JP6693290B2 - 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械 - Google Patents

歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械 Download PDF

Info

Publication number
JP6693290B2
JP6693290B2 JP2016121486A JP2016121486A JP6693290B2 JP 6693290 B2 JP6693290 B2 JP 6693290B2 JP 2016121486 A JP2016121486 A JP 2016121486A JP 2016121486 A JP2016121486 A JP 2016121486A JP 6693290 B2 JP6693290 B2 JP 6693290B2
Authority
JP
Japan
Prior art keywords
cutting tool
gear
gear cutting
grinding wheel
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121486A
Other languages
English (en)
Other versions
JP2017226020A (ja
Inventor
雅人 蔦岡
雅人 蔦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2016121486A priority Critical patent/JP6693290B2/ja
Publication of JP2017226020A publication Critical patent/JP2017226020A/ja
Application granted granted Critical
Publication of JP6693290B2 publication Critical patent/JP6693290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械に関するものである。
歯車を加工するための歯切り工具は、加工対象である歯車の形状に基づいた形状に形成されている。また、歯切り工具を所望形状に形成することも重要である。そこで、歯切り工具を研削するための砥石車についても、同様に、研削対象である歯切り工具の形状に基づいた形状に形成されている。
例えば、特許文献1には、歯車を切削するためにシェービングカッタを用いる場合において、シェービングカッタの歯面が摩耗した場合に、砥石車により再研削することが記載されている。
また、歯車の切削方法として、例えば、特許文献2に記載されているようなスカイビング加工が知られている。スカイビング加工とは、切削対象の中心軸線と歯切り工具の中心軸線とを傾斜させた状態(交差角を有する状態)とし、切削対象及び歯切り工具をそれぞれの中心軸周りに同期回転させながら、歯切り工具を切削対象の中心軸線に相対移動する加工である。特許文献2には、スカイビング加工についてのシミュレーションが記載されている。
特開昭63−251154号公報 特開2014−237185号公報
ところで、歯車を切削対象とする歯切り工具として、例えば、ギヤシェーパ加工に用いるピニオンカッタが知られている。ピニオンカッタは、公知の技術によって設計されている。しかしながら、切削対象と歯切り工具とに交差角を有するスカイビング加工の場合には、歯切り工具(スカイビングカッタ)の歯面の形状が非常に複雑となる。スカイビングカッタに、ピニオンカッタの形状設計方法をそのまま適用することはできない。
また、歯切り工具の形状が複雑であれば、当然に、歯切り工具の刃面を研削する砥石車の形状も複雑となる。歯切り工具の刃面の設計ができなければ、砥石車の形状を設計することすらできない。つまり、所望の歯車を、スカイビング加工によって形成することが容易ではない。
本発明は、新たな歯切り工具の設計方法を適用して形成された歯切り工具、及び、新たな砥石車の設計方法を適用して形成された砥石車を提供することを目的の一つとする。また、本発明は、歯切り工具の設計方法、及び、砥石車の設計方法を提供することを目的の一つとする。また、歯切り工具又は砥石車を備える工作機械を提供することを目的の一つとする。
本発明者らは、歯切り工具及び砥石車の形状設計について、共通する新たな手法を見出して、本発明を想到するに至った。
(1.歯切り工具)
本発明に係る歯切り工具は、周面に複数の歯を有する歯車を切削対象として、前記歯車における歯側面を切削すると共に周面に複数の刃を有する歯切り工具である。前記歯切り工具による切削動作は、前記歯車を前記歯車の中心軸周りに回転させる場合に、前記歯切り工具を前記歯切り工具の中心軸周りに相対的に回転させると共に、前記歯切り工具を前記歯車の中心軸方向に相対的に移動させる動作である。
前記歯切り工具の各刃は、前記歯車の前記歯側面における1つの被切削点に対応する前記歯切り工具における1つの刃形状点を決定する個処理を実行すること、及び、前記歯車の前記歯側面における複数の被切削点に関して前記個処理を実行することにより、前記歯切り工具の前記刃側面における複数の刃形状点を取得すること、に基づいて、前記複数の刃形状点に応じた形状となるように形成される。
前記個処理は、前記歯車の切削後形状に基づいて前記歯側面に前記1つの被切削点を決定し、前記歯切り工具による切削動作条件に基づいて、前記被切削点において前記歯車の中心軸周りの前記歯車による速度ベクトルを算出し、前記歯切り工具による切削動作条件に基づいて、前記被切削点において前記歯切り工具の中心軸周りの前記歯切り工具による速度ベクトルを算出し、前記歯車による前記速度ベクトルの所定方向成分と前記歯切り工具による前記速度ベクトルの前記所定方向成分とが等しくなる場合の前記被切削点を、前記歯切り工具の刃形状点とする処理である。
本発明によれば、切削対象としての歯車の形状、及び、歯切り工具と切削対象としての歯車との相対的な動作に基づいて、歯切り工具を形成している。特に、切削対象としての歯車の歯側面に被切削点を定義して、当該被切削点において歯車の中心軸周りの歯車による速度ベクトルの所定方向成分と、当該被切削点において歯切り工具の中心軸周りの歯切り工具による速度ベクトルの所定方向成分とが等しくなるような点を、歯切り工具の切削点としている。このようにして得られる切削点により得られる歯切り工具は、高精度に所望の形状に形成することができる。
(2.砥石車)
本発明に係る砥石車は、周面に複数の刃を有する歯切り工具を研削対象として、前記歯切り工具における刃側面を研削すると共に円盤状に形成された砥石車である。前記砥石車による研削動作は、前記歯切り工具を前記歯切り工具の中心軸周りに回転させる場合に、前記砥石車を砥石車の中心軸周りに回転させ、前記砥石車を前記歯切り工具の中心軸方向に相対的に移動させると共に、前記砥石車を前記歯切り工具の回転接線方向である並進方向に移動させる動作である。
前記砥石車の外周面は、前記歯切り工具の前記刃側面における1つの被研削点に対応する前記砥石車における1つの外周形状点を決定する個処理を実行すること、及び、前記歯切り工具の前記刃側面における複数の被研削点に関して前記個処理を実行することにより、前記砥石車の外周面における複数の外周形状点を取得すること、に基づいて、前記複数の外周形状点に応じた形状となるように形成される。
前記個処理は、前記歯切り工具の研削後形状に基づいて前記刃側面に前記1つの被研削点を決定し、前記砥石車による研削動作条件に基づいて、前記被研削点において前記歯切り工具の中心軸周りの前記歯切り工具による速度ベクトルを算出し、前記砥石車による研削動作条件に基づいて、前記被研削点において前記砥石車による並進方向の速度ベクトルを算出し、前記歯切り工具による前記速度ベクトルの所定方向成分と前記砥石車による前記速度ベクトルの前記所定方向成分とが等しくなる場合の前記被研削点を、前記砥石車の外周形状点とする処理である。
本発明によれば、研削対象としての歯切り工具の形状、及び、砥石車と歯切り工具との相対的な動作に基づいて、砥石車を形成している。特に、研削対象としての歯切り工具の刃側面に被研削点を定義して、当該被研削点において歯切り工具の中心軸周りの歯切り工具による速度ベクトルの所定方向成分と、当該被研削点において砥石車による並進方向速度ベクトルの所定方向成分とが等しくなるような点を、砥石車の研削点としている。このようにして得られる研削点により得られる砥石車は、高精度に所望の形状に形成することができる。
(3.歯切り工具の設計方法)
本発明に係る歯切り工具の設計方法は、上述した歯切り工具の設計方法であって、前記歯車の前記歯側面における1つの被切削点に対応する前記歯切り工具における1つの刃形状点を決定する個処理を実行し、前記歯車の前記歯側面における複数の被切削点に関して前記個処理を実行することにより、前記歯切り工具の前記刃側面における複数の刃形状点を取得し、前記複数の刃形状点に応じた形状を前記歯切り工具の前記刃の形状とする。これにより、高精度に歯切り工具の形状を形成することができる。
(4.砥石車の設計方法)
本発明に係る砥石車の設計方法は、上述した砥石車の設計方法であって、前記歯切り工具の前記刃側面における1つの被研削点に対応する前記砥石車における1つの外周形状点を決定する個処理を実行し、前記歯切り工具の前記刃側面における複数の被研削点に関して前記個処理を実行することにより、前記砥石車の外周面における複数の外周形状点を取得し、前記複数の外周形状点に応じた形状を前記砥石車の外周面形状とする。これにより、高精度に砥石車の形状を形成することができる。
(5.工作機械)
本発明に係る工作機械は、上述した歯切り工具又は砥石車を備える。本発明に係る工作機械によれば、高精度に所望の歯車を形成することができる。又は、本発明に係る工作機械は、高精度に歯切り工具を形成することができる。
切削対象としての歯車の側面図である。 歯車を切削するための歯切り工具であり、研削対象としての歯切り工具の図である。 歯切り工具を研削するための砥石車の図である。 歯車を切削対象とし、歯切り工具を備える工作機械(マシニングセンタ)の図である。 歯切り工具を研削対象とし、砥石車を備える工作機械(研削盤)の図である。 図3AのIIIB方向から見た図である。 歯切り工具の設計方法において、歯切り工具の形状を決定する方法を示すフローチャートである。 歯切り工具の設計方法において、歯切り工具の形状を決定する方法を示すフローチャートである。 切削対象としての歯車の歯の斜視図であり、歯車の被切削点(形状点)P1(N)を示す図である。 歯車の被切削点P1(N)における法線N1(N)を示す図である。 歯車の中心軸X1周り(θ1)の被切削点P1(N)の速度ベクトルV1(N)を示す図である。 図7Aに示す速度ベクトルV1(N)の法線方向成分Vn1(N)を示す図である。 歯切り工具の中心軸X2周り(θ21)の被切削点P1(N)の速度ベクトルV21(N)を示す図である。 図8Aに示す速度ベクトルV21(N)の法線方向成分Vn21(N)を示す図である。 歯切り工具のすくい面2bが被切削点P1(N)に一致する状態を示す図である。 歯切り工具のすくい面2bが被切削点P1(N)に一致しない状態を示す図である。 砥石車の設計方法において、砥石車の形状を決定する方法を示すフローチャートである。 砥石車の設計方法において、砥石車の形状を決定する方法を示すフローチャートである。 研削対象としての歯切り工具の刃の斜視図であり、歯切り工具の被研削点(形状点)P22(N)を示す図である。 被研削点P22(N)において、刃すじ方向、側逃げ面、及び、側逃げ面の法線方向を示す図である。 砥石車の中心軸X3周り(θ3)の被研削点P22(N)の速度ベクトルV3(N)を示す図である。 歯切り工具の中心軸X2周り(θ22)の被研削点P22(N)の速度ベクトルV22(N)を示す図である。 図14Aに示す速度ベクトルV22(N)の法線方向成分Vn22(N)を示す図である。 砥石車の並進方向(M33)の被研削点P22(N)の速度ベクトルV33(N)を示す図である。 図15Aに示す速度ベクトルV33(N)の法線方向成分Vn33(N)を示す図である。 歯車の形状点P1(N)を示す図である。 歯切り工具の形状点P22(N)を示す図である。 砥石車の形状点P3(N)を示す図である。
(1.歯車1、歯切り工具2及び砥石車3の形状の概要)
切削対象である歯車1の形状は、図1Aに示すように、中心軸X1周りの周面に複数の歯1aを備える。本実施形態においては、歯車1は、外歯車を例に挙げるが、内歯車を適用することもできる。また、図1Aにおいては、歯車1は、平歯車を例に挙げるが、はすば歯車など種々の歯車を適用することができる。
歯車1を切削するための歯切り工具2の形状は、図1Bに示すように、中心軸X2周りの外周面に複数の刃2aを備える。ここで、本実施形態においては、歯切り工具2は、スカイビング加工に用いる工具を例に挙げる。ただし、歯切り工具2は、スカイビング加工の他に、ギヤシェーパに用いる工具とすることもできる。
歯切り工具2は、軸方向の端面にすくい面2bを備える。すくい面2bは、歯切り工具2の中心軸X2を中心としたテーパ状としてもよいし、1つの刃2a毎に異なる方向を向く面状に形成してもよい。
また、歯切り工具2の複数の刃2aの外接円は、円錐台形状に形成されている。つまり、複数の刃2aの先端面は、すくい面2bに対して、前逃げ角αを有する前逃げ面となる。従って、刃2aの一方端面から刃すじ方向(刃溝方向に等しい)に行くに従って、刃先面における歯切り工具2の中心軸線X2からの距離が徐々に小さくなっている。
また、複数の刃2aの刃側面は、すくい面2bに対して、側逃げ角を有する側逃げ面となる。さらに、複数の刃2aは、中心軸X2に対してねじれ角βを有している。ただし、歯車1の歯1aのねじれ角と、切削加工における歯車1と歯切り工具2との交差角に応じて、刃2aのねじれ角βは適宜異なる。そこで、刃2aは、ねじれ角βを有しない場合も存在する。
砥石車3は、図1Cに示すように、歯切り工具2を研削対象として、歯切り工具2の刃2aの刃側面を主として研削する。砥石車3は、中心軸X3周りの円盤状に形成されている。ただし、砥石車3の外周面は、歯切り工具2の刃溝の形状に応じた形状に形成される。
(2.歯車1の歯側面の切削を行う工作機械)
次に、歯車1の歯側面の切削を行う工作機械10について、図2を参照して説明する。本実施形態においては、工作機械10は、例えば、マシニングセンタを例に挙げる。特に、回転工具を支持する主軸の他に、直交3軸及び回転2軸を有する5軸マシニングセンタが適用される。
工作機械10は、図示しないベッド上において直交3軸方向へ移動可能な主軸ユニット11と、主軸ユニット11の先端に取り付けられる歯切り工具2とを備える。従って、歯切り工具2は、歯切り工具2の中心軸X2の周り(θ21)に回転可能となり、ベッドに対して直交3軸方向へ移動可能である。
さらに、工作機械10は、切削対象としての歯車1を支持する回転テーブル12を備える。回転テーブル12は、歯車1の中心軸X1の周り(θ1)に歯車1を回転可能に支持する。回転テーブル12は、ベッドに対して、回転テーブル12の回転軸とは異なる1軸周りに揺動可能(チルト(傾斜)可能)に設けられる。つまり、回転テーブル12は、チルト(傾斜)可能なように歯車1を支持する。
そして、主軸ユニット11及び回転テーブル12が位置決めされることにより、歯車1の中心軸X1と歯切り工具2の中心軸X2とが交差角を有する状態に位置決めされる。この状態で、歯車1が中心軸X1周り(θ1)に回転される。歯車1の回転に同期して、歯切り工具2が、中心軸X2周り(θ21)に回転されると共に、歯車1の中心軸X1方向(M2)に相対的に移動させる。このようにして、歯車1が形成される。
(3.歯切り工具2の刃側面の研削を行う工作機械)
次に、歯切り工具2の刃側面の研削を行う工作機械20(研削盤)について、図3A及び図3Bを参照して説明する。本実施形態においては、工作機械20は、工具研削盤やアンギュラ研削盤などである。
工作機械20は、図示しないベッド上において、研削対象である歯切り工具2を、歯切り工具2の中心軸X2周り(θ22)に回転可能に支持する主軸ユニット21を備える。さらに、工作機械20は、砥石車3を、砥石車3の中心軸X3周り(θ3)に回転可能に支持する砥石台22を備える。砥石台22は、主軸ユニット21に対して交差角を調整可能であると共に、主軸ユニット21に対して直交2軸方向に相対移動可能である。砥石台22と主軸ユニット21との交差角は、歯切り工具2のねじれ角βに合わせて調整される。なお、主軸ユニット21と砥石台22とは、相対移動すればよく、主軸ユニット21が移動可能な構成としてもよい。
そして、主軸ユニット21及び砥石台22が位置決めされることにより、歯切り工具2の中心軸X2と砥石車3の中心軸X3とが交差角を有する状態に位置決めされる。この状態で、歯切り工具2が中心軸X2周り(θ22)に回転される。また、砥石車3は、中心軸X3周り(θ3)に回転される。さらに、砥石車3は、歯切り工具2の回転に同期して、歯切り工具2の中心軸X2方向(M31)、歯切り工具2の径方向(M32)、及び、歯切り工具2の回転接線方向(並進方向)(M33)に相対移動する。このようにして、歯切り工具2の刃2aの刃側面が研削される。
砥石車3は、歯切り工具2の刃溝に沿って回転しながら往復移動してもよいし、一方向のみに移動してもよい。また、砥石車3は、歯切り工具2の刃溝の両側を同時に研削するが、刃溝の片側を研削してもよいし、歯切り工具2の回転方向が変わっても歯切り工具2の回転方向に合わせて歯切り工具2の刃溝を研削できるように追従してもよい。
(4.歯切り工具2の設計方法)
次に、歯切り工具2の設計方法について、図4A−図4Bのフローチャートを主として、図5−図9Bを参照しながら説明する。
当該設計方法の概要は、以下の通りである。切削目的である既知形状の歯車1の歯1aにおける1つの被切削点P1(N)について、当該被切削点P1(N)を切削することができる切削点(刃形状点)P21(N)を決定する(本発明の「個処理」に相当する、図4A及び図4BのステップS1−S10)。
そして、上記の個処理(1つの被切削点P1(N)に対する処理)を、複数の被切削点P1(N)について行って、複数の切削点(刃形状点)P1(N)を取得する(複数取得処理、図4BのステップS11−S12、並びに、ステップS1−ステップS10)。最後に、複数の切削点P21(N)を連続した線とすることで、歯切り工具2の形状が決定される(形状決定処理、図4BのステップS13)。
当該設計方法の詳細は、以下の通りである。図5に示すように、歯車1の歯1aにおいて、歯すじ方向に直交する断面上の線(歯1aの形状線)P1が得られる。そして、当該線P1上に、離散的な複数の被切削点(歯1aの形状点)P1(N)が設定される。カッコ内のNは、連続した整数である。例えば、図5において、被切削点P1(1)、P1(5)、P1(14)、P1(Nmax)などは、図示する。さらに、断面上の線P1において、各被切削点P1(N)における接線T1(N)も設定される。接線T1(N)は、ベクトルであってもよく、向きとしては、歯すじ方向に直交する方向(歯先に向かう方向又は歯元に向かう方向)である。
そこで、まずは、歯車1における1つの被切削点P1(N)を決定する(図4AのステップS1)。最初は、N=1となる被切削点P1(1)を決定することにする。つまり、以下の処理において、被切削点P1(1)に対応する切削点P21(1)を決定することになる。
続いて、歯切り工具2の相対姿勢の候補を決定する(図4AのステップS2)。歯切り工具2の相対姿勢の候補は、中心軸X1周りにおける歯車1の回転角θ1、中心軸X2周りにおける歯切り工具2の回転角θ21、及び、歯車1の中心軸X1方向において歯切り工具2の軸方向位置M2を決定することにより得られる。
続いて、歯切り工具2の相対姿勢に基づいて、被切削点P1(N)及びその接線T1(N)を移動(位置決め)する(図4AのステップS3)。つまり、歯車1の回転角θ1の分だけ、被切削点P1(N)及びその接線T1(N)を、歯車1の中心軸X1周りに回転させる。ここで、歯車1の中心軸X1と歯切り工具2の中心軸X2との距離は、予め設定されている。そのため、歯車1の回転角θ1、歯切り工具2の回転角θ21及び歯切り工具2の軸方向位置M2が決定されることにより、被切削点P1(N)の位置及びその接線T1(N)が一義的に決定されることになる。
続いて、図6に示すように、歯車1に対する歯切り工具2の切削動作条件に基づいて、歯車1の歯すじ方向のベクトルH1を算出する(図4AのステップS4)。ただし、歯車1の歯すじ方向は、既知の歯車1の形状に基づいて得ることもできる。
続いて、図6に示すように、被切削点P1(N)において、歯車1の歯1aにおける歯側面の法線N1(N)を算出する(図4AのステップS5)。法線N1(N)は、被切削点P1(N)における接線T1(N)、及び、歯すじ方向のベクトルH1に基づいて得られる。法線N1(N)は、接線T1(N)と歯すじ方向のベクトルH1とを含む平面の法線となる。
続いて、図7Aに示すように、歯切り工具2による切削動作条件に基づいて、被切削点P1(N)において、歯車1の中心軸X1周り(θ1)の歯車1による速度ベクトルV1(N)を算出する(図4AのステップS6)。当該速度ベクトルV1(N)は、歯車1の中心軸X1を中心とし、被切削点P1(N)を通る円の接線方向のベクトルに相当する。ここで、歯車1の速度ベクトルV1(N)の法線方向成分は、図7Bに示すように、Vn1(N)となる。
続いて、図8Aに示すように、歯切り工具2による切削動作条件に基づいて、被切削点P1(N)において歯切り工具2の中心軸X2周り(θ21)の歯切り工具2による速度ベクトルV21(N)を算出する(図4AのステップS7)。当該速度ベクトルV21(N)は、歯切り工具2の中心軸X2を中心とし、被切削点P1(N)を通る円の接線方向のベクトルである。ここで、歯切り工具2の速度ベクトルV21(N)の法線方向成分は、図8Bに示すように、Vn21(N)となる。
続いて、図9Aに示すように、被切削点P1(N)が歯切り工具2のすくい面2b上に位置するか否かを判定する(図4BのステップS8)。被切削点P1(N)がすくい面2b上に位置しない状態は、図9Bに示すとおりである。つまり、被切削点P1(N)がすくい面2b上に位置する状態とは、歯切り工具2のすくい面2bに切削点P21(N)が存在することを意味する。
そこで、図9Bに示すように、被切削点P1(N)がすくい面2b上に位置しなければ(S8:No)、ステップS2で決定された歯切り工具2の相対姿勢の候補では、被切削点P1(N)を切削することができる形状点が存在しないことになる。この場合、再び図4AのステップS2から処理を繰り返す。つまり、歯切り工具2を異なる姿勢として、再び処理を行う。
一方、図9Aに示すように、被切削点P1(N)がすくい面2b上に位置する場合には(S8:yes)、図7Bに示す歯車1の速度ベクトルV1(N)の法線方向成分Vn1(N)の大きさと、図8Bに示す歯切り工具2の速度ベクトルV21(N)の法線方向成分Vn21(N)の大きさとが、等しいか否かを判定する(図4BのステップS9)。
ここで、切削対象が切削される状態とは、切削される面の法線方向において、切削対象と切削工具とが一緒に移動する状態であることが、本発明者によって発見された。つまり、両者の法線方向成分Vn1(N),Vn21(N)の大きさが等しい状態とは、歯1aの歯側面の法線N1(N)(図6に示す)において、歯車1の被切削点P1(N)と歯切り工具2の切削点P21(N)とが、一緒に移動しようとする状態である。この状態を換言すると、切削対象である歯車1の歯1aの歯側面が、歯切り工具2により切削される状態となることを意味する。
そこで、両者の法線方向成分Vn1(N),Vn21(N)の大きさが等しくない場合には(S9:No)、ステップS2で決定された歯切り工具2の相対姿勢の候補では、被切削点P1(N)を切削することができる形状点が存在しないことになる。この場合、再び図4AのステップS2から処理を繰り返す。つまり、歯切り工具2を異なる姿勢として、再び処理を行う。
一方、両者の法線方向成分Vn1(N),Vn21(N)の大きさが等しい場合には(S9:Yes)、現在の歯切り工具2の姿勢において、現在の被切削点P1(N)が、歯切り工具2の切削点(刃形状点)P21(N)として記憶される(図4BのステップS10)。
このようにして、図4A及び図4BのステップS1−S10に関する個処理を実行する。つまり、個処理とは、図4BのステップS8及びS9の条件を満たす被切削点P1(N)を、歯切り工具2の形状点として決定する処理である。つまり、被切削点P1(N)がすくい面2b上に位置する状態であり、且つ、歯車1及び歯切り工具2の速度ベクトルV1(N),V21(N)の法線方向成分Vn1(N),Vn21(N)の大きさが等しい状態となるような被切削点P1(N)を、歯切り工具2の形状点として決定する処理である。
続いて、現在の被切削点P1(N)がP1(Nmax)でない場合には(図4BのステップS11:No)、Nを1加算して(ステップS12)、ステップS1から再び処理を繰り返す。この処理を繰り返すことにより、複数の被切削点P1(N)に対応する複数の切削点(刃形状点)P21(N)が取得される。
そして、現在の被切削点P1(N)がP1(Nmax)である場合には(図4BのステップS11:Yes)、記憶された離散的な複数の切削点P21(N)に基づいて、歯切り工具2の形状を決定する(図4BのステップS13)。離散的な複数の切削点P21(N)を連続した線とする。このようにして得られた刃形状線は、歯切り工具2の各刃2aのすくい面2bの稜線となる。そして、歯切り工具2の各刃2aのすくい面2bの形状、ねじれ角、前逃げ角α、側逃げ角に基づいて、刃2a全体が決定される。
以上より、歯車1の形状、及び、各種条件に基づいて、歯切り工具2の形状が決定される。このようにして決定された歯切り工具2を用いて切削を行うことで、歯車1の歯1aを高精度に切削することができる。
(5.砥石車3の設計方法)
次に、砥石車3の設計方法について、図10A−図10Bのフローチャートを主として、図11−図15Bを参照しながら説明する。
当該設計方法の概要は、以下の通りである。研削目的である既知形状(上記設計方法により得られる形状)の歯切り工具2の刃側面を研削するための砥石車3の外周面形状を決定する。歯切り工具2の刃側面が研削されることにより、歯切り工具2の刃2aの刃側面に加えて、刃2aの刃側面のうちすくい面2bとの稜線が研削されることになる。
そして、以下の設計方法では、歯切り工具2の刃2aの刃側面のうちすくい面2bとの稜線の形状を設計するための砥石車3の形状を設計する方法として説明する。そこで、歯切り工具2の刃側面のうちすくい面2bとの稜線における1つの被研削点P22(N)について、当該被研削点P22(N)を研削することができる研削点(外周形状点)P3(N)を決定する(本発明の「個処理」に相当する、図10A及び図10BのステップS21−S32)。
そして、上記の個処理(1つの被研削点P22(N)に対する処理)を、複数の被研削点P22(N)について行って、複数の研削点(外周形状点)P3(N)を取得する(複数取得処理、図10BのステップS33−S34、並びに、ステップS21−S32)。最後に、複数の研削点P3(N)を連続した線とすることで、砥石車3の形状が決定される(形状決定処理、図10BのステップS35)。
当該設計方法の詳細は、以下の通りである。図11に示すように、歯切り工具2の刃2aにおいて、刃側面のうちすくい面2bとの稜線上に、離散的な複数の被研削点(歯切り工具2の形状点)P22(N)が設定される。かっこ内のNは、連続した整数である。例えば、図11において、被研削点P22(1)、P22(5)、P22(14)、P22(Nmax)などは、図示する。さらに、稜線上において、各被研削点P22(N)における接線T2(N)も設定される。接線T2(N)は、ベクトルであってもよく、向きとしては、すくい面に平行な方向(刃先に向かう方向又は刃元に向かう方向)である。
そこで、まずは、歯切り工具2における1つの被研削点P22(N)を決定する(図10AのステップS21)。最初は、N=1となる被研削点P22(1)を決定することにする。つまり、以下の処理において、被研削点P22(1)に対応する研削点P3(1)を決定することになる。
続いて、砥石車3の相対姿勢の候補を決定する(図10AのステップS22)。砥石車3の相対姿勢の候補は、中心軸X2周りにおける歯切り工具2の回転角θ22、歯切り工具2の中心軸X2方向において砥石車3の位置M31、歯切り工具2の径方向において砥石車3の位置M32、歯切り工具2の回転接線方向(並進方向)において砥石車3の位置M33を決定することにより得られる。
続いて、砥石車3の相対姿勢に基づいて、被研削点P22(N)及びその接線T2(N)を移動(位置決め)する(図10AのステップS23)。つまり、歯切り工具2の回転角θ22の分だけ、被研削点P22(N)及びその接線T2(N)を、歯切り工具2の中心軸X2周りに回転させる。ここで、歯切り工具2の中心軸X2と砥石車3の中心軸X3との距離は、予め設定されている。そのため、歯切り工具2の回転角θ22、砥石車3の位置M31、砥石車3の位置M32、砥石車3の位置M33が決定されることにより、被研削点P22(N)の位置及びその接線T2(N)が一義的に決定されることになる。
続いて、図12に示すように、歯切り工具2に対する砥石車3の研削動作条件に基づいて、歯切り工具2の刃すじ方向のベクトルH2を算出する(図10AのステップS24)。具体的には、歯切り工具2の中心軸X2方向及び歯切り工具2の径方向における砥石車3の移動方向に基づいて、歯切り工具2の刃すじ方向のベクトルH2が得られる。
続いて、図12に示すように、被研削点P22(N)において、刃2aの側逃げ面Sa(N)を算出する(図10AのステップS25)。刃2aの側逃げ面Sa(N)は、接線T2(N)と刃すじ方向のベクトルH2とを含む平面となる。続いて、図12に示すように、被研削点P22(N)において、刃2aの側逃げ面Sa(N)の法線N2(N)を算出する(図10AのステップS26)。
続いて、図13に示すように、砥石車3による研削動作条件に基づいて、被研削点P22(N)において、砥石車3の中心軸X3周り(θ3)の砥石車3による速度ベクトルV3(N)を算出する(図10AのステップS27)。当該速度ベクトルV3(N)は、砥石車3の中心軸X3を中心とし、被研削点P22(N)を通る円の接線方向のベクトルに相当する。
続いて、図14Aに示すように、砥石車3による研削動作条件に基づいて、被研削点P22(N)において、歯切り工具2の中心軸X2周り(θ22)の歯切り工具2による速度ベクトルV22(N)を算出する(図10AのステップS28)。当該速度ベクトルV22(N)は、歯切り工具2の中心軸X2を中心とし、被研削点P22(N)を通る円の接線方向のベクトルに相当する。ここで、歯切り工具2の速度ベクトルV22(N)の法線方向成分は、図14Bに示すように、Vn22(N)となる。
続いて、図15Aに示すように、砥石車3による研削動作条件に基づいて、被研削点P22(N)において砥石車3による並進方向(M33)の速度ベクトルV33(N)を算出する(図10AのステップS29)。ここで、砥石車3の速度ベクトルV33(N)の法線方向成分は、図15Bに示すように、Vn33(N)となる。
続いて、被研削点P22(N)において、図13に示す砥石車3の中心軸X3周り(θ3)の砥石車3による速度ベクトルV3(N)が、図12に示す刃2aの側逃げ面Sa(N)に平行であるか否かを判定する(図10BのステップS30)。速度ベクトルV3(N)が刃2aの側逃げ面に平行である状態とは、砥石車3の回転が刃2aの刃溝に沿った状態に相当する。つまり、当該条件を満たす場合には、被研削点P22(N)のみが砥石車3によって研削される状態となり、他の部位が研削されていないことを意味する。
そこで、当該条件を満たさない場合には(S30:No)、ステップS22で決定された砥石車3の相対姿勢の候補では、被研削点P22(N)を研削することができる形状点が存在しないことになる。この場合、再び図10AのステップS22から処理を繰り返して、砥石車3を異なる姿勢として再び処理を行う。
一方、当該条件を満たす場合には(S30:Yes)、図14Bに示す歯切り工具2の速度ベクトルV22(N)の法線方向成分Vn22(N)の大きさと、図15Bに示す砥石車3の並進方向の速度ベクトルV33(N)の法線方向成分Vn33(N)の大きさとが、等しいか否かを判定する(図10BのステップS31)。
ここで、研削対象が研削される状態とは、研削される面の法線方向において、研削対象と砥石車とが一緒に移動する状態であることが、本発明者によって発見された。つまり、両者の法線方向成分Vn22(N),Vn33(N)の大きさが等しい状態とは、刃2aの側逃げ面の法線N2(N)(図12に示す)において、歯切り工具2の被研削点P22(N)と砥石車3の研削点P3(N)とが、一緒に移動しようとする状態である。この状態を換言すると、研削対象である歯切り工具2の刃2aの側逃げ面が、砥石車3により研削される状態となることを意味する。
そこで、両者の法線方向成分Vn22(N),Vn33(N)の大きさが等しくない場合には(S31:No)、ステップS22で決定された砥石車3の相対姿勢の候補では、被研削点P22(N)を研削することができる形状点が存在しないことになる。この場合、再び図10AのステップS22から処理を繰り返して、砥石車3を異なる姿勢として再び処理を行う。
一方、両者の法線方向成分Vn22(N),Vn33(N)の大きさが等しい場合には(S31:Yes)、現在の砥石車3の姿勢において、現在の被研削点P22(N)が、砥石車3の研削点(外周形状点)P3(N)として記憶される(図10BのステップS32)。
このようにして、図10A及び図10BのステップS21−S32に関する個処理を実行する。つまり、個処理とは、図10BのステップS30及びS31の条件を満たす被研削点P22(N)を、砥石車3の形状点として決定する処理である。つまり、砥石車3の速度ベクトルV3(N)が刃2aの側逃げ面Sa(N)に平行であり、且つ、歯切り工具2及び砥石車3の速度ベクトルV22(N),V33(N)の法線方向成分Vn22(N),Vn33(N)の大きさが等しい状態となるような被研削点P22(N)を、砥石車3の形状点として決定する処理である。
続いて、現在の被研削点P22(N)がP22(Nmax)でない場合には(図10BのステップS33:No)、Nを1加算して(ステップS34)、ステップS21から再び処理を繰り返す。この処理を繰り返すことにより、複数の被研削点P22(N)に対応する複数の研削点(外周形状点)P3(N)が取得される。
そして、現在の被研削点P22(N)がP22(Nmax)である場合には(図10BのステップS33:Yes)、記憶された離散的な複数の研削点P3(N)に基づいて、砥石車3の形状を決定する(図10BのステップS35)。離散的な複数の研削点P3(N)を連続した線とする。このようにして得られた砥石車3の外周形状線は、砥石車3の中心軸X3を通る断面形状となる。
以上より、歯切り工具2の形状、及び、各種条件に基づいて、砥石車3の形状が決定される。このようにして決定された砥石車3を用いて研削を行うことで、歯切り工具2の刃2aを高精度に切削することができる。
(6.シミュレーション例)
次に、上記の歯切り工具2の設計方法及び砥石車3の設計方法を適用した場合のシミュレーションの具体例を示す。歯車1に関する条件は、表1に示し、歯切り工具2に関する条件は、表2に示し、砥石車3に関する条件は、表3に示す。ただし、相互に関係する条件については、対応する両者のうちの一方に記載する。
Figure 0006693290
Figure 0006693290
Figure 0006693290
また、歯車1の歯1aにおける被切削点P1(N)は、図16Aに示すとおりである。この場合に、歯切り工具2の刃側面の切削点P21(N)は、図16Bに示す通りである。また、歯切り工具2の刃側面における被研削点P22(N)も、図16Bに示す。この場合に、砥石車3の外周面の研削点P3(N)は、図16Cに示す通りである。
(7.実施形態の効果)
(7−1.歯切り工具2)
上述したように歯切り工具2は、周面に複数の歯1aを有する歯車1を切削対象として、歯車1における歯側面を切削すると共に周面に複数の刃2aを有する。そして、歯切り工具2による切削動作は、歯車1を歯車1の中心軸X1周りに回転させる場合に、歯切り工具2を歯切り工具2の中心軸X2周りに相対的に回転させると共に、歯切り工具2を歯車1の中心軸X1方向に相対的に移動させる動作である。
ここで、歯切り工具2の各刃2aは、歯車1の歯側面における1つの被切削点P1(N)に対応する歯切り工具2における1つの刃形状点P21(N)を決定する個処理を実行すること、及び、歯車1の歯側面における複数の被切削点P1(N)に関して個処理を実行することにより、歯切り工具2の刃側面における複数の刃形状点P21(N)を取得することに基づいて、複数の刃形状点P21(N)に応じた形状となるように形成される。
そして、個処理は、歯車1の切削後形状に基づいて歯側面に1つの被切削点P1(N)を決定し、歯切り工具2による切削動作条件に基づいて、被切削点P1(N)において歯車1の中心軸X1周りの歯車1による速度ベクトルV1(N)を算出し、歯切り工具2による切削動作条件に基づいて、被切削点P1(N)において歯切り工具2の中心軸X2周りの歯切り工具2による速度ベクトルV21(N)を算出し、歯車1による速度ベクトルV1(N)の所定方向成分Vn1(N)と歯切り工具2による速度ベクトルV21(N)の所定方向成分Vn21(N)とが等しくなる場合の被切削点P1(N)を、歯切り工具2の刃形状点P21(N)とする処理である(図4A、図4BのステップS6、S7、S9)。
上記によれば、切削対象としての歯車1の形状、及び、歯切り工具2と切削対象としての歯車1との相対的な動作に基づいて、歯切り工具2を形成している。特に、切削対象としての歯車1の歯側面に被切削点P1(N)を定義して、当該被切削点P1(N)において歯車1の中心軸X1周りの歯車1による速度ベクトルV1(N)の所定方向成分Vn1(N)と、当該被切削点P1(N)において歯切り工具2の中心軸X2周りの歯切り工具2による速度ベクトルV21(N)の所定方向成分Vn21(N)とが等しくなるような点を、歯切り工具2の切削点P21(N)としている。このようにして得られる切削点P21(N)により得られる歯切り工具2は、高精度に所望の形状に形成することができる。
ここで、上述した所定方向は、歯車1の歯側面の法線方向としている。このようにすることで、切削対象である歯車1の歯側面が、歯切り工具2によって確実に切削される状態となる。
また、個処理は、歯車1の歯側面における1つの被切削点P1(N)に対応する歯切り工具2のすくい面2bにおける1つの刃形状点を決定する処理としている。歯車1の切削は、歯切り工具2のすくい面2bによって行われる。そのため、歯切り工具2のすくい面2bの外形形状が最も重要である。そして、上記個処理により、歯切り工具2のすくい面2bの形状を決定することができる。従って、高精度な歯車1の切削が可能となる。
また、個処理は、歯車1による速度ベクトルV1(N)の所定方向成分Vn1(N)と歯切り工具2による速度ベクトルV21(N)の所定方向成分Vn21(N)とが等しくなる被切削点P1(N)であると共に、すくい面2bに一致する被切削点P1(N)を、歯切り工具2の刃形状点としている(図4BのステップS8、S9)。
つまり、個処理は、歯切り工具2のすくい面2bにより被切削点P1(N)が切削される状態であることを条件としている。そのため、確実に、歯切り工具2のすくい面2bの形状が得られる。
また、歯切り工具2による切削動作は、歯切り工具2の中心軸X2を歯車1の中心軸X1に対して傾斜した状態とするスカイビング加工としている。上記の歯切り工具2の設計方法は、スカイビング加工以外の加工に用いる歯切り工具2にも適用できる。しかし、スカイビング加工に用いる歯切り工具2は、非常に複雑な形状を有している。そのため、上記の設計方法を適用することで、スカイビング加工に用いる歯切り工具2を確実に形成することができる。
(7−2.歯切り工具2の設計方法)
本発明を、上述した歯切り工具2の設計方法として捉えた場合には、以下のようになる。すなわち、歯切り工具2の設計方法は、歯車1の歯側面における1つの被切削点P1(N)に対応する歯切り工具2における1つの刃形状点P21(N)を決定する個処理を実行し、歯車1の歯側面における複数の被切削点P1(N)に関して個処理を実行することにより、歯切り工具2の刃側面における複数の刃形状点P21(N)を取得し、複数の刃形状点P21(N)に応じた形状を歯切り工具2の刃2aの形状としている。当該設計方法により、所望の歯車1を切削することができる歯切り工具2を設計することができる。
(7−3.歯切り加工を行う工作機械10)
また、上述した歯切り工具2を備える工作機械10によれば、確実に所望の歯車1を切削できる。工作機械10は、マシニングセンタなどを適用できる。なお、マシニングセンタの軸構成は、種々の構成を適用できる。
(7−4.砥石車3)
また、上述した砥石車3は、周面に複数の刃2aを有する歯切り工具2を研削対象として、歯切り工具2における刃側面を研削すると共に円盤状に形成された砥石車3である。
この砥石車3による研削動作は、歯切り工具2を歯切り工具2の中心軸X2周りに回転させる場合に、砥石車3を砥石車3の中心軸X3周りに回転させ、砥石車3を歯切り工具2の中心軸X2方向に相対的に移動させると共に、砥石車3を歯切り工具2の回転接線方向である並進方向(M33)に移動させる動作である。
ここで、砥石車3の外周面は、歯切り工具2の刃側面における1つの被研削点P22(N)に対応する砥石車3における1つの外周形状点P3(N)を決定する個処理を実行すること、及び、歯切り工具2の刃側面における複数の被研削点P22(N)に関して個処理を実行することにより、砥石車3の外周面における複数の外周形状点P3(N)を取得することに基づいて、複数の外周形状点P3(N)に応じた形状となるように形成される。
そして、個処理は、歯切り工具2の研削後形状に基づいて刃側面に1つの被研削点P22(N)を決定し、砥石車3による研削動作条件に基づいて、被研削点P22(N)において歯切り工具2の中心軸X2周りの歯切り工具2による速度ベクトルV22(N)を算出し、砥石車3による研削動作条件に基づいて、被研削点P22(N)において砥石車3による並進方向(M33)の速度ベクトルV33(N)を算出し、歯切り工具2による速度ベクトルV22(N)の所定方向成分Vn22(N)と砥石車3による速度ベクトルV33(N)の所定方向成分Vn33(N)とが等しくなる場合の被研削点P22(N)を、砥石車3の外周形状点P3(N)とする処理である(図10A、図10BのステップS28、S29、S31)。
上記によれば、研削対象としての歯切り工具2の形状、及び、砥石車3と歯切り工具2との相対的な動作に基づいて、砥石車3を形成している。特に、研削対象としての歯切り工具2の刃側面に被研削点P22(N)を定義して、当該被研削点P22(N)において歯切り工具2の中心軸X2周りの歯切り工具2による速度ベクトルV22(N)の所定方向成分Vn22(N)と、当該被研削点P22(N)において砥石車3による並進方向(M33)の速度ベクトルV33(N)の所定方向成分Vn33(N)とが等しくなるような点を、砥石車3の研削点P3(N)としている。このようにして得られる研削点P3(N)により得られる砥石車3は、高精度に所望の形状に形成することができる。
ここで、所定方向は、歯切り工具2の刃2aの側逃げ面Sa(N)の法線方向としている。このようにすることで、研削対象である歯切り工具2の刃側面が、砥石車3によって確実に研削される状態となる。
また、個処理は、歯切り工具2による速度ベクトルV22(N)の所定方向成分Vn22(N)と砥石車3による速度ベクトルV33(N)の所定方向成分Vn33(N)とが等しくなる場合の被研削点P22(N)であると共に、砥石車3の中心軸X3周りの砥石車3の速度ベクトルV3(N)と被研削点P22(N)における側逃げ面Sa(N)とが平行となる被研削点P22(N)を、砥石車3の外周形状点P3(N)としている(図10BのステップS30、S31)。つまり、個処理は、砥石車3が、被研削点P22(N)以外の点を研削しないことを条件としている。そのため、確実に、砥石車3の所望形状が得られる。
また、砥石車3は、歯切り工具2の刃側面のうちすくい面2bとの稜線を研削する。従って、砥石車3による研削によって、歯切り工具2の刃側面のうちすくい面2bとの稜線が、確実に所望形状に形成できる。ひいては、歯車1を所望形状に形成できる。
また、歯切り工具2は、歯切り工具2の中心軸X2を歯切り工具2による切削対象である歯車1の中心軸X1に対して傾斜した状態で行うスカイビング加工に用いられる工具である。上記の砥石車3の設計方法は、スカイビング加工に用いる歯切り工具2の他に、スカイビング加工以外の加工に用いる歯切り工具2にも適用できる。しかし、上記の設計方法を適用することで、スカイビング加工に用いる歯切り工具2を確実に研削することができる。
(7−5.砥石車3の設計方法)
本発明を、上述した砥石車3の設計方法として捉えた場合には、以下のようになる。すなわち、砥石車3の設計方法は、歯切り工具2の刃側面における1つの被研削点P22(N)に対応する砥石車3における1つの外周形状点P3(N)を決定する個処理を実行し、歯切り工具2の刃側面における複数の被研削点P22(N)に関して個処理を実行することにより、砥石車3の外周面における複数の外周形状点P3(N)を取得し、複数の外周形状点P3(N)に応じた形状を砥石車3の外周面形状とする。当該設計方法により、所望の歯切り工具2を研削することができる砥石車3を設計することができる。
(7−6.刃面研削を行う工作機械20)
また、上述した砥石車3を備える工作機械20によれば、確実に所望の歯切り工具2を研削できる。工作機械20には、研削対象を支持する主軸ユニット21と、砥石車3を支持する砥石台22との交差角を調整することができる研削盤が適用される。
10,20:工作機械、 11:主軸ユニット、 12:回転テーブル、 21:主軸ユニット、 22:砥石台、 1:歯車、 1a:歯、 2:歯切り工具、 2a:刃、 2b:すくい面、 3:砥石車、 N1(N):歯車1の被切削点P1(N)における法線、 N2(N):歯切り工具2の刃2aの側逃げ面Sa(N)の法線、 P1(N):被切削点(歯切り工具の形状点)、 P21(N):切削点(歯切り工具2の刃形状点)、 P22(N):被研削点(歯切り工具2の形状点)、 P3(N):研削点(砥石車3の外周形状点)、 Sa(N):側逃げ面、 V1(N):歯車1の中心軸X1周り(θ1)の歯車1による速度ベクトル、 V21(N):歯切り工具2の中心軸X2周り(θ21)の歯切り工具2による速度ベクトル、 V22(N):歯切り工具2の中心軸X2周り(θ22)の歯切り工具2による速度ベクトル、 V3(N):砥石車3の中心軸X3周り(θ3)の砥石車3による速度ベクトル、 V33(N):砥石車3の並進方向の速度ベクトル、 Vn1(N):速度ベクトルV1(N)の法線方向成分、 Vn21(N):速度ベクトルV21(N)の法線方向成分、 Vn22(N):速度ベクトルV22(N)の法線方向成分、 Vn33(N):速度ベクトルV33(N)の法線方向成分、 X1:歯車1の中心軸、 X2:歯切り工具2の中心軸、 X3:砥石車3の中心軸

Claims (13)

  1. 周面に複数の歯を有する歯車を切削対象として、前記歯車における歯側面を切削すると共に周面に複数の刃を有する歯切り工具であって、
    前記歯切り工具による切削動作は、前記歯車を前記歯車の中心軸周りに回転させる場合に、前記歯切り工具を前記歯切り工具の中心軸周りに相対的に回転させると共に、前記歯切り工具を前記歯車の中心軸方向に相対的に移動させる動作であり、
    前記歯切り工具の各刃は、
    前記歯車の前記歯側面における1つの被切削点に対応する前記歯切り工具における1つの刃形状点を決定する個処理を実行すること、及び、
    前記歯車の前記歯側面における複数の被切削点に関して前記個処理を実行することにより、前記歯切り工具の前記刃側面における複数の刃形状点を取得すること、
    に基づいて、前記複数の刃形状点に応じた形状となるように形成され、
    前記個処理は、
    前記歯車の切削後形状に基づいて前記歯側面に前記1つの被切削点を決定し、
    前記歯切り工具による切削動作条件に基づいて、前記被切削点において前記歯車の中心軸周りの前記歯車による速度ベクトルを算出し、
    前記歯切り工具による切削動作条件に基づいて、前記被切削点において前記歯切り工具の中心軸周りの前記歯切り工具による速度ベクトルを算出し、
    前記歯車による前記速度ベクトルの所定方向成分と前記歯切り工具による前記速度ベクトルの前記所定方向成分とが等しくなる場合の前記被切削点を、前記歯切り工具の刃形状点とする処理である、歯切り工具。
  2. 前記所定方向は、前記歯車の歯側面の法線方向である、請求項1に記載の歯切り工具。
  3. 前記個処理は、前記歯車の前記歯側面における1つの被切削点に対応する前記歯切り工具のすくい面における1つの刃形状点を決定する処理である、請求項1又は2に記載の歯切り工具。
  4. 前記個処理は、
    前記歯車による前記速度ベクトルの所定方向成分と前記歯切り工具による前記速度ベクトルの前記所定方向成分とが等しくなる前記被切削点であると共に、前記すくい面に一致する前記被切削点を、前記歯切り工具の刃形状点とする、請求項3に記載の歯切り工具。
  5. 前記歯切り工具による切削動作は、前記歯切り工具の中心軸を前記歯車の中心軸に対して傾斜した状態とするスカイビング加工である、請求項1−4の何れか一項に記載の歯切り工具。
  6. 周面に複数の刃を有する歯切り工具を研削対象として、前記歯切り工具における刃側面を研削すると共に円盤状に形成された砥石車であって、
    前記砥石車による研削動作は、前記歯切り工具を前記歯切り工具の中心軸周りに回転させる場合に、前記砥石車を砥石車の中心軸周りに回転させ、前記砥石車を前記歯切り工具の中心軸方向に相対的に移動させると共に、前記砥石車を前記歯切り工具の回転接線方向である並進方向に移動させる動作であり、
    前記砥石車の外周面は、
    前記歯切り工具の前記刃側面における1つの被研削点に対応する前記砥石車における1つの外周形状点を決定する個処理を実行すること、及び、
    前記歯切り工具の前記刃側面における複数の被研削点に関して前記個処理を実行することにより、前記砥石車の外周面における複数の外周形状点を取得すること、
    に基づいて、前記複数の外周形状点に応じた形状となるように形成され、
    前記個処理は、
    前記歯切り工具の研削後形状に基づいて前記刃側面に前記1つの被研削点を決定し、
    前記砥石車による研削動作条件に基づいて、前記被研削点において前記歯切り工具の中心軸周りの前記歯切り工具による速度ベクトルを算出し、
    前記砥石車による研削動作条件に基づいて、前記被研削点において前記砥石車による並進方向の速度ベクトルを算出し、
    前記歯切り工具による前記速度ベクトルの所定方向成分と前記砥石車による前記速度ベクトルの前記所定方向成分とが等しくなる場合の前記被研削点を、前記砥石車の外周形状点とする処理である、砥石車。
  7. 前記所定方向は、前記歯切り工具の刃の側逃げ面の法線方向である、請求項6に記載の砥石車。
  8. 前記個処理は、
    前記歯切り工具による前記速度ベクトルの所定方向成分と前記砥石車による前記速度ベクトルの前記所定方向成分とが等しくなる場合の前記被研削点であると共に、前記砥石車の中心軸周りの前記砥石車の速度ベクトルと前記被研削点における側逃げ面とが平行となる前記被研削点を、前記砥石車の外周形状点とする処理である、請求項7に記載の砥石車。
  9. 前記砥石車は、前記歯切り工具の刃側面のうちすくい面との稜線を研削する、請求項6−8の何れか一項に記載の砥石車。
  10. 前記歯切り工具は、前記歯切り工具の中心軸を前記歯切り工具による切削対象である歯車の中心軸に対して傾斜した状態で行うスカイビング加工に用いられる工具である、請求項6−9の何れか一項に記載の歯切り工具。
  11. 請求項1−5の何れか一項に記載の歯切り工具の設計方法であって、
    前記歯車の前記歯側面における1つの被切削点に対応する前記歯切り工具における1つの刃形状点を決定する個処理を実行し、
    前記歯車の前記歯側面における複数の被切削点に関して前記個処理を実行することにより、前記歯切り工具の前記刃側面における複数の刃形状点を取得し、
    前記複数の刃形状点に応じた形状を前記歯切り工具の前記刃の形状とする、歯切り工具の設計方法。
  12. 請求項6−10の何れか一項に記載の砥石車の設計方法であって、
    前記歯切り工具の前記刃側面における1つの被研削点に対応する前記砥石車における1つの外周形状点を決定する個処理を実行し、
    前記歯切り工具の前記刃側面における複数の被研削点に関して前記個処理を実行することにより、前記砥石車の外周面における複数の外周形状点を取得し、
    前記複数の外周形状点に応じた形状を前記砥石車の外周面形状とする、砥石車の設計方法。
  13. 請求項1−5の何れか一項に記載の前記歯切り工具、又は、請求項6−10の何れか一項に記載の前記砥石車を備える、工作機械。
JP2016121486A 2016-06-20 2016-06-20 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械 Active JP6693290B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121486A JP6693290B2 (ja) 2016-06-20 2016-06-20 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121486A JP6693290B2 (ja) 2016-06-20 2016-06-20 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械

Publications (2)

Publication Number Publication Date
JP2017226020A JP2017226020A (ja) 2017-12-28
JP6693290B2 true JP6693290B2 (ja) 2020-05-13

Family

ID=60888912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121486A Active JP6693290B2 (ja) 2016-06-20 2016-06-20 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械

Country Status (1)

Country Link
JP (1) JP6693290B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596893A1 (de) * 2011-11-25 2013-05-29 Klingelnberg AG Semi-Completing-Wälzschälverfahren mit zwei Achskreuzwinkeln und Verwendung eines entsprechenden Wälzschälwerkzeugs zum Semi-Completing-Wälzschälen
JP6244677B2 (ja) * 2013-06-07 2017-12-13 株式会社ジェイテクト 歯車加工シミュレーション装置
DE102014008475B4 (de) * 2014-06-05 2023-02-23 Gleason-Pfauter Maschinenfabrik Gmbh Verfahren zum Bearbeiten eines Werkstücks, Werkzeuganordnung und Verzahnungsmaschine
JP6440452B2 (ja) * 2014-10-28 2018-12-19 トーヨーエイテック株式会社 歯車研削盤の加工精度修正方法

Also Published As

Publication number Publication date
JP2017226020A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6487435B2 (ja) 歯縁部を機械加工する方法、およびこの目的のために設計された機械加工ステーション
JP5700854B2 (ja) フェースギヤを製造するための方法及び工具
JP6730266B2 (ja) 多回転刃部を持ったアキシャルホブ
JP5650762B2 (ja) 正面歯車を製造する連続方法
KR102555094B1 (ko) 치형부를 기계가공하는 방법, 툴 장치 및 치성형 머신
JP5646623B2 (ja) 削り出しエルボとその製造方法
JP2018122425A (ja) 歯切り工具の加工装置、加工方法、工具形状シミュレーション装置及び工具形状シミュレーション方法
JP7046920B2 (ja) 工具形状の変更を伴わないパワースカイビングの圧力角補正
JP5661620B2 (ja) かさ歯車の製造
JP2017530016A (ja) 歯部を加工する方法及び加工用工具並びに工作機械
JP5222125B2 (ja) 内歯車加工用樽形ねじ状工具
US10207382B2 (en) Grinding machine and method for machining a workpiece
JP5473735B2 (ja) 内歯車研削用ねじ状砥石のドレッシング方法
JP6693290B2 (ja) 歯切り工具、砥石車、歯切り工具の設計方法、砥石車の設計方法及び工作機械
JP7304487B2 (ja) 歯車製造装置、歯車製造方法、及びそれに用いられるねじ状工具
RU2629419C1 (ru) Способ финишной обработки лопатки газотурбинного двигателя и устройство для его осуществления
JP6819099B2 (ja) 歯車加工方法
JP6699387B2 (ja) 砥石車及び研削盤
JP7024416B2 (ja) 歯車加工用工具研磨装置、歯車加工用工具研磨方法及び歯車加工用工具研磨装置を備える歯車加工装置
JP2020069623A (ja) 歯切り工具の加工装置及び加工方法
JP2021030337A (ja) 歯切り工具の研削方法、研削装置、並びに、砥石車形状及び研削条件決定装置
JP2005028556A (ja) 自由曲面加工方法
JP4608285B2 (ja) 回転切削工具を用いた切削方法
Frąckowiak et al. The development of gears technology used in rotary tables
JP5564583B2 (ja) ストレートシェービングカッターの修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150