JP6639939B2 - Polishing pad and method for manufacturing polishing pad - Google Patents

Polishing pad and method for manufacturing polishing pad Download PDF

Info

Publication number
JP6639939B2
JP6639939B2 JP2016024739A JP2016024739A JP6639939B2 JP 6639939 B2 JP6639939 B2 JP 6639939B2 JP 2016024739 A JP2016024739 A JP 2016024739A JP 2016024739 A JP2016024739 A JP 2016024739A JP 6639939 B2 JP6639939 B2 JP 6639939B2
Authority
JP
Japan
Prior art keywords
polymer
polishing pad
hydroxy group
polyurethane resin
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024739A
Other languages
Japanese (ja)
Other versions
JP2017141393A (en
Inventor
正敏 赤時
正敏 赤時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Nitta Haas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Haas Inc filed Critical Nitta Haas Inc
Priority to JP2016024739A priority Critical patent/JP6639939B2/en
Priority to PCT/JP2017/004579 priority patent/WO2017138564A1/en
Priority to TW106104240A priority patent/TWI722108B/en
Publication of JP2017141393A publication Critical patent/JP2017141393A/en
Application granted granted Critical
Publication of JP6639939B2 publication Critical patent/JP6639939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、高分子体、研磨パッド、および、高分子体の製造方法に関する。   The present invention relates to a polymer, a polishing pad, and a method for producing a polymer.

ポリウレタン樹脂を含む高分子体は、様々な用途に用いられている。
例えば、斯かる高分子体は、被研磨物(例えば、シリコンウェーハ等)を研磨する研磨パッド等として用いられている(例えば、特許文献1等)。
Polymers containing polyurethane resins are used for various applications.
For example, such a polymer is used as a polishing pad or the like for polishing an object to be polished (for example, a silicon wafer) (for example, Patent Document 1).

特開2015−6729号公報JP-A-2015-6729

前記研磨パッドを用いて被研磨物を研磨する方法としては、例えば、以下の方法がある。
まず、研磨機の上定盤の下面に円盤状の被研磨物を貼り付け、また、前記研磨機の下定盤の上面に円盤状の研磨パッドを貼り付ける。そして、前記上定盤及び前記下定盤によって、前記被研磨物を前記研磨パッドに押し付ける。次に、前記被研磨物を前記研磨パッドに押し付けた状態で、前記研磨パッド上に研磨用スラリーを供給しつつ、前記上定盤及び前記下定盤を回転させることにより、前記被研磨物を研磨する。
前記研磨用スラリーとしては、水と砥粒とを含有する研磨用スラリー等が用いられている。
Examples of a method for polishing an object to be polished using the polishing pad include the following methods.
First, a disk-shaped object to be polished is stuck on the lower surface of the upper platen of the polishing machine, and a disk-shaped polishing pad is stuck on the upper surface of the lower platen of the polishing machine. Then, the object to be polished is pressed against the polishing pad by the upper platen and the lower platen. Next, while the polishing object is pressed against the polishing pad, while supplying polishing slurry onto the polishing pad, the upper platen and the lower platen are rotated to polish the object. I do.
As the polishing slurry, a polishing slurry containing water and abrasive grains is used.

ところで、被研磨物を研磨する際に研磨パッドが硬いと被研磨物に傷が生じやすい。
近年、被研磨物に傷が生じ難い研磨方法が求められることがあり、このことから、硬度が低い研磨パッドも求められることがある。
By the way, when a polishing pad is hard when polishing an object to be polished, the object to be polished is easily damaged.
In recent years, there has been a demand for a polishing method that does not easily cause scratches on an object to be polished. Therefore, a polishing pad having a low hardness may be required.

しかし、硬度が低い研磨パッドは、取扱い性に欠けるといった問題がある。
例えば、円盤状の研磨パッドは通常直径が1000〜2500mm程度であるが、このような大きさの研磨パッドが軟らか過ぎると、運ぶ際に変形しやすく、その結果、研磨パッドを研磨機外から研磨機の定盤上の所定位置まで運び難いという問題がある。
また、研磨パッドの定盤への貼り付け方法は、通常、以下の方法である。すなわち、両面テープの一面側を研磨パッドに貼り付け、その後、研磨パッドに貼り付いた両面テープの他面側を定盤に貼り付けることにより、研磨パッドを定盤に貼り付ける。しかし、研磨パッドは、軟らか過ぎるとハンドリング性が低いので、研磨パッドに貼り付いた両面テープの他面側が、所望の位置からずれた位置で定盤に貼り付いてしまうという問題もある。
However, there is a problem that the polishing pad having low hardness lacks handleability.
For example, a disk-shaped polishing pad usually has a diameter of about 1000 to 2500 mm. However, if the polishing pad of such a size is too soft, it tends to be deformed when it is transported. There is a problem that it is difficult to carry to a predetermined position on the surface plate of the machine.
The method of attaching the polishing pad to the surface plate is usually the following method. That is, one side of the double-sided tape is attached to the polishing pad, and then the other side of the double-sided tape attached to the polishing pad is attached to the surface plate, whereby the polishing pad is attached to the surface plate. However, if the polishing pad is too soft, the handling property is low, and there is also a problem that the other side of the double-sided tape attached to the polishing pad is attached to the surface plate at a position shifted from a desired position.

また、研磨パッドの作製方法は、通常、研磨パッドとしての所望の大きさよりも大きな高分子体を一旦作製し、その後、この高分子体をスライスすることにより研磨パッドを作製する方法となっているが、高分子体は軟らか過ぎるとスライスし難いという問題を有する。   In addition, a method for manufacturing a polishing pad is generally a method of once manufacturing a polymer larger than a desired size as a polishing pad, and then manufacturing a polishing pad by slicing the polymer. However, there is a problem that it is difficult to slice the polymer if it is too soft.

このような問題に着目し、本発明者が鋭意検討したところ、硬度が低い研磨パッドが要望されるのは被研磨物を研磨するときで、硬度が高い研磨パッドが要望されるのはそれ以外のときであることを見出した。   Focusing on such a problem, the present inventor has studied diligently, and found that a polishing pad having a low hardness is required when polishing an object to be polished, and a polishing pad having a high hardness is required otherwise. Time.

すなわち、本発明者が鋭意検討したところ、特定の状況下において硬度が低くなる高分子体を提供することで、研磨パッドなどに適した高分子体が提供できることを見出した。   That is, the inventor of the present invention has made extensive studies and found that by providing a polymer having a low hardness under a specific situation, a polymer suitable for a polishing pad or the like can be provided.

そこで、本発明は、上記要望点に鑑み、特定の状況下において硬度が低くなる高分子体を提供するとともに、該高分子体を備える研磨パッド、及び、該高分子体を作製する高分子体の製造方法を提供することを課題とする。   In view of the above-mentioned demands, the present invention provides a polymer having a low hardness in a specific situation, a polishing pad including the polymer, and a polymer for producing the polymer. It is an object of the present invention to provide a method for manufacturing the same.

本発明に係る高分子体は、ポリウレタン樹脂を含む高分子体であり、
前記ポリウレタン樹脂は、ヒドロキシ基を含む化合物に由来する第1の構成単位と、イソシアネート基を含む化合物に由来する第2の構成単位とを備え、
前記第1の構成単位の1つ以上が、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方に由来する。
The polymer according to the present invention is a polymer containing a polyurethane resin,
The polyurethane resin includes a first constituent unit derived from a compound containing a hydroxy group, and a second constituent unit derived from a compound containing an isocyanate group,
At least one of the first structural units is derived from at least one of an organic cation containing a hydroxy group and an organic anion containing a hydroxy group.

斯かる高分子体に係るポリウレタン樹脂は、カチオン及びアニオンの少なくとも一方を有する化学構造となっており、その結果、液状の極性物質(水等)との親和性に優れた化学構造となっている。よって、このポリウレタン樹脂が液状の極性物質と接触することにより、ポリウレタン樹脂のポリマー分子間に極性分子(HO分子等)が入り込みやすくなる。その結果、このポリウレタン樹脂は、液状の極性物質と接触した状態では液状の極性物質と接触していない状態に比べて硬度が低いものとなる。
従って、斯かる高分子体は、液状の極性物質と接触した状態では液状の極性物質と接触していない状態に比べて硬度が低い高分子体となっている。
すなわち、斯かる高分子体は、特定の状況下において硬度が低くなる高分子体となっている。
The polyurethane resin according to such a polymer has a chemical structure having at least one of a cation and an anion, and as a result, has a chemical structure excellent in affinity with a liquid polar substance (such as water). . Therefore, when the polyurethane resin comes into contact with the liquid polar substance, polar molecules (such as H 2 O molecules) easily enter between the polymer molecules of the polyurethane resin. As a result, the polyurethane resin has a lower hardness when in contact with the liquid polar substance than when not in contact with the liquid polar substance.
Therefore, such a polymer is a polymer having a lower hardness when in contact with the liquid polar substance than when not in contact with the liquid polar substance.
That is, such a polymer is a polymer whose hardness is reduced under a specific situation.

また、本発明に係る高分子体では、好ましくは、前記第1の構成単位の1つ以上が、ヒドロキシ基を含む有機カチオンに由来する。
さらに、該有機カチオン由来の構成単位は、好ましくは、イオン液体に由来する。
In the polymer according to the present invention, preferably, at least one of the first structural units is derived from an organic cation containing a hydroxy group.
Further, the constituent unit derived from the organic cation is preferably derived from an ionic liquid.

さらに、本発明に係る高分子体では、好ましくは、前記ポリウレタン樹脂は、架橋構造を有している。   Further, in the polymer according to the present invention, preferably, the polyurethane resin has a crosslinked structure.

斯かる高分子体は、前記ポリウレタン樹脂が架橋構造を有しているので、液状の極性物質(水等)と接触した際にこの液状の極性物質によって膨張するのを抑制でき、その結果、この液状の極性物質との接触による変形を抑制できるという利点を有する。   In such a polymer, since the polyurethane resin has a crosslinked structure, it can be prevented from expanding due to the liquid polar substance when it comes into contact with the liquid polar substance (such as water). There is an advantage that deformation due to contact with a liquid polar substance can be suppressed.

また、本発明に係る高分子体では、好ましくは、前記ポリウレタン樹脂を含むポリウレタン樹脂発泡体である。   Further, the polymer according to the present invention is preferably a polyurethane resin foam containing the polyurethane resin.

さらに、本発明に係る高分子体は、好ましくは、研磨パッド用であり、該研磨パッドにおける少なくとも研磨面を構成する部分として用いられる。   Further, the polymer according to the present invention is preferably used for a polishing pad, and is used as at least a portion constituting a polishing surface in the polishing pad.

また、本発明に係る研磨パッドは、前記高分子体を備える。   Further, a polishing pad according to the present invention includes the polymer.

さらに、本発明に係る高分子体の製造方法は、ポリウレタン樹脂を含む高分子体を得る、高分子体の製造方法であって、
ヒドロキシ基を含む化合物と、イソシアネート基を含む化合物とを結合させることにより前記高分子体を得、
前記ヒドロキシ基を含む化合物が、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方を有する。
Further, the method for producing a polymer according to the present invention is a method for producing a polymer, comprising obtaining a polymer containing a polyurethane resin,
A compound containing a hydroxy group and a compound containing an isocyanate group are combined to obtain the polymer,
The hydroxy group-containing compound has at least one of a hydroxy group-containing organic cation and a hydroxy group-containing organic anion.

また、本発明に係る高分子体の製造方法では、好ましくは、前記ヒドロキシ基を含む化合物が、ヒドロキシ基を含む有機カチオンを有し、
前記有機カチオンがイオン液体に由来し、
前記結合を、前記イオン液体の融点以上の温度で行う。
In the method for producing a polymer according to the present invention, preferably, the compound containing a hydroxy group has an organic cation containing a hydroxy group,
The organic cation is derived from an ionic liquid,
The bonding is performed at a temperature equal to or higher than the melting point of the ionic liquid.

斯かる高分子体の製造方法では、前記結合を、前記イオン液体の融点以上の温度で行うので、前記結合前に前記イオン液体と他の材料とを均一に混合させやすくなり、均一性に優れた高分子体を得ることができるという利点がある。   In such a method for producing a polymer, the bonding is performed at a temperature equal to or higher than the melting point of the ionic liquid, so that the ionic liquid and another material are easily mixed uniformly before the bonding, and the uniformity is excellent. There is an advantage that a high polymer can be obtained.

以上のように、本発明によれば、特定の状況下において硬度が低くなる高分子体を提供するとともに、該高分子体を備える研磨パッド、及び、該高分子体を作製する高分子体の製造方法を提供し得る。   As described above, according to the present invention, while providing a polymer having a low hardness under a specific situation, a polishing pad including the polymer, and a polymer for producing the polymer A manufacturing method may be provided.

実施例2の高分子体の断面のSEM写真。6 is an SEM photograph of a cross section of the polymer of Example 2. 比較例2の高分子体の断面のSEM写真。9 is an SEM photograph of a cross section of the polymer of Comparative Example 2. 実施例3の高分子体の断面のSEM写真。9 is an SEM photograph of a cross section of the polymer of Example 3.

以下、発明の一実施形態について説明する。   Hereinafter, an embodiment of the invention will be described.

まず、本実施形態に係る高分子体について、ポリウレタン樹脂を含むポリウレタン樹脂発泡体である研磨パッド用高分子体を例にして説明する。   First, a polymer according to the present embodiment will be described by taking a polymer for a polishing pad which is a polyurethane resin foam containing a polyurethane resin as an example.

本実施形態に係る高分子体は、前記研磨パッドにおける少なくとも研磨面を構成する部分として用いられる。   The polymer according to the present embodiment is used as at least a portion constituting a polishing surface of the polishing pad.

本実施形態に係る高分子体は、ポリウレタン樹脂を含む高分子体である。   The polymer according to the present embodiment is a polymer containing a polyurethane resin.

前記ポリウレタン樹脂は、ヒドロキシ基を含む化合物(以下、「ヒドロキシ化合物」ともいう。)に由来する第1の構成単位と、イソシアネート基を含む化合物(以下、「イソシアネート化合物」ともいう。)に由来する第2の構成単位とを備える。
前記第1の構成単位の1つ以上は、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方に由来する。
The polyurethane resin is derived from a first structural unit derived from a compound containing a hydroxy group (hereinafter also referred to as “hydroxy compound”) and a compound containing an isocyanate group (hereinafter also referred to as “isocyanate compound”). A second structural unit.
At least one of the first structural units is derived from at least one of an organic cation containing a hydroxy group and an organic anion containing a hydroxy group.

前記ポリウレタン樹脂は、ヒドロキシ化合物たるポリオールと、イソシアネート化合物たるポリイソシアネートとを結合させた樹脂である。   The polyurethane resin is a resin in which a polyol as a hydroxy compound and a polyisocyanate as an isocyanate compound are bonded.

前記有機カチオンは、イソシアネート化合物のイソシアネート基にヒドロキシ基を反応させることでポリウレタン樹脂の分子中に取り込まれる。
前記有機カチオンは、モノオールであってもポリオールであってもよい。即ち、有機カチオンで形成される構成単位は、ポリウレタン樹脂の分子の末端に存在してもよく、また、末端よりも内部に存在してもよい。
The organic cation is incorporated into the molecule of the polyurethane resin by reacting a hydroxyl group with an isocyanate group of the isocyanate compound.
The organic cation may be a monol or a polyol. That is, the constituent unit formed by the organic cation may be present at the terminal of the molecule of the polyurethane resin, or may be present inside the terminal rather than at the terminal.

前記第1の構成単位の1つ以上は、ヒドロキシ基を含む有機カチオンに由来することが好ましい。
前記有機カチオン由来の構成単位は、イオン液体に由来することが好ましい。
前記イオン液体の融点は、150℃以下が好ましく、100℃以下がより好ましい。
なお、イオン液体の融点は、例えば、示差走査熱量計装置(DSC)を用いて求めることができる。より具体的には、予測される融点よりも30℃以上低い温度から30℃以上高い温度まで窒素ガスを流しながら5℃/minの昇温速度で試料(イオン液体)を昇温させた際に得られるDSC曲線から求めることができる。
前記イオン液体は、ヒドロキシ基を2つ以上有するカチオンを備えることが好ましい。前記イオン液体がヒドロキシ基を2つ以上有するカチオンを備えることにより、得られるポリマー内にカチオンによる電荷をより多く帯びさせることができる。その結果、液状の極性物質(水等)との親和性をより一層高めることができ、液状の極性物質と接触した状態と、液状の極性物質と接触していない状態との硬度差をより一層大きくすることができるという利点がある。
ヒドロキシ基を2つ以上有するカチオンを備えるイオン液体としては、例えば、下記式(1)〜(3)のイオン液体が挙げられる。
また、ヒドロキシ基を1つのみ有するカチオンを備えるイオン液体としては、例えば、下記式(4)、(5)のイオン液体が挙げられる。
イオン液体としては、分子内に多くの電荷を付与できるという観点から、ヒドロキシ基を2つ以上有するカチオンを備えるイオン液体が好ましい。
One or more of the first structural units is preferably derived from an organic cation containing a hydroxy group.
The constituent unit derived from the organic cation is preferably derived from an ionic liquid.
The melting point of the ionic liquid is preferably 150 ° C. or lower, more preferably 100 ° C. or lower.
The melting point of the ionic liquid can be determined using, for example, a differential scanning calorimeter (DSC). More specifically, when the sample (ionic liquid) is heated at a rate of 5 ° C./min while flowing a nitrogen gas from a temperature lower than 30 ° C. higher than the expected melting point to a temperature higher than 30 ° C. It can be determined from the obtained DSC curve.
The ionic liquid preferably includes a cation having two or more hydroxy groups. When the ionic liquid includes a cation having two or more hydroxy groups, the resulting polymer can be more charged by the cation. As a result, the affinity with a liquid polar substance (such as water) can be further increased, and the hardness difference between a state in contact with the liquid polar substance and a state not in contact with the liquid polar substance can be further increased. There is an advantage that it can be increased.
Examples of the ionic liquid having a cation having two or more hydroxy groups include ionic liquids represented by the following formulas (1) to (3).
Examples of the ionic liquid including a cation having only one hydroxy group include ionic liquids represented by the following formulas (4) and (5).
As the ionic liquid, an ionic liquid including a cation having two or more hydroxy groups is preferable from the viewpoint that a large amount of charges can be imparted to the molecule.

前記有機アニオンは、イソシアネート化合物のイソシアネート基にヒドロキシ基を反応させることでポリウレタン樹脂の分子中に取り込まれる。
前記有機アニオンは、モノオールであってもポリオールであってもよい。即ち、有機アニオンで形成される構成単位は、ポリウレタン樹脂の分子の末端に存在してもよく、また、末端よりも内部に存在してもよい。
The organic anion is taken into the molecule of the polyurethane resin by reacting a hydroxy group with an isocyanate group of the isocyanate compound.
The organic anion may be a monol or a polyol. That is, the constituent unit formed by the organic anion may be present at the terminal of the molecule of the polyurethane resin, or may be present inside the terminal.

前記有機アニオンは、2,2−ビス(ヒドロキシメチル)酪酸(DMBA)(下記式(6)の化合物)等に由来する。なお、DMBAは、「COOH基」が「COO」と「H」に解離することができる。 The organic anion is derived from 2,2-bis (hydroxymethyl) butyric acid (DMBA) (compound of the following formula (6)) and the like. In DMBA, the “COOH group” can be dissociated into “COO ” and “H + ”.

前記ポリオールは、ポリオールモノマーや、ポリオールプレポリマーが挙げられる。   Examples of the polyol include a polyol monomer and a polyol prepolymer.

該ポリオールモノマーとしては、例えば、1,4−ベンゼンジメタノール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、エチレングリコール、プロピレングリコール1,3−プロパンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、分子量400以下のポリエチレングリコール、1,8−オクタンジオール、1,9−ノナンジオール等の直鎖脂肪族グリコールが挙げられ、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−メチル−1,8−オクタンジオール等の分岐脂肪族グリコールが挙げられ、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、水添加ビスフェノールA等の脂環族ジオールが挙げられ、グリセリン、トリメチロールプロパン、トリブチロールプロパン、ペンタエリスリトール、ソルビトール等の多官能ポリオールなどが挙げられる。   Examples of the polyol monomer include 1,4-benzenedimethanol, 1,4-bis (2-hydroxyethoxy) benzene, ethylene glycol, propylene glycol 1,3-propanediol, 1,3-butanediol, 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol having a molecular weight of 400 or less, 1, Examples thereof include linear aliphatic glycols such as 8-octanediol and 1,9-nonanediol, and neopentyl glycol, 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, Butyl-2-ethyl Examples include branched aliphatic glycols such as 1,3-propanediol and 2-methyl-1,8-octanediol, and alicyclic rings such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and water-added bisphenol A. Group diols, and polyfunctional polyols such as glycerin, trimethylolpropane, tributyrolpropane, pentaerythritol and sorbitol.

前記ポリオールモノマーとしては、反応時の強度がより高くなりやすく、製造された発泡ポリウレタンを含む研磨パッドの剛性がより高くなりやすく、比較的安価であるという点で、エチレングリコール、ジエチレングリコールが好ましい。   Ethylene glycol and diethylene glycol are preferred as the polyol monomer in that the strength during the reaction tends to be higher, the rigidity of the polishing pad containing the produced foamed polyurethane tends to be higher, and the cost is relatively low.

前記ポリオールプレポリマーとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリエステルポリカーボネートポリオールおよびポリカーボネートポリオールなどが挙げられる。なお、ポリオールプレポリマーとしては、ヒドロキシ基を分子中に3以上有する多官能ポリオールプレポリマーも挙げられる。   Examples of the polyol prepolymer include polyether polyol, polyester polyol, polyester polycarbonate polyol, and polycarbonate polyol. In addition, as a polyol prepolymer, a polyfunctional polyol prepolymer having three or more hydroxy groups in a molecule is also exemplified.

詳しくは、前記ポリエーテルポリオールとしては、ポリテトラメチレングリコ−ル(PTMG)、ポリプロピレングリコール(PPG)、ポリエチレングリコール(PEG)、エチレンオキサイド付加ポリプロピレンポリオールなどが挙げられる。   More specifically, examples of the polyether polyol include polytetramethylene glycol (PTMG), polypropylene glycol (PPG), polyethylene glycol (PEG), and a polypropylene polyol with ethylene oxide.

前記ポリエステルポリオールとしては、ポリブチレンアジペート、ポリヘキサメチレンアジペートおよびポリカプロラクトンポリオールなどが挙げられる。   Examples of the polyester polyol include polybutylene adipate, polyhexamethylene adipate, and polycaprolactone polyol.

前記ポリエステルポリカーボネートポリオ−ルとしては、ポリカプロラクトンポリオールなどのポリエステルグリコールとアルキレンカーボネートとの反応生成物、エチレンカーボネートを多価アルコールと反応させて得られた反応混合物をさらに有機ジカルボン酸と反応させた反応生成物などが挙げられる。   As the polyester polycarbonate polyol, a reaction product of a reaction product of a polyester glycol such as polycaprolactone polyol and an alkylene carbonate, and a reaction mixture obtained by reacting ethylene carbonate with a polyhydric alcohol, is further reacted with an organic dicarboxylic acid. Products and the like.

前記ポリカーボネートポリオールとしては、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールなどのジオールと、ホスゲン、ジアリルカーボネート(例えばジフェニルカーボネート)又は環式カーボネート(例えばプロピレンカーボネート)との反応生成物などが挙げられる。   Examples of the polycarbonate polyol include diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and phosgene and diallyl carbonate ( Examples thereof include a reaction product with diphenyl carbonate) or a cyclic carbonate (eg, propylene carbonate).

前記ポリオールプレポリマーとしては、弾性のある発泡ポリウレタンが得られやすいという点で、数平均分子量が800〜8000であるものが好ましく、具体的には、ポリテトラメチレングリコ−ル(PTMG)、エチレンオキサイド付加ポリプロピレンポリオールが好ましい。   As the polyol prepolymer, those having a number average molecular weight of from 800 to 8000 are preferred from the viewpoint that an elastic foamed polyurethane is easily obtained, and specifically, polytetramethylene glycol (PTMG), ethylene oxide Addition polypropylene polyols are preferred.

前記ポリイソシアネートとしては、ポリイソシアネート、ポリイソシアネートプレポリマーが挙げられる。   Examples of the polyisocyanate include a polyisocyanate and a polyisocyanate prepolymer.

前記ポリイソシアネートとしては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが挙げられる。   Examples of the polyisocyanate include an aromatic diisocyanate, an aliphatic diisocyanate, and an alicyclic diisocyanate.

前記芳香族ジイソシアネートとしては、アニリンとホルムアルデヒドを縮合して得られるアミン混合物を不活性溶媒中でホスゲンと反応させることなどにより得られる粗ジフェニルメタンジイソシアネート(粗MDI)、該粗MDIを精製して得られるジフェニルメタンジイソシアネート(ピュアMDI)、ポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)、及びこれらの変性物などを用いることができ、また、トリレンジイソシアネート(TDI)、1,5−ナフタレンジイソシアネート、キシリレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート等を用いることができる。なお、これらの芳香族ジイソシアネートは、単独物で、又は複数を組み合わせて用いることができる。   Examples of the aromatic diisocyanate include crude diphenylmethane diisocyanate (crude MDI) obtained by reacting an amine mixture obtained by condensing aniline and formaldehyde with phosgene in an inert solvent, and obtained by purifying the crude MDI. Diphenylmethane diisocyanate (pure MDI), polymethylene polyphenylene polyisocyanate (polymeric MDI), and modified products thereof can be used. Tolylene diisocyanate (TDI), 1,5-naphthalene diisocyanate, xylylene diisocyanate, , 3-phenylene diisocyanate, 1,4-phenylene diisocyanate and the like can be used. In addition, these aromatic diisocyanates can be used alone or in combination of two or more.

ジフェニルメタンジイソシアネートの変性物としては、例えば、カルボジイミド変性物、ウレタン変性物、アロファネート変性物、ウレア変性物、ビューレット変性物、イソシアヌレート変性物、オキサゾリドン変性物等が挙げられる。斯かる変性物としては、具体的には、例えば、カルボジイミド変性ジフェニルメタンジイソシアネート(カルボジイミド変性MDI)が挙げられる。   Examples of the modified diphenylmethane diisocyanate include carbodiimide modified, urethane modified, allophanate modified, urea modified, buret modified, isocyanurate modified, oxazolidone modified and the like. Specific examples of such a modified product include carbodiimide-modified diphenylmethane diisocyanate (carbodiimide-modified MDI).

前記脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネートなどが用いられる。   Examples of the aliphatic diisocyanate include ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.

前記脂環族ジイソシアネートとしては、例えば、1,4−シクロヘキサンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、メチレンビス(4,1−シクロヘキシレン)=ジイソシアネートなどが用いられる。   Examples of the alicyclic diisocyanate include 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, and methylene bis (4,1-cyclohexylene) diisocyanate.

前記ポリイソシアネートプレポリマーとしては、ポリオールと、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートの少なくとも何れかのジイソシアネートが結合されてなるプレポリマー等が挙げられる。   Examples of the polyisocyanate prepolymer include a prepolymer in which a polyol is combined with at least one of aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate.

前記ポリイソシアネートとしては、その蒸気圧がより低く揮発しにくいことから、作業環境を制御しやすいという点で、ジフェニルメタンジイソシアネート(ピュアMDI)、ポリメリックMDI、又はその変性物が好ましい。また、粘度がより低く、取り扱いが容易であるという点で、カルボジイミド変性MDI、ポリメリックMDI、又はこれらとMDIとの混合物が好ましい。   As the polyisocyanate, diphenylmethane diisocyanate (pure MDI), polymeric MDI, or a modified product thereof is preferable in that the working environment is easy to control because the vapor pressure is lower and volatilization is less likely. In addition, carbodiimide-modified MDI, polymeric MDI, or a mixture of these with MDI is preferable in terms of lower viscosity and easy handling.

前記ポリウレタン樹脂は、架橋構造を有していることが好ましい。
前記架橋構造は、イソシアネート基及びヒドロキシ基の少なくとも一方の官能基を有し、且つ、イソシアネート基とヒドロキシ基とを合計3つ以上有する多官能化合物に由来することが好ましい。
該多官能化合物としては、例えば、下記式(7)の化合物などが挙げられる。ここで、「下記式(7)」の「R」は、「(C2n)」(nは、正の整数である。例えば、n=1〜10)が挙げられる。
下記式(7)の化合物としては、1,6−ヘキサメチレンジイソシアネートのイソシアヌレート体(R=C12)が挙げられる。
また、前記多官能化合物は、イオン液体たる上記式(1)の化合物であってもよい。
The polyurethane resin preferably has a crosslinked structure.
It is preferable that the crosslinked structure is derived from a polyfunctional compound having at least one functional group of an isocyanate group and a hydroxy group, and having a total of three or more isocyanate groups and hydroxy groups.
Examples of the polyfunctional compound include a compound represented by the following formula (7). Here, “R” in “Formula (7) below” is “(C n H 2n )” (n is a positive integer; for example, n = 1 to 10).
Examples of the compound of the following formula (7) include an isocyanurate form of 1,6-hexamethylene diisocyanate (R = C 6 H 12 ).
Further, the polyfunctional compound may be a compound of the above formula (1) which is an ionic liquid.

前記ポリウレタン樹脂における前記架橋濃度は、0.06〜0.80mmol/gであることが好ましい。
なお、架橋濃度は、ポリウレタン樹脂1gにおける架橋点の量をモル単位で表したものである。
The crosslinking concentration in the polyurethane resin is preferably 0.06 to 0.80 mmol / g.
In addition, the crosslinking concentration represents the amount of crosslinking points in 1 g of the polyurethane resin in a molar unit.

本実施形態に係る高分子体は、上記の如く構成されてなるが、次に、本実施形態に係る高分子体の製造方法について説明する。   The polymer according to the present embodiment is configured as described above. Next, a method for producing the polymer according to the present embodiment will be described.

本実施形態に係る高分子体の製造方法では、ポリウレタン樹脂を有する高分子体を得る。
また、本実施形態に係る高分子体の製造方法では、ヒドロキシ基を含む化合物と、イソシアネート基を含む化合物とを結合させることにより、前記高分子体を得る。
本実施形態に係る高分子体の製造方法では、具体的には、ヒドロキシ基を含む化合物と、イソシアネート基を含む化合物と、発泡剤とを混合して混合物を得、該混合物を重合発泡させることにより、高分子体を得る。
前記ヒドロキシ基を含む化合物は、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方を有する。
In the method for producing a polymer according to the present embodiment, a polymer having a polyurethane resin is obtained.
In the method for producing a polymer according to the present embodiment, the polymer is obtained by bonding a compound having a hydroxy group and a compound having an isocyanate group.
In the method for producing a polymer according to the present embodiment, specifically, a compound containing a hydroxy group, a compound containing an isocyanate group, and a blowing agent are mixed to obtain a mixture, and the mixture is polymerized and foamed. As a result, a polymer is obtained.
The compound containing a hydroxy group has at least one of an organic cation containing a hydroxy group and an organic anion containing a hydroxy group.

本実施形態に係る高分子体の製造方法では、好ましくは、前記ヒドロキシ基を含む化合物が、ヒドロキシ基を含む有機カチオンを有し、前記有機カチオンがイオン液体由来であり、前記結合を、前記イオン液体の融点以上の温度で行う。   In the method for producing a polymer according to the present embodiment, preferably, the compound containing a hydroxy group has an organic cation containing a hydroxy group, the organic cation is derived from an ionic liquid, Perform at a temperature above the melting point of the liquid.

前記発泡剤としては、前記発泡ポリウレタンが成形される際に、気体を発生させて気泡となり、前記発泡ポリウレタン中に気泡を形成させるものであれば特に限定されるものではなく、例えば、加熱により分解してガスを発生させる有機化学発泡剤、沸点が−5〜70℃の低沸点炭化水素、ハロゲン化炭化水素、水、液化炭酸ガスなどを単独でまたは組み合わせて用いることができる。   The foaming agent is not particularly limited as long as it generates gas when the foamed polyurethane is molded and becomes a bubble, and forms a bubble in the foamed polyurethane. An organic chemical foaming agent that generates a gas by heating, a low-boiling hydrocarbon having a boiling point of −5 to 70 ° C., a halogenated hydrocarbon, water, liquefied carbon dioxide, or the like can be used alone or in combination.

前記有機化学発泡剤としては、例えば、アゾ系化合物(アゾジカルボンアミド、アゾビスイソブチロニトリル、ジアゾアミノベンゼン、アゾジカルボン酸バリウム等)、ニトロソ化合物(N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジニトロソ−N,N’−ジメチルテレフタルアミド等)、スルホニルヒドラジド化合物〔p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、p−トルエンスルホニルヒドラジド等〕等が挙げられる。
前記低沸点炭化水素としては、例えば、ブタン、ペンタン、シクロペンタン、及びこれらの混合物などが挙げられる。
前記ハロゲン化炭化水素としては、塩化メチレン、HFC(ハイドロフルオロカーボン類)等が挙げられる。
Examples of the organic chemical blowing agent include azo compounds (azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, barium azodicarboxylate, etc.), nitroso compounds (N, N′-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylterephthalamide, etc.) and sulfonyl hydrazide compounds [p, p'-oxybis (benzenesulfonyl hydrazide), p-toluenesulfonyl hydrazide, etc.].
Examples of the low-boiling hydrocarbon include butane, pentane, cyclopentane, and mixtures thereof.
Examples of the halogenated hydrocarbon include methylene chloride and HFC (hydrofluorocarbons).

また、前記発泡剤は、加熱膨張性微小球状体であってもよい。該加熱膨張性微小球状体の粒径は、例えば、20〜30μmである。該加熱膨張性微小球状体は、熱可塑性樹脂で形成された中空体と、中空体の中空部分に設けられた液状の炭化水素とを備える。前記加熱膨張性微小球状体としては、例えば、日本フィライト社製のExpancel(登録商標)や、松本油脂製薬社製の熱膨張性マイクロカプセルなどが挙げられる。   Further, the foaming agent may be a heat-expandable microsphere. The particle diameter of the heat-expandable microspheres is, for example, 20 to 30 μm. The heat-expandable microspheres include a hollow body formed of a thermoplastic resin, and a liquid hydrocarbon provided in a hollow portion of the hollow body. Examples of the heat-expandable microspheres include Expancel (registered trademark) manufactured by Nippon Philite Co., Ltd., and heat-expandable microcapsules manufactured by Matsumoto Yushi Seiyaku Co., Ltd.

発泡ポリウレタン樹脂を作製する際に発泡剤として水を用いる場合には、前記イオン性化合物によって水が混合物中で分散しやすくなるので、発泡ポリウレタン樹脂の気泡が微細なものとなりやすくなるという利点がある。言いかえれば、発泡ポリウレタン樹脂に粗大気泡が生じ難くなるという利点がある。その結果、被研磨物に傷が生じ難くなるという利点がある。   When water is used as a foaming agent when producing a foamed polyurethane resin, since the water is easily dispersed in the mixture by the ionic compound, there is an advantage that bubbles of the foamed polyurethane resin are easily made fine. . In other words, there is an advantage that coarse bubbles are hardly generated in the foamed polyurethane resin. As a result, there is an advantage that the object to be polished is hardly damaged.

本実施形態に係る研磨パッドは、本実施形態に係る高分子体を備える。   The polishing pad according to the embodiment includes the polymer according to the embodiment.

なお、本発明に係る高分子体、研磨パッド、および、高分子体の製造方法は、上記実施形態に限定されるものではない。また、本発明に係る高分子体、研磨パッド、および、高分子体の製造方法は、上記した作用効果に限定されるものでもない。本発明に係る高分子体、研磨パッド、および、高分子体の製造方法は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   Note that the polymer, the polishing pad, and the method for producing the polymer according to the present invention are not limited to the above embodiment. Further, the polymer, the polishing pad, and the method for producing the polymer according to the present invention are not limited to the above-described effects. The polymer, the polishing pad, and the method for producing the polymer according to the present invention can be variously modified without departing from the gist of the present invention.

すなわち、本実施形態に係る高分子体は、前記混合物に発泡剤を含有させて形成されてなるが、撹拌により前記混合物に空気を混入させて形成されてもよい。   That is, the polymer according to the present embodiment is formed by adding a foaming agent to the mixture, but may be formed by mixing air into the mixture by stirring.

また、本実施形態に係る高分子体は、ポリウレタン樹脂発泡体であるが、本発明に係る高分子体は、不織布にポリウレタン樹脂が含浸された高分子体であってもよい。
さらに、本発明に係る高分子体のポリウレタン樹脂は、前記混合物に微小中空体を含有させて形成されてもよい。
Further, the polymer according to the present embodiment is a polyurethane resin foam, but the polymer according to the present invention may be a polymer obtained by impregnating a nonwoven fabric with a polyurethane resin.
Further, the high molecular weight polyurethane resin according to the present invention may be formed by adding a minute hollow body to the mixture.

また、本実施形態に係る高分子体は、研磨パッド用の高分子体であるが、本発明に係る高分子体は、他の用途に用いられてもよく、例えば、化粧品の材料、事務用スポンジ、洗浄用スポンジ、樹脂改質用のフィラー等として用いてもよい。   Further, the polymer according to the present embodiment is a polymer for a polishing pad, but the polymer according to the present invention may be used for other purposes, for example, a material for cosmetics, It may be used as a sponge, a cleaning sponge, a filler for resin modification, and the like.

次に、実施例及び比較例を挙げて本発明についてさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
トリレンジイソシアネート(TDI)、ポリプロピレングリコール(PPG)、及び、ジエチレングリコール(DEG)を反応させることで得られるウレタンプレポリマーと、ヘキサメチレンジイソシアネートの三量体とを混合することにより主剤を作製した。また、下記式(1)のイオン液体と、1,4−ベンゼンジメタノールと、1,4−ビス(2−ヒドロキシエトキシ)ベンゼンとを混合することにより硬化剤を作製した。そして、前記主剤、前記硬化剤、及び、発泡剤としての水を混合し、70℃で反応させることにより、高分子体を得た。
なお、主剤、硬化剤、及び、発泡剤におけるイオン液体の濃度は5質量%とした。
(Example 1)
A main agent was prepared by mixing a urethane prepolymer obtained by reacting tolylene diisocyanate (TDI), polypropylene glycol (PPG), and diethylene glycol (DEG) with a trimer of hexamethylene diisocyanate. Further, a curing agent was prepared by mixing the ionic liquid of the following formula (1), 1,4-benzenedimethanol, and 1,4-bis (2-hydroxyethoxy) benzene. Then, the main component, the curing agent, and water as a foaming agent were mixed and reacted at 70 ° C. to obtain a polymer.
In addition, the concentration of the ionic liquid in the main agent, the curing agent, and the foaming agent was 5% by mass.

(比較例1)
トリレンジイソシアネート(TDI)、ポリテトラメチレンエーテルグリコール(PTMG)、及び、ジエチレングリコール(DEG)を反応させることで得られるウレタンプレポリマーと、メチレンビス−o−クロロアニリン(MOCA)と発泡剤としての水とを混合し、70℃で反応させることにより、高分子体を得た。
(Comparative Example 1)
Urethane prepolymer obtained by reacting tolylene diisocyanate (TDI), polytetramethylene ether glycol (PTMG) and diethylene glycol (DEG), methylene bis-o-chloroaniline (MOCA) and water as a foaming agent Were mixed and reacted at 70 ° C. to obtain a polymer.

(吸水試験)
実施例1及び比較例1の高分子体を吸水試験に供した。
すなわち、まず、高分子体(縦:50mm、横:50mm、高さ:1mm)の質量(G1)を測定した。そして、40℃の温水に高分子体を24時間浸漬させ、浸漬後の高分子体の質量(G2)を測定した。そして、下記式によって吸水率Pを算出した。
P = (G2−G1)/G1 ×100(%)
(Water absorption test)
The polymers of Example 1 and Comparative Example 1 were subjected to a water absorption test.
That is, first, the mass (G1) of the polymer (length: 50 mm, width: 50 mm, height: 1 mm) was measured. Then, the polymer was immersed in warm water of 40 ° C. for 24 hours, and the mass (G2) of the polymer after immersion was measured. Then, the water absorption P was calculated by the following equation.
P = (G2−G1) / G1 × 100 (%)

実施例1の高分子体の吸水率は20%であった。一方で、比較例1の高分子体の吸水率は5%であった。
従って、実施例1の高分子体は、比較例1の高分子体に比して吸水率が高く、水を吸収しやすい構造となっていることがわかる。
The water absorption of the polymer of Example 1 was 20%. On the other hand, the water absorption of the polymer of Comparative Example 1 was 5%.
Therefore, it can be seen that the polymer of Example 1 has a higher water absorption than the polymer of Comparative Example 1, and has a structure that easily absorbs water.

(実施例2)
トリレンジイソシアネート(TDI)、ポリプロピレングリコール(PPG)、及び、ジエチレングリコール(DEG)を反応させることで得られるウレタンプレポリマーと、ヘキサメチレンジイソシアネートの三量体とを混合することにより主剤を作製した。また、下記式(3)のイオン液体と、1,4−ビス(2−ヒドロキシエトキシ)ベンゼンとを混合することにより硬化剤を作製した。そして、前記主剤、前記硬化剤、及び、発泡剤としての水を混合し、70℃下で反応させることにより、高分子体を得た。
なお、主剤、硬化剤、及び、発泡剤におけるイオン液体の濃度は10質量%とした。
(Example 2)
A main agent was prepared by mixing a urethane prepolymer obtained by reacting tolylene diisocyanate (TDI), polypropylene glycol (PPG), and diethylene glycol (DEG) with a trimer of hexamethylene diisocyanate. Further, a curing agent was prepared by mixing an ionic liquid of the following formula (3) and 1,4-bis (2-hydroxyethoxy) benzene. Then, the main component, the curing agent, and water as a foaming agent were mixed and reacted at 70 ° C. to obtain a polymer.
In addition, the concentration of the ionic liquid in the main agent, the curing agent, and the foaming agent was 10% by mass.

(比較例2)
前記イオン液体の代わりに、トリエタノールアミン(TEOA)を用いたこと以外は、実施例2と同様にして高分子体を得た。
(Comparative Example 2)
A polymer was obtained in the same manner as in Example 2, except that triethanolamine (TEOA) was used instead of the ionic liquid.

(実施例3)
前記イオン液体の代わりに、2,2−ビス(ヒドロキシメチル)酪酸(DMBA)を用いたこと以外は、実施例2と同様にして高分子体を得た。
(Example 3)
A polymer was obtained in the same manner as in Example 2, except that 2,2-bis (hydroxymethyl) butyric acid (DMBA) was used instead of the ionic liquid.

(密度)
密度(見掛け密度)は、高分子体の直方体状の試験片の縦、横、厚さを測定し、更に、この試験片の質量を測定することにより求めた。
(density)
The density (apparent density) was determined by measuring the length, width, and thickness of a rectangular parallelepiped specimen of a polymer and measuring the mass of the specimen.

(硬度(JIS−A))
硬度(JIS−A)は、JIS K7312−1996のタイプAによる硬さ試験に準拠して23℃下で測定した。
なお、湿潤時の硬度は、40℃の温水に高分子体を24時間浸漬した高分子体の硬度を意味する。
(Hardness (JIS-A))
The hardness (JIS-A) was measured at 23 ° C. based on a hardness test according to JIS K7312-1996 type A.
The wet hardness means the hardness of a polymer obtained by immersing the polymer in warm water at 40 ° C. for 24 hours.

(硬度(Asker−C))
硬度(Asker−C)は、SRIR0101に準拠して23℃下で測定した。
によって測定した。
なお、湿潤時の硬度は、40℃の温水に高分子体を24時間浸漬した高分子体の硬度を意味する。
(Hardness (Asker-C))
Hardness (Asker-C) was measured at 23 ° C. in accordance with SRIR0101.
Was measured by
The wet hardness means the hardness of a polymer obtained by immersing the polymer in warm water at 40 ° C. for 24 hours.

(スライス試験)
円筒状の高分子体(直径:90mm、厚み:90mm)を刃物で厚み1〜2mmにスライスした。ここで、高分子体を固定し、該高分子体に向けて刃物を水平方向に移動させることにより該高分子体をスライスした。前記刃物としては、超硬刃物と呼ばれる、炭化タングステンとコバルトとの混合物を焼き固めた刃物を用いた。
そして、以下の基準で評価した。
○:スライス可能
×:スライス不可
(Slice test)
A cylindrical polymer (diameter: 90 mm, thickness: 90 mm) was sliced with a knife to a thickness of 1 to 2 mm. Here, the polymer was fixed, and the knife was horizontally moved toward the polymer to slice the polymer. As the cutting tool, a cutting tool called a cemented carbide cutting tool, which was obtained by hardening a mixture of tungsten carbide and cobalt.
And it evaluated based on the following criteria.
Y: Slicing possible X: Slicing not possible

(気泡の大きさ)
気泡の大きさを確認するため、走査型電子顕微鏡(SEM)で高分子体の断面を撮影した。
(Size of bubble)
In order to confirm the size of the bubbles, a cross section of the polymer was photographed with a scanning electron microscope (SEM).

SEM写真の結果を図1〜3に示す。また、それ以外の結果を下記表1に示す。   The results of the SEM photographs are shown in FIGS. The other results are shown in Table 1 below.

表1に示すように、実施例2、3の高分子体は、比較例2の高分子体に比べて、水との接触によって硬度が大幅に低下した。よって、本発明によれば、特定の状況下において硬度が低くなる高分子体となっていることが分かる。   As shown in Table 1, the hardness of the polymer of Examples 2 and 3 was significantly reduced by contact with water as compared with the polymer of Comparative Example 2. Therefore, according to the present invention, it is understood that the polymer has a low hardness under a specific situation.

また、表1に示すように、実施例2の高分子体は、実施例3の高分子体に比べて、水との接触によって硬度が大幅に低下した。よって、実施例2の高分子体は、実施例3の高分子体に比べて、特定の状況下において硬度が低くなる高分子体となっていることが分かる。
この結果は、以下の理由によるものと推測される。実施例3の高分子体は、構成単位にカルボン酸を含む構造となっている。カルボン酸は、pKaが4程度であり、pH7の水と接触した場合には、カルボキシ基がアニオンになるのは0.01%程度であると考えられる。一方で、イオン液体は、水と接触した場合には、大部分がカチオンで存在し得る。その結果、実施例2の高分子体は、実施例3の高分子体に比べて、水との接触によって硬度が大幅に低下したと考えられる。
Further, as shown in Table 1, the hardness of the polymer of Example 2 was significantly reduced by contact with water as compared with the polymer of Example 3. Therefore, it can be seen that the polymer of Example 2 has a lower hardness than the polymer of Example 3 under specific circumstances.
This result is presumed to be due to the following reasons. The polymer of Example 3 has a structure containing a carboxylic acid in the structural unit. The carboxylic acid has a pKa of about 4, and it is considered that the carboxy group becomes an anion when it comes into contact with water of pH 7 at about 0.01%. On the other hand, ionic liquids can be mostly cationic when in contact with water. As a result, it is considered that the hardness of the polymer of Example 2 was significantly reduced by contact with water, as compared with the polymer of Example 3.

図1〜3に示すように、実施例2の高分子体は、比較例2及び実施例3の高分子体に比べて、気泡が小さかった。   As shown in FIGS. 1 to 3, the polymer of Example 2 had smaller bubbles than the polymer of Comparative Example 2 and Example 3.

Claims (7)

ポリウレタン樹脂を含む高分子体を備える研磨パッドであり、
前記ポリウレタン樹脂は、ヒドロキシ基を含む化合物に由来する第1の構成単位と、イソシアネート基を含む化合物に由来する第2の構成単位とを備え、
前記第1の構成単位の1つ以上が、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方に由来し、
前記高分子体は、少なくとも研磨面を構成する部分として用いられる、研磨パッド
A polishing pad including a polymer body containing a polyurethane resin,
The polyurethane resin includes a first constituent unit derived from a compound containing a hydroxy group, and a second constituent unit derived from a compound containing an isocyanate group,
At least one of the first structural units is derived from at least one of an organic cation containing a hydroxy group and an organic anion containing a hydroxy group ,
A polishing pad, wherein the polymer is used at least as a part constituting a polishing surface .
前記第1の構成単位の1つ以上が、ヒドロキシ基を含む有機カチオンに由来する、請求項1に記載の研磨パッドThe polishing pad according to claim 1, wherein one or more of the first structural units is derived from an organic cation containing a hydroxy group. 前記有機カチオン由来の構成単位がイオン液体に由来する、請求項2に記載の研磨パッドThe polishing pad according to claim 2, wherein the constituent unit derived from the organic cation is derived from an ionic liquid. 前記ポリウレタン樹脂が架橋構造を有している、請求項1〜3の何れか1項に記載の研磨パッドThe polishing pad according to any one of claims 1 to 3, wherein the polyurethane resin has a crosslinked structure. 前記高分子体は、前記ポリウレタン樹脂を含むポリウレタン樹脂発泡体である、請求項1〜4の何れか1項に記載の研磨パッドThe polishing pad according to any one of claims 1 to 4, wherein the polymer is a polyurethane resin foam containing the polyurethane resin. ポリウレタン樹脂を含む高分子体を備える研磨パッドを得る、研磨パッドの製造方法であって、
ヒドロキシ基を含む化合物と、イソシアネート基を含む化合物とを結合させることにより前記高分子体を得、
前記ヒドロキシ基を含む化合物が、ヒドロキシ基を含む有機カチオン及びヒドロキシ基を含む有機アニオンの少なくとも一方を有し、
前記高分子体は、少なくとも研磨面を構成する部分として用いられる、研磨パッドの製造方法。
Obtaining a polishing pad comprising a polymeric material containing a polyurethane resin, a method for producing a polishing pad,
A compound containing a hydroxy group and a compound containing an isocyanate group are combined to obtain the polymer,
Compounds containing the hydroxy group is, have at least one of the organic anions containing organic cations and hydroxy groups include a hydroxy group,
A method for producing a polishing pad , wherein the polymer is used at least as a part constituting a polishing surface .
前記ヒドロキシ基を含む化合物が、ヒドロキシ基を含む有機カチオンを有し、
前記有機カチオンがイオン液体に由来し、
前記結合を、前記イオン液体の融点以上の温度で行う、請求項に記載の研磨パッドの製造方法。
The compound containing a hydroxy group has an organic cation containing a hydroxy group,
The organic cation is derived from an ionic liquid,
The method for manufacturing a polishing pad according to claim 6 , wherein the bonding is performed at a temperature equal to or higher than a melting point of the ionic liquid.
JP2016024739A 2016-02-12 2016-02-12 Polishing pad and method for manufacturing polishing pad Active JP6639939B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016024739A JP6639939B2 (en) 2016-02-12 2016-02-12 Polishing pad and method for manufacturing polishing pad
PCT/JP2017/004579 WO2017138564A1 (en) 2016-02-12 2017-02-08 Polymer body, polishing pad, and method for producing polymer body
TW106104240A TWI722108B (en) 2016-02-12 2017-02-09 Polishing pad and method for producing polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024739A JP6639939B2 (en) 2016-02-12 2016-02-12 Polishing pad and method for manufacturing polishing pad

Publications (2)

Publication Number Publication Date
JP2017141393A JP2017141393A (en) 2017-08-17
JP6639939B2 true JP6639939B2 (en) 2020-02-05

Family

ID=59563179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024739A Active JP6639939B2 (en) 2016-02-12 2016-02-12 Polishing pad and method for manufacturing polishing pad

Country Status (3)

Country Link
JP (1) JP6639939B2 (en)
TW (1) TWI722108B (en)
WO (1) WO2017138564A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464188B1 (en) 2018-11-06 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
US10569384B1 (en) * 2018-11-06 2020-02-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
CN114787225A (en) * 2019-12-13 2022-07-22 株式会社可乐丽 Polyurethane, polishing layer, polishing pad and polishing method
WO2023036801A1 (en) * 2021-09-07 2023-03-16 Basf Se Ionic monomer- based polyurethane foams and use thereof in trench breakers or pipeline pillows or thermally insulative material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053635B2 (en) * 1997-11-17 2008-02-27 株式会社イノアックコーポレーション Antibacterial polyurethane resin and method for producing the same
JP3391743B2 (en) * 1999-08-10 2003-03-31 明成化学工業株式会社 Novel diol sulfonic acid quaternary ammonium salt
US7709053B2 (en) * 2004-07-29 2010-05-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of manufacturing of polymer-coated particles for chemical mechanical polishing
JP2011032397A (en) * 2009-08-04 2011-02-17 Kyc Solutions Co Ltd Antistatic resin
US8754184B2 (en) * 2009-11-16 2014-06-17 Chemtura Corporation Accelerated cure of isocyanate terminated prepolymers
JP6320014B2 (en) * 2012-12-13 2018-05-09 キヤノン株式会社 Electrophotographic member, process cartridge, and electrophotographic apparatus
WO2015120430A1 (en) * 2014-02-10 2015-08-13 President And Fellows Of Harvard College 3d-printed polishing pad for chemical-mechanical planarization (cmp)
JP6587418B2 (en) * 2014-05-15 2019-10-09 キヤノン株式会社 Electrophotographic member, process cartridge, and electrophotographic apparatus
JP6536144B2 (en) * 2015-04-15 2019-07-03 東ソー株式会社 Rigid polyurethane foam and method for producing the same

Also Published As

Publication number Publication date
TW201800480A (en) 2018-01-01
WO2017138564A1 (en) 2017-08-17
JP2017141393A (en) 2017-08-17
TWI722108B (en) 2021-03-21

Similar Documents

Publication Publication Date Title
JP6639939B2 (en) Polishing pad and method for manufacturing polishing pad
JP6623215B2 (en) Polishing pad
KR20200098532A (en) Polishing pad
JP6685805B2 (en) Polishing pad
JP2019069497A (en) Polishing pad and method for manufacturing the polishing pad
JP6983001B2 (en) Abrasive pad
JP2005068168A (en) Two-liquid type composition for glass polishing polyurethane pad, glass polishing polyurethane pad using the same composition and method for producing the same pad
JP7270330B2 (en) POLYURETHANE RESIN FOAM AND METHOD FOR MANUFACTURING POLYURETHANE RESIN FOAM
JP6570403B2 (en) Polishing pad
JP5242427B2 (en) Polishing pad and manufacturing method thereof
JP2018171675A (en) Polishing pad
JP7123799B2 (en) polishing pad
JP6685803B2 (en) Method of manufacturing polishing pad
JP5763879B2 (en) Polishing pad and polishing pad manufacturing method
JP6855202B2 (en) Abrasive pad
JP2017185563A (en) Polishing pad
JP6498498B2 (en) Polishing pad
TW201942175A (en) Polishing pad, polishing pad production method, and method for polishing surface of optical material or semiconductor material
JP2019063903A (en) Polishing pad
JP2019034385A (en) Polishing pad
JP6570404B2 (en) Polishing pad
JP2018051744A (en) Polishing pad
JP6513455B2 (en) Polishing pad
JP2022109033A (en) Polishing pad including polishing layer having window for end point detection
JP2020049640A (en) Polishing pad

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6639939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350