JP6525534B2 - 多孔質積層体 - Google Patents

多孔質積層体 Download PDF

Info

Publication number
JP6525534B2
JP6525534B2 JP2014179814A JP2014179814A JP6525534B2 JP 6525534 B2 JP6525534 B2 JP 6525534B2 JP 2014179814 A JP2014179814 A JP 2014179814A JP 2014179814 A JP2014179814 A JP 2014179814A JP 6525534 B2 JP6525534 B2 JP 6525534B2
Authority
JP
Japan
Prior art keywords
layer
polymer
polymer nanofibers
porous
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179814A
Other languages
English (en)
Other versions
JP2016052748A (ja
Inventor
健二 ▲高▼嶋
健二 ▲高▼嶋
哲男 日野
哲男 日野
一浩 山内
一浩 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014179814A priority Critical patent/JP6525534B2/ja
Priority to US14/837,886 priority patent/US9580847B2/en
Publication of JP2016052748A publication Critical patent/JP2016052748A/ja
Application granted granted Critical
Publication of JP6525534B2 publication Critical patent/JP6525534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

本発明は、多孔質積層体、具体的には、ポリマーナノファイバを有する層が複数積層されている多孔質積層体に関する。
近年、ポリマーナノファイバシートに代表される、ポリマーナノファイバが集積して三次元的に絡み合ってなる層を複数有する多孔質積層体が、近年注目を浴びている。
ポリマーナノファイバは、一般的な不織布等に用いられる繊維と異なり、ファイバ一本の径が数ミクロン以下であるという特徴を有する。このため、ポリマーナノファイバは、例えば、シート状といったように一定の形状で集積したときに、膨大な比表面積、ナノサイズの連続細孔構造、低密度等が得られる点で、一般的な繊維からなる構造体と比べ飛躍的に優れた特徴を持つ。このためポリマーナノファイバで構成される構造体に、機械的強度、反応性、電気的及び光学的特性、構造体内部の透過性等といった新たな機能を付与することが可能である。特に、ポリマーナノファイバが集積されることで形成される細孔構造を利用する場合、孔径がサブミクロンオーダーで得ることができる。この点から、ポリマーナノファイバを集積することで得られる構造物は、微粒子の捕集や担持に適している。さらに、ポリマーナノファイバそのものは、有機化合物を母材とする繊維であることから軽量であるため、ポリマーナノファイバを集積することで得られる構造物は簡便かつ安価な条件で作製できる。
ところで、ポリマーナノファイバを集積することで得られる構造物は、ポリマーナノファイバの持つ特性を利用するため、支持体の上に付着させて使用する場合が多い。特許文献1では、紙の表面にポリマーナノファイバからなる層を設けることで、上記構造物をインク受容層として利用している。一方、特許文献2では、紙等のフレキシブルな基材の上にナノファイバ層を貼り合せてなるセパレータが開示されている。特許文献2によれば、基材とナノファイバ層との貼り合わせの際に、ナノビーズを混入させることで界面密着性が上がることが開示されている。
特表2005−538863号公報 特開2012−219384号公報
しかし、特許文献1に開示されている方法で紙等のフレキシブルな支持体の上に作製されたポリマーナノファイバからなる層は、この層が付いた支持体に曲げ応力等の機械的負荷がかかると、支持体との界面において当該層の剥離が起こる。その結果、当該層(ポリマーナノファイバ層)が支持体から分離する場合がある。一方、特許文献2の手法では、ポリマーナノファイバからなる層と支持体との界面における密着性を上げることができるが、ナノビーズがポリマーナノファイバからなる層に存在する細孔構造を閉塞することがある。これにより所望の細孔構造が得られない場合がある。このため、従来においては、ポリマーナノファイバからなる層が有する細孔構造を維持しつつ、作製後においても曲げ応力等の機械的負荷がかかっても支持体の上から剥離しない、物理的な耐久性ある多孔質の構造体は得られていなかった。
本発明は、上述した課題を解決するためになされるものであり、その目的は、多孔質構造による特性を維持しつつ、曲げ応力等の機械的負荷に対する耐性が良好な多孔質積層体提供することにある。
本発明の多孔質積層体は、支持体の上に設けられ、ポリマーナノファイバを有する多孔質膜であるA層と、
前記A層の上に設けられ、ポリマーナノファイバを有する多孔質膜であるB層と、を有し、
前記A層に含まれるポリマーナノファイバの平均存在率が、前記B層に含まれるポリマーナノファイバの平均存在率よりも大きく、
前記A層に含まれるポリマーナノファイバの平均存在率が、70%以上97%以下であり、
前記B層に含まれるポリマーナノファイバの平均存在率が、10%以上45%以下であり、
かつ、
前記A層に含まれるポリマーナノファイバの平均存在率と前記B層に含まれるポリマーナノファイバの平均存在率との差が40%を超えることを特徴とする。
本発明によれば、多孔質構造による特性を維持しつつ、曲げ応力等の機械的負荷に対する耐性が良好な多孔質積層体提供することができる。即ち、本発明の多孔質積層体は、ポリマーナノファイバを有する多孔質構造が有する特性を維持しつつ、支持体との界面における密着性が良好であり、曲げ等応力がかかる操作でも支持体と界面において本発明の多孔質積層体は支持体から剥離することはない。
(a)は、支持体の上に積層される本発明の多孔質積層体における実施形態の例を示す断面模式図であり、(b)は、(a)中の円囲みA部分の部分拡大図である。 本発明の多孔質積層体の製造装置の例を示す模式図である。 曲げ試験後の支持体とA層との界面近辺のSEM像(破断面像)である。
本発明の多孔質積層体は、支持体の上に設けられ、ポリマーナノファイバを有する多孔質膜であるA層と、前記A層の上に設けられ、ポリマーナノファイバを有する多孔質膜であるB層と、を有する。
本発明において、A層に含まれるポリマーナノファイバの存在率は、B層に含まれるポリマーナノファイバの存在率よりも大きく、またA層に含まれるポリマーナノファイバの存在率とB層に含まれるポリマーナノファイバの存在率との差は、40%を超える。
以下、図面を適宜参照しながら本発明の実施形態を説明する。ただし、本発明は以下に説明する実施形態に限定されるものではない。また図面において図示されていなかったり、以下の説明において記載がなかったりする部分に関しては、当該技術分野の周知又は公知技術を適用することができる。
(1)多孔質積層体
図1(a)は、支持体の上に積層される本発明の多孔質積層体における実施形態の例を示す断面模式図であり、図1(b)は、図1(a)中の円囲みA部分の部分拡大図である。
図1に示される多孔質積層体1は、支持体2の上に形成される。具体的には、支持体2に接触する態様で設けられ、ポリマーナノファイバ3を有する多孔質膜であるA層1aと、A層1aの上に設けられ、ポリマーナノファイバを有する多孔質膜であるB層1bと、を有する積層体である。
(1−1)ポリマーナノファイバ
A層1a及びB層1bをそれぞれ構成するポリマーナノファイバは、少なくとも有機ポリマー成分を有するポリマーナノファイバであれば特に限定されるものではない。ポリマーナノファイバの構成材料となる有機ポリマー(有機高分子化合物)としては、従来公知であるポリマー材料を用いることができる。本発明において、ポリマーナノファイバの構成材料として用いられる有機ポリマーとしては、一種類を単独で用いたものであってもよいし、二種類以上を組み合わせて用いたものであってもよい。またポリマーナノファイバの構成材料となる有機ポリマーとして、ポリマー材料の中に微粒子や従来公知であるフィラーを含有させたものも用いることができる。
尚、本発明においてポリマーナノファイバは、少なくとも1種類以上のポリマーを有し、ファイバ自体の長さがファイバ自体の太さよりも長いものをいう。また、ポリマーナノファイバの取り扱いの観点から、ポリマーナノファイバのファイバ自体の長さは、その太さの10倍以上あることが好ましい。
本発明において、ポリマーナノファイバは、平均直径が1nm以上10000nm未満であることが好ましい。特に、比表面積の高い多孔質積層体を得るためには、ファイバ径が大き過ぎると単位空間あたりのファイバの本数が限られてしまうため、ファイバの平均直径は1500nm未満であることがより好ましい。尚、ファイバの平均直径が1nm未満の場合は、多孔質積層体の作製上の観点から取り扱いづらくなるが、ポリマーナノファイバの取り扱いの観点からすれば、平均直径が50nm以上であれば扱い易い傾向があるため、好ましい。
本発明の多孔質積層体を構成するポリマーナノファイバの断面形状は特に限定されず、例えば、円形、楕円形、四角形、多角形,半円形等が挙げられる。ただし、明確に定義され得る形状でなくてもよいし、任意の複数の断面において断面形状が異なっていてもよい。本発明において、ポリマーナノファイバの太さは、ポリマーナノファイバの断面が円状である場合は、その断面(円状断面)の直径をいうものである。一方、円状以外の断面形状である場合は、ポリマーナノファイバの任意の断面における重心を通る最長直線の長さをいうものである。
本発明において、ポリマーナノファイバを構成するポリマー材料としては、多孔質積層体1を形成することが可能な材料であれば特に限定されない。例えば、含フッ素系ポリマー(例えば、テトラフルオロエチレン、ポリフッ化ビニリデン等。他のモノマーとの共重合体(例えば、PVDFとヘキサフルオロプロピレンとの共重合体(PVDF−HFP))であってもよい。);ポリオレフィン系ポリマー(ポリエチレン、ポリプロピレン等);ポリスチレン(PS);ポリアリーレン類(芳香族系ポリマー、例えば、ポリパラフェニレンオキサイド、ポリ(2、6−ジメチルフェニレンオキサイド)、ポリパラフェニレンスルフィド等);ポリオレフィン系ポリマー、ポリスチレン、ポリイミド、ポリアリーレン類(芳香族系ポリマー)に、スルホン酸基(−SO3H)、カルボキシル基(−COOH)、リン酸基、スルホニウム基、アンモニウム基又はピリジニウム基を導入した変性ポリマー;ポリテトラフルオロエチレン等の含フッ素系のポリマーの骨格に、スルホン酸基、カルボキシル基、リン酸基、スルホニウム基、アンモニウム基又はピリジニウム基を導入した変性ポリマー(例えば、パーフルオロスルホン酸ポリマー、パーフルオロカルボン酸ポリマー、パーフルオロリン酸ポリマー等);ポリブダジエン系化合物;エラストマー状、ゲル状等のポリウレタン系化合物;シリコーン系化合物;ポリ塩化ビニル;ポリエチレンテレフタレート;ナイロン;ポリアリレート;生分解性ポリマー(例えば、ポリカプロラクトン(PCL)、ポリ乳酸等);ポリエーテル類(例えば、ポリエチレンオキシド(PEO)、ポリブチレンオキシド等);ポリエステル(PES)類(例えば、ポリエチレンテレフタレート(PET)等)等を挙げることができる。
尚、これらポリマー材料は、一種類を単独で用いてもよいし、複数種類を組み合わせて用いてもよい。またポリオレフィン系ポリマー、ポリスチレン、ポリイミド、ポリアリーレン類及び含フッ素系のポリマー以外のポリマー材料においても、官能基(例えば、上述したスルホン酸基、カルボキシル基、リン酸基、スルホニウム基、アンモニウム基又はピリジニウム基)を導入させてなる変性ポリマーも用いることができる。さらに複数種類のモノマーを共重合させて得られる共重合体ポリマーも用いることができる。加えて、ポリイミド、ポリアミド、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)等の溶融させづらいポリマー材料を用いる場合は、例えば、熱可塑性樹脂を組み合わせて使用してもよい。
大気中で使用する際に要求される湿気への耐久性の観点から、本発明においては、上記ポリマー材料の内、好ましくは、耐水性のポリマー材料である。また高い温度領域での使用や他の物体との接触による発熱防止の観点から、上記ポリマー材料の内、好ましくは、融点が80℃以上のポリマー材料である。
本発明に係るポリマーナノファイバの構成材料であるポリマー材料は、樹脂材料をはじめとする有機材料、シリカ、チタニア、粘土鉱物等の無機材料、或いは、前記有機材料と無機材料をハイブリッドさせた材料を用いても構わない。またファイバの途中から材料が変わってもよい。具体的には、A層1aを形成する途中の段階、A層1aの形成後B層1bの形成前の段階又はB層1bを形成する途中の段階で、構成材料を変更してもよい。
本発明において、ポリマーナノファイバに含ませてもよい無機材料としては、Si、Mg、Al、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、Cu、Sn及びZnから選択される金属元素又は半金属元素の酸化物、より具体的には、シリカ(SiO2)、酸化チタン、酸化アルミニウム、アルミナゾル、酸化ジルコニウム、酸化鉄、酸化クロム等を挙げることができる。またモンモリロナイト(MN)の様な粘土鉱物を用いることもできる。尚、無機材料がポリマーナノファイバに含まれている場合は、ポリマーナノファイバ同士を接合させると、機械的強度が著しく向上する傾向があるため、細孔像が所望の状態になるのであれば、耐久性の向上の観点からして好ましい。
またポリマーナノファイバを形成するポリマー材料が、イミド構造を有する場合には、その剛直で強固な分子構造から耐熱性に加え、機械的強度が高い傾向がある。そのため、変形しづらく、比表面積の高い、多孔積層体が得られる傾向がある。加えて、上記のような材料構成とすることで、本発明の多孔質積層体の機械的強度が著しく向上する傾向があるため、耐久性の向上の観点から好ましい。
(1−2)各層に含まれるポリマーナノファイバの存在率
本発明の多孔質積層体の局所的な構造の定量的な指標として、層の体積(空隙部分を含む)に対するポリマーナノファイバの体積の割合で表される存在率がある。この存在率は、ポリマーナノファイバの体積の割合の求め方により複数の定義が存在する。具体的には、単位存在率、平均存在率等があるが、単位存在率とは、多孔質積層体の所定の破断面における、ファイバ径(図1中のX)と同等の積層方向の厚み領域、具体的には、図1(b)の符号4で示される領域でファイバが占める面積割合をいう。また平均存在率とは、特定の部分の厚みにおける単位存在率の平均値をいう。以下の説明において特に断りがない場合、存在率とは対象部分の平均存在率をいうものとする。本発明において、A層1aのポリマーナノファイバの存在率は、B層1bのポリマーナノファイバの存在率よりも大きく、この二層間におけるポリマーナノファイバの存在率の差は40%を超える。ただし、A層1aもB層1bも、層内の局所的なポリマーナノファイバの存在率は、一定であってもよいし、積層方向で変化させてもよい。
本発明において、A層1aにおけるポリマーナノファイバの存在率(平均存在率)は、好ましくは、70%以上97%以下であり、より好ましくは、80%以上97%以下であるである。A層1aにおいてポリマーナノファイバの存在率が70%未満であると、支持体2との接触量が減るため、多孔質積層体1の支持体2に対する密着性が悪くなる。一方、ポリマーナノファイバの存在率が97%を上回ると、A層1a中に細孔部分がほとんどなくなるため、多孔質積層体1が有すべき通気性が悪くなる。
本発明において、B層1bにおけるポリマーナノファイバの存在率(平均存在率)は、好ましくは、10%以上45%以下である。より好ましくは、15%以上35%以下である。B層1bにおいてポリマーナノファイバの存在率が10%未満であると、B層1bに含まれるポリマーナノファイバの量が減るため、サブミクロンサイズの物質の捕集や担持の効果が小さくなる。一方、ポリマーナノファイバの存在率が45%を上回ると、B層1bに含まれる細孔部分が減るため、やはりB層1bが備えるサブミクロンサイズの物質の捕集や担持の効果が小さくなる。
本発明において、多孔質積層体を構成する各層(A層1a、B層1b)の平均繊維径(平均ファイバ径)は、A層1aが有するポリマーナノファイバの平均ファイバ径の方が、B層1bが有するポリマーナノファイバの平均ファイバ径と同等以上であることが望ましい。B層1bが有するポリマーナノファイバの平均ファイバ径が大きい場合、A層1aとの密着性が低下するからである。
本発明の多孔質積層体において、ポリマーナノファイバもナノファイバ形状を有しないポリマー部分が集積している部分も存在しない領域は、空気を取り込むことができる細孔(空隙)である。本発明において、細孔とは、隣りあう複数のポリマーナノファイバ又はナノファイバ形状を有しないポリマー部分が接触していない場合に、それらによって形成される隙間空間である。ここで、ある不特定の細孔内で、最小となる部分の長さを部分細孔径とする。仮に、複数のポリマーナノファイバが密接して、わずかな隙間も作られない場合は、その部分については細孔と呼ばれないため、部分細孔径は零(ゼロ)より大きな値である。本発明において平均細孔径とは、特定の空間における部分細孔径の平均値である。平均細孔径は多孔積層体が剥離耐性を維持する限り特に限定されるものではないが、A層1aの平均細孔径がB層1bの平均細孔径を下回ることが望ましい。B層1bの平均細孔径がA層1aの平均細孔径と同じ又は下回る場合は、構造体内部の剥離耐性が下がってしまう。B層1bの平均細孔径は、特に限定されるものではないが、10nm以上50000nm未満が好ましい。特にサブミクロンサイズの物質のセパレータとして使用する上では10000nm未満がより好ましい。平均細孔径が10nm未満であると、気体中の湿気が液的として付着した際に毛細管現象で細孔を塞ぐ可能性がある。一方、平均細孔径が50000nm以上であると、ポリマーナノファイバの直径に対し空間が大き過ぎるために強度が下がる上、微小粒子等の捕集や担持機能が下がってしまう。
本発明の多孔質積層体を構成する各層(1a、1b)に含まれるポリマーナノファイバの集積形態は、ランダムであってもよいし、特定の方向に長さ方向が配向しているポリマーナノファイバの数が多い状態であってもよい。
本発明において、A層1aとB層1bとの界面とは、支持体2からB層1bの表面に向かって、初めてポリマーナノファイバの存在率が60%未満となる部分をいう。ただし、A層1aとB層1bとの界面が不明確である場合、支持体2からB層1bの表面までの距離、即ち、多孔質積層体1全体の厚みのうちの10%の部分をA層1aとB層1bとの界面とする。本発明の多孔質積層体は、表層であるB層1bの特性を利用することになる。このため、A層1aの割合が多いとA層1aの物性が大きく影響し、多孔質積層体として所望の効果を得られないことがあるためである。
本発明において、A層1aの厚みは特に限定されるものではないが、100nm以上30μm以下であることが好ましく、B層1bを構成するポリマーナノファイバの平均繊維径(平均ファイバ径)より大きく20μm以下がより好ましい。A層1aの厚みが100nmを下回る場合、B層1bとの密着性が低下する可能性がある。一方、A層1の厚みが30μmを上回る場合、多孔質積層体として使用する際にB層1bの特性を利用する上でA層1aの物性が大きく影響し、所望の効果を得られないことがある。
本発明において、B層1bの厚みは特に限定されるものではないが、50nm以上500μm以下であることが好ましく、B層1bを構成するポリマーナノファイバの平均繊維径(平均ファイバ径)より大きく200μm以下がより好ましい。B層1bの厚みが50nmを下回る場合、微粒子の捕集等のポリマーナノファイバ特有の効果が発揮されない。一方、B層1bの厚みが500μmを上回る場合、多孔質積層体を支持体2等に付着させて用いる際等の操作性が下がるため好ましくない。
(1−3)支持体
本発明において、多孔質積層体1を形成するために用いられる支持体2としては、何ら限定されるものではないが、例えば、薄くフレキシブルな材料(フィルム、紙、金属箔等)等を用いることができる。より具体的には、樹脂材料をはじめとする有機材料やシリカ、チタニア等の無機材料を使用することができる。また上記有機材料と上記無機材料とを混合してなるハイブリッド材料も使用することができる。また支持体2となる部材は、途中から材料を変えても良く、中空構造、多孔質構造等を少なくとも部分的に有する部材を支持体2として用いてもよい。
[多孔質積層体の製造方法]
本発明の多孔質構造体は、構造体を構成するポリマーナノファイバをエレクトロスピニング法によって紡糸し、紡糸したポリマーナノファイバを集積することによって作製される。本発明において、ポリマーナノファイバの紡糸は、下記に示される2段階のプロセスで行われる。
(i)ポリマー溶液(又はポリマー融液)の吐出部と捕集部との電圧値の差を、ポリマーナノファイバ作製に最適な数値範囲から外して紡糸を行う工程
(ii)ポリマー溶液(又はポリマー融液)の吐出部と捕集部との電圧値の差を、ポリマーナノファイバ作製に最適な数値範囲に調整して紡糸を行う工程
尚、上記(i)でいう「最適な数値範囲から外して」とは、最適な数値範囲よりも大きいことと同意である。
尚、本発明においては、多孔質積層体を製造する際に、エレクトロスピニング法(電界紡糸法・静電紡糸法)以外の製造方法、例えば、メルトブロー法等を組み合わせた製造プロセスで作製してもよい。以下、エレクトロスピニング法を利用した多孔質積層体の製造方法を中心に説明する。
エレクトロスピニング法とは、シリンジに入ったポリマー溶液とコレクター電極との間に高電圧を印加することで、ポリマー溶液をシリンジから押出すポリマーナノファイバの製造方法である。この方法では、シリンジから押し出された溶液が電荷を帯びて電界中に飛散するが、溶液に含まれる溶媒が蒸発することで溶液自体が次第に細線化し、ポリマーナノファイバとなってコレクターに付着する。またエレクトロスピニング法は、下記(a)乃至(d)の特長を有するので、本発明の多孔質積層体を製造する具体的な方法として好ましい。
(a)様々なポリマーに対してファイバ形状に紡糸できること
(b)ファイバ形状のコントロールが比較的簡便であること
(c)数十μmからナノサイズのファイバを容易に得ることができること
(d)作製プロセスが簡便であること
図2は、本発明の多孔質積層体の製造装置の例を示す模式図である。図2に示される作製装置10とは、具体的には、貯蔵タンク12に収容されたポリマー溶液を紡糸口14から押し出す方法を採用している。尚、紡糸口14から押し出されたポリマー溶液は四方へ飛散するので、紡糸されたポリマーナノファイバが3次元的に絡み合ったポリマーナノファイバシートが自ずと作製される。このため、紡糸されたポリマーナノファイバを後の工程で縒る必要はない。
次に、図2の作製装置10の構成部材について説明する。ポリマー溶液を貯蔵する貯蔵タンク12は、接続部11を介して配置されている。尚、接続部11は配線13を介して、マイナスあるいはプラスの高電圧を自在に出力させることが可能な高圧電源(上部電源16a)と電気接続されており、電圧がゼロの場合グラウンドに直接接続されている状態になる。また接続部11及び貯蔵タンク12はいずれもヘッド17の構成部材である。紡糸されたポリマーナノファイバが集められたコレクター15は、ヘッド17と一定の間隔を空けて対向するように配置されている。尚、コレクター15は、配線19により、マイナスあるいはプラスの高電圧を自在に出力させることが可能な高圧電源(下部電源16b)と電気接続されており、電圧がゼロの場合グラウンドに直接接続されている状態になる。
ポリマー溶液は、タンク12から紡糸口14まで一定の速度で押し出される。ここで紡糸口14では、上部電源16aによって、例えば、−50kV乃至50kVの電圧V1が印加されており、コレクター15には、下部電源16bによって、例えば、−50kV乃至50kVの電圧V2が印加されている。2つの電源による電圧の印加によって生じる電気引力がポリマー溶液の表面張力を越える時、ポリマー溶液のジェット18がコレクター15に向けて噴射される。この時、ジェット中の溶媒は徐々に揮発し、コレクター15に到達する際には、対応するポリマーナノファイバが得られる。ここで、基本的には、タンク12にナノファイバ化される条件に設定したポリマー溶液を導入して紡糸するものであるが、特に、A層1aを構成するポリマーナノファイバを作製する際は、ポリマーナノファイバがコレクターに到達する際に、完全に溶媒が揮発して除去されている必要はない。
尚、紡糸の際にタンク12に収容するものとしては、ポリマー溶液に限定されず、融点以上に加熱した溶融ポリマーを利用してもよい。
ところで、図2では、コレクター15の上に直接ポリマーナノファイバを形成する態様が示されているが、図1に示されるように、所望の支持体2の上に多孔質積層体1を作製する場合は、コレクター15の上に支持体2を予め設置しておく。
エレクトロスピニング法によりポリマーナノファイバを作製する場合、ポリマーナノファイバのファイバ径やポリマーナノファイバが集積されてなる構造体における(ファイバの)存在率、平均細孔径、空隙率等の構造的特性は、製造条件に依存する。具体的には、ポリマーの種類、混合している添加物とその割合、ポリマー溶液の粘度、作製時の温度や湿度、紡糸条件に大きく依存する。また紡糸条件は、特に、ポリマー溶液のタンク12からの紡糸口14までの押し出し速度、上部電源16aの電圧値V1、下部電源16bの電圧値V2が大きく影響する。また上部電源16a及び下部電源16bの電圧値(V1、V2)は、使用するポリマー材料の種類やポリマー溶液の濃度によって適宜調整される。紡糸している最中にこれらの電圧値(V1、V2)を適宜制御することで、構造体内におけるファイバ径や集積挙動が変化する。
本発明において、A層1aを形成する際に、好ましくは、下部電源16bよりマイナスの高電圧を印加する。A層1aを構成するポリマーナノファイバの作製の際に、下部電源16bにマイナスの高電圧を印加すると、上部電源16aの印加電圧が通常プラスであるため、紡糸口14とコレクター15との電位差がポリマーナノファイバの作製に適した条件よりも大きくなる。その結果、A層1aを形成する際にポリマーナノファイバを作製しつつも徐々に溶媒を含有したままで到達するポリマーナノファイバの量が増える。
このメカニズムの詳細は明らかでないが、下記の通りと考えられる。ポリマーナノファイバの紡糸最適条件では、紡糸口14から吐出されたポリマーナノファイバは空間内に広く飛散し、時間をかけてコレクター15に到達する。このため、吐出時においてポリマーナノファイバに含まれていた溶媒は十分に揮発している。これに対して、多孔質積層体1を構成するA層1aを形成する際に、下部電源16bからマイナスの電圧を印加して上記紡糸最適条件を外すと、紡糸口14とコレクター15との間で生じる電場はより強力なものになる。そうすると、ポリマー溶液のジェット18は、上記紡糸最適条件よりもさらに強力な力でコレクター15へ引き付けられることになる。これにより、ポリマー溶液のジェット18が空間を漂う時間は短くなり、十分に揮発するのに要する時間が経過するよりも先にポリマーナノファイバがコレクター15に到達する。このとき下部電源16bに印加するマイナスの電圧が大きければ大きいほどポリマー溶液のジェット18がコレクター15に引き付けられる力が大きくなるため、コレクター15に到達するまでの時間が短いポリマーナノファイバの量が多くなる。即ち、溶媒を多く含有したままでコレクター15に到達するポリマーナノファイバの方が支配的になる。このように溶媒が多く含有したままのポリマーナノファイバがコレクター15(又はコレクター15の上に載置された支持体)の上に集積していくと、ファイバの一部がファイバとしての形状を失い、層を構成するポリマーナノファイバの重みにより、層自体の密度が増加する。以上の過程でA層1aが形成される。
続いて、電源を印加したまま、下部電源16bに印加するマイナスの電圧を小さく又は下部電源16bの電圧をゼロに設定し直して、上部電源16aと下部電源16bとの電位差を上記紡糸最適条件に戻す。そうすると、溶媒を多く含有したままでコレクター15に到達するポリマーナノファイバがなくなり、ポリマーナノファイバのみが集積した層が形成される。これによりB層1bが形成される。
以上説明した各電源(16a、16b)の電圧の変化は、紡糸処理を実施したまま行うため、A層1aからB層1bまで連続的に作製される。
ポリマーナノファイバを集積してB層1bを形成した後、各層(1a、1b)を構成するポリマーナノファイバに含まれている溶媒を完全に除去する。具体的な溶媒除去方法としては、真空中や低湿度下に置く方法、空気を送る方法等が挙げられる。以上により、本発明の多孔質積層体が形成される。
以下、実施例により、本発明を詳細に説明するが、本発明は、以下に説明する実施例に限定されるものではない。ここで、以下に説明する実施例及び比較例にて作製した多孔質積層体の評価方法について説明する。
[多孔質積層体の構造評価]
実施例あるいは比較例にて作製された多孔質積層体がエレクトロスピニング等を用いて作製される過程は、ファイバ径が数百ナノメートル以上であれば目視で確認することができる。
また多孔質積層体自体は、ファイバ径のサイズに関わらず、作製後に走査型電子顕微鏡(SEM)やレーザー顕微鏡測定による直接観察により確認できる。特に、積層方向において積層体を構成する層(A層、B層)の状態がいかようにして変化しているか得るためには、破断面における断面方向からの観察が有効である。ここで破断面を出すには、ナイフ等の刃物を用いて多孔質積層体を切断したり、アルゴンビームを当てて多孔質積層体を切断したりする方法等が有効である。
一方、多孔質積層体を構成するポリマーナノファイバの平均ファイバ径は、作製した多孔質積層体を走査型電子顕微鏡(SEM)又はレーザー顕微鏡で測定して得た画像から求めることができる。具体的には、得られた画像を画像解析ソフトで取り込んだ後、任意の50点におけるポリマーナノファイバの幅を計測することで求めることができる。
多孔質積層体を構成する各層(A層、B層)に含まれるポリマーナノファイバの存在率(平均存在率)は、作製した多孔質積層体を走査型電子顕微鏡(SEM)又はレーザー顕微鏡で測定して得た画像から算出することができる。具体的には、得られた画像を画像解析ソフトに取り込んだ後、画像を2値化することにより、ポリマーナノファイバ存在部と非存在部とに切り分け、画像全体の面積からポリマーナノファイバ存在部の面積割合を計算することによって算出することができる。
[多孔積層体における剥離耐性の評価]
実施例又は比較例にて作製された多孔質積層体において、剥離耐性が従来のものから向上したか否かについては、曲げ試験により確認することができる。
曲げ試験は、試料を曲げた後に剥離が生じているか(多孔質積層体が支持体から剥がれていないか)を確認する試験である。作製した多孔質積層体が平面状となっている状態を開始状態とし、曲げ角度0度とする。この開始状態において試料を曲げる際の軸を決め、その部分の破断面が見えるように、ナイフを用いて多孔質積層体及び支持体を切っておく。次に、曲げた部分、軸、元の位置が角度70度となるところまで試料を曲げた後、さらに曲げ角度0度を経て反対側つまり角度マイナス70度となるところまで曲げてから角度0度まで戻す、というこの一連の操作を1回とする。そしてこの操作を20回繰り返す。操作後、多孔積層体の破断面をレーザー顕微鏡によって剥がれ発生の有無を観察する。観察時において、剥がれがなかった(剥離した部分が見えない)場合は良とし、剥がれがあった(剥離した部分が見える)場合は不可で判定する。
本評価において「良」と評価されたものは、剥離耐性が良好であること、即ち、曲げ等の応力がかかる操作で構造体の一部が剥がれることのない多孔質積層体であるといえる。
[実施例1]
図2に示されるエレクトロスピニング方式の作製装置10を用いて、多孔質積層体の作製を行った。本実施例では、作製装置10として、株式会社メック製のNANONを使用した。またポリマー溶液の貯蔵タンク12として、金属針付きのシリンジを用いた。さらにコレクター15として、アルミニウム板を用いた。尚、本実施例において、貯蔵タンク12の先端にある金属針(紡糸口14が配置されたヘッド17からコレクター15までの距離は、25cmに設定した。
(1)ポリマーナノファイバの構成材料
ポリマーナノファイバの構成材料として、ポリエチレンオキサイド(PEO、アルドリッチ社製)と純水とを混合して6重量%PEO水溶液2mLを調製した。尚、このPEO水溶液は、金属針14付きのシリンジ(貯蔵タンク12)内に流し込んだ。
(2)支持体
コレクター15に載置し、多孔質積層体を作製するために用いる支持体(下地基材)として、ポリアミドイミド膜(PAI膜)を用いた。
(3)多孔質積層体の形成
エレクトロスピニング装置(作製装置10)にて、上記PEO水溶液が充填されたシリンジ(貯蔵タンク12)を取りつけた後、PEO水溶液の押出し速度が毎時1mlになるように装置設定を調整した。具体的には、まず上部電源16aを用いて紡糸口14へ20kVの電圧を、下部電源16bを用いてコレクター15へ−10kVの電圧を、それぞれ印加して紡糸を4分間行った。ただし最初の3分間の紡糸が完了した後に各電源(16a、16b)をいずれも切ることなく上部電源16aの印加電圧を20kVに、下部電源16bの印加電圧を0kVにそれぞれ設定を変更した後、この設定条件下で15分間紡糸を行った(表1参照)。紡糸作業後、ポリマーナノファイバが形成されている支持体を真空中に24時間放置し、残った溶媒を除去した。以上により、多孔質積層体を、支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
(4)多孔質積層体の評価結果
多孔質積層体の観察にはレーザー顕微鏡を利用した。観察の結果、支持体と、ポリマーナノファイバの存在率の大きな層(A層)と、ポリマーナノファイバの存在率がA層よりも小さい層(B層)と、がそれぞれ作製されていることが確認できた。またこの観察から得られた画像の各部分について2値化を行った結果から、各層(A層、B層)の存在率をそれぞれ%で算出した。ここで本実施例にて作製した多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等の評価結果を表2に示す。
続いて剥離耐性評価を実施した。その結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)は確認されなかったため、剥離耐性は、「良」の判定であった。図3は、曲げ試験後の支持体とA層との界面近辺のSEM像(破断面像)である。
[実施例2]
実施例1と同様の作製装置を用いて、支持体の上に多孔質積層体を形成した。
(1)ポリマーナノファイバの構成材料
ポリマーナノファイバの構成材料として、ポリアミドイミド(PAI、パイロマックスHR−13NX)と、ジメチルホルムアミド(DMF)と、を混合して、固形分濃度が20重量%であるポリマー溶液を調製した。尚、このポリマー溶液は、金属針14付きのシリンジ(貯蔵タンク12)内に流し込んだ。
(2)支持体
コレクター15に載置し、多孔質積層体を作製するために用いる支持体(下地基材)として、アルミ箔を用いた。
(3)多孔質積層体の形成
エレクトロスピニング装置(作製装置10)にて、上記ポリマー溶液が充填されたシリンジ(貯蔵タンク12)を取りつけた後、ポリマー溶液の押出し速度が毎時1mlになるよう装置設定を調整した。具体的には、まず上部電源16aを用いて紡糸口14へ25kVの電圧を、下部電源16bを用いてコレクター15へ−10kVの電圧を、それぞれ印加して紡糸を1分間行った。次に、この紡糸が完了した後に各電源(16a、16b)をいずれも切ることなく上部電源16aの印加電圧を25kVに、下部電源16bの印加電圧を0kVにそれぞれ設定を変更した後、この設定条件下で10分間紡糸を行った(表1参照)。紡糸作業後、実施例1と同様の方法で処理することにより、多孔質積層体を、支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
(4)多孔質積層体の評価結果
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体と、ポリマーナノファイバの存在率の大きな層(A層)と、ポリマーナノファイバの存在率がA層よりも小さい層(B層)と、がそれぞれ作製されていることが確認できた。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)は確認されなかったため、剥離耐性は、「良」の判定であった。
[実施例3]
実施例1と同様の作製装置を用いて、支持体の上に多孔質積層体を形成した。
(1)ポリマーナノファイバの構成材料
ポリマーナノファイバの構成材料として、ポリビニルアルコール(PVA)と、純水と、を混合して、固形分濃度が5重量%であるPVA水溶液を調製した。尚、このポリマー溶液は、金属針14付きのシリンジ(貯蔵タンク12)内に流し込んだ。
(2)支持体
コレクター15に載置し、多孔質積層体を作製するために用いる支持体(下地基材)として、セルロース膜(紙)を用いた。
(3)多孔質積層体の形成
エレクトロスピニング装置(作製装置10)にて、上記PVA水溶液が充填されたシリンジ(貯蔵タンク12)を取りつけた後、ポリマー溶液の押出し速度が毎時0.5mlになるよう装置設定を調整した。具体的には、まず上部電源16aを用いて紡糸口14へ30kVの電圧を、下部電源16bを用いてコレクター15へ−10kVの電圧を、それぞれ印加して紡糸を4分間行った。次に、この紡糸が完了した後に各電源(16a、16b)をいずれも切ることなく上部電源16aの印加電圧を30kVに、下部電源16bの印加電圧を0kVにそれぞれ設定を変更した後、この設定条件下で15分間紡糸を行った(表1参照)。紡糸作業後、実施例1と同様の方法で処理することにより、多孔質積層体を、支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
(4)多孔質積層体の評価結果
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体と、ポリマーナノファイバの存在率の大きな層(A層)と、ポリマーナノファイバの存在率がA層よりも小さい層(B層)と、がそれぞれ作製されていることが確認できた。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)は確認されなかったため、剥離耐性は、「良」の判定であった。
[比較例1]
実施例1(3)において、上部電源16a及び下部電源16bに印加する電圧、並びに紡糸時間を表1の通りに設定し、紡糸を行っている間は電圧の切り替えを行わなかったこと以外は、実施例1と同様の方法により多孔質積層体を、支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体の上には、層を構成するポリマーナノファイバの構造がほぼ同じであって存在率が一様な層が作製されていることが確認できた。このため、便宜上、上記層のうち支持体から20μmまでの部分をA層とし、支持体から20μmを超える部分をB層とする。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)が確認されたため、剥離耐性は、「不可」の判定であった。
[比較例2]
実施例1(3)において、上部電源16a及び下部電源16bに印加する電圧、並びに紡糸時間を表1の通りに設定し、A層の形成の直後に電圧の切り替えを行ったこと以外は、実施例1と同様の方法により、多孔質積層体を支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体の上には、層を構成するポリマーナノファイバの構造がほぼ同じであって存在率がほぼ一様な層が作製されていることが確認できた。このため、便宜上、上記層のうち支持体から20μmまでの部分をA層とし、支持体から20μmを超える部分をB層とする。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)が確認されたため、剥離耐性は、「不可」の判定であった。
[比較例3]
実施例2(3)において、A層を形成する際における上部電源16a及び下部電源16bに印加する電圧、並びに紡糸時間を表1の通りに設定したこと以外は、実施例2と同様の方法により、多孔質積層体を支持体の上に形成されている態様で得た。
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体の上には、層を構成するポリマーナノファイバの構造がほぼ同じであって存在率がほぼ一様な層が作製されていることが確認できた。このため、便宜上、上記層のうち支持体から20μmまでの部分をA層とし、支持体から20μmを超える部分をB層とする。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)が確認されたため、剥離耐性は、「不可」の判定であった。
[比較例4]
実施例3(3)において、上部電源16a及び下部電源16bに印加する電圧、並びに紡糸時間を表1の通りに設定し、紡糸を行っている間は電圧の切り替えを行わなかったこと以外は、実施例3と同様の方法により多孔質積層体を、支持体の上に形成されている態様で得た。尚、多孔質構造体の破断面を観察するため、支持体の上に形成されている多孔質積層体を支持体ごと液体窒素に入れた後に大気中へ出し、同時に応力を加えて二つに割った。
レーザー顕微鏡を利用して多孔質積層体を観察した結果、支持体の上には、層を構成するポリマーナノファイバの構造がほぼ同じであって存在率が一様な層が作製されていることが確認できた。このため、便宜上、上記層のうち支持体から20μmまでの部分をA層とし、支持体から20μmを超える部分をB層とする。また実施例1と同様の方法により、多孔質積層体を構成する各層の厚みやポリマーナノファイバの存在率等を評価した。結果を表2に示す。
また剥離耐性を評価した結果、本実施例の多孔質積層体では、支持体からの剥離(剥がれ)が確認されたため、剥離耐性は、「不可」の判定であった。
Figure 0006525534
Figure 0006525534
以上説明したように、本発明の多孔質積層体は、曲げ等の物理的な負荷がかかったとしても支持材から剥離しないため、例えば、紙、ポリマーフィルム、金属箔等のフレキシブルな支持体のコーティング材として利用することができる。尚、本発明の多孔積層体は、擦れ等の外的要因が加わっても長期に亘って使用可能な比表面積の高い多孔積層体となり得ることから、例えば、微粒子捕集用材料や担持材料として好適に利用できる。
1:多孔質積層体、1a:A層、1b:B層、2:支持体、3:ポリマーナノファイバ

Claims (7)

  1. 支持体の上に設けられ、ポリマーナノファイバを有する多孔質膜であるA層と、
    前記A層の上に設けられ、ポリマーナノファイバを有する多孔質膜であるB層と、を有し、
    前記A層に含まれるポリマーナノファイバの平均存在率が、前記B層に含まれるポリマーナノファイバの平均存在率よりも大きく、
    前記A層に含まれるポリマーナノファイバの平均存在率が、70%以上97%以下であり、
    前記B層に含まれるポリマーナノファイバの平均存在率が、10%以上45%以下であり、
    かつ、
    前記A層に含まれるポリマーナノファイバの平均存在率と前記B層に含まれるポリマーナノファイバの平均存在率との差が40%を超えることを特徴とする、多孔質積層体。
  2. 前記A層の厚みが、100nm以上、30μm以下であることを特徴とする、請求項1に記載の多孔質積層体。
  3. 前記A層の厚みが、前記B層に含まれるポリマーナノファイバの繊維径よりも大きく20μm以下であることを特徴とする、請求項1又は2に記載の多孔質積層体。
  4. 前記ポリマーナノファイバが、電界紡糸ポリマーナノファイバであることを特徴とする、請求項1乃至3のいずれか一項に記載の多孔質積層体。
  5. 前記ポリマーナノファイバが、イミド構造を有することを特徴とする、請求項1乃至4のいずれか一項に記載の多孔質積層体。
  6. 前記B層の厚みが、50nm以上、500μm以下であることを特徴とする、請求項1乃至5のいずれか一項に記載の多孔質積層体。
  7. 前記A層に含まれるポリマーナノファイバの平均繊維径が、前記B層に含まれるポリマーナノファイバの平均繊維径以上であることを特徴とする、請求項1乃至6のいずれか一項に記載の多孔質積層体。
JP2014179814A 2014-09-04 2014-09-04 多孔質積層体 Active JP6525534B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014179814A JP6525534B2 (ja) 2014-09-04 2014-09-04 多孔質積層体
US14/837,886 US9580847B2 (en) 2014-09-04 2015-08-27 Porous laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179814A JP6525534B2 (ja) 2014-09-04 2014-09-04 多孔質積層体

Publications (2)

Publication Number Publication Date
JP2016052748A JP2016052748A (ja) 2016-04-14
JP6525534B2 true JP6525534B2 (ja) 2019-06-05

Family

ID=55437009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179814A Active JP6525534B2 (ja) 2014-09-04 2014-09-04 多孔質積層体

Country Status (2)

Country Link
US (1) US9580847B2 (ja)
JP (1) JP6525534B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362067B2 (ja) 2014-01-31 2018-07-25 キヤノン株式会社 ポリマーナノファイバシート及びその製造方法
JP6489750B2 (ja) 2014-03-26 2019-03-27 キヤノン株式会社 ポリマーナノファイバ構造体の製造方法
JP2017071873A (ja) 2015-10-07 2017-04-13 キヤノン株式会社 ポリマーナノファイバ集積体及びその製造方法
JP2020056804A (ja) * 2017-01-30 2020-04-09 リンテック株式会社 極低温保管用ラベル、及び極低温保管用ラベルの使用方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003263985A1 (en) 2002-08-15 2004-03-03 Donaldson Company, Inc. Polymeric microporous paper coating
US7789930B2 (en) * 2006-11-13 2010-09-07 Research Triangle Institute Particle filter system incorporating nanofibers
SG123727A1 (en) * 2004-12-15 2006-07-26 Univ Singapore Nanofiber construct and method of preparing thereof
WO2007095363A2 (en) * 2006-02-13 2007-08-23 Donaldson Company, Inc. Filter web comprising fine fiber and reactive, adsorptive or absorptive particulate
JP4809203B2 (ja) * 2006-12-13 2011-11-09 パナソニック株式会社 不織布製造装置、不織布製造方法
JP2008188082A (ja) * 2007-02-01 2008-08-21 Nisshinbo Ind Inc マスク
EP1953286A1 (en) * 2007-02-01 2008-08-06 Nisshinbo Industries, Inc. Fabric and mask
US8753391B2 (en) * 2007-02-12 2014-06-17 The Trustees Of Columbia University In The City Of New York Fully synthetic implantable multi-phased scaffold
JP2011089226A (ja) * 2009-10-22 2011-05-06 Teijin Techno Products Ltd 多層繊維構造体
JP5452212B2 (ja) * 2009-12-24 2014-03-26 花王株式会社 多層ナノファイバシート
JP6012932B2 (ja) 2011-04-04 2016-10-25 国立大学法人信州大学 セパレーターの製造方法
JP5978460B2 (ja) * 2012-05-25 2016-08-24 パナソニックIpマネジメント株式会社 エアフィルタと、このエアフィルタを備えた空気清浄装置、およびその製造方法
JP2014124578A (ja) * 2012-12-26 2014-07-07 Nippon Valqua Ind Ltd フィルター用ろ材およびその製造方法
JP6362067B2 (ja) 2014-01-31 2018-07-25 キヤノン株式会社 ポリマーナノファイバシート及びその製造方法
JP6395412B2 (ja) 2014-03-26 2018-09-26 キヤノン株式会社 ポリマーナノファイバ構造体とこれを用いたポリマーナノファイバ複合体、及びこれらの製造方法
JP6489750B2 (ja) 2014-03-26 2019-03-27 キヤノン株式会社 ポリマーナノファイバ構造体の製造方法
JP6333018B2 (ja) 2014-03-28 2018-05-30 キヤノン株式会社 ナノファイバ構造体とこれを用いた捕集装置、ナノファイバ構造体の製造方法
JP6285245B2 (ja) * 2014-03-29 2018-02-28 シンワ株式会社 積層シートおよび積層シートの製造方法

Also Published As

Publication number Publication date
US20160069005A1 (en) 2016-03-10
US9580847B2 (en) 2017-02-28
JP2016052748A (ja) 2016-04-14

Similar Documents

Publication Publication Date Title
JP6333018B2 (ja) ナノファイバ構造体とこれを用いた捕集装置、ナノファイバ構造体の製造方法
JP6489750B2 (ja) ポリマーナノファイバ構造体の製造方法
Xue et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications
Raghavan et al. Electrospun polymer nanofibers: The booming cutting edge technology
JP6826085B2 (ja) 高融点微多孔質電池セパレータ
Chen et al. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability
US9943793B2 (en) Polymer nanofiber structural body and polymer nanofiber composite using the structural body, and methods of producing the structural body and the composite
JP6269922B2 (ja) 繊維シート及びこれを用いた繊維製品
JP6525534B2 (ja) 多孔質積層体
JP2019040876A (ja) リチウムイオン再充電可能電池セパレータおよび使用方法
EP2835843A1 (en) Separator
KR20120063167A (ko) 다공성 금속산화물 나노섬유 및 그 제조방법
US20190292699A1 (en) Fiber material and method for manufacturing the same
Reis et al. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs
JP2017185422A (ja) デプスフィルター
Soyekwo et al. Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction
JP2011032613A (ja) 極細繊維不織布の製造方法及び極細繊維不織布
CN111106293B (zh) 多孔隔膜及其制备方法和锂离子电池
Vong et al. Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape
US20170130366A1 (en) Nanofiber structure and manufacturing method thereof
Aslan et al. The electrospinning process
CN219436074U (zh) 具有面条式沉积表层的电池隔板及其制备装置
JP2019192484A (ja) アルカリ電池用セパレータ
JP5449583B2 (ja) 極細繊維不織布の製造方法及び極細繊維不織布
Ahmadi Bonakdar Auxetic biobased polybutylene succinate (PBS) produced via solution electrospinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R151 Written notification of patent or utility model registration

Ref document number: 6525534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151