JP6511733B2 - 光飛行型測距装置 - Google Patents

光飛行型測距装置 Download PDF

Info

Publication number
JP6511733B2
JP6511733B2 JP2014112679A JP2014112679A JP6511733B2 JP 6511733 B2 JP6511733 B2 JP 6511733B2 JP 2014112679 A JP2014112679 A JP 2014112679A JP 2014112679 A JP2014112679 A JP 2014112679A JP 6511733 B2 JP6511733 B2 JP 6511733B2
Authority
JP
Japan
Prior art keywords
light
light emission
modulated
light emitting
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014112679A
Other languages
English (en)
Other versions
JP2015227781A (ja
Inventor
光宏 清野
光宏 清野
柳井 謙一
謙一 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014112679A priority Critical patent/JP6511733B2/ja
Publication of JP2015227781A publication Critical patent/JP2015227781A/ja
Application granted granted Critical
Publication of JP6511733B2 publication Critical patent/JP6511733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、変調光を空間に発光し、変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する光飛行型測距装置に関する。
従来より、変調光(測距光)を空間に発光し、変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する光飛行(TOF:Time of Flight)型測距装置が供されている。光飛行型測距装置は、変調光と反射光との位相差を用いて、画素毎に自装置から対象物までの距離を計測する。この種の光飛行型測距装置が同一の検知空間内に複数存在すると、自装置から変調光が発光されている空間(発光エリア)と、他装置から変調光が発光されている空間とが重なり、変調光同士の干渉(発光干渉)が発生する可能性がある。そして、発光干渉が発生すると、他装置から発光された変調光の影響を受け、自装置から発光された変調光と当該変調光が対象物で反射した反射光との位相差に誤差が発生し、測距精度が低下するという問題がある。この問題に対し、例えば特許文献1には、発光期間の後段にランダムな付加期間を付加し、発光パターンをランダムに形成することが開示されている。特許文献1の方法では、他装置から発光された変調光を数千〜数十万周期の露光期間を経て相殺することで、発光干渉の発生を防止し、測距精度の低下を防止する。
特開2013−76645号公報
しかしながら、特許文献1に開示されている技術では、測距精度の低下を防止することはできるが、時間方向に期間を延長することになるので、フレームレート(1フレームあたりの処理速度)が低下するという新たな問題が生じる。
本発明は、上記した事情に鑑みてなされたものであり、その目的は、フレームレートの低下を防止しつつ、測距精度の低下を防止することができる光飛行型測距装置を提供することにある。
請求項1に記載した発明によれば、複数の発光素子は、所定の発光周波数の変調光を互いに異なる空間に発光する。発光制御回路は、複数の発光素子から変調光を個別に発光させる。複数の発光素子に対応して設けられている複数の受光素子は、対応する発光素子から発光された変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積する。受光制御回路は、複数の受光素子を個別に動作させると共に、複数の受光素子における電荷の蓄積状態に基づいて自装置から対象物までの距離を計測し、複数の発光素子から変調光が発光されていない期間の複数の受光素子における電荷の蓄積状態に基づいて、発光干渉が発生する可能性の有無を判定する。この場合、発光制御回路は、発光干渉が発生する可能性の有が受光制御回路により判定された場合に、発光期間において複数の発光素子から変調光を時分割で発光させ、前記複数の発光素子から変調光が発光される空間を分割する分割発光処理を行い、発光干渉が発生する可能性の無が受光制御回路により判定された場合に、発光期間において前記複数の発光素子から変調光を同時に発光させ、複数の発光素子から変調光が発光される空間を分割しない全体発光処理を行う。受光制御回路は、発光制御回路が分割発光処理を行う際に、複数の受光素子のうち変調光を発光する発光素子に対応する受光素子を動作させ、変調光を発光する発光素子に対応しない受光素子を動作させない。
自装置の発光素子から変調光が発光されている空間(発光エリア)と、他装置の発光素子から変調光が発光されている空間とが重なると、変調光同士の発光干渉が発生する。この場合、発光期間において変調光が発光される空間を常に同じとする構成では、自装置の発光期間と他装置の発光期間とが重なる期間の全てで他装置から発光された変調光の影響を受ける。その結果、発光期間が重なる期間の全てで発光干渉が発生する可能性がある。これに対し、本発明では、分割発光処理を行うことで、発光期間において変調光が発光される空間を分割して切替える。発光期間において変調光が発光される空間を分割して切替えると、自装置の発光期間と他装置の発光期間とが重なる期間の少なくとも一部で他装置から発光された変調光の影響を受けない期間が発生する可能性がある。その結果、発光期間が重なる期間の少なくとも一部で他装置から発光された変調光の影響を受けない期間が発生すると、その期間では発光干渉が発生することはない。
即ち、分割発光処理を行うことで、分割発光処理を行わない場合よりも、発光干渉が発生する期間を短縮する(抑制する)ことができる。これにより、変調光と反射光との位相差に誤差が発生する可能性を低減することができ、測距精度の低下を防止することができる。このとき、従来の付加期間に相当する期間を付加する必要もないので、フレームレートの低下を防止することができる。
本発明の一実施形態を示す機能ブロック図 撮像素子の構成を示す機能ブロック図 タイミングチャート(その1) 光飛行型測距装置が車両に搭載されている態様を示す図 発光エリアを示す図 発光干渉が発生する態様を示す図(その1) 全体発光処理及び分割発光処理を示す図 発光干渉が想定される変調光の種類を示す図 フローチャート(その1) フローチャート(その2) タイミングチャート(その2) 発光干渉が発生する態様を示す図(その2) 発光期間が重なる態様を示す図(その1) 発光期間が重なる態様を示す図(その2) 発光期間が重なる態様を示す図(その3)
以下、本発明を、車両に搭載可能な光飛行型測距装置に適用した一実施形態について図面を参照して説明する。光飛行型測距装置1は、1個の撮像素子が1画素として構成されているセンサであり、所定の発光周波数の変調光(測距光)を空間に発光する(照射する)。そして、光飛行型測距装置1は、その発光した変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積し、その電荷の蓄積状態に基づいて自装置から対象物までの距離を計測する。対象物は、例えば人、車両、壁等である。
光飛行型測距装置1は、制御部2と、発光部3と、受光部4とを有する。制御部2は、ハードウェアの構成として、発光部3の発光動作を制御する発光制御回路5と、受光部4の受光動作を制御する受光制御回路6と、記憶部7とを有する。
発光部3は、複数の光源としての発光素子8a〜8nと、複数の発光素子8a〜8nと1対1に対応する複数の駆動回路9a〜9nとを有する。各駆動回路9a〜9nは、発光制御回路5から発光指令信号を同時又は個別に入力し、発光指令信号を入力すると、発光指令を対応する各発光素子8a〜8nに出力する。又、各駆動回路9a〜9nは、車両に搭載されている車両バッテリ(図示せず)から電力供給回路(図示せず)を介して電力が供給される。各駆動回路9a〜9nは、車両バッテリから電力供給回路を介して供給された電力を、発光制御回路5から入力する発光指令信号により指示されている電力量(電流量)の電力に変換し、対応する各発光素子8a〜8nに供給する。
各発光素子8a〜8nは、例えばLED(Light Emitting Diode)やレーザ等の高速変調(高速点滅)が可能なデバイスから構成されている。各発光素子8a〜8nは、対応する各駆動回路9a〜9nから発光指令を入力すると、各駆動回路9a〜9nから供給される電力を動作電力として駆動し、変調光を予め設定されている空間に発光する。各発光素子8a〜8nが変調光を発光する空間は、他の発光素子8a〜8nが変調光を発光する空間と重ならないように設定されている。即ち、複数の発光素子8a〜8nは、変調光を互いに異なる空間に発光する。
受光部4は、選択回路10と、発光部3の複数の発光素子8a〜8nと1対1に対応する複数の受光素子11a〜11nとを有する。選択回路10は、受光制御回路6から受光指令信号を入力すると、受光指令を各受光素子11a〜11nに同時又は個別に出力する。又、選択回路10は、受光制御回路6から読出指令信号を入力すると、読出指令を各受光素子11a〜11nに同時又は個別に出力する。
各受光素子11a〜11nは、選択回路10から受光指令を入力すると、各発光素子8a〜8nから発光された変調光が対象物で反射した反射光を含む入射光の受光を待機する(受光不可能な状態から受光可能な状態へと移行する)。各受光素子11a〜11nは、規則的に配列されている複数の撮像素子12a〜12nを有する。各撮像素子12a〜12nは、図2に示すように、光電変換素子13と、電荷蓄積部14とを有する。光電変換素子13は、変調光が対象物で反射した反射光を含む入射光を受光すると、その受光した入射光を受光量に応じた電荷に変換する。電荷蓄積部14は、第1〜第4の4個の単位蓄積部15a〜15dを有し、光電変換素子13により変換された電荷を変調光の変調周期(1フレームの周期)に同期して振り分ける。そして、電荷蓄積部14は、その振り分けた電荷をそれぞれ第1〜第4の単位蓄積部15a〜15dに蓄積する。
又、各受光素子11a〜11nは、選択回路10から読出指令を入力すると、各撮像素子12a〜12nの第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を受光制御回路4に出力する。受光制御回路4は、読出指令を所定の時間間隔で選択回路10に出力し、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を所定の時間間隔で読出す。そして、受光制御回路4は、その読出した電荷の電荷量を用いて変調光と反射光との遅延時間(位相差)を計算し、画素毎に自装置から対象物までの距離を計測する。尚、受光制御回路4により計測された自装置から対象物までの距離が外部出力端子(図示せず)から外部に出力されることで、例えば自装置から対象物までの距離が所定距離(基準値)未満になると、警告が報知される等の動作が行われる。
次に、発光部3の発光動作及び受光部4の受光動作の制御について、図3を参照して説明する。制御部2は、予め格納されている制御プログラムをマイクロコンピュータが実行することで、発光制御回路5により発光部3の発光動作を制御し、受光制御回路6により受光部4の受光動作を制御する。
制御部2は、1フレームの周期内の発光期間において、発光指令信号を周期がTs、オン時間がTs/2、オフ時間がTs/2の矩形波として発光制御回路5から各駆動回路9a〜9nに出力させ、各発光素子8a〜8nからのTs/2時間の発光とTs/2時間の発光停止とを繰り返させる。尚、制御部2は、発光指令信号を矩形波で出力させることに限らず、発光指令信号を正弦波や鋸波等で出力させても良い。
制御部2は、発光期間において、受光指令信号を受光制御回路6から選択回路10に出力させ、各受光素子11a〜11nの第1〜第4の単位蓄積部15a〜15dにおける電荷を蓄積するタイミングを制御する。即ち、制御部2は、発光指令信号の周期Tsを4等分した時間を、それぞれ順にT、T、T、Tとすると、各発光素子8a〜8nの発光と同期するタイミングで第1の単位蓄積部15aをTs/2時間オンする(蓄積Q1)。又、制御部2は、第1の単位蓄積部15aのオンからT遅れたタイミングで第2の単位蓄積部15bをTs/2時間オンする(蓄積Q2)。又、制御部2は、第1の単位蓄積部15aのオンから(T+T)遅れたタイミングで第3の単位蓄積部15cをTs/2時間オンする(蓄積Q3)。更に、制御部2は、第1の単位蓄積部15aのオンから(T+T+T)遅れたタイミングで第4の単位蓄積部15dをTs/2時間オンする(蓄積Q4)。制御部2は、このように周期Tsを4等分した時間ずつずらして電荷を振り分け、変調光の発光からそれぞれ0度、90度、180度、270度位相がずれた電荷の蓄積を繰り返させる。
一般的に、自装置から対象物までの距離を計測するには、数ms程度の時間の電荷の蓄積が必要である。一方、各発光素子8a〜8nから発光される変調光の発光周波数(変調周波数)は数十MHzである。よって、変調の1周期Tsは数十ns程度である。このため、自装置から対象物までの距離を計測するには、数千〜数十万周期の露光期間(電荷蓄積期間)を必要とする。制御部2は、露光期間の時間間隔毎に第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出す。
制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出すと、以下のようにして自装置から対象物までの距離を計測する。各発光素子8a〜8nから発光された変調光と、変調光が対象物で反射して各受光素子11a〜11nに受光される反射光との間には、光が対象物まで往復する飛行時間による遅延時間(位相差)が生じる。制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量をそれぞれC1、C2、C3、C4とすると、次式(1)により遅延時間Tdを計算する。
Td=tan−1[(C1−C3)/(C2−C4)]…(1)
尚、各受光素子11a〜11nには反射光の他に背景光も入射光として受光されるが、入射光のうち反射光による(反射光成分の)電荷は遅延時間に応じて第1〜第4の単位蓄積部15a〜15dに割り振られる。そのため、第1〜第4の単位蓄積部15a〜15dに蓄積される反射光による電荷の電荷量は異なる。一方、入射光のうち背景光による(背景光成分の)電荷は均等に第1〜第4の単位蓄積部15a〜15dに割り振られる。そのため、第1〜第4の単位蓄積部15a〜15dに蓄積される背景光による電荷の電荷量は略等しくなる。上記した式(1)では、背景光による電荷の電荷量が相殺されるので、背景光の影響を受けずに遅延時間Tdを計算することができる。
制御部2は、遅延時間Tdを計算すると、その計算した遅延時間Td、周期Ts、光速cを用い、次式(2)により自装置から対象物までの距離Dを計算する。
D=(Td/2π)・(c/2Ts)
尚、制御部2は、第1〜第4の単位蓄積部15a〜15dに蓄積されている電荷の電荷量を読出す場合に、それらの電荷量を同時に読出しても良いし個別に読出しても良いし、複数のフレームに亘って読出しても良い。又、本実施形態では、電荷蓄積部14を4個の単位蓄積部15a〜15dで構成する場合を例示したが、互いに異なる位相の電荷量に基づいて自装置から対象物までの距離Dを計算可能であれば、単位蓄積部の個数は2以上の幾つであっても良い。
光飛行型測距装置1が車両に搭載される態様としては、図4に示す態様がある。図4(a)に示すように、例えば光飛行型測距装置1が車両Aの前方部及び後方部に搭載される態様では、車両Aの前方及び後方が発光部3の発光エリアXとなり、対象物の監視対象となる。又、図4(b)に示すように、例えば光飛行型測距装置1が車両Aの側方部に搭載される態様では、車両Aの側方が発光部3の発光エリアとなり、対象物の監視対象となる。更に、図4(c)に示すように、例えば光飛行型測距装置1が車両Aの前側方隅部及び後側方隅部に搭載される態様では、車両の前側方及び後側方(車両の周囲)が発光部3の発光エリアXとなり、対象物の監視対象となる。尚、例えば光飛行型測距装置1が車両Aの前方部のみに搭載されても良い等、光飛行型測距装置1が車両Aに搭載される個数や位置はどのような態様であっても良い。
発光部3の発光エリアXは、各発光素子8a〜8nの発光エリアの総和である。即ち、図5に示すように、例えば発光素子8a〜8nの個数が6個(n=f)であれば、発光部3の発光エリアXは、各発光素子8a〜8fのそれぞれの発光エリアXa〜Xfの総和である。発光エリアXa〜Xfは、水平方向(路面と平行方向)に区切られており、均等(同じ面積)であっても良いし不均等(異なる面積)であっても良い。発光部3の発光エリアXは、所望の監視対象の面積により決定される。即ち、監視対象の面積を相対的に広くする要求があれば、発光部3の発光エリアXが相対的に広くなるように各発光素子8a〜8nの発光エリアXa〜Xnが決定される。一方、監視対象の面積を相対的に狭くする要求があれば、発光部3の発光エリアXが相対的に狭くなるように各発光素子8a〜8nの発光エリアXa〜Xnが決定される。
光飛行型測距装置1が同一の検知空間内に複数存在すると、自装置から発光された変調光と他装置から発光された変調光との干渉(発光干渉)が発生する可能性がある。即ち、図6(a)に示すように、例えば直進路では対向する車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両前方の発光エリアXと、車両Bの光飛行型測距装置1の車両前方の発光エリアYとが重なり、発光干渉が発生する可能性がある。又、図6(b)に示すように、例えば交差点でも車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両前方の発光エリアXと、車両Bの光飛行型測距装置1の車両前方の発光エリアYとが重なることで、発光干渉が発生する可能性がある。更に、図6(c)に示すように、例えば駐車場内でも車両Aと車両Bとの距離が接近すると、車両Aの光飛行型測距装置1の車両右後方の発光エリアXと、車両Bの光飛行型測距装置1の車両左前方の発光エリアYとが重なることで、発光干渉が発生する可能性がある。そして、発光干渉が発生すると、他装置(例えば車両Bの光飛行型測距装置1)から発光された変調光の影響を受け、自装置(例えば車両Aの光飛行型測距装置1)から発光された変調光と当該変調光が対象物で反射した反射光との位相差に誤差が発生し、測距精度が低下するという問題がある。
このような発光干渉が発生する可能性があることを考慮し、光飛行型測距装置1において、制御部2は、発光部3の発光エリアXを空間的に分割しない全体発光処理と、発光部3の発光エリアXを水平方向(路面と平行方向)に空間的に分割する分割発光処理とを切替えて行う。
制御部2は、図7(a)に示すように、全体発光処理を行う場合には、発光指令信号を同時に出力させ、各発光素子8a〜8nから変調光を同時に発光させると共に、発光指令信号の出力に同期して受光指令信号を同時に出力させ、各受光素子11a〜11nに入射光を同時に受光させる。一方、制御部2は、図7(b)及び(c)に示すように、分割発光処理を行う場合には、発光指令信号を時間差で個別に出力させ、各発光素子8a〜8nから変調光を時間差で個別に発光させる共に、発光指令信号の出力に同期して受光指令信号を個別に出力させ、各受光素子11a〜11nに入射光を時間差で個別に受光させる。
この場合、制御部2は、図7(b)に示すように、分割発光処理(非ランダム)を行う場合には、発光指令信号を出力させる順序を例えば上位側から下位側(図5では時計回り方向が上位側から下位側への方向)に向かって一方向とする。即ち、制御部2は、各発光素子8a〜8nの発光順序を例えば上位側から下位側に向かって一方向とする(規則性がある順序とする)。そのため、分割発光処理(非ランダム)では、全てのフレームで各発光素子8a〜8nの発光順序が同じである。一方、制御部2は、図7(c)に示すように、分割発光処理(ランダム)を行う場合には、発光指令信号を出力させる順序をランダムとする。即ち、制御部2は、各発光素子8a〜8nの発光順序をランダムとする(規則性がない順序とする)。そのため、分割発光処理(ランダム)では、フレーム毎で各発光素子8a〜8nの発光順序が異なる。又、制御部2は、分割発光処理を行う場合には、変調光を発光させる発光素子8a〜8nに供給する電力を、全体発光処理を行う場合に変調光を同時に発光させる複数の発光素子8a〜8nに個別に供給する電力よりも高める。
又、記憶部7は、図8に示すように、発光部3から発光される変調光との発光干渉が想定される変調光の種別と、それぞれの周波数(図8ではf1〜f6)を、優先度の高低を付与して記憶している。優先度は、発光部3から発光される変調光との発光干渉が発生する可能性である。発光部3から発光させる変調光との発光干渉が想定される変調光には、車両に搭載されている光飛行型測距装置1から発光される変調光、光飛行型測距装置1以外の他装置から発光される変調光を含む。尚、f1〜f6は、互いに異なる値である。尚、図8では、発光部3から発光される変調光との発光干渉が想定される変調光の種別を6個例示しているが、どのような個数であっても良い。
次に、上記した構成の作用について、図9から図15も参照して説明する。
光飛行型測距装置1において、制御部2は、1フレーム処理を開始すると、発光干渉有無判定処理に移行する(S1)。制御部2は、発光干渉有無判定処理に移行すると、n(周波数の種別を示すパラメータ)に「1」を設定し(S11)、受光部4の駆動周波数をnにしたがって設定する(S12)。即ち、制御部2は、記憶部7を参照し、受光部4の駆動周波数をf1に設定し、発光周波数がf1の変調光の受光を受光部4に待機させる。
次いで、制御部2は、図11に示すように、発光期間において、発光指令信号を出力させずに受光指令信号を出力させ、各受光素子11a〜11nの各撮像素子12a〜12nの第1〜第4の単位蓄積部15a〜15dに電荷を蓄積させる(S13)。このとき、発光周波数がf1の変調光を発光している他装置が自装置の周囲に存在していなければ、発光周波数がf1の変調光が入射光として受光部4に受光されることはない。即ち、背景光のみの受光量に応じた電荷が各受光素子11a〜11nに蓄積される。一方、発光周波数がf1の変調光を発光している他装置が自装置の周囲に存在していれば、発光周波数がf1の変調光が入射光として受光部4に受光される。即ち、背景光と他装置から発光された変調光の受光量に応じた電荷が各受光素子11a〜11nに蓄積される。
制御部2は、各受光素子11a〜11nの電荷の蓄積状態を判定することで、他装置から発光された変調光が受光された(変調光を検出した)か否かを判定する(S14)。制御部2は、各受光素子11a〜11に蓄積されている電荷が背景光のみの受光量に相当すると判定し、変調光を検出していないと判定すると(S14:NO)、周波数fnで発光干渉が発生する可能性がないと特定する(S15)。即ち、この場合は、制御部2は、周波数f1で発光干渉が発生する可能性がないと特定する。
制御部2は、記憶部7に記憶させている全ての周波数(図8ではf1〜f6)について調査したか否かを判定し(S16)、調査していない周波数があると判定すると(S16:NO)、nをインクリメントし(S17)、上記したステップS12に戻り、S12以降の処理を繰返して行う。即ち、この場合は、制御部2は、記憶部7を参照し、受光部4の駆動周波数をf1からf2に切替え、発光周波数がf2の変調光の受光を受光部4に待機させる。これ以降、制御部2は、周波数f2で発光干渉が発生する可能性がないと特定すると、受光部4の駆動周波数をf2からf3に切替え、これ以降も同様にして上記した処理を繰返して行う。
制御部2は、調査していない周波数がない、即ち、記憶部7に記憶させている全ての周波数について調査したと判定すると(S16:YES)、調査対象の全ての周波数で発光干渉が発生する可能性がないと特定する(S18)。そして、制御部2は、全体発光処理を行う旨を決定し(S19)、発光干渉有無判定処理を終了してリターンする。
一方、制御部2は、図11に示すように他装置から変調光が発光されたことで、変調光を検出したと判定すると(S14:YES)、過去数フレームでも他装置から発光された変調光が受光されていた(変調光を検出していた)か否かを判定する(S20)。制御部2は、過去数フレームでは変調光を検出していなかったと判定すると(S20:NO)、周波数fnで発光干渉が発生する可能性があると特定し、その発光干渉が単発的であり、発光干渉が発生する周期が同期していない(非同期である)と特定する(S21)。そして、制御部2は、分割発光処理(非ランダム)を行う旨を決定し(S22)、発光干渉有無判定処理を終了してリターンする。又、制御部2は、過去数フレームでも変調光を検出していたと判定すると(S20:YES)、周波数fnで発光干渉が発生する可能性があると特定し、その発光干渉が連続的(周期的)であり、発光干渉が発生する周期が同期していると特定する(S23)。そして、制御部2は、分割発光処理(ランダム)を行う旨を決定し(S24)、発光干渉有無判定処理を終了してリターンする。
制御部2は、このようにして全体発光処理、分割発光処理(非ランダム)、分割発光処理(ランダム)の何れを行う旨を決定し、発光干渉有無判定処理を終了してリターンすると、その決定した発光処理にしたがって発光部3の発光動作及び受光部4の受光動作を行う。制御部2は、全体発光処理にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を同時に発光させると共に、各受光素子11a〜11nに入射光を同時に受光させる。制御部2は、分割発光処理(非ランダム)にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を規則性のある順序で個別に発光させると共に、各受光素子11a〜11nに入射光を規則性のある順序で個別に受光させる。制御部2は、分割発光処理(ランダム)にしたがって発光部3の発光動作及び受光部4の受光動作を行う場合には、各発光素子8a〜8nから変調光を規則性のない順序で個別に発光させると共に、各受光素子11a〜11nに入射光を規則性のない順序で個別に受光させる。
図12に示すように車両Aと車両Bとが直進路で対向し、車両Aの前方の発光エリアXの一部(発光エリアXe、Xf)と車両Bの前方の発光エリアYの一部とが重なり、図13〜15に示すように車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる場合を想定する。又、車両Bの光飛行型測距装置1が全体発光処理を行う(分割発光処理を行う機能を有していない)場合を想定する。図13は、車両Aの光飛行型測距装置1が全体発光処理を行う場合を示している。この場合は、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)の全てで発光干渉が発生する可能性がある。
これに対し、図14は、車両Aの光飛行型測距装置1が分割発光処理(非ランダム)を行う場合を示している。この場合は、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)で発光干渉が発生しない期間が発生する。即ち、発光素子8e、8fから変調光を発光させる期間(t21〜t3、t61〜t7)では、発光エリアXe、Xfと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8dから変調光を発光させる期間(t2〜t21、t6〜t61)では、発光エリアXdと発光エリアYとが重ならず発光干渉が発生する可能性はない。
又、図15は、車両Aの光飛行型測距装置1が分割発光処理(ランダム)を行う場合を示している。この場合も、車両Aの発光期間の一部と車両Bの発光期間の一部とが重なる期間(t2〜t3、t6〜t7)で発光干渉が発生しない期間が発生する。即ち、発光期間が重なる期間(t2〜t3)においては、発光素子8fから変調光を発光させる期間(t21〜t22)では、発光エリアXfと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8b、8cから変調光を発光させる期間(t2〜t21、t22〜t3)では、発光エリアXb、Xcと発光エリアYとが重ならず発光干渉が発生する可能性はない。又、発光期間が重なる期間(t6〜t7)においては、発光素子8eから変調光を発光させる期間(t62〜t7)では、発光エリアXeと発光エリアYとが重なり発光干渉が発生する可能性があるが、発光素子8a、8cから変調光を発光させる期間(t6〜t62)では、発光エリアXa、Xcと発光エリアYとが重ならず発光干渉が発生する可能性はない。
このように分割発光処理を行うことで、全体発光処理を行う場合よりも発光干渉が発生する可能性がある期間を短縮し(抑制し)、発光干渉が発生する可能性を低減している。図12では車両Aと車両Bとが直進路で対向する場合を説明したが、上記した図6に示したように交差点や駐車場内で車両Aと車両Bとが接近する場合も同様である。
以上に説明したように本実施形態によれば、次に示す効果を得ることができる。
光飛行型測距装置1において、発光干渉が発生する可能性があると判定すると、発光期間において複数の発光素子8a〜8nから変調光を時分割で発光させ、複数の発光素子8a〜8nから変調光が発光される空間を分割する分割発光処理を行うようにした。これにより、自装置の発光期間と他装置の発光期間とが重なる期間で、発光干渉が発生する可能性を低減することができ、測距精度の低下を防止することができる。
又、発光干渉が発生する可能性があるときには分割発光処理を行い、発光干渉が発生する可能性がないときには全体発光処理を行い、分割発光処理と全体発光処理とを切替えて行うようにした。これにより、分割発光処理により発光干渉の発生を防止することと、全体発光処理により検知空間を広く確保することとの両立を図ることができる。
又、分割発光処理を行うときの変調光を発光させる発光素子8a〜8nに供給する電力を、全体発光処理を行うときの変調光を同時に発光させる複数の発光素子8a〜8nに個別に供給する電力よりも高めるようにした。これにより、分割発光処理を行うときには各発光素子8a〜8nの各々の発光パワーを高めることができ、その分、必要とする露光期間を短縮することができる。
又、発光干渉が発生する可能性の有無を1フレームの単位で判定するようにした。これにより、分割発光処理と全体発光処理とを1フレームの単位で切替えることができる。又、発光干渉が発生する可能性がある旨を一のフレームのみで判定すると、分割発光処理(非ランダム)を行うようにした。これにより、発光順序をランダムに決定する処理を省きつつ、発光干渉が発生する可能性を低減することができる。又、発光干渉が発生する可能性がある旨を複数のフレームに亘って判定すると、分割発光処理(ランダム)を行うようにした。これにより、発光エリアの重なりの程度によっては、発光順序が常に同じであると、発光干渉が発生する可能性を低減し得ないことも想定されるが、発光順序をランダムに決定することで、発光干渉が発生する可能性を低減することができる。
又、発光部3から発光される変調光との発光干渉が発生する可能性が想定される複数の変調光に付与されている優先度にしたがって複数の変調光の各々について発光干渉が発生する可能性の有無を判定するようにした。これにより、発光干渉が発生する可能性の有無を判定する処理を、発光干渉が発生する可能性が高い周波数から順に効率良く判定することができ、分割発光処理を行う旨を効率良く決定することができる。
本発明は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張することができる。
車両以外の用途に適用しても良い。
分割発光処理(ランダム)では、一の発光期間において、特定の発光素子から変調光を複数回発光させたり、特定の発光素子から変調光を発光させなくしたり、一部の幾つかの発光素子から変調光を同時に発光させたりする等、規則性がない発光順序であればどのような発光順序としても良い。
図面中、1は光飛行型測距装置、5は発光制御回路、6は受光制御回路、7は記憶部、8a〜8nは発光素子、11a〜11nは受光素子である。

Claims (8)

  1. 所定の発光周波数の変調光を互いに異なる空間に発光する複数の発光素子(8a〜8n)と、
    前記複数の発光素子から変調光を個別に発光させる発光制御回路(5)と、
    前記複数の発光素子に対応して設けられ、対応する発光素子から発光された変調光が対象物で反射した反射光を含む入射光を受光して電荷を蓄積する複数の受光素子(11a〜11n)と、
    前記複数の受光素子を個別に動作させると共に、前記複数の受光素子における電荷の蓄積状態に基づいて自装置から対象物までの距離を計測し、前記複数の発光素子から変調光が発光されていない期間の前記複数の受光素子における電荷の蓄積状態に基づいて、発光干渉が発生する可能性の有無を判定する受光制御回路(6)と、を備え、
    前記発光制御回路は、発光干渉が発生する可能性の有が前記受光制御回路により判定された場合に、発光期間において複数の発光素子から変調光を時分割で発光させ、前記複数の発光素子から変調光が発光される空間を分割する分割発光処理を行い、発光干渉が発生する可能性の無が前記受光制御回路により判定された場合に、発光期間において前記複数の発光素子から変調光を同時に発光させ、前記複数の発光素子から変調光が発光される空間を分割しない全体発光処理を行い、
    前記受光制御回路は、前記発光制御回路が分割発光処理を行う際に、前記複数の受光素子のうち変調光を発光する発光素子に対応する受光素子を動作させ、変調光を発光する発光素子に対応しない受光素子を動作させないことを特徴とする光飛行型測距装置(1)。
  2. 請求項1に記載した光飛行型測距装置において、
    前記発光制御回路は、前記分割発光処理と、発光期間において前記複数の発光素子から変調光を同時に発光させ、前記複数の発光素子から変調光が発光される空間を分割しない全体発光処理とを切替えて行うことを特徴とする光飛行型測距装置。
  3. 請求項2に記載した光飛行型測距装置において、
    前記発光制御回路は、前記分割発光処理を行うときの変調光を発光させる発光素子に供給する電力を、前記全体発光処理を行うときの変調光を同時に発光させる複数の発光素子に個別に供給する電力よりも高めることを特徴とする光飛行型測距装置。
  4. 請求項1から3の何れか一項に記載した光飛行型測距装置において、
    前記受光制御回路は、発光干渉が発生する可能性の有無を1フレームの単位で判定することを特徴とする光飛行型測距装置。
  5. 請求項4に記載した光飛行型測距装置において、
    前記発光制御回路は、発光干渉が発生する可能性の有が一のフレームのみで前記受光制御回路により判定された場合には、前記複数の発光素子から変調光を発光させる発光順序を規則性がある順序に設定して前記分割発光処理を行い、発光干渉が発生する可能性の無が前記受光制御回路により判定された場合に、発光期間において前記複数の発光素子から変調光を同時に発光させ、前記複数の発光素子から変調光が発光される空間を分割しない全体発光処理を行うことを特徴とする光飛行型測距装置。
  6. 請求項4又は5に記載した光飛行型測距装置において、
    前記発光制御回路は、発光干渉が発生する可能性の有が複数のフレームに亘って前記受光制御回路により判定された場合には、前記複数の発光素子から変調光を発光させる発光順序を規則性がない順序に設定して前記分割発光処理を行い、発光干渉が発生する可能性の無が前記受光制御回路により判定された場合に、発光期間において前記複数の発光素子から変調光を同時に発光させ、前記複数の発光素子から変調光が発光される空間を分割しない全体発光処理を行うことを特徴とする光飛行型測距装置。
  7. 請求項1から6の何れか一項に記載した光飛行型測距装置において、
    前記受光制御回路は、前記変調光との発光干渉が発生する可能性が想定される変調光が複数の場合には、前記複数の変調光に付与されている優先度にしたがって前記複数の変調光の各々について発光干渉が発生する可能性の有無を判定することを特徴とする光飛行型測距装置。
  8. 請求項に記載した光飛行型測距装置において、
    前記変調光との発光干渉の発生の可能性が想定される複数の変調光の種別と、その変調光の周波数との対応を記憶する記憶部(7)を備えたことを特徴とする光飛行型測距装置。
JP2014112679A 2014-05-30 2014-05-30 光飛行型測距装置 Active JP6511733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112679A JP6511733B2 (ja) 2014-05-30 2014-05-30 光飛行型測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112679A JP6511733B2 (ja) 2014-05-30 2014-05-30 光飛行型測距装置

Publications (2)

Publication Number Publication Date
JP2015227781A JP2015227781A (ja) 2015-12-17
JP6511733B2 true JP6511733B2 (ja) 2019-05-15

Family

ID=54885334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112679A Active JP6511733B2 (ja) 2014-05-30 2014-05-30 光飛行型測距装置

Country Status (1)

Country Link
JP (1) JP6511733B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698655B2 (ja) * 2015-07-22 2020-05-27 パナソニック株式会社 測距装置
JP6665535B2 (ja) * 2016-01-11 2020-03-13 株式会社デンソー レーザレーダ装置
JP6862751B2 (ja) * 2016-10-14 2021-04-21 富士通株式会社 距離測定装置、距離測定方法及びプログラム
WO2019012756A1 (ja) * 2017-07-11 2019-01-17 ソニーセミコンダクタソリューションズ株式会社 電子装置、および、電子装置の制御方法
DE102017222970A1 (de) * 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH LIDAR Messsystem
DE102017222969A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Verfahren zur verbesserten Nah- und Ferndetektion einer LIDAR Empfangseinheit
US11543495B2 (en) * 2018-11-01 2023-01-03 Waymo Llc Shot reordering in LIDAR systems
DE102019107957A1 (de) * 2019-03-27 2020-10-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische vorrichtung und lidar-system
WO2022162810A1 (ja) * 2021-01-28 2022-08-04 三菱電機株式会社 ライダ装置及び送受分離装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184381A (ja) * 1986-02-07 1987-08-12 Koito Mfg Co Ltd 自動車用レ−ダ装置
JPH07218632A (ja) * 1994-02-01 1995-08-18 Nikon Corp 距離測定装置
JP2002333487A (ja) * 2001-05-08 2002-11-22 Sunx Ltd 光電センサ
JP2007205775A (ja) * 2006-01-31 2007-08-16 Sunx Ltd 光電センサ
JP5019117B2 (ja) * 2007-11-14 2012-09-05 スタンレー電気株式会社 距離画像生成装置
JP2010107448A (ja) * 2008-10-31 2010-05-13 Toyota Motor Corp 距離測定装置
JP2013076645A (ja) * 2011-09-30 2013-04-25 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法
WO2014010107A1 (ja) * 2012-07-11 2014-01-16 北陽電機株式会社 走査式測距装置

Also Published As

Publication number Publication date
JP2015227781A (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6511733B2 (ja) 光飛行型測距装置
JP5019117B2 (ja) 距離画像生成装置
JP6698655B2 (ja) 測距装置
JP2013076645A (ja) 距離画像生成装置および距離画像生成方法
JP6228537B2 (ja) 距離情報を提供する方法及びタイム・オブ・フライトカメラ
JP6852416B2 (ja) 距離測定装置、移動体、ロボット、装置及び3次元計測方法
JP6428462B2 (ja) レーザレーダ装置
JP6665535B2 (ja) レーザレーダ装置
JP2016017799A (ja) 光飛行型測距装置
JP6455088B2 (ja) 光飛行型測距装置
US20160370460A1 (en) Sensor, sensor system and method of finding range
JP2008241695A (ja) 測距装置及び測距方法
KR20140079733A (ko) 거리 측정 장치, 거리 측정 방법 및 컴퓨터 판독 가능한 기억 매체
JP2017125829A (ja) 距離測定装置、移動体装置及び距離測定方法
JP2013019708A (ja) 距離測定装置
JP2017015448A (ja) 光飛行型測距装置
US20170261611A1 (en) Range finding apparatus, moveable apparatus, robot, three dimensional measurement apparatus, method of measuring three dimensional information, and storage medium
JP5180501B2 (ja) 測距装置及び測距方法
JP2016169985A (ja) 光波距離計
US11703592B2 (en) Distance measurement apparatus and distance measurement method
KR20160092137A (ko) 티오에프 방식의 거리 측정 장치에서 제어 방법
JP2019158894A (ja) レーザレーダ装置、周辺監視システム
JP2008209298A (ja) 測距装置及び測距方法
JP5180502B2 (ja) 測距装置及び測距方法
US20220276358A1 (en) Distance-measuring imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6511733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250