JP6507745B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP6507745B2
JP6507745B2 JP2015054176A JP2015054176A JP6507745B2 JP 6507745 B2 JP6507745 B2 JP 6507745B2 JP 2015054176 A JP2015054176 A JP 2015054176A JP 2015054176 A JP2015054176 A JP 2015054176A JP 6507745 B2 JP6507745 B2 JP 6507745B2
Authority
JP
Japan
Prior art keywords
thermoelectric element
thermoelectric
type thermoelectric
thermoelectric elements
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015054176A
Other languages
Japanese (ja)
Other versions
JP2016174114A (en
Inventor
中田 嘉信
嘉信 中田
長瀬 敏之
敏之 長瀬
雅人 駒崎
雅人 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015054176A priority Critical patent/JP6507745B2/en
Publication of JP2016174114A publication Critical patent/JP2016174114A/en
Application granted granted Critical
Publication of JP6507745B2 publication Critical patent/JP6507745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数のP型熱電素子とN型熱電素子とを組み合わせて配列した熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module in which a plurality of P-type thermoelectric elements and N-type thermoelectric elements are combined and arranged.

熱電変換モジュールは、一組の配線基板の間に、一対のP型熱電素子とN型熱電素子とを電極で接続状態に組み合わせたものを、P,N,P,Nの順に交互に配置されるように、電気的に直列に接続した構成とされ、両端を直流電源に接続して、ペルチェ効果により各熱電素子中で熱を移動させる(P形では電流と同方向、N形では電流と逆方向に移動させる)、あるいは、両配線基板間に温度差を付与して各熱電素子にゼーベック効果により起電力を生じさせるもので、冷却、加熱、あるいは、発電としての利用が可能である。   In the thermoelectric conversion module, a combination of a pair of P-type thermoelectric elements and an N-type thermoelectric element in a connected state between a pair of wiring boards is alternately arranged in the order of P, N, P, N To connect the both ends to a DC power supply and transfer heat in each thermoelectric element by the Peltier effect (in the same direction as current in P-type and current in N-type). A temperature difference is provided between the two wiring boards in the opposite direction) to generate an electromotive force in each thermoelectric element by the Seebeck effect, which can be used as cooling, heating, or power generation.

ところで、P型、N型の各熱電素子の熱電変換性能は、ZTと呼ばれる無次元の性能指数で表わされ、素子選定の目安になるが、同じ母材を用いたとしても、同じ使用温度環境でもP型とN型では必ずしも同じ熱電変換性能が出ない場合が多く、調整が必要である。   By the way, the thermoelectric conversion performance of P-type and N-type thermoelectric elements is represented by a dimensionless figure of merit called ZT, which is an indicator for element selection, but even if the same base material is used, the same operating temperature Even in the environment, P-type and N-type often do not always have the same thermoelectric conversion performance, and adjustment is necessary.

例えば、特許文献1には、通常は横断面正方形の角柱状に形成される素子を、横断面長方形状に形成するとともに、P形、N形それぞれのキャリア濃度に応じて、双方で異なる形で形成することが記載されている。
特許文献2には、反りが生じた基板に熱電変換素子をはんだ付けする際に、基板と素子との間の距離に応じてはんだ層の厚さを異ならせることが記載されている。
For example, Patent Document 1 forms an element, which is generally formed in a rectangular column shape with a square cross-sectional area, in a rectangular cross-sectional shape, and in different forms depending on the carrier concentration of P-type and N-type respectively. It is described that it forms.
Patent Document 2 describes that when soldering a thermoelectric conversion element to a warped substrate, the thickness of the solder layer is made to differ according to the distance between the substrate and the element.

同じ使用温度環境においてより近い熱電変換性能(ZT)を得るために、P形及びN形の熱電素子を異種の母材により選択することも考えられるが、異種材料では素子結晶の強度、熱膨張係数なども異なるため、強度の低い素子のダメージが大きくなる(割れ等が優先的に発生する)。   It is also conceivable to select P-type and N-type thermoelectric elements with different base materials in order to obtain closer thermoelectric conversion performance (ZT) in the same operating temperature environment, but with different materials, the strength and thermal expansion of element crystals Since the coefficients and the like are also different, the damage of the low strength element is increased (cracks and the like occur preferentially).

そこで、特許文献3には、熱電素子と低温側あるいは高温側との間に、圧縮性の熱伝導層を介在させることが記載されている。
また、特許文献4には、熱電素子の結晶の配向を制御することにより、耐荷重強度を向上させることが記載されている。
しかしながら、いずれの場合でも、素子の割れ等を防止するには不十分である。
Therefore, Patent Document 3 describes that a compressible heat conduction layer is interposed between the thermoelectric element and the low temperature side or the high temperature side.
Further, Patent Document 4 describes that load resistance strength is improved by controlling the orientation of crystals of the thermoelectric element.
However, in any case, it is insufficient to prevent the element from cracking or the like.

特開2013−12571号公報JP, 2013-12571, A 特開2013−157348号公報JP, 2013-157348, A 特開2014−508404号公報JP, 2014-508404, A 特開2011−29543号公報JP, 2011-29543, A

本発明は、このような事情に鑑みてなされたものであり、強度の低い素子の割れ等の発生を防止し、異なる材質からなるP形、N形の熱電素子の使用を可能にして、安定した熱電変換性能を有する熱電変換モジュールを得ることを目的とする。   The present invention has been made in view of such circumstances, and prevents the occurrence of cracks and the like of low strength elements, and enables the use of P-type and N-type thermoelectric elements made of different materials and is stable. It is an object of the present invention to obtain a thermoelectric conversion module having the above thermoelectric conversion performance.

本発明の熱電変換モジュールは、一組の対向する配線基板の間に、P型熱電素子及びN型熱電素子を複数対組み合わせて前記配線基板を介して直列に接続するとともに線状又は面状に配列してなる熱電変換モジュールであって、前記線状又は面状の配列の外側端部に、前記P型熱電素子及びN型熱電素子のうち、強度が高い熱電素子が配置されており、前記強度が高い熱電素子の熱膨張係数は、前記強度が低い熱電素子の熱膨張係数より小さく、前記強度が低い熱電素子における前記配線基板の対向方向に沿う長さは、前記強度が高い熱電素子より短く、前記強度が低い熱電素子と前記配線基板との間に、前記熱電素子より軟質材からなる導電性スペーサが設けられており、前記軟質材は、純度99.99%以上の高純度アルミニウム、グラファイト、銀、導電性樹脂のいずれかである。 In the thermoelectric conversion module of the present invention, a plurality of pairs of P-type thermoelectric elements and N-type thermoelectric elements are combined in series between a pair of opposing wiring boards and connected in series via the wiring board and in a linear or planar shape. In the thermoelectric conversion module, the thermoelectric elements having high strength of the P-type thermoelectric elements and the N-type thermoelectric elements are disposed at the outer end of the linear or planar array , The thermal expansion coefficient of the high strength thermoelectric element is smaller than the thermal expansion coefficient of the low strength thermoelectric element, and the length along the opposing direction of the wiring board in the low strength thermoelectric element is higher than the high strength thermoelectric element A conductive spacer made of a softer material than the thermoelectric element is provided between the thermoelectric element having a short strength and the low strength and the wiring board, and the soft material is high purity aluminum having a purity of 99.99% or more. Gra Aito, silver, Ru der either conductive resin.

この場合、配列の外側端部とは、線状配列の場合は両端であり、面状配列の場合は少なくとも周縁部の周方向に間隔をおいた複数箇所であって、均等位置であるのが好ましい。この熱電変換モジュールを金属や樹脂等でパッケージ化する際に圧縮荷重が作用するが、配列の外側に強度が高い熱電素子を配置したことにより、その荷重をこれら強度が高い熱電素子が配列の外側端部で支え、強度の低い熱電素子への負担を軽減して割れ等の発生を防止することができる。したがって、P型熱電素子及びN型熱電素子を異なる材質で形成するなど、材料の選択肢が広がり、両熱電素子の性能を揃えて安定した性能の熱電変換モジュールを得ることができる。   In this case, the outer end of the array means both ends in the case of the linear array, and in the case of the planar array, there are a plurality of locations spaced at least in the circumferential direction of the peripheral edge, which are equal positions preferable. Although a compressive load acts when packaging this thermoelectric conversion module with metal, resin, etc., by arranging the thermoelectric elements with high strength outside the array, the thermoelectric elements with high strength are outside the array It is possible to support at the end and reduce the burden on the low-strength thermoelectric element to prevent the occurrence of cracking or the like. Therefore, material choices such as forming P-type thermoelectric elements and N-type thermoelectric elements from different materials are broadened, and the performance of both thermoelectric elements can be aligned to obtain a thermoelectric conversion module with stable performance.

両熱電素子の熱膨張係数が異なると、膨張収縮量の違いにより、配線基板に貼り付けている熱電素子が剥がれる場合や、熱電素子にクラックが生じる場合がある。熱電素子が剥がれた場合や熱電素子にクラックが生じた場合には、電気が流れなくなったり、電気伝導度が大幅に低下して、モジュールが動作不能になったり、動作不能に至らなくても発電量が大幅に低下するという問題がある。   If the thermal expansion coefficients of the two thermoelectric elements are different, the thermoelectric elements attached to the wiring substrate may be peeled off or cracks may occur in the thermoelectric elements due to the difference in the amount of expansion and contraction. If the thermoelectric element peels off or a crack occurs in the thermoelectric element, electricity will not flow or the electrical conductivity will significantly decrease, and even if the module becomes inoperable or inoperable, power generation will not occur. There is a problem that the amount is greatly reduced.

本発明においては、強度が高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数よりも小さい場合には、強度の低い熱電素子の長さを強度が高い熱電素子よりも短くすることにより、使用環境での最高温度時に熱膨張が生じた場合に、予め長く設定された強度が高い熱電素子の熱膨張は小さいのに対して、それより短く強度が低い熱電素子の方が熱膨張が大きくなるので、強度が高い熱電素子の熱膨張により強度が低い熱電素子に引張応力が作用することを少なくすることができる。両者の熱電素子の長さが同じ場合には、温度の上昇とともに、熱膨張係数が大きく強度の低い熱電素子は圧縮応力を受け、圧縮応力が大きくなるとクラックが生じ、熱電素子が割れるおそれがある。
両熱電素子の長さの差は、使用環境での最高温度における両熱電素子の熱膨張差に合せるとよい。
In the present invention, when the thermal expansion coefficient of the high strength thermoelectric element is smaller than the thermal expansion coefficient of the low strength thermoelectric element, the length of the low strength thermoelectric element is made shorter than that of the high strength thermoelectric element. By this, when thermal expansion occurs at the maximum temperature in the use environment, the thermal expansion of the thermoelectric element with high strength set in advance is small, while the thermal expansion of the thermoelectric element with shorter strength is lower. Since the thermal expansion of the thermoelectric element with high strength can cause tensile stress to act on the thermoelectric element with low strength. If the two thermoelectric elements have the same length, the thermoelectric element with a large thermal expansion coefficient and low strength is subjected to compressive stress as the temperature rises, and cracking may occur if the compressive stress becomes large, and the thermoelectric element may be cracked .
The difference in length of the two thermoelectric elements may be matched to the thermal expansion difference of the two thermoelectric elements at the maximum temperature in the use environment.

前記強度が低い熱電素子の長さを前記強度が高い熱電素子より短く設定しているので、前記強度が低い熱電素子と前記配線基板との間に、前記熱電素子より軟質材からなる導電性スペーサが設けられている。
この熱電変換モジュールにおいて、前記P型熱電素子はマンガンシリサイドであり、前記N型熱電素子はマグネシウムシリサイドであるとよい。
Since the length of the low-strength thermoelectric element is set shorter than that of the high-strength thermoelectric element, a conductive spacer made of a softer material than the thermoelectric element between the low-strength thermoelectric element and the wiring substrate Is provided.
In this thermoelectric conversion module, the P-type thermoelectric element may be manganese silicide, and the N-type thermoelectric element may be magnesium silicide.

本発明の熱電変換モジュールによれば、強度の低い熱電素子の割れや配線基板との間の剥離等の発生を防止することができるので、異なる材質からなるP形、N形の熱電素子を組み合わせるなど、材料の選択肢が広がり、両熱電素子の性能を揃えて安定した熱電変換モジュールを得ることができる。   According to the thermoelectric conversion module of the present invention, it is possible to prevent the occurrence of cracking of the low-strength thermoelectric element, peeling between the wiring substrate and the like, so combining P-type and N-type thermoelectric elements made of different materials The choice of materials is expanded, and the performance of both thermoelectric elements can be matched to obtain a stable thermoelectric conversion module.

本発明の第1実施形態の熱電変換モジュールの縦断面図である。It is a longitudinal cross-sectional view of the thermoelectric conversion module of 1st Embodiment of this invention. 図1のA−A線の矢視方向の平断面図である。It is the plane sectional view of the arrow direction of the AA of FIG. 図1のB−B線に矢視方向の平断面図である。It is the plane sectional view of the arrow direction to the BB line of FIG. 本発明の第2実施形態の熱電変換モジュールの図2同様の平断面図である。It is a plane sectional view like FIG. 2 of the thermoelectric conversion module of 2nd Embodiment of this invention. 第2実施形態の図3同様の平断面図である。It is a plane sectional view similar to FIG. 3 of 2nd Embodiment.

以下、本発明の実施形態について、図面を参照して説明する。
第1実施形態の熱電変換モジュール1は、図1〜図3に示すように、一組の対向した配線基板2A,2Bの間に、P型熱電素子3及びN型熱電素子4を線状(一次元)に配列した構成である。簡便にするため、図1〜図3には、P型熱電素子3及びN型熱電素子4が二対で配列された例を示しており、合計4個の熱電素子3,4が一列に並んで設けられる。この熱電変換モジュール1は、全体がケース5内に収容され、高温ガスが流れる高温側流路6と、冷却水が流れる低温側流路7との間に介在するように取り付けられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the thermoelectric conversion module 1 of the first embodiment, as shown in FIGS. 1 to 3, the P-type thermoelectric elements 3 and the N-type thermoelectric elements 4 are linearly formed between a pair of opposing wiring boards 2A and 2B. It is the structure arranged in one dimension. For the sake of simplicity, FIGS. 1 to 3 show an example in which P-type thermoelectric elements 3 and N-type thermoelectric elements 4 are arranged in two pairs, and a total of four thermoelectric elements 3 and 4 are arranged in a line. Provided. The thermoelectric conversion module 1 is entirely housed in the case 5 and attached so as to be interposed between the high temperature side flow passage 6 through which the high temperature gas flows and the low temperature side flow passage 7 through which the cooling water flows.

配線基板2A,2Bは、窒化アルミニウム(AlN)、アルミナ(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、カーボン板、グラファイト板上に成膜したダイヤモンド薄膜基板等の熱伝導性の高い絶縁性セラミックス基板が用いられる。
P型熱電素子3及びN型熱電素子4の材料としては、シリサイド系材料、酸化物系材料、スクッテルダイト(遷移金属とプニクトゲンの金属間化合物)、ハーフホイッスラー等を用いることができ、例えば、表1に示す組合せのものが用いられる。
The wiring substrates 2A and 2B are made of aluminum nitride (AlN), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), carbon plate, diamond thin film substrate formed on a graphite plate, etc. An insulating ceramic substrate having high thermal conductivity is used.
As materials of the P-type thermoelectric element 3 and the N-type thermoelectric element 4, silicide materials, oxide materials, skutterudite (intermetallic compound of transition metal and pnictogen), half-Heussler, etc. can be used, for example, The combinations shown in Table 1 are used.

Figure 0006507745
Figure 0006507745

これらの材料のうち、環境への影響が少なく、資源埋蔵量も豊富なシリサイド系材料が注目されており、本実施形態でもシリサイド系材料を用いて説明する。
シリサイド系材料であるマンガンシリサイド(MnSi1.73)、及びマグネシウムシリサイド(MgSi)は、それぞれ母合金を作製して、ボールミルにて例えば粒径75μm以下に粉砕後、プラズマ放電焼結、ホットプレス、熱間等方圧加圧法により例えば円盤状、角板状のバルク材を作製し、これを例えば角柱状に切断して熱電素子3,4とし、両端面にニッケルめっき等からなる端面電極(図示略)を形成する。
Among these materials, silicide-based materials that have less impact on the environment and have abundant resource reserves are attracting attention, and this embodiment will be described using silicide-based materials.
Manganese silicide (MnSi 1.73 ) and magnesium silicide (Mg 2 Si), which are silicide materials, respectively produce mother alloys and are pulverized to a particle size of 75 μm or less by a ball mill, for example, plasma discharge sintering, hot press, A disk-shaped or square plate-shaped bulk material is produced by, for example, a hot isostatic pressing method, and cut into, for example, a prismatic column to form thermoelectric elements 3 and 4, and end face electrodes made of nickel plating etc. Form).

そして、セラミックス基板からなる一組の配線基板2A,2Bの間に、マンガンシリサイドから構成されたP型熱電素子3と、マグネシウムシリサイドから構成されたN型熱電素子4とを並べて接続する。この場合、マンガンシリサイド(P型熱電素子3)と、マグネシウムシリサイド(N型熱電素子4)とでは、その圧縮強度が異なり、マンガンシリサイドが例えば室温で2300MPa(500℃で1200MPa)であるのに対して、マグネシウムシリサイドは例えば室温で1000MPa(500℃で260MPa)である。そこで、両熱電素子3,4を線状に配列した第1実施形態では、両熱電素子3,4のうち、強度が高いP型熱電素子3を列の両端部に配置し、両配線基板2A,2Bの間に、一端(図1の左端)からP型熱電素子3、N型熱電素子4、N型熱電素子4、P型熱電素子3の順に配列する。   Then, the P-type thermoelectric element 3 made of manganese silicide and the N-type thermoelectric element 4 made of magnesium silicide are aligned and connected between a pair of wiring boards 2A and 2B made of a ceramic substrate. In this case, the compressive strengths of manganese silicide (P-type thermoelectric element 3) and magnesium silicide (N-type thermoelectric element 4) are different from each other, and manganese silicide is 2300 MPa at room temperature (1200 MPa at 500 ° C.). The magnesium silicide is, for example, 1000 MPa at room temperature (260 MPa at 500 ° C.). Therefore, in the first embodiment in which both the thermoelectric elements 3 and 4 are linearly arranged, the P-type thermoelectric elements 3 having high strength among the two thermoelectric elements 3 and 4 are disposed at both ends of the row, and both wiring boards 2A , 2B, the P-type thermoelectric element 3, the N-type thermoelectric element 4, the N-type thermoelectric element 4 and the P-type thermoelectric element 3 are arranged in this order from one end (left end in FIG. 1).

また、これら熱電素子3,4は、例えば横断面が正方形(例えば、一辺が1mm〜8mm)の角柱状に形成されるが、P型熱電素子3を構成するマンガンシリサイドとN型熱電素子4を構成するマグネシウムシリサイドとで熱膨張係数が異なるため、両熱電素子3,4の長さ(配線基板2A,2Bの対向方向に沿う長さ)は、使用環境温度において両熱電素子3,4がほぼ同じ長さになるように、熱膨張係数が大きいN型熱電素子4の長さはP型熱電素子3の長さよりも短く設定される。本実施形態において、P型熱電素子3及びN型熱電素子4の長さは、約6mmに設定されるが、両熱電素子3,4の熱膨張係数の差及び使用環境温度に応じて長さに若干の差が設定される。例えば、マンガンシリサイド(P型熱電素子3)の熱膨張係数が10.8×10−6/Kで、マグネシウムシリサイド(N型熱電素子4)の熱膨張係数が12.5×10−6/Kであり、使用環境での最高温度が500℃の場合、約0.008mmの差で形成される。 These thermoelectric elements 3 and 4 are formed in the shape of a prism having, for example, a square cross section (for example, one side is 1 mm to 8 mm), but manganese silicide and N-type thermoelectric element 4 constituting P-type thermoelectric element 3 are used. Since the thermal expansion coefficients of the constituent magnesium silicides are different from each other, the lengths of the two thermoelectric elements 3 and 4 (lengths along the opposing direction of the wiring boards 2A and 2B) are substantially equal to those of the thermoelectric elements 3 and 4 at the operating temperature. The length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is set shorter than the length of the P-type thermoelectric element 3 so as to have the same length. In the present embodiment, the lengths of the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are set to about 6 mm, but the lengths according to the difference between the thermal expansion coefficients of both the thermoelectric elements 3 and 4 and the operating environment temperature A slight difference is set to. For example, the thermal expansion coefficient of manganese silicide (P-type thermoelectric element 3) is 10.8 × 10 -6 / K, and the thermal expansion coefficient of magnesium silicide (N-type thermoelectric element 4) is 12.5 × 10 -6 / K When the maximum temperature in the use environment is 500.degree. C., a difference of about 0.008 mm is formed.

これら両熱電素子3,4を直列に接続するため、一方の配線基板である図1の上側の第1配線基板2Aには、図2に示すように、隣合うP型熱電素子3とN型熱電素子4との二つの対ごとにそれぞれ接続する平面視長方形状の2個の電極部11が形成され、他方の配線基板である図1の下側の第2配線基板2Bには、図3に示すように、各熱電素子3,4の個々に接続される平面視正方形状の4個の電極部12と、第1配線基板2Aの電極部11により接続状態となる各対の両熱電素子3,4のうち、一方の対のN型熱電素子4と他方の対のP型熱電素子3とを接続状態とする内部配線部13と、一方の対のP型熱電素子3及び他方の対のN型熱電素子4をそれぞれ外部に接続するための外部配線部14A,14Bとが形成されている。   In order to connect these two thermoelectric elements 3 and 4 in series, on the first wiring board 2A on the upper side of FIG. 1, which is one wiring board, as shown in FIG. Two electrode portions 11 having a rectangular shape in plan view respectively connected to two pairs with the thermoelectric element 4 are formed, and a second wiring board 2B on the lower side of FIG. 1 which is the other wiring board is shown in FIG. As shown in the figure, the two thermoelectric elements of each pair are in a connected state by the four square-shaped electrode portions 12 in plan view respectively connected to the respective thermoelectric elements 3 and 4 and the electrode portions 11 of the first wiring substrate 2A. 3 and 4, an internal wiring portion 13 connecting one N-type thermoelectric element 4 of one pair and the P-type thermoelectric element 3 of the other pair, a P-type thermoelectric element 3 of one pair and the other pair The external wiring portions 14A and 14B for connecting the N-type thermoelectric elements 4 to the outside are formed.

これら電極部11,12は、銅、アルミニウム、あるいはこれらの積層板が配線基板2A,2Bに接合されることにより形成されている。電極部11,12の大きさは、熱電素子3,4の大きさに応じて適宜設定される。本実施形態では、4mm四方の横断面の熱電素子3,4に対して、電極部11が5mm×10mmの長方形、電極部12が4.5mm四方の正方形に形成されている。電極部11,12の厚さは、0.05mm〜2.0mmの範囲とすることができ、本実施形態では、厚さが0.3mmに形成される。なお、配線基板2A,2Bは、各電極部11,12の間、及び周囲に幅2mm以上のスペースを確保できる程度の平面形状に形成され、厚さは、例えば、窒化アルミニウム、アルミナの場合は0.1mm〜1.5mmの範囲で、窒化ケイ素の場合は0.05mm〜1.5mmの範囲とすることができる。本実施形態では、配線基板2A,2Bとして窒化アルミニウムからなるセラミックス板を用い、大きさは30mm×12.5mm、厚さ0.6mmで形成されている。
また、配線部13,14A,14Bは、例えば、銅やアルミニウムからなる線材により形成される。幅は0.3mm〜2.0mmの範囲とされ、厚さは0.05mmから4.0mmの範囲のものを用いることできる。本実施形態では、銅からなる幅1mm、厚さ2mmの線材を用いた。
The electrode portions 11 and 12 are formed by bonding copper, aluminum, or a laminated plate thereof to the wiring boards 2A and 2B. The size of the electrode portions 11 and 12 is appropriately set according to the size of the thermoelectric elements 3 and 4. In the present embodiment, for the thermoelectric elements 3 and 4 with a cross section of 4 mm square, the electrode portion 11 is formed in a rectangle of 5 mm × 10 mm, and the electrode portion 12 is formed in a square of 4.5 mm square. The thickness of the electrode portions 11 and 12 can be in the range of 0.05 mm to 2.0 mm, and in the present embodiment, the thickness is 0.3 mm. The wiring boards 2A and 2B are formed in a planar shape that can ensure a space of 2 mm or more in width between and around each of the electrode portions 11 and 12, and the thickness is, for example, in the case of aluminum nitride or alumina. It can be in the range of 0.1 mm to 1.5 mm, and in the case of silicon nitride, in the range of 0.05 mm to 1.5 mm. In the present embodiment, a ceramic plate made of aluminum nitride is used as the wiring substrates 2A and 2B, and the size is 30 mm × 12.5 mm, and the thickness is 0.6 mm.
The wiring portions 13, 14A, 14B are formed of, for example, a wire made of copper or aluminum. The width is in the range of 0.3 mm to 2.0 mm, and the thickness can be in the range of 0.05 mm to 4.0 mm. In this embodiment, a wire made of copper and having a width of 1 mm and a thickness of 2 mm was used.

そして、両配線基板2A,2Bの間に熱電素子3,4を接続することにより、両外部配線部14A,14Bの間で各熱電素子3,4が直列に接続されるようになっている。   The thermoelectric elements 3 and 4 are connected in series between the two external wiring portions 14A and 14B by connecting the thermoelectric elements 3 and 4 between the wiring boards 2A and 2B.

また、前述したように、使用温度環境での熱膨張差に応じて、P型熱電素子3とN型熱電素子4との長さに差を設けたので、長さが短いN型熱電素子4と一方の配線基板(例えば第1配線基板2A)の電極部11との間には、図1に示すように、その隙間を埋める導電性材料スペーサ15が設けられる。この導電性スペーサ15は、純度99.99%以上の高純度アルミニウム、グラファイト、銀等からなるものが用いられ、使用環境温度が低い場合には導電性樹脂等も用いられる。熱膨張時の応力緩和のために、熱電素子3,4より軟質材である高純度アルミニウムやグラファイト等で形成するのが好ましい。   Further, as described above, since the lengths of the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are different according to the thermal expansion difference in the operating temperature environment, the N-type thermoelectric element 4 having a short length As shown in FIG. 1, a conductive material spacer 15 for filling the gap is provided between the and the electrode portion 11 of one wiring board (for example, the first wiring board 2A). The conductive spacer 15 is made of high purity aluminum, graphite, silver or the like having a purity of 99.99% or more, and a conductive resin or the like is also used when the use environment temperature is low. In order to relieve stress during thermal expansion, it is preferable to use a soft material such as high purity aluminum or graphite rather than the thermoelectric elements 3 and 4.

そして、両配線基板2A,2Bが相互に平行に配置され、その間で各電極部11,12間に熱電素子3,4が銀接合材等を用いて接合され、ステンレス鋼等により形成したケース5内に気密に収容され、内部を真空又は減圧状態に保持してパッケージ化され熱電変換モジュール1が製出される。
このパッケージ化の際に、各熱電素子3,4に圧縮荷重が作用するが、本実施形態では、強度が高いP型熱電3を列の両端部に配置したことにより、強度が高い熱電素子3が、配列の両端位置で荷重を支え、強度の低い熱電素子4への荷重の負荷を軽減して割れ等の発生を防止することができる。なお、外部配線部14A,14Bは、ケース5に対して絶縁状態で外部に引き出される。
Then, both wiring boards 2A and 2B are disposed in parallel with each other, and between them, the thermoelectric elements 3 and 4 are joined using a silver bonding material or the like between the electrode portions 11 and 12, and the case 5 is formed of stainless steel or the like. It is housed in an airtight manner, and is packaged while maintaining the interior in a vacuum or reduced pressure state to produce the thermoelectric conversion module 1.
In this packaging, a compressive load acts on each of the thermoelectric elements 3 and 4, but in the present embodiment, the thermoelectric elements 3 having high strength are disposed by arranging the P-type thermoelectric elements 3 having high strength at both ends of the row. However, the load can be supported at both end positions of the array, and the load load on the thermoelectric element 4 with low strength can be reduced to prevent the occurrence of cracking or the like. The external wiring portions 14A and 14B are drawn out of the case 5 in an insulated state.

このように構成した熱電変換モジュール1は、両配線基板2A,2Bのうちの一方の配線基板2A側に外部の熱源として図示例の場合には内燃機関の排ガス等の高温流体が矢印で示すように流通する高温側流路6が接触され、他方の配線基板2B側に熱媒体として冷却水が流通する低温側流路7が接触される。これにより、各熱電素子3,4に両配線基板2A,2Bの温度差に応じた起電力が発生し、配列の両端の外部配線部14A,14B間に、各熱電素子3,4に生じる起電力の総和の電位差を得ることができる。なお、高温側流路6内には、棒状の放熱フィン8aを有するヒートシンク8が設けられ、この放熱フィンを配線基板2Aに向けて押圧するバネ等の弾性部材9が設けられている。   In the thermoelectric conversion module 1 configured in this way, a high temperature fluid such as an exhaust gas of an internal combustion engine is shown by an arrow in the illustrated example as an external heat source on one wiring substrate 2A side of both wiring substrates 2A and 2B. The high temperature side flow passage 6 flowing in is in contact, and the low temperature side flow passage 7 in which the cooling water is circulated as a heat medium is brought into contact on the other wiring board 2B side. As a result, an electromotive force corresponding to the temperature difference between the two wiring boards 2A and 2B is generated in each of the thermoelectric elements 3 and 4 and an electromotive force is generated in each of the thermoelectric elements 3 and 4 between the external wiring portions 14A and 14B at both ends of the array. A potential difference of the sum of power can be obtained. In the high temperature side flow passage 6, a heat sink 8 having rod-like heat dissipating fins 8a is provided, and an elastic member 9 such as a spring for pressing the heat dissipating fins toward the wiring board 2A is provided.

この使用環境において、両熱電素子3,4の熱膨張に差が生じるが、その熱膨張差に応じて、予め、熱膨張係数が大きいN型熱電素子4の長さがP型熱電素子3の長さよりも短く設定されているので、使用環境温度においては両熱電素子3,4の長さがほぼ等しくなり、したがって、強度が低いN型熱電素子4にP型熱電素子3の熱膨張に起因する引張応力が作用することを抑制することができ、熱電素子の割れや配線基板2A,2Bとの間の剥離等の発生を防止することができる。   In this use environment, a difference occurs in the thermal expansion of both the thermoelectric elements 3 and 4, but according to the thermal expansion difference, the length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is Since the lengths are set shorter than the length, the lengths of both the thermoelectric elements 3 and 4 become substantially equal at the operating environment temperature, and hence the thermal expansion of the P-type thermoelectric element 3 causes the N-type thermoelectric element 4 to have low strength. It is possible to suppress the action of tensile stress, and to prevent the occurrence of cracking or the like between the thermoelectric element and the wiring boards 2A and 2B.

図4及び図5は、P型熱電素子3及びN型熱電素子4を面状(二次元)に配列した第2実施形態の熱電変換モジュール21を示している。この第2実施形態において、第1実施形態の図1に相当する図面は省略するが、縦断面構造は図1とほぼ同様であり、必要に応じて、図1も参照しながら説明する。   FIG.4 and FIG.5 has shown the thermoelectric conversion module 21 of 2nd Embodiment which arranged the P-type thermoelectric element 3 and the N-type thermoelectric element 4 in planar shape (two-dimensional). In the second embodiment, although the drawing corresponding to FIG. 1 of the first embodiment is omitted, the longitudinal sectional structure is substantially the same as that of FIG. 1 and will be described with reference to FIG. 1 as needed.

この熱電変換モジュール21は、一組の配線基板22A,22Bの間に、P型熱電素子3及びN型熱電素子4が合計8対設けられており、4列×4行の正方形の平面配置とされている。そして、その正方形の四隅に強度が高いP型熱電素子3が配置されるように配列されている。この図4及び図5に示す例では、正方形の中央部にもP型熱電素子3が集合して配置されているが、四隅にP型熱電素子3が配置されていれば、中央部については、この図の配置に限定されるものではない。   The thermoelectric conversion module 21 has a total of eight pairs of P-type thermoelectric elements 3 and N-type thermoelectric elements 4 provided between a pair of wiring boards 22A and 22B, and has a square layout of 4 columns × 4 rows. It is done. The P-type thermoelectric elements 3 having high strength are arranged at the four corners of the square. In the example shown in FIGS. 4 and 5, the P-type thermoelectric elements 3 are collectively arranged in the central portion of the square, but if the P-type thermoelectric elements 3 are arranged at the four corners, the central portion is It is not limited to the arrangement of this figure.

そして、両配線基板22A,22Bのうちの第1配線基板22Aには、図4に示すように、隣合うP型熱電素子3とN型熱電素子4との対ごとにそれぞれ接続する合計8個の平面視長方形状の電極部11が形成されている。一方、第2配線基板22Bには、図5に示すように、1個のP型熱電素子3又はN型熱電素子4を単独で接続する平面視正方形状の電極部12が8個形成されるとともに、第1配線基板22Aとは異なる対の2個のP型熱電素子3及びN型熱電素子4を接続状態とする平面視長方形状の電極部23が4個形成されている。また、平面視正方形状の8個の電極部12のうち、6個の電極部12は、2個ずつ対になって内部配線部24によって斜めに接続されており、第1配線基板22Aの電極部11により接続状態となる対の熱電素子とは異なる組み合わせでP型熱電素子3とN型熱電素子4とが接続されるようになっている。   The first wiring substrate 22A of the two wiring substrates 22A and 22B is, as shown in FIG. 4, a total of eight connected respectively for each pair of the P-type thermoelectric element 3 and the N-type thermoelectric element 4 adjacent to each other. An electrode portion 11 having a rectangular shape in plan view is formed. On the other hand, as shown in FIG. 5, eight second square-shaped electrode portions 12 are formed on the second wiring substrate 22B, each connecting one P-type thermoelectric element 3 or N-type thermoelectric element 4 alone. At the same time, four rectangular electrode members 23 in plan view are formed to connect two P-type thermoelectric elements 3 and N-type thermoelectric elements 4 in a pair different from the first wiring board 22A. Further, among the eight electrode portions 12 having a square shape in plan view, six electrode portions 12 are connected in a pair by the internal wiring portion 24 in a diagonal manner, and the electrodes of the first wiring substrate 22A The P-type thermoelectric element 3 and the N-type thermoelectric element 4 are connected in a combination different from the pair of thermoelectric elements in the connected state by the part 11.

また、第2配線基板22Bの単独で設けられている残る2個の電極部12には、外部配線部25A,25Bが形成され、両配線基板22A,22B間に熱電素子3,4を接続することにより、両外部配線部25A,25B間に各熱電素子3,4が直列に接続されるようになっている。
なお、両配線基板22A,22Bは、各熱電素子3,4が第1実施形態と同じ諸寸法の場合、例えば30mm四方の正方形に形成される。また、四隅にP型熱電素子3が配置されていれば、各電極部の形状、接続順序等の具体的接続形態は、図示例のものに限るものではない。
Further, external wiring portions 25A and 25B are formed on the remaining two electrode portions 12 provided independently of the second wiring board 22B, and the thermoelectric elements 3 and 4 are connected between both the wiring boards 22A and 22B. Thus, the thermoelectric elements 3 and 4 are connected in series between the two external wiring portions 25A and 25B.
When the thermoelectric elements 3 and 4 have the same dimensions as in the first embodiment, both wiring boards 22A and 22B are formed in a square of, for example, 30 mm square. In addition, as long as the P-type thermoelectric elements 3 are disposed at the four corners, the specific connection form such as the shape of the electrode parts and the connection order is not limited to the illustrated example.

また、P型熱電素子3とN型熱電素子4とは第1実施形態の場合と同じ材質のもので形成されており、これら熱電素子3,4の熱膨張係数の差及び使用環境温度に応じて、N型熱電素子4がP型熱電素子4よりも長さが短く設定され、P型熱電素子3と電極部との間に、第1実施形態の場合と同様、その隙間を埋める導電性スペーサ(図4及び図5では略、図1参照)が設けられる。   Further, the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are formed of the same material as in the first embodiment, and according to the difference between the thermal expansion coefficients of these thermoelectric elements 3 and 4 and the operating environment temperature. The length of the N-type thermoelectric element 4 is set to be shorter than that of the P-type thermoelectric element 4, and the gap is filled between the P-type thermoelectric element 3 and the electrode as in the first embodiment. Spacers (approximately in FIGS. 4 and 5, see FIG. 1) are provided.

両配線基板22A,22Bが相互に平行に配置され、その間で電極部11と、電極部12,23,24との間に熱電素子3,4が銀接合材等を用いて接合され、ステンレス鋼等により形成したケース内に気密に収容され(図1参照)、内部を真空又は減圧状態に保持して熱電変換モジュール21が構成される。そして、図1の場合と同様、両配線基板22A,22Bのうちの一方の配線基板22A側に外部の高温側流路が接続され、他方の配線基板22B側に冷却側流路が接触されることにより、外部配線部25A,25B間に、各熱電素子3,4に生じる起電力の総和の電位差を得ることができる。   The two wiring boards 22A and 22B are disposed in parallel with each other, and the thermoelectric elements 3 and 4 are bonded between the electrode portion 11 and the electrode portions 12, 23 and 24 using a silver bonding material or the like between them, stainless steel The thermoelectric conversion module 21 is configured to be airtightly housed in a case formed by the like (see FIG. 1) and hold the inside in a vacuum or reduced pressure state. Then, as in the case of FIG. 1, the external high-temperature side flow path is connected to one wiring board 22A side of both wiring boards 22A and 22B, and the cooling side flow path is contacted to the other wiring board 22B side. Thus, it is possible to obtain a potential difference of the sum of electromotive forces generated in the respective thermoelectric elements 3 and 4 between the external wiring portions 25A and 25B.

この第2実施形態の熱電変換モジュール21においても、強度が高いP型熱電素子3が、四隅で荷重を支え、強度の低いN型熱電素子4への荷重の負荷を軽減しているので、その割れ等の発生を防止することができる。また、熱膨張係数が大きいN型熱電素子4の長さがP型熱電素子3の長さよりも短く設定されているので、使用温度環境においては両熱電素子3,4の長さがほぼ等しくなり、強度が低いN型熱電素子4に割れや配線基板22A,22Bとの間の剥離等の発生を防止することができる。   Also in the thermoelectric conversion module 21 according to the second embodiment, the P-type thermoelectric elements 3 having high strength support the load at the four corners and reduce the load of the load on the N-type thermoelectric elements 4 having low strength. It is possible to prevent the occurrence of cracking and the like. Further, since the length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is set shorter than the length of the P-type thermoelectric element 3, the lengths of both the thermoelectric elements 3 and 4 become substantially equal in the working temperature environment. It is possible to prevent the occurrence of cracking or peeling between the N type thermoelectric element 4 having low strength and the wiring boards 22A and 22B.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上記以外の種々の変更を加えることも可能である。
両熱電素子を面状に配列する場合、平面視正方形となる配置だけでなく、平面視が長方形、円形等となる配置としてもよい。その場合、周縁部における周方向に適宜の間隔をおいた複数箇所に強度が高い熱電素子が配置されればよく、均等に配置するのが好ましい。
また、各熱電素子の横断面形状も正方形としたが、長方形、円形等に形成してもよい。
The present invention is not limited to the above embodiment, and various modifications other than the above can be made without departing from the spirit of the present invention.
When both thermoelectric elements are arrayed in a plane, it may be arranged not only to be square in plan view, but also to be rectangular, circular or the like in plan view. In that case, it is preferable that the thermoelectric elements having high strength be disposed at a plurality of places at appropriate intervals in the circumferential direction in the peripheral portion, and they are preferably disposed uniformly.
Moreover, although the cross-sectional shape of each thermoelectric element is also square, it may be formed in a rectangle, a circle, or the like.

さらに、強度の高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数より小さい場合について説明したが、逆に、強度の高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数より大きい場合は、両熱電素子の長さを同じに設定しておいてもよい。
また、両配線基板を高温側流路又は低温側流路に接触させたが、必ずしも流路構成のものに限らず、熱源と冷却媒体とに接するものであればよい。
Furthermore, although the case where the thermal expansion coefficient of the high strength thermoelectric element is smaller than the thermal expansion coefficient of the low strength thermoelectric element has been described, conversely, the thermal expansion coefficient of the low strength thermoelectric element has a high thermal expansion coefficient If it is larger than the coefficient, the lengths of both thermoelectric elements may be set to be the same.
Moreover, although both the wiring boards were made to contact the high temperature side flow path or the low temperature side flow path, it is not necessarily the thing of a flow-path structure, and should just be in contact with a heat source and a cooling medium.

1 熱電変換モジュール
2A,2B 配線基板
3 P型熱電素子
4 N型熱電素子
5 ケース
6 高温側流路
7 低温側流路
8 ヒートシンク
8a 放熱フィン
9 弾性部材
11,12 電極部
13 内部配線部
14A,14B 外部配線部
15 導電性スペーサ
21 熱電変換モジュール
22A,22B 配線基板
23,24 電極部
24a 個別電極部
24b 内部配線部
DESCRIPTION OF SYMBOLS 1 thermoelectric conversion module 2A, 2B wiring board 3 P type thermoelectric element 4 N type thermoelectric element 5 Case 6 high temperature side flow path 7 low temperature side flow path 8 heat sink 8a heat dissipation fin 9 elastic members 11 and 12 electrode part 13 internal wiring part 14A, 14B External wiring portion 15 Conductive spacer 21 Thermoelectric conversion modules 22A, 22B Wiring substrates 23, 24 Electrode portion 24a Individual electrode portion 24b Internal wiring portion

Claims (2)

一組の対向する配線基板の間に、P型熱電素子及びN型熱電素子を複数対組み合わせて前記配線基板を介して直列に接続するとともに線状又は面状に配列してなる熱電変換モジュールであって、前記線状又は面状の配列の外側端部に、前記P型熱電素子及びN型熱電素子のうち、強度が高い熱電素子が配置されており、
前記強度が高い熱電素子の熱膨張係数は、前記強度が低い熱電素子の熱膨張係数より小さく、前記強度が低い熱電素子における前記配線基板の対向方向に沿う長さは、前記強度が高い熱電素子より短く、
前記強度が低い熱電素子と前記配線基板との間に、前記熱電素子より軟質材からなる導電性スペーサが設けられており、
前記軟質材は、純度99.99%以上の高純度アルミニウム、グラファイト、銀、導電性樹脂のいずれかであることを特徴とする熱電変換モジュール。
A thermoelectric conversion module in which a plurality of P-type thermoelectric elements and N-type thermoelectric elements are combined in series and connected in series via the wiring substrate between a pair of opposing wiring substrates while arranged in a line or plane. Among the P-type thermoelectric elements and the N-type thermoelectric elements, the thermoelectric elements having high strength are disposed at the outer end of the linear or planar array,
The thermal expansion coefficient of the high strength thermoelectric element is smaller than the thermal expansion coefficient of the low strength thermoelectric element, and the length along the opposing direction of the wiring substrate in the low strength thermoelectric element is the high strength thermoelectric element Shorter than
A conductive spacer made of a softer material than the thermoelectric element is provided between the thermoelectric element having low strength and the wiring board,
The thermoelectric conversion module, wherein the soft material is any of high purity aluminum having a purity of 99.99% or more, graphite, silver, and a conductive resin.
前記P型熱電素子はマンガンシリサイドであり、前記N型熱電素子はマグネシウムシリサイドであることを特徴とする請求項1記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, wherein the P-type thermoelectric element is manganese silicide, and the N-type thermoelectric element is magnesium silicide.
JP2015054176A 2015-03-18 2015-03-18 Thermoelectric conversion module Active JP6507745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054176A JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054176A JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2016174114A JP2016174114A (en) 2016-09-29
JP6507745B2 true JP6507745B2 (en) 2019-05-08

Family

ID=57009207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054176A Active JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6507745B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794732B2 (en) 2015-09-28 2020-12-02 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
WO2017057259A1 (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP7047244B2 (en) * 2016-10-18 2022-04-05 三菱マテリアル株式会社 Manufacturing method of thermoelectric conversion module
JP6681356B2 (en) * 2017-03-06 2020-04-15 昭和電線ケーブルシステム株式会社 Thermoelectric conversion module
KR102323978B1 (en) * 2018-08-21 2021-11-08 주식회사 엘지화학 Thermoelectric module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110154A (en) * 2001-09-28 2003-04-11 Hitachi Ltd Electronic device with peltier module, optical module and manufacturing method for them
JP2004235367A (en) * 2003-01-29 2004-08-19 Kyocera Corp Thermoelectric module
JP4570071B2 (en) * 2004-04-30 2010-10-27 日立粉末冶金株式会社 Thermoelectric conversion module and manufacturing method thereof
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP5671258B2 (en) * 2010-05-26 2015-02-18 古河機械金属株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP2016174114A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
JP6507745B2 (en) Thermoelectric conversion module
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
US8841540B2 (en) High temperature thermoelectrics
JP5065077B2 (en) Thermoelectric generator
RU2546830C2 (en) Thermoelectric element
JP5520815B2 (en) Insulating substrate and base for power module
JP2006237146A (en) Cascade module for thermoelectric conversion
WO2017057259A1 (en) Thermoelectric conversion module and thermoelectric conversion device
JP2009081286A (en) Thermoelectric conversion module
JP5653455B2 (en) Thermoelectric conversion member
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP7052200B2 (en) Thermoelectric conversion module
JP2018148085A (en) Thermoelectric conversion module
JP7047244B2 (en) Manufacturing method of thermoelectric conversion module
TWI758431B (en) Thermoelectric conversion module and its manufacturing method
WO2017164217A1 (en) Thermoelectric conversion module
JP2008016598A (en) Thermoelectric module
KR102456680B1 (en) Thermoelectric element
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2017069443A (en) Thermoelectric conversion module
KR102581613B1 (en) Thermoelectric element
JP6957916B2 (en) Thermoelectric conversion module
JP6933055B2 (en) Thermoelectric conversion module and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150