JP6721135B1 - 方向性電磁鋼板の製造方法および冷間圧延設備 - Google Patents

方向性電磁鋼板の製造方法および冷間圧延設備 Download PDF

Info

Publication number
JP6721135B1
JP6721135B1 JP2019563638A JP2019563638A JP6721135B1 JP 6721135 B1 JP6721135 B1 JP 6721135B1 JP 2019563638 A JP2019563638 A JP 2019563638A JP 2019563638 A JP2019563638 A JP 2019563638A JP 6721135 B1 JP6721135 B1 JP 6721135B1
Authority
JP
Japan
Prior art keywords
mass
stands
steel sheet
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019563638A
Other languages
English (en)
Other versions
JPWO2020067236A1 (ja
Inventor
之啓 新垣
之啓 新垣
祐介 下山
祐介 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6721135B1 publication Critical patent/JP6721135B1/ja
Publication of JPWO2020067236A1 publication Critical patent/JPWO2020067236A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C49/00Devices for temporarily accumulating material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

インヒビター形成成分を含有していない鋼スラブを熱間圧延し、冷間圧延し、脱炭焼鈍を兼ねた一次再結晶焼鈍し、焼鈍分離剤を塗布し、二次再結晶させる仕上焼鈍を施して方向性電磁鋼板を製造するに際して、上記最終板厚に冷間圧延する最終冷間圧延は、タンデム圧延機を用いて総圧下率80%以上で、150〜280℃の温度で温間圧延するとともに、上記スタンド間の距離をL(m)、該スタンド間の通過する鋼板速度をV(mpm)、該スタンド間を鋼板が通過するパス時間をT(min)としたとき、上記いずれかのスタンド間のパス時間Tが、T≧1.3×L/Vを満たすよう、該スタンド間の鋼板のパスライン長さを延長して圧延する方向性電磁鋼板の製造方法を提案するとともに、その方法に用いる冷間圧延設備を提供する。

Description

本発明は、磁気特性に優れる方向性電磁鋼板の製造方法と、その製造方法に用いる冷間圧延設備に関するものである。
方向性電磁鋼板は、鉄の磁化容易軸である<001>方位を鋼板の圧延方向に高度に集積した結晶組織(ゴス方位)を有する磁気特性に優れた鋼板である。このような方向性電磁鋼板は、一般的に、Siを4.5mass%程度以下含有し、さらに、二次再結晶を発現させるために、インヒビターと呼ばれるMnSやMnSe、AlN等を形成する成分を含有する成分系の鋼素材を用いて製造されている。
一方、特許文献1には、上記のインヒビター形成成分を含有させなくとも、二次再結晶を発現することができる技術(インヒビターレス法)が提案されている。インヒビターレス法は、高純度化した鋼素材を用い、テクスチャー(集合組織)の制御によって二次再結晶を発現させる技術であり、熱間圧延前の高温スラブ加熱が不要であるため、低コストで方向性電磁鋼板の製造が可能となるという利点を有する反面、集合組織の造り込みには、繊細な条件制御が必要となる。
インヒビター形成成分を含有していない鋼素材を用いる方向性電磁鋼板の製造方法では、集合組織の良否は、磁気特性の良否に大きく影響を及ぼす。良好な集合組織を形成する技術として、例えば、特許文献2には、圧延中に冷延板を低温で熱処理(時効処理)する方法が提案されている。この方法は、固溶元素である炭素や窒素を低温で拡散させて圧延で導入した転位を固着し、転位の移動を妨げることによって、それ以降の圧延での剪断変形を促進し、圧延集合組織を改善しようとするものである。また、特許文献3には、熱延板焼鈍または仕上冷延(最終冷延)前の焼鈍の冷却速度を30℃/s以上とし、さらに仕上冷延中に、板温150〜300℃に2分間以上維持するパス間時効を2回以上施す技術が開示されている。さらに、特許文献4には、圧延中の鋼板温度を高温(温間圧延)とすることで、圧延で導入された転位を直ちに炭素や窒素で固着する動的時効効果を利用する技術が提案されている。
集合組織を制御する上記の技術は、いずれも圧延中あるいは圧延パス間の鋼板を適正な温度に保持して、転位上に炭素や窒素を析出させ、転位の移動を抑制することによって、剪断変形を促進する技術である。そして、これらの技術の適用により、冷間圧延後の一次再結晶集合組織におけるγファイバーと呼ばれる(111)繊維組織を低減し、{110}<001>(ゴス方位)の存在頻度を高めることができる。
上記のように、冷間圧延工程は、集合組織を制御する観点からは極めて重要な工程である。最終板厚(製品板厚)とする冷間圧延には、一般に、リバース圧延機(特許文献5)と複数スタンド(「std」とも表記する)を直列に配列したタンデム圧延機(特許文献6)が多く利用されている。上記2つの圧延機を、集合組織の改善という観点から比較した場合、1パス圧延後、コイルに巻き取った状態に長時間保持して、いわゆる時効処理を施すことができるリバース圧延機が有利とされている。
特開2000−129356号公報 特開昭50−016610号公報 特開平08−253816号公報 特開平01−215925号公報 特公昭54−013846号公報 特公昭54−029182号公報
ところで、冷間圧延にタンデム圧延機を用いる場合、圧延機を構成する複数のスタンド間を鋼板が通過する時間(パス時間)は、圧延機の仕様であるスタンド間距離の他に、鋼板を#1スタンドに供給する速度と、各スタンドの圧延速度あるいは圧下率配分が定められていれば計算することができる。例えば、板厚が2mmの鋼板を、5つのスタンドを1.5m間隔で配列した5タンデム圧延機で圧延することを想定した場合、#1スタンド入側の鋼板供給速度を100mpm、各スタンドの圧下率を25%と仮定すると、#1スタンド出側の板厚は1.5mmで、鋼板速度は約133mpmとなり、#1−2スタンド間を鋼板が通過するパス時間は約0.675sとなる。同様にして計算していくと、#4スタンド出側の板厚は0.63mmで、鋼板速度は316mpmとなり、#4−5スタンド間を鋼板が通過するパス時間は約0.285sとなり、非常に短時間でしかない。
前述したように、炭素や窒素を転位上に析出させて転位を固着し、剪断変形を促進して集合組織を改善するためには、炭素や窒素の拡散に十分な温度と時間が必要となる。しかし、上記のように、タンデム圧延では、拡散に必要な十分な時間を確保することは難しい。特に、理論上、上記集合組織改善効果は、転位導入量が少ない圧延前段よりも、転位導入量が多い圧延後段の方が大きいことが予想されるが、タンデム圧延機では、後段ほどスタンド間の鋼板速度が高く、パス時間は短くなるため、集合組織改善効果を期待することは極めて難しいといえる。
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、インヒビターレスの鋼素材を用いて方向性電磁鋼板を製造する際、タンデム圧延機を冷間圧延に採用した場合でも、パス間時効を効果的に発現し、優れた磁気特性を得ることができる方向性電磁鋼板の製造方法を提案するとともに、その製造方法に用いる冷間圧延設備を提供することにある。
発明者らは、上記課題の解決に向け、集合組織制御が重要な位置付けをもつ、インヒビター形成成分を含有しない鋼素材を用いた方向性電磁鋼板の製造方法において、最終冷間圧延にタンデム圧延機を適用し、タンデム圧延におけるスタンド間の時効条件が一次再結晶集合組織に及ぼす影響に着目して鋭意検討を重ねた。その結果、タンデム圧延機を最終冷間圧延に用いる場合であっても、スタンド間の鋼板のパス時間、即ち、時効時間は、僅かな時間の延長であっても、一次再結晶集合組織の改善には有効であり、特に、パス間時間の延長による集合組織改善効果は、総圧下率が高くなるタンデム圧延機の後段ほど大きいことを見出し、本発明を開発するに至った。
すなわち、本発明は、C:0.01〜0.10mass%、Si:2.0〜4.5mass%、Mn:0.01〜0.5mass%、sol.Al:0.0020mass%以上0.0100mass%未満、N:0.0080mass%未満含有し、さらに、S,SeおよびOをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1300℃以下の温度に再加熱した後、熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、二次再結晶させる仕上焼鈍を施す方向性電磁鋼板の製造方法において、上記最終板厚に冷間圧延する最終冷間圧延は、タンデム圧延機を用いて、総圧下率80%以上、かつ、少なくとも一つのスタンド間の板温が150〜280℃となるよう圧延するとともに、上記スタンド間の距離をL(m)、該スタンド間を通過する鋼板速度をV(mpm)、該スタンド間を鋼板が通過するパス時間をT(min)としたとき、上記スタンド間のパス時間Tが下記(1)式;
T≧1.3×L/V ・・・(1)
を満たすよう、該スタンド間の鋼板のパスライン長さを延長して圧延することを特徴とする方向性電磁鋼板の製造方法を提案する。
本発明の方向性電磁鋼板の製造方法は、上記スタンド間の鋼板のパスライン長さの延長を、総圧下率が66%以上のスタンド間において行うことを特徴とする。
また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.005〜1.50mass%、Sn:0.005〜0.50mass%、Nb:0.0005〜0.0100mass%、Mo:0.01〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.01〜1.50mass%、P:0.005〜0.150mass%、Cr:0.01〜1.50mass%およびBi:0.0005〜0.05mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
また、本発明は、鋼板を最終板厚に冷間圧延する、複数のスタンドからなるタンデム圧延機において、いずれか1以上のスタンド間に、スタンド間の鋼板のパスライン長さを、スタンド間距離よりも長くするパスライン延長機構を設けてなるとともに、パスラインを変更する可動ロールが少なくとも2個以上あり、かつ、それらの可動ロールのうちの少なくとも1個が基準の水平パスラインに対して他のロールと上下対極の位置に配置されてなることを特徴とする冷間圧延設備を提供する。
本発明の冷間圧延設備は、上記スタンド間に配置したパスラインを変更する可動ロールのいずれか1以上が加熱機能を備えてなることを特徴とする。
本発明の冷間圧延設備における上記パスライン延長機構は、スタンド間の鋼板のパスライン長さを、スタンド間距離に対して1.3倍以上に延長可能であることを特徴とする。
また、本発明の冷間圧延設備は、上記パスライン延長機構を、総圧下率が66%以上となるスタンド間に設置してなることを特徴とする。
また、本発明の冷間圧延設備は、圧延する鋼板が電磁鋼板であることを特徴とする。
本発明によれば、生産性が高いタンデム圧延機を用いて最終冷間圧延を行う場合でも、パス間時効を介して集合組織を改善することができるので、優れた磁気特性を有する方向性電磁鋼板を安価に製造することが可能となる。
タンデム圧延機におけるパス間時効時間と、{110}<001>強度との関係を示すグラフである。 本発明のパスライン延長機構を有するタンデム圧延機の一例を説明する図である。
まず、本発明を開発する契機となった実験について説明する。
発明者らは、特に集合組織制御が重要な位置付けをもつ、インヒビター形成成分を含有していない鋼素材を用いた方向性電磁鋼板の製造方法において、タンデム圧延を想定した以下に説明する実験を行い、集合組織の改善に必要な条件を検討した。
<実験>
C:0.050mass%、Si:3.3mass%、Mn:0.04mass%、sol.Al:0.0050mass%を含有し、N:0.0025mass%未満、さらに、S,SeおよびOをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、インヒビター形成成分を含有していない鋼スラブを1100℃に再加熱した後、熱間圧延して板厚1.8mmの熱延板とし、1000℃×70sの熱延板焼鈍を施した。
次いで、上記熱延板焼鈍後の熱延板からサンプルを採取し、5スタンドのタンデム圧延機で最終板厚0.30mmとする冷間圧延を模擬した5パスの圧延を行った。
この際、1パス目の鋼板供給速度は100mpm、1パス目から5パス目までの各パスの圧下率は30%(一定)とし、各パスにおけるその他の圧延条件は、表1に示したように変化させた。
Figure 0006721135
さらに、5スタンドのタンデム圧延機の各スタンド間の距離を、1.5m、2.0mおよび3.0mの3水準に想定して、1−2パス間、2−3パス間、3−4パス間および4−5パス間の時間(パス間時間)を、表2のように変化させた。
Figure 0006721135
なお、上記圧延実験においては、1パス目〜5パス目の各パス出側の鋼板温度は200℃(一定)となるよう制御した。したがって、表2の水準Aでは、各パス後の鋼板は、200℃の温度で、1−2パス間で0.63s、2−3パス間で0.44s、3−4パス間で0.31s、4−5パス間で0.22sのパス間時効が施されたことになる。また、水準Bでは、各パス後の鋼板は、200℃の温度で、1−2パス間で0.84s、2−3パス間で0.59s、3−4パス間で0.41s、4−5パス間で0.29sのパス間時効が施されたことになる。さらに、水準Cでは、各パス後の鋼板は、200℃の温度で、1−2パス間で1.26s、2−3パス間で0.88s、3−4パス間で0.62s、4−5パス間で0.43sのパス間時効が施されたことになる。
上記のようにして最終板厚0.30mmに圧延した冷延板は、次いで、湿水素雰囲気下で、840℃×100sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、X線正極点図を測定し、得られたデータからADC法を用いてODF(crystallite Orientation Distribution Function)を作成し、そのEuler空間から、φ2=45°断面のΦ=90°、φ1=90°の値を求めた。ここで、上記値は、二次再結晶の核となる{110}<001>方位の量を表す指標の1つであり、一次再結晶焼鈍後の鋼板の集合組織が改善されているほど高い値を示す。また、二次再結晶の核の数が増加することは、二次再結晶の起点が増え、二次再結晶粒は小さくなることから、鉄損特性が改善されることも意味している。
上記の測定結果を図1に示した。この図から、スタンド間距離を水準Aの1.5m相当から水準Bの2.0m相当以上に延長することで、すなわち、各スタンド間のパス時間(時効時間)を1.3倍以上に延長することで、{110}<001>強度が上昇しており、集合組織が改善されていることがわかる。また、同じ水準内でも、圧延時の総圧下率が66%以上となる後段の3−4パス間や4−5パス間の方が{110}<001>強度の上昇率は高く、集合組織改善効果が大きいこともわかる。
上記実験の結果から、タンデム圧延のように、スタンド間のパス時間が極めて短い時間であっても、パス間時間を長くする、すなわち、パス間の時効時間を長くすることで、集合組織改善効果が得られる可能性があることが明らかとなった。しかしながら、前述したように、タンデム圧延機におけるパス間時間(時効時間)は設備仕様と圧延スケジュールによって一義的に決まるため、時効時間のみを変更する自由度は存在していない。
そこで、発明者らは、タンデム圧延機を用いた冷間圧延において、パス間時間(時効時間)を変更する方法について、さらに検討を重ねた。その結果、図2に示した「パスライン延長機構」を想到するに至った。この図2は、タンデム圧延機から2つのスタンドを抜き出して示したものであり、その2つのスタンド間には、固定ロール3と可動ロール4から構成されるパスライン延長機構が設けられており、可動ロール4を上下に移動させることによって、通常圧延時のスタンド間の基準の水平パスライン(2つのスタンドの上下ワークロールの接触点どうしを直線で結んだ線)を屈曲させ、2つのスタンド間に存在する鋼板の長さ(パスライン長さ)を、通常圧延時の鋼板Sのパスライン長さ(スタンド間距離L)よりも延長する機能を有するようにしたものである。なお、上記パスライン延長機構は、タンデム圧延機のスタンド間に設置されている張力制御機構と類似しているが、該機構では、パスライン長さをスタンド間距離に対して1.3倍以上に延長させることはできない。
本発明は、上記の新規な知見に基づき、開発したものである。
次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.01〜0.10mass%
Cは、一次再結晶集合組織を改善するのに有用な元素であり、少なくとも0.01mass%の含有が必要である。一方、C含有量が0.10mass%を超えると、却って一次再結晶集合組織の劣化を招くようになる。よって、C含有量は0.01〜0.10mass%の範囲とする。なお、磁気特性を重視する観点から、好ましくは0.01〜0.06mass%の範囲である。
Si:2.0〜4.5mass%
Siは、鋼の固有抵抗を高めて鉄損を低減する有用な元素であり、本発明では2.0mass%以上含有させる。一方、Si含有量が4.5mass%を超えると、冷間圧延性が著しく低下する。よって、Si含有量は2.0〜4.5mass%の範囲とする。好ましくは2.5〜4.0mass%の範囲である。
Mn:0.01〜0.5mass%
Mnは、熱間圧延における加工性を向上する効果がある他、一次再結晶焼鈍時の酸化被膜形成を制御し、もって、二次再結晶時のフォルステライト被膜形成を促進する効果を有する有用な元素である。そこで、上記の効果を得る観点から、Mnは0.01mass%以上含有する必要がある。しかし、Mn含有量が0.5mass%を超えると、一次再結晶集合組織が悪化して磁気特性の劣化を招くようになる。よって、Mn含有量は0.01〜0.5mass%の範囲とする。好ましくは0.03〜0.3mass%の範囲である。
sol.Al:0.0020mass%以上0.0100mass%未満
Alは、酸素との親和力が高く、製鋼段階で微量添加することで、鋼中の溶存酸素量を低減し、鉄損特性の劣化につながる酸化物系介在物を低減する効果があるため、sol.Alで0.0020mass%以上含有させる必要がある。しかし、Alは、鋼板表面に緻密な酸化膜を形成し、脱炭を阻害するたるため、sol.Alで0.0100mass%未満に制限する。好ましくはsol.Alで0.0030〜0.0090mass%の範囲である。
N:0.0080mass%未満
Nは、本発明においては不要な元素であり、窒化物を形成するNの含有量が0.0080mass%以上になると、粒界偏析や窒化物の形成によって、集合組織が劣化するといった弊害が生じるようになる。さらに、スラブ加熱時にフクレなどの欠陥を生ずる原因ともなる。よって、Nの含有量は0.0080mass%未満に制限する。好ましくは0.0060mass%以下である。
S,SeおよびO:それぞれ0.0050mass%未満
S,SeおよびOは、インヒビターとなる析出物や酸化物を形成する元素であり、それらの元素がそれぞれ0.0050mass%以上になると、スラブ加熱時に粗大化したMnS,MnSe等の析出物や粗大な酸化物が、一次再結晶組織を不均一化するため、二次再結晶の発現が困難となる。よって、S,SeおよびOはいずれも0.0050mass%未満に制限する。好ましくは、それぞれ0.0030mass%以下である。
本発明の方向性電磁鋼板の製造に用いる鋼素材は、基本的に上記成分以外の残部は、Feおよび不可避的不純物である。ただし、以下の成分については、被膜特性や磁気特性の改善に有用であるため、以下の範囲で含有してもよい。
Ni:0.005〜1.50mass%
Niは、熱延板組織の均一性を高めることによって磁気特性を改善する効果があり、上記効果を得るため、0.005mass%以上含有することができる。しかし、Ni含有量が1.50mass%を超えると、二次再結晶が困難となり、磁気特性が劣化する。よって、Niは0.005〜1.50mass%の範囲で含有するのが好ましい。より好ましくは0.01〜1.0mass%の範囲である。
Sn:0.005〜0.50mass%
Snは、二次再結晶焼鈍における鋼板の窒化や酸化を抑制し、良好な結晶方位を有する二次再結晶粒の生成を促進して磁気特性を向上する効果がある。上記効果は0.005mass%以上含有することで得られる。一方、Sn含有量が0.50mass%を超えると、冷間圧延性が低下する。よって、Snは0.005〜0.50mass%の範囲で含有するのが好ましい。より好ましくは0.01〜0.30mass%の範囲である。
Nb:0.0005〜0.0100mass%、Mo:0.01〜0.50mass%
NbおよびMoは、スラブ加熱時のスラブ表面割れの抑制等を介して、熱延時のヘゲ発生を防止する効果がある。上記効果は、Nb含有量が0.0005mass%以上、Mo含有量が0.01mass%以上で得られる。一方、Nb含有量が0.0100mass%、Mo含有量が0.50mass%を超えると、生成する炭化物や窒化物の量が増大し、それらが最終製品まで残留して鉄損劣化を引き起こすようになる。よって、Nbは0.0005〜0.0100mass%、および、Moは0.01〜0.50mass%の範囲とするのが好ましい。なお、より好ましいMoの範囲は0.01〜0.30mass%である。
Sb:0.005〜0.50mass%
Sbは、鋼板表面の酸化を抑制する効果があり、また、二次再結晶時に酸化や窒化を抑制するので、良好な結晶方位を有する二次再結晶の成長を促進して、磁気特性を向上する効果もある。上記効果を得るためには0.005mass%以上含有するのが好ましい。一方、0.50mass%を超えて含有すると、冷間圧延性が低下するようになる。よって、Sbは0.005〜0.50mass%の範囲で含有するのが好ましい。より好ましくは0.01〜0.30mass%の範囲である。
Cu:0.01〜1.50mass%
Cuは、Sbと同様、鋼板表面の酸化を抑制する働きがあり、二次再結晶焼鈍時の鋼板表面の酸化を抑制することで、良好な結晶方位を有する二次再結晶の成長を促進して磁気特性を向上する効果がある。上記効果は0.01mass%以上含有することで得られる。しかし、1.50mass%を超えて含有すると、熱間圧延性の低下を招く。よって、Cuは0.01〜1.50mass%の範囲で含有するのが好ましい。より好ましくは0.01〜1.0mass%の範囲である。
P:0.005〜0.150mass%
Pは、脱炭焼鈍時のサブスケール形成を介してフォルステライト被膜の形成を安定化する働きがある。上記効果は0.005mass%以上の含有により得られる。一方、Pの含有量が0.150mass%を超えると冷間圧延性が低下するようになる。よって、Pは0.005〜0.150mass%の範囲で含有するのが好ましい。より好ましくは0.01〜0.10mass%の範囲である。
Cr:0.01〜1.50mass%
Crは、脱炭焼鈍時のサブスケール形成を介してフォルステライト被膜の形成を安定化する働きがある。上記効果は0.01mass%以上の含有により得られる。一方、Cr含有量が1.50mass%を超えると、二次再結晶が困難となり、磁気特性が劣化する。よって、Crは0.01〜1.50mass%の範囲で含有するのが好ましい。より好ましくは0.01〜1.0mass%の範囲である。
Bi:0.0005〜0.05mass%
Biは、磁気特性の改善に有効な元素であり、必要に応じて含有することができる。しかし、上記効果は0.0005mass%未満では小さく、一方、0.05mass%を超えると、フォルステライト被膜形成を阻害するようになる。よって、Biは0.0005〜0.05mass%の範囲で含有するのが好ましい。より好ましくは0.001〜0.03mass%の範囲である。
次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、上記に説明した本発明に適合する成分組成に調整した鋼を、常法の精錬プロセスで溶製した後、連続鋳造法あるいは造塊−分塊圧延法で鋼素材(スラブ)とする。
次いで、上記スラブを再加熱した後、あるいは、再加熱することなく、熱間圧延に供する。なお、スラブを再加熱する場合には、再加熱温度は1000〜1300℃の範囲とするのが好ましい。インヒビター形成成分をほとんど含まない鋼素材を用いる本発明では、1300℃を超えるスラブ加熱は、技術的意味はなく、コストアップとなるだけである。一方、1000℃未満では、熱間圧延の負荷が増大し、圧延が困難となる。なお、熱間圧延における圧延条件は、常法に準じて行えばよく、特に制限はない。
次いで、上記熱間圧延により得られた熱延板は、磁気特性を重視する場合には、熱延板焼鈍を施すのが好ましい。熱延板焼鈍を行なう場合、その均熱条件は、950〜1080℃×20〜180sの範囲とするのが好ましい。温度が950℃未満、または、時間が20s未満では、熱延板焼鈍の効果が十分に得られず、一方、温度が1080℃超え、または、時間が180s超えでは、結晶粒が粗大化し過ぎて、冷間圧延時に板破断を起こすおそれがあるからである。
次いで、上記熱間圧延後あるいは熱延板焼鈍後の熱延板は、酸洗して脱スケールした後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。この最終板厚の冷延板とする冷間圧延(最終冷間圧延)は、本発明において最も重要な工程であり、タンデム圧延機を用いて、総圧下率を80%以上として行うことが必要である。総圧下率が80%未満では、良好な一次再結晶集合組織を得ることができない。好ましい総圧下率は85%以上である。
さらに、上記最終冷間圧延は、温間圧延を適用してパス間時効を促進することが重要である。ただし、先述したように、通常のタンデム圧延機では、スタンド間での鋼板のパス時間を十分に確保できないため、パス間時効を有効利用できない。そこで、本発明では、先述した図2に示したように、スタンド間に存在する鋼板Sの長さ(パスライン長さ)を延長することができるパスライン延長機構を有するタンデム圧延機を用いることが重要である。なお、パスライン延長の態様については特に制限しないが、例えば、前述した図2に示したように、基準の水平パスラインに対して上下対極に配置した複数の可動ロールを上下方向に移動させることで、効率的にパスライン長さを延長する方法を好適に用いることができる。
上記パスライン延長機構は、スタンド間の鋼板のパスライン長さを、通常圧延時の鋼板のパスライン長さ、即ち、スタンド間距離Lの1.3倍以上に延長できることが好ましい。前述した図1に示したように、パスライン長さをスタンド間距離Lの1.3倍以上に延長することによって、パス間時効の効果が顕著となるからである。より好ましくは1.5倍以上である。ただし、パス間時効による集合組織改善効果は、時効時間が長いほど効果があり、例えば、5min以上の長時間でもその効果が認められるが、時効時間が8sを超えると、上記効果は飽和する傾向がある。よって、パスライン延長機構によるスタンド間のパス間時間の延長は最大でも8sとするのが好ましい。なお、生産性を考慮した場合、スタンド間におけるパス間時効時間は4s以下とするのがより好ましい。
また、パス間時効による集合組織改善効果は、いずれのスタンド間の時効でも得られるが、前述した図1に示したように、圧延により導入された転移の密度が高いタンデム圧延後段の方が顕著となる。そこで、上記パスライン延長機構を設置する場合には、総圧下率が66%以上となる後段スタンド間に設置するのが好ましい。
また、パス間時効を発現させるためには、鋼板中の炭素や窒素が拡散することが必要であり、そのためには、タンデム圧延の前に予め鋼板自体の温度をある程度以上の温度に高めてから圧延を行う温間圧延を行う必要である。上記鋼板温度は、150〜280℃の範囲とする必要がある。好ましくは、180〜280℃の範囲である。また、鋼板を加熱する手段としては、特に制限はなく、誘導加熱、直接通電加熱の他、電熱ヒータ等による輻射加熱のいずれを用いてもよい。なお、タンデム圧延機の後段であれば、圧延による加工発熱を利用することもできる。さらに本発明においては、パスライン延長機構を有することから、パスライン延長に用いるロールに加熱機能を持たせることで、鋼板を安定的かつ効率的に加熱することが可能である。また、ロールの加熱方式についても、伝熱により鋼帯を加熱できればよく、特に方式は問わないが、例えば、抵抗加熱ヒータや誘導加熱型ヒータを内包したロールや、高温ガス等の媒体を通入して加熱するロールなどを好適に用いることができる。
次いで、上記最終板厚に圧延した冷延板には、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この一次再結晶焼鈍の目的は、圧延組織を有する冷延板を再結晶させて、二次再結晶に最適な一次再結晶集合組織および粒径に調整することに加えて、焼鈍雰囲気を湿水素窒素あるいは湿水素アルゴン雰囲気のような酸化性の湿水素雰囲気とすることで、鋼中炭素を磁気時効が起きない量(0.005mass%以下)まで低減し、さらに、上記酸化性雰囲気によって、鋼板表面に適度な酸化被膜を形成することにある。上記目的達成のため、一次再結晶焼鈍は、脱炭条件に最適な湿水素雰囲気下で、750〜900℃の温度で実施するのが好ましい。
次いで、上記一次再結晶焼鈍後の鋼板は、鋼板表面に焼鈍分離剤を塗布、乾燥した後、仕上焼鈍を施す。上記焼鈍分離剤は、仕上焼鈍後の鋼板表面にフォルステライト被膜を形成させるため、マグネシア(MgO)を主剤としたものを用いることが好ましい。また、焼鈍分離剤中に、助剤としてTi酸化物やSr化合物等を適量添加することは、被膜特性に優れたフォルステライト被膜の形成を有利にする。特に、フォルステライト被膜の形成を均一化する助剤であるTiOやSr(OH)、SrSO等の添加は、被膜の耐剥離性改善のためにも有利に働く。
焼鈍分離剤の塗布に続く仕上焼鈍は、二次再結晶を発現させるためおよびフォルステライト被膜形成のために行なう。この仕上焼鈍の雰囲気は、N,ArおよびHあるいはこれらの混合ガスのいずれかを用いることができる。また、二次再結晶をより安定して起こさせるためには、二次再結晶温度直上近傍の温度で等温保持することが好ましい。ただし、等温保持に代えて、二次再結晶温度近傍の温度域を昇温速度を緩やかにして加熱してもよく、同様の効果が得られる。二次再結晶が完了した後は、製品板の磁気特性に悪影響を及ぼす不純物成分を排出するため、1100℃以上の温度に昇温し、純化処理を施すことが好ましい。この純化処理により、鋼中のAl,N,SおよびSeは、不可避的不純物レベルまで低減することができる。
上記仕上焼鈍後の鋼板は、仕上焼鈍時の巻き癖を矯正する平坦化焼鈍を施すことが好ましい。さらに、仕上焼鈍後の鋼板表面には、用途に応じて絶縁被膜を塗布、焼き付けてもよい。絶縁被膜の種類や被成方法については、特に限定されないが、例えば、特開昭50−79442号公報や特開昭48−39338号公報に記載されているリン酸塩−クロム酸塩−コロイダルシリカを含有する張力付与型の絶縁被膜を鋼板表面に塗布した後、800℃程度の温度で焼き付けるのが好ましい。なお、絶縁被膜の焼き付けは、上述した平坦化焼鈍と兼ねて行ってもよい。
C:0.045mass%、Si:3.15mass%、Mn:0.04mass%およびsol.Al:0.0030mass%を含有し、Nを0.0025mass%未満、さらに、S,SeおよびOをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる、インヒビター形成成分を含有しない成分組成の鋼スラブを1100℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1000℃×60sの熱延板焼鈍を施した。次いで、上記熱延板焼鈍後の鋼板を、脱スケールした後、図2に示した本発明のパスライン延長機構を有する4スタンドのタンデム圧延機を用いて最終冷間圧延し、最終板厚0.30mm(総冷延圧下率:85%)の冷延板に仕上げた。
この際、上記最終冷間圧延は、パスライン延長機構を適用しない従来と同じ圧延条件1、パスライン延長機構を#1スタンドで圧下率38%の圧延を行った後の#1−2スタンド間に適用した圧延条件2、および、パスライン延長機構を#1−3スタンドで総圧下率78%の圧延を行った後の#3−4スタンド間に適用した圧延条件3の3条件で行った。なお、上記パスライン延長機構を適用したスタンド間では、パスライン長さをスタンド間距離Lの1.5倍に延長した。また、上記実験条件1と2においては#1−2スタンド間、また、実験条件3においては#3−4スタンド間の鋼板温度を圧延油の量を制御して200℃に制御した。
最終板厚0.30mmとした冷延板は、次いで、湿水素雰囲気下で、840℃×100sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、上記一次再結晶焼鈍後の鋼板からサンプルを採取し、X線回折で正極点図を得、これからADC法によりODFを作成し、そのφ2=45°断面の(Φ,φ1)=(90°,90°)の数値({110}<001>強度)を求めて、再結晶集合組織を評価した。
次いで、上記一次再結晶焼鈍後の鋼板に、MgOを主剤とする焼鈍分離剤を塗布し、二次再結晶を発現させるための仕上焼鈍を施した後、リン酸塩−クロム酸塩−コロイダルシリカを質量比で3:1:2の割合で含有する絶縁被膜を塗布、焼付けた後、さらに、800℃×3hの歪取焼鈍を施した。
斯くして得た、歪取焼鈍後の鋼板の板幅中央部の圧延方向および板幅方向から、幅:30mm×長さ:280mmの試験片を総質量で500g以上採取し、エプスタイン試験により鉄損W17/50を測定した。
上記の結果を表3に示した。この結果から、本発明の冷間圧延方法を適用することにより一次再結晶集合組織が改善され、製品板の磁気特性(鉄損特性)が従来よりも向上していることがわかる。さらに、本発明は、総圧下率が66%以下の段階(#1−2スタンド間)で適用するよりも、総圧下率が66%超えの段階(#3−4スタンド間)で適用する方が、その効果をより効果的に発現させることができることもわかる。
Figure 0006721135
C:0.040mass%、Si:3.3mass%、Mn:0.05mass%およびsol.Al:0.0090mass%を含有し、Nを0.0050mass%未満、S,SeおよびOをそれぞれ0.0050mass%未満含有し、さらに、任意の添加元素として表4に示した各種成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1200℃の温度に再加熱した後、熱間圧延して板厚2.5mmの熱延板とし、1000℃×60sの熱延板焼鈍を施し、脱スケールした後、1回目の冷間圧延で中間板厚の1.5mmとし、1030℃×100sの中間焼鈍を施した後、4スタンドのタンデム圧延機を用いて2回目の冷間圧延(最終冷間圧延)し、最終板厚0.22mmの冷延板とした。
この際、最終冷間圧延における各スタンドの圧下率は、38%(一定)に設定するとともに、#3−4スタンド間に、前述した図2に示したパスライン延長機構を適用し、#3−4スタンド間の鋼板のパスライン長さを、スタンド間距離Lの1.5倍に延長して圧延を行った。このとき、いずれの条件も、#3スタンド出側の鋼板温度が200℃を超えるように圧延油の量を制限し、さらに、パスライン延長機構を設置した条件では、#3−4スタンド間に設置したパスライン変更用の可動ロールの一つを加熱機能を有するものとし、鋼板温度を250℃に加熱した。
次いで、上記最終板厚とした冷延板に、湿水素雰囲気下で、850℃×40sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面にMgOを主剤とする焼鈍分離剤を塗布し、二次再結晶を起こさせる仕上焼鈍を施した後、リン酸塩−クロム酸塩−コロイダルシリカを質量比で3:1:2の割合で含有する絶縁被膜を塗布し、850℃×30sの平坦化焼鈍において焼き付けした後、仕上焼鈍時のコイル外巻きに相当する位置の圧延方向および板幅方向から、幅:30mm×長さ:280mmの試験片を総質量で500g以上となるように採取し、エプスタイン試験により鉄損W17/50を測定した。
得られた結果を表4に併記した。この表から、本発明の冷間圧延方法を適用することで鉄損特性が改善されること、さらに、任意の添加元素として、Ni,Sn,Nb,Mo,Sb,Cu,P,CrおよびBiのうちから選ばれる1種以上を適正量添加することで、鉄損特性がより改善されることがわかる。
Figure 0006721135
本発明の技術は、インヒビターレスの鋼素材を用いた方向性電磁鋼板の分野に限定されるものではなく、パス間時効が必要とされる、あるいは、適正なパス間時間が求められるその他の技術分野、例えば、インヒビターを活用する方向性電磁鋼板や無方向性電磁鋼板、冷延鋼板等の分野にも好適に用いることができる。
1:バックアップロール
2:ワークロール
3:固定ロール
4:可動ロール
S:鋼板
L:スタンド間距離

Claims (8)

  1. C:0.01〜0.10mass%、Si:2.0〜4.5mass%、Mn:0.01〜0.5mass%、sol.Al:0.0020mass%以上0.0100mass%未満、N:0.0080mass%未満含有し、さらに、S,SeおよびOをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1300℃以下の温度に再加熱した後、熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、二次再結晶させる仕上焼鈍を施す方向性電磁鋼板の製造方法において、
    上記最終板厚に冷間圧延する最終冷間圧延は、タンデム圧延機を用いて、総圧下率80%以上、かつ、少なくとも一つのスタンド間の板温が150〜280℃となるよう圧延するとともに、
    上記スタンド間の距離をL(m)、該スタンド間を通過する鋼板速度をV(mpm)、該スタンド間を鋼板が通過するパス時間をT(min)としたとき、上記スタンド間のパス時間Tが下記(1)式を満たすよう、該スタンド間に存在する鋼板の長さを延長して圧延することを特徴とする方向性電磁鋼板の製造方法。

    T≧1.3×L/V ・・・(1)
  2. 上記スタンド間に存在する鋼板の長さの延長を、総圧下率が66%以上のスタンド間において行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 上記鋼スラブは、さらに、Ni:0.005〜1.50mass%、Sn:0.005〜0.50mass%、Nb:0.0005〜0.0100mass%、Mo:0.01〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.01〜1.50mass%、P:0.005〜0.150mass%、Cr:0.01〜1.50mass%およびBi:0.0005〜0.05mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 鋼板を最終板厚に冷間圧延する、複数のスタンドからなるタンデム圧延機において、
    いずれか1以上のスタンド間に、スタンド間に存在する鋼板の長さを、スタンド間距離よりも長くするパスライン延長機構を設けてなるとともに、パスラインを変更する可動ロールが少なくとも2個以上あり、かつ、それらの可動ロールのうちの少なくとも1個が基準の水平パスラインに対して他のロールと上下対極の位置に配置されてなることを特徴とする冷間圧延設備。
  5. 上記冷間圧延設備は、上記スタンド間に配置したパスラインを変更する可動ロールのいずれか1以上が加熱機能を備えてなることを特徴とする請求項4に記載の冷間圧延設備。
  6. 上記パスライン延長機構は、スタンド間に存在する鋼板の長さを、スタンド間距離に対して1.3倍以上に延長可能であることを特徴とする請求項4または5に記載の冷間圧延設備。
  7. 上記パスライン延長機構を、総圧下率が66%以上となるスタンド間に設置してなることを特徴とする請求項4〜6のいずれか1項に記載の冷間圧延設備。
  8. 圧延する鋼板が電磁鋼板であることを特徴とする請求項4〜7のいずれか1項に記載の冷間圧延設備。
JP2019563638A 2018-09-28 2019-09-26 方向性電磁鋼板の製造方法および冷間圧延設備 Active JP6721135B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018183898 2018-09-28
JP2018183898 2018-09-28
PCT/JP2019/037752 WO2020067236A1 (ja) 2018-09-28 2019-09-26 方向性電磁鋼板の製造方法および冷間圧延設備

Publications (2)

Publication Number Publication Date
JP6721135B1 true JP6721135B1 (ja) 2020-07-08
JPWO2020067236A1 JPWO2020067236A1 (ja) 2021-02-15

Family

ID=69950666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019563638A Active JP6721135B1 (ja) 2018-09-28 2019-09-26 方向性電磁鋼板の製造方法および冷間圧延設備

Country Status (7)

Country Link
US (1) US20220033921A1 (ja)
EP (1) EP3854891A4 (ja)
JP (1) JP6721135B1 (ja)
KR (1) KR102503902B1 (ja)
CN (1) CN112752623B (ja)
RU (1) RU2769149C1 (ja)
WO (1) WO2020067236A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023277170A1 (ja) * 2021-06-30 2023-01-05
EP4353850A1 (en) * 2021-06-30 2024-04-17 JFE Steel Corporation Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5413846B2 (ja) 1973-06-18 1979-06-02
JPS5652117B2 (ja) 1973-11-17 1981-12-10
JPS5365245A (en) * 1976-11-24 1978-06-10 Kobe Steel Ltd Metal strip rolling
ZA783651B (en) 1977-07-01 1979-06-27 Lucas Industries Ltd Starter motor
JPS5429182A (en) 1977-12-15 1979-03-05 Ntn Toyo Bearing Co Ltd Device for forming pocket bores in ring
JPH01215925A (ja) 1988-02-25 1989-08-29 Nippon Steel Corp 一方向性電磁鋼板の冷間圧延方法
JPH08253816A (ja) 1995-03-15 1996-10-01 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4258157B2 (ja) * 2002-03-05 2009-04-30 Jfeスチール株式会社 方向性電磁鋼板の製造方法
DE10234109A1 (de) * 2002-07-26 2004-02-05 Sms Demag Ag Verfahren und Vorrichtung zur kontinuierlichen Herstellung metallischer Bänder
JP2006095544A (ja) * 2004-09-28 2006-04-13 Jfe Steel Kk 鋼帯の冷間圧延設備および鋼帯の冷間圧延方法
EP2140949B1 (en) * 2007-04-24 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Process for producing unidirectionally grain oriented electromagnetic steel sheet
JP5835557B2 (ja) * 2011-02-17 2015-12-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5831435B2 (ja) * 2012-12-11 2015-12-09 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法
JP5846390B2 (ja) * 2013-03-06 2016-01-20 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
RU2769149C1 (ru) 2022-03-28
CN112752623B (zh) 2023-06-16
US20220033921A1 (en) 2022-02-03
JPWO2020067236A1 (ja) 2021-02-15
KR20210042368A (ko) 2021-04-19
WO2020067236A1 (ja) 2020-04-02
EP3854891A1 (en) 2021-07-28
CN112752623A (zh) 2021-05-04
KR102503902B1 (ko) 2023-02-27
EP3854891A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5854233B2 (ja) 方向性電磁鋼板の製造方法
US20170081740A1 (en) Method for producing grain-oriented electrical steel sheet
JP6721135B1 (ja) 方向性電磁鋼板の製造方法および冷間圧延設備
US5342454A (en) Method of producing grain oriented silicon steel sheet having low iron loss
JP5920387B2 (ja) 方向性電磁鋼板の製造方法
JP2020056105A (ja) 方向性電磁鋼板の製造方法
JP7028215B2 (ja) 方向性電磁鋼板の製造方法
JP3849146B2 (ja) 一方向性けい素鋼板の製造方法
JP7276502B2 (ja) 方向性電磁鋼板の製造方法及び設備列
TWI779692B (zh) 方向性電磁鋼板的製造方法及設備列
JP7392849B2 (ja) 方向性電磁鋼板の製造方法および電磁鋼板製造用圧延設備
US20230250506A1 (en) Method of manufacturing grain-oriented electrical steel sheet
JP3536304B2 (ja) 表面性状に優れ、磁気特性の安定した方向性けい素鋼板の製造方法
JP3903494B2 (ja) 電磁鋼板の製造方法
JP2023116341A (ja) 方向性電磁鋼板の製造方法
WO2023277170A1 (ja) 方向性電磁鋼板の製造方法及び方向性電磁鋼板製造用圧延設備
JPH10273726A (ja) コイル長手方向の磁気特性の安定した方向性電磁鋼板の製造方法
JPH10280043A (ja) 磁束密度が高い方向性電磁鋼板の製造方法
JPH10280042A (ja) コイル長手方向の磁気特性の安定した方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R150 Certificate of patent or registration of utility model

Ref document number: 6721135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250