.1gを無色透明液体として得た。得られたISEPEsの、粘度は44mPa・s(25℃)、エポキシ当量は366であった。
H NMR(300MHz,CDCl):δ=4.11(t,J=6.3Hz,2H),2.95(m,1H),2.76〜2.79(m,1H),2.48〜2.50(m,1H),2.13(m,1H),1.84〜0.88(m,38H)(ppm)
GC−MS(CI):m/z=369(M+1)
[実施例7]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸7,8−エポキシオクチル(ISEOEs)の製造
反応フラスコに、ISA 30.0g(105mmol)、OEO 15.7g(正味116mmol)及びジクロロメタン800gを仕込んだ。この溶液へ、DMAP 15.4g(126mmol)及びEDC 24.2g(126mmol)を撹拌しながら加え、室温(およそ23℃)で4日間撹拌した。この反応液を、1N塩酸及び5質量%食塩水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸7−オクテニル(ISOEs)33.8gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.87〜5.73(m,1H),5.02〜4.92(m,2H),4.09〜4.03(m,2H),2.11〜0.82(m,45H)(ppm)
GC−MS(CI):m/z=395(M+1)
反応フラスコに、上記ISOEs 33.3g(84mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 27.1g(正味110mmol)を撹拌しながら加え、室温(およそ23℃)で2日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(溶媒グラジエント、ヘキサン:酢酸エチル=99:1から95:5(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸7,8−エポキシオクチル(ISEOEs)20.8gを無色透明液体として得た。得られたISEOEsの、粘度は51mPa・s(25℃)、エポキシ当量は408であった。
H NMR(300MHz,CDCl):δ=4.07〜4.03(m,2H),2.90(m,1H),2.76〜2.73(m,1H),2.47〜2.45(m,1H),2.11(m,1H),1.63〜0.88(m,44H)(ppm)
GC−MS(CI):m/z=411(M+1)
[実施例8]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸2−グリシジルオキシエチル(ISGEEs)の製造
反応フラスコに、ISA 30.0g(105mmol)、EGMAE 11.9g(117mmol)及びジクロロメタン400gを仕込んだ。この溶液へ、DMAP 15.5g(127mmol)及びEDC 24.3g(127mmol)を撹拌しながら加え、室温(およそ23℃)で4日間撹拌した。この反応液を、1N塩酸及び5質量%食塩水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(溶媒グラジエント、ヘキサン:酢酸エチル=99:1から95:5(体積比))で精製することで、2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸2−アリルオキシエチル(ISAEEs)19.1gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.94〜5.87(m,1H),5.31〜5.12(m,2H),4.31〜4.17(m,2H),4.03(m,2H),3.65〜3.63(m,2H),2.21〜2.16(m,1H),1.85〜0.83(m,34H)(ppm)
GC−MS(CI):m/z=369(M+1)
反応フラスコに、上記ISAEEs 19.0g(52mmol)及びクロロホルム440gを仕込んだ。この溶液へ、mCPBA 15.6g(正味63mmol)を撹拌しながら加え、室温(およそ23℃)で5日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液200mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸2−グリシジルオキシエチル(ISGEEs)16.9gを無色透明液体として得た。得られたISGEEsの、粘度は47mPa・s(25℃)、エポキシ当量は382であった。
H NMR(300MHz,CDCl):δ=4.24(m,2H),3.81〜3.71(m,3H),3.47〜3.41(m,1H),3.14(m,1H),2.79(m,1H),2.62(m,1H),2.17(m,1H),1.86〜0.89(m,34H)(ppm)
GC−MS(CI):m/z=385(M+1)
[合成例1]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸3,4−エポキシシクロヘキシルメチル(ISECHEs)の製造
反応フラスコに、ISA 30.0g(105mmol)、CHMA 13.0g(116mmol)及びジクロロメタン800gを仕込んだ。この溶液へ、DMAP 15.4g(126mmol)及びEDC 24.2g(126mmol)を撹拌しながら加え、室温(およそ23℃)で2日間撹拌した。この反応液を、1N塩酸及び5質量%食塩水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸3−シクロヘキセニルメチル(ISCHEs)30.0gを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=5.67(m,2H),4.01〜3.97(m,2H),2.15〜0.88(m,42H)(ppm)
GC−MS(CI):m/z=379(M+1)
反応フラスコに、上記ISCHEs 29.5g(78mmol)及びクロロホルム740gを仕込んだ。この溶液へ、mCPBA 23.1g(正味94mmol)を撹拌しながら加え、室温(およそ23℃)で17時間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクタン酸3,4−エポキシシクロヘキシルメチル(ISECHEs)28.4gを無色透明液体として得た。得られたISECHEsの、粘度は92mPa・s(25℃)、エポキシ当量は413であった。
H NMR(300MHz,CDCl):δ=3.87〜3.83(m,2H),3.17〜3.14(m,2H),2.20〜0.88(m,42H)(ppm)
GC−MS(CI):m/z=395(M+1)
[合成例2]2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクチル=グリシジル=エーテル(ISGE)の製造
反応フラスコに、ISOL 30.0g(111mmol)、AllBr 24.2g(200mmol)、水素化ナトリウム11.3g(471mmol)及びTHF270gを仕込んだ。これを70℃で29時間撹拌した。この反応液を水600gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクチル=アリル=エーテル(ISAE)33.4gを無色透明液体として得た。
H NMR(400MHz,CDCl):δ=5.97〜5.87(m,1H),5.30〜5.24(m,1H),5.18〜5.14(m,1H),3.96〜3.37(m,1H),3.37〜3.22(m,2H),1.82〜1.71(m,1H),1.56〜0.83(m,36H)(ppm)
GC−MS(CI):m/z=311(M+1)
反応フラスコに、上記ISAE 33.1g(107mmol)及びクロロホルム440gを仕込んだ。この溶液へ、mCPBA 52.5g(正味213mmol)を撹拌しながら加え、室温(およそ23℃)で3日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、目的物である2−(4,4−ジメチルペンタン−2−イル)−5,7,7−トリメチルオクチル=グリシジル=エーテル(ISGE)30.5gを無色透明液体として得た。得られたISGEEsの、粘度は18mPa・s(25℃)、エポキシ当量は366であった。
H NMR(400MHz,CDCl):δ=3.67〜3.64(m,1H),3.41〜3.23(m,3H),3.13(m,1H),2.80〜2.77(m,1H),2.61〜2.59(m,1H),1.80〜0.82(m,35H)(ppm)
GC−MS(CI):m/z=327(M+1)
[合成例3]パルミチン酸グリシジル(PGEs)の製造
反応フラスコに、PA 30.0g(96mmol)、AllBr 17.0g(141mmol)、炭酸カリウム19.3g(140mmol)及びNMP 300gを仕込んだ。これを70℃で1時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン260gを加え、水300gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、パルミチン酸アリル(PAEs)34.4gを白色固体として得た。
H NMR(400MHz,CDCl):δ=5.96〜5.89(m,1H),5.34〜5.22(m,2H),4.59〜4.57(m,2H),2.33(t,J=7.6Hz,2H),1.65〜1.61(m,2H),1.32〜1.25(m,24H),0.88(t,J=6.8Hz,3H)(ppm)
GC−MS(CI):m/z=297(M+1)
反応フラスコに、上記PAEs 34.1g(115mmol)及びクロロホルム440gを仕込んだ。この溶液へ、mCPBA 56.6g(正味230mmol)を撹拌しながら加え、室温(およそ23℃)で4日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液300mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10(体積比))で精製することで、目的物であるパルミチン酸グリシジル(PGEs)29.8gを白色固体として得た。得られたPGEsの、融点は47℃、エポキシ当量は309であった。
H NMR(400MHz,CDCl):δ=4.44〜4.40(m,1H),3.94〜3.89(m,1H),3.23〜3.19(m,1H),2.86〜2.84(m,1H),2.66〜2.64(m,1H),2.35(t,J=7.6Hz,2H),1.66〜1.62(m,2H),1.33〜1.25(m,24H),0.90〜0.86(m,3H)(ppm)
GC−MS(CI):m/z=313(M+1)
[合成例4]14−メチルペンタデカン酸グリシジル(ωIPGEs)の製造
反応フラスコに、ωIPA 295mg(1.2mmol)、AllBr 167mg(1.4mmol)、炭酸カリウム191mg(1.4mmol)及びNMP 5gを仕込んだ。これを70℃で4時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン26gを加え、水30gで洗浄した後、溶媒を留去することで、14−メチルペンタデカン酸アリル(ωIPAEs)の粗物を得た。
得られた粗物を、クロロホルム7gに溶解させた。この溶液へ、mCPBA 536mg(正味2.2mmol)を撹拌しながら加え、室温(およそ23℃)で2日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液10mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である14−メチルペンタデカン酸グリシジル(ωIPGEs)258mgを白色固体として得た。得られたωIPGEsの、融点は39℃、エポキシ当量は316であった。
H NMR(400MHz,CDCl):δ=4.44〜4.40(m,1H),3.93〜3.89(m,1H),3.23〜3.19(m,1H),2.86〜2.84(m,1H),2.66〜2.64(m,1H),2.37〜2.33(m,2H),1.65〜1.14(m,23H),0.87〜0.85(m,6H)(ppm)
GC−MS(CI):m/z=313(M+1)
[合成例5]16−メチルヘプタデカン酸グリシジル(ωISGEs)の製造
反応フラスコに、ωISA 275mg(1.0mmol)、AllBr 140mg(1.2mmol)、炭酸カリウム160mg(1.2mmol)及びNMP 5gを仕込んだ。これを70℃で2時間撹拌した。反応液をろ過し、不溶物を除去した。このろ液にトルエン26gを加え、水30gで洗浄した後、溶媒を留去することで、14−メチルペンタデカン酸アリル(ωISAEs)の粗物を得た。
得られた粗物を、クロロホルム7gに溶解させた。この溶液へ、mCPBA 861mg(正味3.5mmol)を撹拌しながら加え、室温(およそ23℃)で2日間撹拌した。この反応液に、10質量%チオ硫酸ナトリウム水溶液10mLを加えてmCPBAを分解した。この有機層を、5質量%重曹水溶液及び水で洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=95:5(体積比))で精製することで、目的物である16−メチルヘプタデカン酸グリシジル(ωISGEs)235mgを白色固体として得た。得られたωISGEsの、融点は47℃、エポキシ当量は334であった。
H NMR(400MHz,CDCl):δ=4.44〜4.40(m,1H),3.94〜3.89(m,1H),3.22〜3.20(m,1H),2.86〜2.84(m,1H),2.66〜2.64(m,1H),2.37〜2.33(m,2H),1.65〜1.14(m,27H),0.87〜0.85(m,6H)(ppm)
GC−MS(CI):m/z=341(M+1)
[実施例9、比較例1]ビスA型エポキシ樹脂との相溶性及び揮発性
表1に記載の各エポキシ化合物(反応性希釈剤)について、ビスフェノールA型エポキシ樹脂であるBPAとの相溶性を評価した。
各エポキシ化合物を、その濃度が10質量%となるようにBPAと混合し、エポキシ樹脂組成物を調製した。これを室温(およそ23℃)で5分間撹拌した後、目視で混合状態を確認し、以下の基準に従って評価した。また、相溶したものについては、該組成物の25℃における粘度を測定した。結果を表1に併せて示す。
さらに、揮発性の評価として、各エポキシ化合物の5%重量減少温度(Td5%)を表1に併せて示す。
[相溶性評価基準]
A:均一に相溶し透明
B:わずかに白濁している
C:不溶物があり固液が分離している
Figure 0006823294
表1に示すように、本発明に用いるエポキシ化合物(反応性希釈剤)は、汎用のエポキシ樹脂であるBPAに対し相溶した。また、BPAがおよそ12,000mPa・sの粘度を有するのに対し、BPAにエポキシ化合物を10質量%となるように混合した本発明の樹脂組成物は、その粘度が2,000〜6,200mPa・sまで低下した。さらに、本発明に用いるエポキシ化合物は、5%重量減少温度が非常に高く、低揮発性であることが確認された。
一方、−CR基の炭素原子数が同程度であっても、R及びRがそれぞれ炭素原子数2以上のアルキル基ではないエポキシ化合物は、BPAに対し相溶しなかった。また、R及びRがそれぞれ炭素原子数2以上のアルキル基であっても、−CR基の炭素原子数が7のエポキシ化合物は、5%重量減少温度が非常に低く揮発性が高かった。
以上より、本発明に用いるエポキシ化合物が優れた反応性希釈剤として使用できることが示唆された。
[実施例10〜17、比較例2〜4]硬化物の作製
表2に記載のエポキシ樹脂組成物100質量部に、硬化剤としてMH700をエポキシ化合物のエポキシ基と等モル量、及び硬化促進剤としてPX4ET 1質量部を加えた。この混合物を、減圧下、室温(およそ23℃)で30分間撹拌することで脱泡し、硬化性組成物1乃至11を調製した。
各組成物を、厚さ3mmのコの字型のシリコーンゴム製スペーサーとともに、予めオプツール(登録商標)DSX[ダイキン工業(株)製]で離型処理したガラス基板2枚で挟み込んだ。これを、100℃のオーブンで2時間加熱(予備硬化)し、その後150℃まで昇温して5時間加熱(本硬化)した。徐冷した後、ガラス基板を取り去り、厚さ3mmの各硬化物を得た。
得られた硬化物について、吸水率、比誘電率及びガラス転移点(Tg)を評価した。なお、各物性値は以下の手順で測定した。結果を表2に併せて示す。
[吸水率]
JIS K−6911:2006に準じて測定した。具体的には、まず、前処理として、オイルバスで50℃に保ったガラス容器中で試験片を24時間乾燥した。この試験片をデシケーター内で20℃まで冷却し、その質量(W[g])を量った。次に、この試験片を沸騰した蒸留水中に100時間浸漬してから取り出し、20℃の流水中で30分間冷却して水分を拭き取った後、直ちに吸水後の質量(W[g])を量った。これらの値から、以下の式によって吸水率を算出した。
吸水率[%]=(W−W)÷W×100
[比誘電率]
ホルダーの電極間に挟み込んだ試験片に、1V、1MHzの電圧を印加した際の静電容量Cpを測定し、同条件で測定した空気の静電容量Cで除して、比誘電率εを算出した。また、反応性希釈剤を添加しない組成物から得られた硬化物の比誘電率εr0に対する低減率を、以下の式によって算出した。
低減率[%]=(εr0−ε)÷εr0×100
[ガラス転移点]
試験片のTMAを測定し、得られたTMA曲線の前後の曲線に接線を引き、この接線の交点からTgを求めた。
Figure 0006823294
表2に示すように、本発明のエポキシ樹脂組成物(実施例10〜17)は、反応性希釈剤を含まない場合(比較例4)に比べ、大幅に比誘電率が低減することが確認された。一方、従来公知の反応性希釈剤を含むエポキシ樹脂組成物は、比誘電率の低減率が低かった(比較例2,3)。
[実施例18〜21、比較例5]硬化物の作製
表3に記載のエポキシ樹脂組成物100質量部に、硬化剤としてMH700をエポキシ化合物のエポキシ基と等モル量を加えた。この混合物を、90℃で30分間撹拌し混合した後、室温(およそ23℃)まで冷却した。ここへ硬化促進剤としてPX4ET 1質量部を加えた。この混合物を、室温(およそ23℃)で5分間撹拌することで脱泡し、硬化性組成物12乃至16を調製した。
得られた各組成物を使用した以外は実施例10と同様にして、厚さ3mmの硬化物を作製し、評価した。結果を表3に併せて示す。
Figure 0006823294
表3に示すように、本発明のエポキシ樹脂組成物(実施例18〜21)は、反応性希釈剤を含まない場合(比較例5)に比べ、大幅に比誘電率及び吸水率が低減することが確認された。
[実施例22,23、比較例6〜8]熱カチオン硬化物の作製
表4に記載のエポキシ樹脂組成物100質量部に、熱酸発生剤として予め炭酸プロピレン1質量部に溶解させたSI100 1質量部を加えた。この混合物を、撹拌脱泡(2,000rpm、4分間、さらに1,000rpm、4分間)し、硬化性組成物17乃至21を調製した。
各組成物を、厚さ200μmのシリコーンゴム製スペーサーとともに、予めオプツール(登録商標)DSX[ダイキン工業(株)製]で離型処理したガラス基板2枚で挟み込んだ。これを、100℃のホットプレートで1時間加熱(予備硬化)し、その後150℃まで昇温して1時間加熱(本硬化)した。徐冷した後、ガラス基板を取り去り、厚さ200μmの各硬化物を得た。
得られた硬化物について、実施例10と同様にして比誘電率を評価した。結果を表4に併せて示す。
Figure 0006823294
表4に示すように、本発明のエポキシ樹脂組成物(実施例22,23)は、反応性希釈剤を含まない場合(比較例8)に比べ、大幅に比誘電率が低減することが確認された。一方、従来公知の反応性希釈剤を含むエポキシ樹脂組成物は、比誘電率の低減率が低かった(比較例6,7)。
[実施例24,25、比較例9〜11]光カチオン硬化物の作製
表5に記載のエポキシ樹脂組成物100質量部に、光酸発生剤としてC101A 1質量部(有効成分換算)を加えた。この混合物を、撹拌脱泡(2,000rpm、4分間、さらに1,000rpm、4分間)し、硬化性組成物22乃至26を調製した。
各組成物を、厚さ200μmのシリコーンゴム製スペーサーとともに、予めオプツール(登録商標)DSX[ダイキン工業(株)製]で離型処理した石英ガラス基板2枚で挟み込んだ。この挟み込んだ組成物を、空気雰囲気下、照度20mW/cm(波長365nm)で150秒間UV露光し、さらに100℃のホットプレートで1時間加熱(ポストキュア)した。徐冷した後、石英ガラス基板を取り去り、厚さ200μmの各硬化物を得た。
得られた硬化物について、実施例10と同様にして比誘電率を評価した。結果を表5に併せて示す。
Figure 0006823294
表5に示すように、本発明のエポキシ樹脂組成物(実施例24,25)は、反応性希釈剤を含まない場合(比較例11)に比べ、大幅に比誘電率が低減することが確認された。一方、従来公知の反応性希釈剤を含むエポキシ樹脂組成物は、比誘電率の低減率が低かった(比較例9,10)。
[参考例1〜3]反応性評価
ISGEs、ISECHEs及びISGEについて、表6に記載の量の2EHA及びキシレンを混合し、140℃で8時間撹拌した。各反応混合物のエポキシ基の転化率をGCにより測定した。結果を表6に示す。
Figure 0006823294
表6に示すように、エポキシ部位としては、3,4−エポキシシクロヘキシル基(前記式[3]で表される基を含む場合)よりもエポキシエチル基(前記式[2]で表される基を含む場合)の方がより反応性が高く(参考例1,2)、また前記式[1]のXとしては、エーテル結合よりもエステル結合の方が反応性が高い(参考例1,3)ことが確認された。

Claims (12)

  1. 式[1]で表されるエポキシ化合物、及びエポキシ樹脂を含むエポキシ樹脂組成物。
    Figure 0006823294
    (式中、R は3,5,5−トリメチルヘキシル基を表し、4,4−ジメチルペンタン−2−イル基を表し、Rは水素原子を表し、Xは、*−C(=O)O−を表し(ここで*は−CR基に結合する端を示す。)、Lはメチレン基を表し、Eは式[2’]で表される基を表す(ここで式[2’]中の**はLに結合する端を示す。)。)
    Figure 0006823294
    (式中、R乃至R は水素原子を表す。)
  2. (a)請求項1に記載のエポキシ樹脂組成物、及び(b)硬化剤を含む、硬化性組成物。
  3. 前記(b)硬化剤が、酸無水物、アミン、フェノール樹脂、ポリアミド樹脂、イミダゾール類、及びポリメルカプタンからなる群から選ばれる少なくとも一種である、請求項に記載の硬化性組成物。
  4. 前記(a)エポキシ樹脂組成物のエポキシ基1当量に対して、0.5〜1.5当量の前記(b)硬化剤を含む、請求項又は請求項に記載の硬化性組成物。
  5. (a)請求項1に記載のエポキシ樹脂組成物、及び(c1)酸発生剤及び/又は(c2)塩基発生剤からなる(c)硬化触媒を含む、硬化性組成物。
  6. 前記(c)硬化触媒が(c1)酸発生剤である、請求項に記載の硬化性組成物。
  7. 前記(c1)酸発生剤が、光酸発生剤、及び熱酸発生剤からなる群から選ばれる少なくとも一種である、請求項に記載の硬化性組成物。
  8. 前記(c1)酸発生剤がオニウム塩である、請求項に記載の硬化性組成物。
  9. 前記(c1)酸発生剤が、スルホニウム塩、又はヨードニウム塩である、請求項に記載の硬化性組成物。
  10. 前記(a)エポキシ樹脂組成物100質量部に対して、前記(c1)酸発生剤0.1〜20質量部を含む、請求項乃至請求項のうち何れか一項に記載の硬化性組成物。
  11. 式[1]で表されるエポキシ化合物の、エポキシ樹脂組成物における反応性希釈剤としての使用。
    Figure 0006823294
    (式中、R は3,5,5−トリメチルヘキシル基を表し、4,4−ジメチルペンタン−2−イル基を表し、Rは水素原子を表し、Xは、*−C(=O)O−を表し(ここで*は−CR基に結合する端を示す。)、Lはメチレン基を表し、Eは式[2’]で表される基を表す(ここで式[2’]中の**はLに結合する端を示す。)。)
    Figure 0006823294
    (式中、R乃至R は水素原子を表す。)
  12. 式[1a]で表されるエポキシ化合物。
    Figure 0006823294
    (式中、R は3,5,5−トリメチルヘキシル基を表し、4,4−ジメチルペンタン−2−イル基を表し、Rは水素原子を表し、R 乃至R は水素原子を表し、Lはメチレン基を表す。)
JP2017548697A 2015-11-05 2016-10-17 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物 Active JP6823294B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015217866 2015-11-05
JP2015217866 2015-11-05
PCT/JP2016/080701 WO2017077846A1 (ja) 2015-11-05 2016-10-17 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物

Publications (2)

Publication Number Publication Date
JPWO2017077846A1 JPWO2017077846A1 (ja) 2018-08-23
JP6823294B2 true JP6823294B2 (ja) 2021-02-03

Family

ID=58662525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548697A Active JP6823294B2 (ja) 2015-11-05 2016-10-17 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物

Country Status (5)

Country Link
JP (1) JP6823294B2 (ja)
KR (1) KR102629442B1 (ja)
CN (1) CN108350252B (ja)
TW (1) TWI722027B (ja)
WO (1) WO2017077846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036383A (ko) * 2018-09-28 2020-04-07 주식회사 엘지화학 밀봉재 조성물

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140474A (ko) * 2017-05-09 2019-12-19 닛산 가가쿠 가부시키가이샤 에폭시 화합물의 제조방법
TWI647265B (zh) * 2018-02-05 2019-01-11 Taiwan Union Technology Corporation 樹脂組合物,以及使用該組合物所製得之預浸漬片、金屬箔積層板、與印刷電路板
JP7241389B2 (ja) * 2019-02-21 2023-03-17 ナミックス株式会社 液状エポキシ樹脂組成物及びそれを硬化させて得られる硬化物
JP7421297B2 (ja) * 2019-09-26 2024-01-24 積水化学工業株式会社 電子デバイス用光硬化性樹脂組成物
KR102110817B1 (ko) * 2020-02-12 2020-05-13 주식회사다원시스템 부식 및 보온성이 뛰어난 물탱크
WO2021261071A1 (ja) * 2020-06-22 2021-12-30 日本ペイント・インダストリアルコーティングス株式会社 水性防食塗料組成物
WO2022249966A1 (ja) * 2021-05-24 2022-12-01 東レ・ファインケミカル株式会社 ポリマー組成物、エポキシ樹脂組成物、エポキシ樹脂用硬化剤および速硬化型接着剤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026087B2 (ja) * 1978-06-15 1985-06-21 カネボウ株式会社 化粧料
JPS603392B2 (ja) * 1980-02-01 1985-01-28 花王株式会社 グリシジルエ−テルの製造法
JP2744280B2 (ja) * 1989-03-15 1998-04-28 株式会社クラレ 含窒素ヒドロキシエーテル類及びそれを有効成分とする脳機能改善剤
JPH03169873A (ja) * 1989-11-28 1991-07-23 Idemitsu Petrochem Co Ltd 脂肪族第三級カルボン酸のグリシジルエステルの製造方法
JPH04314797A (ja) * 1991-04-12 1992-11-05 Nippon Oil & Fats Co Ltd エステル組成物
TW455584B (en) * 1998-09-23 2001-09-21 Shell Int Research Process for the preparation of glycidylesters of branched carboxylic acids
JP2002293755A (ja) 2001-03-30 2002-10-09 Yokkaichi Chem Co Ltd β−アルキルハロヒドリンエーテルの製造方法
US7459014B2 (en) * 2005-01-14 2008-12-02 Xerox Corporation Radiation curable inks containing curable gelator additives
JP2006232888A (ja) * 2005-02-22 2006-09-07 Konica Minolta Medical & Graphic Inc 活性光線硬化型組成物と活性光線硬化型インク、それを用いた画像形成方法及びインクジェット記録装置
CN102408396B (zh) * 2010-09-26 2014-09-10 西南化工研究设计院 一种叔碳酸缩水甘油酯的制备方法
JP5867749B2 (ja) * 2011-03-23 2016-02-24 日産化学工業株式会社 多官能エポキシ化合物
JP5469194B2 (ja) 2011-05-02 2014-04-09 日東電工株式会社 粘着剤、粘着剤層、および粘着シート
JP2014047144A (ja) * 2012-08-30 2014-03-17 Daicel Corp 脂環式エポキシ化合物及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036383A (ko) * 2018-09-28 2020-04-07 주식회사 엘지화학 밀봉재 조성물
KR102253501B1 (ko) 2018-09-28 2021-05-18 주식회사 엘지화학 밀봉재 조성물

Also Published As

Publication number Publication date
KR20180080200A (ko) 2018-07-11
WO2017077846A1 (ja) 2017-05-11
JPWO2017077846A1 (ja) 2018-08-23
TWI722027B (zh) 2021-03-21
KR102629442B1 (ko) 2024-01-25
CN108350252A (zh) 2018-07-31
TW201731830A (zh) 2017-09-16
CN108350252B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP6823294B2 (ja) エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物
JP6898596B2 (ja) 多官能エポキシ化合物及びそれを含む硬化性組成物
JP6949821B2 (ja) 硬化性組成物およびこれを硬化させた硬化物
KR20120127459A (ko) 장쇄 알킬렌기 함유하는 경화성 에폭시 수지 조성물
JP6893921B2 (ja) エポキシ化合物、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物
KR101926076B1 (ko) 다관능 에폭시 화합물
JP6931199B2 (ja) 長鎖アルキレン基含有エポキシ樹脂組成物
JP7004181B2 (ja) プリント配線板形成用エポキシ樹脂組成物
JP6954898B2 (ja) エポキシ化合物、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物
JP2020180295A (ja) エポキシ化合物、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R151 Written notification of patent or utility model registration

Ref document number: 6823294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151