JP4168773B2 - Method for producing nickel powder with excellent sinterability - Google Patents

Method for producing nickel powder with excellent sinterability Download PDF

Info

Publication number
JP4168773B2
JP4168773B2 JP2003033079A JP2003033079A JP4168773B2 JP 4168773 B2 JP4168773 B2 JP 4168773B2 JP 2003033079 A JP2003033079 A JP 2003033079A JP 2003033079 A JP2003033079 A JP 2003033079A JP 4168773 B2 JP4168773 B2 JP 4168773B2
Authority
JP
Japan
Prior art keywords
nickel powder
sulfur
nickel
powder
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003033079A
Other languages
Japanese (ja)
Other versions
JP2004244654A (en
Inventor
敏弘 加藤
昌次 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003033079A priority Critical patent/JP4168773B2/en
Publication of JP2004244654A publication Critical patent/JP2004244654A/en
Application granted granted Critical
Publication of JP4168773B2 publication Critical patent/JP4168773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、焼結性に優れたニッケル粉末の製造方法に関し、さらに詳しくは、積層セラミックスコンデンサの内部電極形成用などの導電ペーストに用いられる、焼結性に優れたニッケル粉末の製造方法に関する。
【0002】
【従来の技術】
ニッケル粉末は、厚膜導電体材料として積層セラミックコンデンサや多層セラミック基板等の積層セラミック部品の電極など電気回路の形成のため、導電ペースト材料として使用されている。
近年、積層セラミックコンデンサは、電子部品として急速に成長している。電子部品の高性能化に伴ない、積層セラミックコンデンサは小型化、高容量化が促進され、セラミック誘電体と内部電極は薄層化、多層化されつつある。現在、誘電体層厚2μm以下、内部電極層厚1μm前後、積層数100層以上の部品が作られている。この積層セラミックコンデンサの内部電極として、従来は白金、パラジウム、銀−パラジウム合金等の貴金属が用いられていたが、近年コスト低減のためより安価なニッケル等の卑金属を用いる技術が進歩し、その使用が増えている。
【0003】
積層セラミックコンデンサは、セラミック誘電体と、金属の内部電極とを交互に層状に重ねて圧着し、これを焼成して一体化したものである。内部電極の形成は、ニッケル粉末などを、セルロース系樹脂等の有機バインダーを溶剤に溶解させた有機ビヒクルと混合し、スリーロールミル等によって混練、分散して得た導電ペーストを用いて、セラミック誘電体グリーンシート上に印刷する。その後、積層体を中性又は還元雰囲気下で焼成して得る。
【0004】
一般にニッケル粉末等の内部電極材料は、酸化チタン、チタン酸バリウム、複合ペロブスカイトなどのセラミック誘電体よりも焼結開始温度が低く、しかも熱収縮率が大きい。したがって、焼成に際してセラミック誘電体との収縮度合の不適合が大きくなり、剥離やクラックなどの構造欠陥を起こし易いという問題があった。この問題は、電極を薄層化するほど顕著であり、クラックや剥離が発生した場合には、コンデンサとして機能しなくなる。そこで、積層セラミックスコンデンサの内部電極形成用のニッケル粉末として、焼成での焼結挙動をセラミック誘電体に近づけるために高温に至るまで焼結に伴なう収縮が抑えられたニッケル粉末が望まれている。
【0005】
この解決策として、高温でのニッケル粉末の収縮を抑制する方法が提案されており、代表的なニッケル粉末とその製造方法としては、以下のようなものが挙げられる。
(1)塩化ニッケル蒸気の気相水素還元法で製造された、平均粒径が0.1〜1.0μmで、硫黄含有率が0.02〜1.0%のニッケル超微粉であり、かつ球状粒子である(例えば、特許文献1参照)。ここで、球状粒子であることが、積層セラミックコンデンサの製造工程で高い充填密度の薄層の内部電極を形成し、クラックや剥離を生じない特性を発揮するとしている。また、優れた球状を呈するためには、硫黄の含有率が重要であるとしているが、硫黄の粒子中での存在部位については言及されていない。
(2)硫黄を含有する雰囲気にて、塩化ニッケルの蒸気に気相還元反応を行わせることにより製造した、粒径が0.1〜1.0μmで、硫黄を0.05〜0.2%含有し、かつ硫黄が主として表面部分に存在する球状ニッケル粉末であり、単分散性に優れた結晶性の高い導電ペースト用ニッケル粉末である(例えば、特許文献2参照)。
【0006】
これらの提案は、化学気相反応法で、1000℃以上の温度で球状のニッケル粉末を生成して、内部電極の形成に際してニッケル粉末の充填密度を高めることによって収縮量を抑制する方法であり、焼成においてクラックや剥離の低減に貢献しているが、未だ特性上及び生産上の課題がある。
これらの粉末特性は、必ずしも、高温に至るまで焼結に伴なう収縮が抑えられ、高温での焼結挙動がセラミック誘電体に近づいたニッケル粉末とはいえない。すなわち、焼成において、充填密度を高めることによって収縮量の抑制が行われても、高温での焼結の進行が速い場合には、セラミック誘電体との収縮の差が大きくなり内部電極のクラックや剥離が発生することとなる。また、化学気相反応法には、高額な反応装置、硫黄濃度の制御等により量産規模で低コストで生産することが困難であるという問題点がある。
以上の状況から、焼成での焼結挙動をセラミック誘電体に近づけるために、高温に至るまで焼結に伴なう収縮が抑えられたニッケル粉末が求められている。
【0007】
【特許文献1】
特開平11−80817号公報(第1〜3頁)
【特許文献2】
特開平11−80816号公報(第1〜3頁)
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、積層セラミックスコンデンサの内部電極形成用などの導電ペーストに好適な、焼結性に優れたニッケル粉末の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、種々のニッケル粉末について鋭意研究を重ねた結果、ニッケル粉末の表面を特定量の硫黄又は硫酸基で被覆させたところ、焼結性に優れたニッケル粉末が得られること、さらには、それを得るためには、ニッケル粉末を特定量の硫黄を含むガスと接触処理する方法が最適であることを見出し、本発明を完成した。
【0011】
すなわち、本発明の第の発明によれば、ニッケル粉末を、ニッケル粉末に対して0.02〜0.30重量%の硫黄を含むガスと接触処理することにより、表面に硫化ニッケル又は硫酸ニッケルが濃集した被覆膜が形成され、かつ硫黄濃度が全量に対して0.02〜0.20重量%であるニッケル粉末を得ることを特徴とするニッケル粉末の製造方法が提供される。
【0012】
また、本発明の第の発明によれば、第の発明において、前記硫黄が、硫黄の水素化物及び/又は酸化物の形態であることを特徴とするニッケル粉末の製造方法が提供される。
【0013】
【発明の実施の形態】
以下、本発明の焼結性に優れたニッケル粉末の製造方法を詳細に説明する。
1.ニッケル粉末
本発明の製造方法によるニッケル粉末は、積層セラミックスコンデンサの内部電極形成用などの導電ペーストに用いられる、焼結性に優れたニッケル粉末である。
本発明の製造方法によるニッケル粉末は、表面を硫黄換算で0.02〜0.20重量%の硫黄又は硫酸基で被覆してなるニッケル粉末である。本発明の製造方法によるニッケル粉末の表面を被覆する硫黄の形態は、硫黄又は硫酸基である。硫黄又は硫酸基の形態で被覆するのは、硫黄以外の不純物によるニッケル粉末の汚染の防止のためである。
【0014】
本発明において、焼結性の向上に対して、ニッケル粉末の表面を硫黄又は硫酸基で被覆していることが重要である。これによって、前記ニッケル粉末の表面に、硫化ニッケル又は硫酸ニッケルが濃集した被覆膜が形成されて、ニッケル粉末の高温での焼結の進行の抑制が達成される。すなわち、硫化ニッケル又は硫酸ニッケルが濃集した被覆膜は、高温での焼成に際してこれらが分解あるいは拡散されるまでの間、ニッケル粒子間でのニッケルの固相拡散を阻害し、ニッケル粉末の焼結の進行を抑制する役割を担う。
【0015】
本発明の製造方法によるニッケル粉末の硫黄濃度は、0.02〜0.20重量%である。すなわち、前記硫黄濃度が、0.02重量%未満では、焼結を抑制する効果が低く、一方0.20重量%を超えると、高温での焼成に際して分解して腐食性ガスの発生が多くなるので好ましくない。
【0016】
2.製造方法
以下に、本発明の製造方法を説明するが、ニッケル粉末の製造方法は、ニッケル粉末を特定量の硫黄を含むガスと接触処理する方法である
【0017】
本発明の製造方法は、ニッケル粉末を、ニッケル粉末に対して所定量の硫黄を含むガスと接触処理するものであり、この方法によって硫黄濃度が0.02〜0.20重量%で、かつ硫黄又は硫酸基で被覆された表面を有するニッケル粉末が得られる。本発明の製造方法によって得られるニッケル粉末は、ニッケル粉末の硫黄濃度が従来の提案の範囲内にかかわらず、特に焼結性に優れているところに特徴がある。
【0018】
本発明の製造方法では、ニッケル粉末を所定量の硫黄を含むガスと接触処理することが重要な意義をもつ。これによって、前記ニッケル粉末の表面にのみ、硫黄又は硫酸基が集中して被覆し、硫化ニッケル又は硫酸ニッケルが濃集した被覆膜が形成される。すなわち、前記ガス中の硫黄はニッケルと速やかに反応して表面に吸着し、かつ前記ガス中の硫黄の大部分がニッケル粉末表面に吸着する。したがって、前記ガス中の硫黄量を制御することで、前記ニッケル粉末の表面を被覆する硫黄又は硫酸基の量の制御ができる。また、ニッケル粉末の表面に吸着した硫黄又は硫酸基が、ニッケルと反応して硫化ニッケル又は硫酸ニッケルが濃集した被覆膜が形成される。
【0019】
本発明の製造方法で用いるニッケル粉末は、特に限定されるものではなく、各種の製造方法によるニッケル粉末とニッケルを主成分とする合金粉末が含まれる。前記合金粉末としては、ニッケルに耐酸化性等の付与のためクロム、リン、亜鉛、貴金属、希土類金属などが添加された合金粉末がある。
【0020】
本発明の製造方法で用いるニッケル粉末の製造方法は、特に限定されるものではなく、例えば、固態のニッケル塩を還元剤で還元する固相還元法、ニッケル塩溶液をミストにして熱分解する噴霧熱分解法、ニッケル塩蒸気を水素ガスで還元する化学気相反応法等の乾式法、ニッケル塩等を含有する溶液から還元析出によってニッケル粉末を得る湿式法のいずれの方法で製造された粉末も用いられる。
【0021】
この中で特に、導電ペーストに用いるのに適した形状、及び粒径分布を有する粉末、即ち粒子形状が球状で、平均粒径が0.1μm〜1.0μmの粉末が好ましい。なお、ニッケル粉末が凝集粒子を含むときは、接触処理に先立って解粒処理を行うことが好ましい。この解粒処理は、特に限定されないが、衝撃式、衝突式、摩砕式、高水圧式等の各種の粉砕方式で行える。
【0022】
本発明の製造方法で用いる硫黄量は、特に限定されるものではなく、例えば、接触処理されるニッケル粉末に対して0.02〜0.30重量%が好ましい。すなわち、前記硫黄量が、0.02重量%未満では、焼結を抑制するに足るだけの硫黄又は硫酸基の被覆量を得ることができない。一方、0.30重量%を超えると、硫黄又は硫酸基の被覆量が多くなり過ぎ、製品のニッケル純度が落ちる。本発明の製造方法で得られるニッケル粉末の硫黄濃度は、前記硫黄量を調節することで制御できる。
【0023】
本発明の製造方法で用いる硫黄を含むガスとしては、特に限定されるものではなく、元素状硫黄の他各種の形態で硫黄を含む化合物等使用条件下で気体であるガスをそのままあるいは希釈調製して用いられるが、この中で、特に常温で気体でありかつ不純物の混入の恐れの低い、硫化水素、二硫化酸素等の硫黄以外には水素、酸素のみから構成される硫黄の水素化物及び/又は酸化物が好ましい。また、本発明で用いる希釈用ガスとしては、特に限定されるものではなく、空気の他、不活性ガス、還元性ガスが用いられる。
【0024】
本発明の製造方法における接触処理の温度および時間は、特に限定されるものではなく、使用する硫黄を含むガス種で異なるが、常温で前記ガス中の硫黄はニッケルと速やかに反応して表面に吸着される。
【0025】
【実施例】
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例及び比較例によってなんら限定されるものではない。なお、実施例および比較例で用いた硫黄の分析方法と焼結での収縮量の測定方法は、以下の通りである。
(1)硫黄の分析:燃焼赤外線吸収法で行った。
(2)焼結での収縮量の測定:得られた試料を、熱機械的分析装置(TMA)を使用して、4容量%水素−窒素ガス中で1200℃までの焼結での収縮量を測定し、収縮開始温度を得た(以下、TMA測定と呼ぶ。)。
【0026】
(実施例1)
化学気相反応法(以下、気相法と呼称する。)で製造されたニッケル粉末(気相法粉A、硫黄濃度0.001重量%)をガラス容器に入れた。次に、前記ニッケル粉末に対して、0.20重量%に相当する硫黄を含む量の硫化水素ガスを前記容器内に封入した。10分間保持後、前記ニッケル粉末を前記容器内から取出し、得られたニッケル粉末の硫黄分析及び焼結での収縮量の測定を行なった。得られたニッケル粉末の硫黄濃度は0.13重量%であつた。図1にTMA測定結果を示す。
【0027】
(実施例2)
湿式法で製造されたニッケル粉末(湿式法粉、硫黄濃度0.001重量%)をガラス容器に入れた。次に、前記ニッケル粉末に対して、0.07重量%に相当する硫黄を含む量の10容量%硫化水素−窒素ガスを前記容器内に封入した。1時間保持後、前記ニッケル粉末を前記容器内から取出し、得られたニッケル粉末の硫黄分析及び焼結での収縮量の測定を行なった。得られたニッケル粉末の硫黄濃度は0.07重量%であつた。図1にTMA測定結果を示す。
【0028】
(実施例3)
実施例1と同様のニッケル粉末(気相法粉A)をガラス容器に入れた。次に、前記ニッケル粉末に対して、0.07重量%に相当する硫黄を含む量の10容量%二酸化硫黄−窒素ガスを前記容器内に封入した。1時間保持後、前記ニッケル粉末を前記容器内から取出し、得られたニッケル粉末の硫黄分析及び焼結での収縮量の測定を行なった。得られたニッケル粉末の硫黄濃度は0.05重量%であつた。図2にTMA測定結果を示す。
【0029】
(実施例4)
実施例1と同様のニッケル粉末(気相法粉A)をガラス容器に入れた。次に、前記ニッケル粉末に対して、0.07重量%に相当する硫黄を含む量の10容量%硫化水素−窒素ガスを前記容器内に封入した。1時間保持後、前記ニッケル粉末を前記容器内から取出し、得られたニッケル粉末の硫黄分析を行なった。得られたニッケル粉末の硫黄濃度は0.05重量%であつた。
次いで、得られたニッケル粉末に、積層セラミックスの内部電極作製時に混合される共材を10重量%添加して、焼結での収縮量の測定を行なった。前記共材として、チタン酸ジルコン酸バリウム(商品名BTZ−01、堺化学工業(株)製)を用いた。図3にTMA測定結果を示す。
【0030】
(比較例1)
実施例1と同様のニッケル粉末(気相法粉A)に接触処理を行なわず、焼結での収縮量の測定を行なった。図1にTMA測定結果を示す。
【0031】
(比較例2)
実施例2と同様のニッケル粉末(湿式法粉)に接触処理を行なわず、焼結での収縮量の測定を行なった。図1にTMA測定結果を示す。
【0032】
(比較例3)
実施例1と同様のニッケル粉末(気相法粉A)に接触処理を行なわず、実施例4と同様に共材を添加し焼結での収縮量の測定を行なった。図3にTMA測定結果を示す。
【0033】
(比較例4)
気相法で製造されたニッケル粉末(気相法粉B、硫黄濃度0.08重量%)に接触処理を行なわず、実施例4と同様に共材を添加し焼結での収縮量の測定を行なった。図3にTMA測定結果を示す。
【0034】
以上、図1及び図2より、実施例1、2、3で得られたニッケル粉末の急激な収縮開始温度はそれぞれ860℃、840℃、830℃であり、誘電体の焼結温度900℃から期待される電極材料の収縮開始温度800℃と比べて高温度であることが分かる。また、比較例1、2のニッケル粉末の急激な収縮開始温度はそれぞれ700℃、720℃であり、前記期待される電極材料の収縮開始温度800℃と比べて低温度であることが分かる。以上の結果から、本発明の製造方法に従い接触処理を行うと、気相法粉及び湿式法粉のいずれもが焼結による収縮開始が高温側に移動することが分かる。
【0035】
また、図3より、実施例4の場合の収縮開始温度は1020℃であり、同様に図3に示す共材単独の場合と比較してもこの温度での収縮量の差が僅かであるのに対して、一方比較例3、4の場合の収縮開始温度はそれぞれ650℃、400℃であり、共材単独の場合と比較すると収縮量が非常に大きいことが分かる。これより、実際の使用条件に近い共材の添加の場合において、本発明の方法に従い接触処理を行うと、高温での収縮の抑制の効果が大きいことがより鮮明に示された。さらに従来の化学気相反応法による硫黄濃度が同程度のニッケル粉末(比較例4)と比べて、本発明の方法に従い得られたニッケル粉末は、高温での収縮が抑えられた、焼結性に優れた性能をあらわす。
以上、本発明の表面を硫黄換算で0.02〜0.20重量%の硫黄又は硫酸基で被覆してなるニッケル粉末は、導電ペーストに好適な、焼結性に優れたニッケル粉末である。
【0036】
【発明の効果】
以上説明したように、本発明のニッケル粉末の製造方法は積層セラミックスコンデンサの内部電極形成用などの導電ペーストに好適な、焼結性に優れたニッケル粉末を容易に得ることができるので、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】実施例1、2、比較例1、2のTMA測定結果を示す図である。
【図2】実施例3、比較例1のTMA測定結果を示す図である。
【図3】実施例4、比較例3、4のTMA測定結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing nickel powder having excellent sinterability, and more particularly to a method for producing nickel powder having excellent sinterability used for conductive pastes for forming internal electrodes of multilayer ceramic capacitors.
[0002]
[Prior art]
Nickel powder is used as a conductive paste material for forming an electric circuit such as an electrode of a multilayer ceramic component such as a multilayer ceramic capacitor or a multilayer ceramic substrate as a thick film conductor material.
In recent years, multilayer ceramic capacitors have grown rapidly as electronic components. As electronic components become more sophisticated, monolithic ceramic capacitors are being made smaller and higher in capacity, and ceramic dielectrics and internal electrodes are becoming thinner and multilayered. At present, parts having a dielectric layer thickness of 2 μm or less, an internal electrode layer thickness of around 1 μm, and a stacking number of 100 layers or more are made. Conventionally, noble metals such as platinum, palladium, and silver-palladium alloys have been used as the internal electrodes of this multilayer ceramic capacitor. However, in recent years, the use of cheaper base metals such as nickel has been advanced in order to reduce costs. Is increasing.
[0003]
The multilayer ceramic capacitor is formed by alternately laminating ceramic dielectrics and metal internal electrodes in a layered manner, and firing and integrating them. The internal electrode is formed by mixing a nickel powder or the like with an organic vehicle in which an organic binder such as a cellulose resin is dissolved in a solvent, kneading and dispersing by a three-roll mill or the like, and using a conductive paste. Print on a green sheet. Thereafter, the laminate is obtained by firing in a neutral or reducing atmosphere.
[0004]
In general, internal electrode materials such as nickel powder have a lower sintering start temperature and a higher thermal shrinkage than ceramic dielectrics such as titanium oxide, barium titanate, and composite perovskite. Accordingly, there has been a problem that the degree of shrinkage with the ceramic dielectric becomes large during firing, and structural defects such as peeling and cracking are likely to occur. This problem becomes more prominent as the electrode is made thinner. When cracks or peeling occurs, the electrode does not function as a capacitor. Therefore, as a nickel powder for forming an internal electrode of a multilayer ceramic capacitor, a nickel powder in which the shrinkage due to sintering is suppressed until reaching a high temperature is desired in order to bring the sintering behavior close to that of a ceramic dielectric. Yes.
[0005]
As a solution to this, a method for suppressing the shrinkage of nickel powder at a high temperature has been proposed, and typical nickel powders and production methods thereof include the following.
(1) A nickel ultrafine powder produced by a vapor phase hydrogen reduction method of nickel chloride vapor, having an average particle size of 0.1 to 1.0 μm and a sulfur content of 0.02 to 1.0%, and Spherical particles (see, for example, Patent Document 1). Here, the spherical particles form a thin internal electrode with a high packing density in the manufacturing process of the multilayer ceramic capacitor, and exhibit the characteristics that do not cause cracks or peeling. Moreover, in order to exhibit the outstanding spherical shape, although the content rate of sulfur is said to be important, the site | part which exists in the particle | grains of sulfur is not mentioned.
(2) Produced by causing vapor phase reduction reaction of nickel chloride vapor in an atmosphere containing sulfur, the particle size is 0.1 to 1.0 μm, and sulfur is 0.05 to 0.2%. It is a spherical nickel powder containing sulfur and mainly present in the surface portion, and is a nickel powder for conductive paste having excellent monodispersibility and high crystallinity (see, for example, Patent Document 2).
[0006]
These proposals are a method of suppressing the amount of shrinkage by generating spherical nickel powder at a temperature of 1000 ° C. or higher by a chemical vapor reaction method and increasing the packing density of the nickel powder when forming the internal electrode. Although it contributes to the reduction of cracks and peeling in firing, there are still problems in characteristics and production.
These powder characteristics are not necessarily nickel powder in which the shrinkage associated with sintering is suppressed until reaching a high temperature, and the sintering behavior at a high temperature approaches that of a ceramic dielectric. That is, in firing, even if the amount of shrinkage is suppressed by increasing the packing density, if the progress of sintering at high temperature is fast, the difference in shrinkage from the ceramic dielectric becomes large and cracks in the internal electrode Peeling will occur. In addition, the chemical vapor reaction method has a problem that it is difficult to produce the mass production scale at a low cost due to an expensive reactor, control of sulfur concentration, and the like.
From the above situation, in order to bring the sintering behavior in firing close to that of a ceramic dielectric, there is a demand for nickel powder in which shrinkage associated with sintering is suppressed up to a high temperature.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-80817 (pages 1 to 3)
[Patent Document 2]
Japanese Patent Laid-Open No. 11-80816 (pages 1 to 3)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing nickel powder excellent in sinterability suitable for a conductive paste for forming an internal electrode of a multilayer ceramic capacitor in view of the above-mentioned problems of the prior art.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on various nickel powders in order to achieve the above object, the inventors of the present invention coated the surface of the nickel powder with a specific amount of sulfur or sulfate group, and were excellent in sinterability. The inventors have found that nickel powder can be obtained, and furthermore, in order to obtain it, the method of contacting nickel powder with a gas containing a specific amount of sulfur is optimal, and the present invention has been completed.
[0011]
That is , according to the first aspect of the present invention, the nickel powder is subjected to contact treatment with a gas containing 0.02 to 0.30% by weight of sulfur with respect to the nickel powder, whereby the surface is nickel sulfide or nickel sulfate. There is provided a method for producing nickel powder, characterized in that a nickel- coated powder is obtained, in which a coating film is formed, and the sulfur concentration is 0.02 to 0.20% by weight based on the total amount .
[0012]
According to a second aspect of the present invention, there is provided the method for producing nickel powder according to the first aspect , wherein the sulfur is in the form of sulfur hydride and / or oxide. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the manufacturing method of the nickel powder excellent in the sinterability of this invention is demonstrated in detail.
1. Nickel powder The nickel powder by the manufacturing method of this invention is nickel powder excellent in sinterability used for electrically conductive pastes for internal electrode formation etc. of a multilayer ceramic capacitor.
The nickel powder according to the production method of the present invention is a nickel powder obtained by coating the surface with 0.02 to 0.20% by weight of sulfur or sulfate group in terms of sulfur. The form of sulfur covering the surface of the nickel powder by the production method of the present invention is sulfur or a sulfate group. The coating in the form of sulfur or sulfate groups is to prevent nickel powder contamination by impurities other than sulfur.
[0014]
In the present invention, it is important that the surface of the nickel powder is coated with sulfur or sulfate groups for improving the sinterability. As a result, a coating film in which nickel sulfide or nickel sulfate is concentrated is formed on the surface of the nickel powder, thereby suppressing the progress of the sintering of the nickel powder at a high temperature. That is, the coating film in which nickel sulfide or nickel sulfate is concentrated inhibits solid phase diffusion of nickel between nickel particles until they are decomposed or diffused during firing at high temperature, and the nickel powder is sintered. It plays a role of suppressing the progress of ligation.
[0015]
The sulfur concentration of the nickel powder by the production method of the present invention is 0.02 to 0.20% by weight. That is, if the sulfur concentration is less than 0.02% by weight, the effect of suppressing sintering is low, while if it exceeds 0.20% by weight, decomposition occurs during firing at a high temperature and generation of corrosive gas increases. Therefore, it is not preferable.
[0016]
2. The following manufacturing method will be described a manufacturing method of the present invention, a method of manufacturing a nickel powder, a method for contact treatment with gas containing sulfur specific amount of nickel powder.
[0017]
In the production method of the present invention, nickel powder is contact-treated with a gas containing a predetermined amount of sulfur with respect to the nickel powder. By this method, the sulfur concentration is 0.02 to 0.20% by weight and sulfur is used. Alternatively, nickel powder having a surface coated with sulfate groups is obtained. The nickel powder obtained by the production method of the present invention is characterized in that the sinterability is particularly excellent regardless of the sulfur concentration of the nickel powder within the range of the conventional proposal.
[0018]
In the production method of the present invention, it is important to contact the nickel powder with a gas containing a predetermined amount of sulfur. As a result, only the surface of the nickel powder is coated with sulfur or sulfate groups in a concentrated manner to form a coating film in which nickel sulfide or nickel sulfate is concentrated. That is, sulfur in the gas reacts quickly with nickel and is adsorbed on the surface, and most of the sulfur in the gas is adsorbed on the surface of the nickel powder. Therefore, the amount of sulfur or sulfate groups covering the surface of the nickel powder can be controlled by controlling the amount of sulfur in the gas. Further, the sulfur or sulfate group adsorbed on the surface of the nickel powder reacts with nickel to form a coating film in which nickel sulfide or nickel sulfate is concentrated.
[0019]
The nickel powder used in the production method of the present invention is not particularly limited, and includes nickel powders produced by various production methods and alloy powders mainly composed of nickel. Examples of the alloy powder include an alloy powder in which chromium, phosphorus, zinc, a noble metal, a rare earth metal, or the like is added to nickel for imparting oxidation resistance or the like.
[0020]
The production method of the nickel powder used in the production method of the present invention is not particularly limited. For example, a solid phase reduction method in which a solid nickel salt is reduced with a reducing agent, or a spray in which a nickel salt solution is used as a mist for thermal decomposition. Powders produced by any of the pyrolysis method, the dry method such as a chemical vapor phase reaction method in which nickel salt vapor is reduced with hydrogen gas, or the wet method in which nickel powder is obtained by reduction precipitation from a solution containing nickel salt, etc. Used.
[0021]
Among these, a powder having a shape suitable for use in a conductive paste and a particle size distribution, that is, a powder having a spherical particle shape and an average particle size of 0.1 μm to 1.0 μm is preferable. In addition, when nickel powder contains agglomerated particles, it is preferable to perform the pulverization treatment prior to the contact treatment. The pulverization treatment is not particularly limited, but can be performed by various pulverization methods such as an impact method, a collision method, a grinding method, and a high water pressure method.
[0022]
The amount of sulfur used in the production method of the present invention is not particularly limited, and is preferably 0.02 to 0.30% by weight with respect to the nickel powder to be contact-treated, for example. That is, when the amount of sulfur is less than 0.02% by weight, it is not possible to obtain a covering amount of sulfur or sulfate groups sufficient to suppress sintering. On the other hand, if it exceeds 0.30% by weight, the coating amount of sulfur or sulfate group becomes excessive, and the nickel purity of the product is lowered. The sulfur concentration of the nickel powder obtained by the production method of the present invention can be controlled by adjusting the amount of sulfur.
[0023]
The gas containing sulfur used in the production method of the present invention is not particularly limited, and a gas that is a gas under use conditions such as a compound containing sulfur in various forms in addition to elemental sulfur is prepared as it is or after dilution. Among them, in particular, sulfur hydride composed only of hydrogen and oxygen other than sulfur such as hydrogen sulfide and oxygen disulfide, which is a gas at normal temperature and has a low risk of contamination, and / Or an oxide is preferable. In addition, the dilution gas used in the present invention is not particularly limited, and an inert gas or a reducing gas is used in addition to air.
[0024]
The temperature and time of the contact treatment in the production method of the present invention are not particularly limited, and differ depending on the gas species containing sulfur to be used, but sulfur in the gas reacts with nickel promptly at room temperature. Adsorbed.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples and Comparative Examples. In addition, the analysis method of sulfur used in the examples and comparative examples and the measurement method of the shrinkage amount during sintering are as follows.
(1) Sulfur analysis: The combustion infrared absorption method was used.
(2) Measurement of shrinkage amount in sintering: The obtained sample was subjected to shrinkage amount in sintering up to 1200 ° C. in 4% by volume hydrogen-nitrogen gas using a thermomechanical analyzer (TMA). Was measured to obtain a shrinkage start temperature (hereinafter referred to as TMA measurement).
[0026]
(Example 1)
Nickel powder (vapor phase process powder A, sulfur concentration 0.001% by weight) produced by a chemical vapor reaction method (hereinafter referred to as a gas phase method) was placed in a glass container. Next, an amount of hydrogen sulfide gas containing sulfur corresponding to 0.20% by weight with respect to the nickel powder was sealed in the container. After holding for 10 minutes, the nickel powder was taken out from the container, and the resulting nickel powder was analyzed for sulfur and measured for shrinkage during sintering. The sulfur concentration of the obtained nickel powder was 0.13% by weight. FIG. 1 shows the TMA measurement results.
[0027]
(Example 2)
Nickel powder produced by a wet method (wet method powder, sulfur concentration 0.001% by weight) was placed in a glass container. Next, 10 volume% hydrogen sulfide-nitrogen gas in an amount containing sulfur corresponding to 0.07% by weight with respect to the nickel powder was sealed in the container. After holding for 1 hour, the nickel powder was taken out from the container, and the resulting nickel powder was analyzed for sulfur and measured for shrinkage during sintering. The sulfur concentration of the obtained nickel powder was 0.07% by weight. FIG. 1 shows the TMA measurement results.
[0028]
(Example 3)
The same nickel powder (vapor phase process powder A) as in Example 1 was put in a glass container. Next, 10 vol% sulfur dioxide-nitrogen gas in an amount containing sulfur corresponding to 0.07% by weight with respect to the nickel powder was sealed in the container. After holding for 1 hour, the nickel powder was taken out from the container, and the resulting nickel powder was analyzed for sulfur and measured for shrinkage during sintering. The sulfur concentration of the obtained nickel powder was 0.05% by weight. FIG. 2 shows the TMA measurement results.
[0029]
Example 4
The same nickel powder (vapor phase process powder A) as in Example 1 was put in a glass container. Next, 10 volume% hydrogen sulfide-nitrogen gas in an amount containing sulfur corresponding to 0.07% by weight with respect to the nickel powder was sealed in the container. After holding for 1 hour, the nickel powder was taken out from the container, and the resulting nickel powder was subjected to sulfur analysis. The sulfur concentration of the obtained nickel powder was 0.05% by weight.
Next, 10% by weight of a co-material mixed at the time of producing the multilayer ceramic internal electrode was added to the obtained nickel powder, and the amount of shrinkage during sintering was measured. As the common material, barium zirconate titanate (trade name BTZ-01, manufactured by Sakai Chemical Industry Co., Ltd.) was used. FIG. 3 shows the TMA measurement results.
[0030]
(Comparative Example 1)
The nickel powder (vapor phase process powder A) similar to that in Example 1 was not subjected to contact treatment, and the amount of shrinkage during sintering was measured. FIG. 1 shows the TMA measurement results.
[0031]
(Comparative Example 2)
The same amount of nickel powder (wet method powder) as in Example 2 was not subjected to contact treatment, and the amount of shrinkage during sintering was measured. FIG. 1 shows the TMA measurement results.
[0032]
(Comparative Example 3)
The same nickel powder as in Example 1 (vapor phase process powder A) was not subjected to contact treatment, and a co-material was added in the same manner as in Example 4 to measure the amount of shrinkage during sintering. FIG. 3 shows the TMA measurement results.
[0033]
(Comparative Example 4)
The nickel powder produced by the vapor phase method (vapor phase method powder B, sulfur concentration 0.08 wt%) was not subjected to contact treatment, and the same material was added as in Example 4 to measure the amount of shrinkage during sintering. Was done. FIG. 3 shows the TMA measurement results.
[0034]
As described above, from FIGS. 1 and 2, the rapid shrinkage start temperatures of the nickel powders obtained in Examples 1, 2, and 3 are 860 ° C., 840 ° C., and 830 ° C., respectively, and from the dielectric sintering temperature of 900 ° C. It can be seen that the temperature is higher than the expected shrinkage start temperature of 800 ° C. of the electrode material. In addition, the rapid shrinkage start temperatures of the nickel powders of Comparative Examples 1 and 2 are 700 ° C. and 720 ° C., respectively, which are lower than the expected shrinkage start temperature of 800 ° C. of the electrode material. From the above results, it can be seen that when the contact treatment is performed according to the production method of the present invention, the shrinkage start due to sintering of both the vapor phase method powder and the wet method powder moves to the high temperature side.
[0035]
Also, from FIG. 3, the shrinkage start temperature in Example 4 is 1020 ° C., and similarly, the difference in shrinkage at this temperature is slight compared to the case of the co-material alone shown in FIG. On the other hand, the shrinkage start temperatures in Comparative Examples 3 and 4 are 650 ° C. and 400 ° C., respectively. From this, in the case of adding a co-material close to the actual use conditions, it was clearly shown that when the contact treatment is performed according to the method of the present invention, the effect of suppressing shrinkage at a high temperature is great. Furthermore, the nickel powder obtained according to the method of the present invention is less susceptible to shrinkage at high temperatures than the nickel powder (Comparative Example 4) having a similar sulfur concentration by the conventional chemical vapor reaction method. Excellent performance.
As described above, the nickel powder obtained by coating the surface of the present invention with 0.02 to 0.20% by weight of sulfur or sulfate group in terms of sulfur is a nickel powder suitable for a conductive paste and excellent in sinterability.
[0036]
【The invention's effect】
As described above, the nickel powder manufacturing method of the present invention can easily obtain nickel powder excellent in sinterability suitable for conductive pastes for forming internal electrodes of multilayer ceramic capacitors. Target value is extremely high.
[Brief description of the drawings]
1 is a diagram showing TMA measurement results of Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
2 is a graph showing the TMA measurement results of Example 3 and Comparative Example 1. FIG.
3 is a graph showing TMA measurement results of Example 4 and Comparative Examples 3 and 4. FIG.

Claims (2)

ニッケル粉末を、ニッケル粉末に対して0.02〜0.30重量%の硫黄を含むガスと接触処理することにより、表面に硫化ニッケル又は硫酸ニッケルが濃集した被覆膜が形成され、かつ硫黄濃度が全量に対して0.02〜0.20重量%であるニッケル粉末を得ることを特徴とするニッケル粉末の製造方法。The nickel powder is contact-treated with a gas containing 0.02 to 0.30% by weight of sulfur with respect to the nickel powder, thereby forming a coating film in which nickel sulfide or nickel sulfate is concentrated on the surface, and sulfur. A method for producing nickel powder, characterized in that a nickel powder having a concentration of 0.02 to 0.20% by weight based on the total amount is obtained . 前記硫黄が、硫黄の水素化物及び/又は酸化物の形態であることを特徴とする請求項に記載のニッケル粉末の製造方法。The method for producing nickel powder according to claim 1 , wherein the sulfur is in the form of sulfur hydride and / or oxide.
JP2003033079A 2003-02-12 2003-02-12 Method for producing nickel powder with excellent sinterability Expired - Fee Related JP4168773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033079A JP4168773B2 (en) 2003-02-12 2003-02-12 Method for producing nickel powder with excellent sinterability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033079A JP4168773B2 (en) 2003-02-12 2003-02-12 Method for producing nickel powder with excellent sinterability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008121759A Division JP4844589B2 (en) 2008-05-08 2008-05-08 Nickel powder with excellent sinterability

Publications (2)

Publication Number Publication Date
JP2004244654A JP2004244654A (en) 2004-09-02
JP4168773B2 true JP4168773B2 (en) 2008-10-22

Family

ID=33019173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033079A Expired - Fee Related JP4168773B2 (en) 2003-02-12 2003-02-12 Method for producing nickel powder with excellent sinterability

Country Status (1)

Country Link
JP (1) JP4168773B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085265B1 (en) * 2004-06-16 2011-11-22 도호 티타늄 가부시키가이샤 Nickel powder and manufacturing method thereof
JP4525474B2 (en) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 Active material for lithium secondary battery and method for producing the same, lithium secondary battery
TW200707469A (en) * 2005-07-08 2007-02-16 Murata Manufacturing Co Electrically conducting powder, electrically conducting paste and process for production of laminated ceramic electronic components
JP4697539B2 (en) * 2005-12-07 2011-06-08 昭栄化学工業株式会社 Nickel powder, conductor paste and laminated electronic component using the same
KR20120049026A (en) * 2010-11-08 2012-05-16 삼성전기주식회사 A nickel powder coated by sulfur, a paste for inner electrode, a laminated ceramic electronic parts by using the same and a process thereof
JP5962562B2 (en) * 2013-03-22 2016-08-03 住友金属鉱山株式会社 Nickel powder and its manufacturing method
JP6083295B2 (en) * 2013-03-29 2017-02-22 住友金属鉱山株式会社 Method for producing nickel powder
KR102292897B1 (en) * 2014-04-08 2021-08-24 도호 티타늄 가부시키가이샤 Nickel powder
JP2017071851A (en) * 2016-09-21 2017-04-13 住友金属鉱山株式会社 Nickel powder

Also Published As

Publication number Publication date
JP2004244654A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6493207B2 (en) Multilayer ceramic capacitor
KR100853599B1 (en) Nickel powder, conductive paste, and multilayer electronic component using same
EP1451381B1 (en) Powder for laminated ceramic capacitor internal electrode
JP3787032B2 (en) Metallic nickel powder
EP0946456A2 (en) Passive electronic components from nano-precision engineered materials
JPH11124602A (en) Nickel powder and its production
EP1454689B1 (en) Surface-treated ultrafine metal powder
KR100259562B1 (en) Nickel powder containing a composite oxide of la and ni and process for preparing the same
JP4168773B2 (en) Method for producing nickel powder with excellent sinterability
JP2002348603A (en) Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
CN1184038C (en) Nickel composite granules and manufacture thereof
US7244286B2 (en) Copper alloy powder for electrically conductive paste
JP5526856B2 (en) Nickel powder and method for producing the same
JP4844589B2 (en) Nickel powder with excellent sinterability
EP0834368B1 (en) Nickel powder and process for preparing the same
JP4427966B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2001059101A (en) Method for controlling sinterability of nickel powder for laminated ceramic capacitor
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
KR100790435B1 (en) Nickel-powder for internal electrode of multi-layered ceramic condenser and multi-layered ceramic condenser comprising the nickel-powder
JP2005142222A (en) Stacked dielectric element and its manufacturing method
JPH11189802A (en) Nickel super fine powder
JPH03280304A (en) Nickel powder and conductive paste containing the powder
JP2000169904A (en) Improvement of sinterability of nickel powder
JP2001266653A (en) Nickel powder and conductive paste
JPH04206612A (en) Conductive paste for internal electrode of multilayer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees