JP2016174114A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2016174114A
JP2016174114A JP2015054176A JP2015054176A JP2016174114A JP 2016174114 A JP2016174114 A JP 2016174114A JP 2015054176 A JP2015054176 A JP 2015054176A JP 2015054176 A JP2015054176 A JP 2015054176A JP 2016174114 A JP2016174114 A JP 2016174114A
Authority
JP
Japan
Prior art keywords
thermoelectric element
thermoelectric
type thermoelectric
type
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054176A
Other languages
Japanese (ja)
Other versions
JP6507745B2 (en
Inventor
中田 嘉信
Yoshinobu Nakada
嘉信 中田
長瀬 敏之
Toshiyuki Nagase
敏之 長瀬
雅人 駒崎
Masahito Komazaki
雅人 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015054176A priority Critical patent/JP6507745B2/en
Publication of JP2016174114A publication Critical patent/JP2016174114A/en
Application granted granted Critical
Publication of JP6507745B2 publication Critical patent/JP6507745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module of stable performance, capable of preventing occurrences of breakage of an element of low strength and such, enabling a use of P-type and N-type thermoelectric elements made of different materials.SOLUTION: A thermoelectric conversion module 1 is formed by combining a plurality of pairs of P-type thermoelectric elements 3 and N-type thermoelectric elements 4 and connecting them in series through a pair of facing wiring boards 2A and 2B between the wiring boards 2A and 2B and arraying in a filamentous shape or a planar shape. At an outside end part of the filamentous shaped or planar shaped array, a thermoelectric element of higher strength out of the P-type thermoelectric elements 3 and the N-type thermoelectric elements 4 is disposed.SELECTED DRAWING: Figure 1

Description

本発明は、複数のP型熱電素子とN型熱電素子とを組み合わせて配列した熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module in which a plurality of P-type thermoelectric elements and N-type thermoelectric elements are arranged in combination.

熱電変換モジュールは、一組の配線基板の間に、一対のP型熱電素子とN型熱電素子とを電極で接続状態に組み合わせたものを、P,N,P,Nの順に交互に配置されるように、電気的に直列に接続した構成とされ、両端を直流電源に接続して、ペルチェ効果により各熱電素子中で熱を移動させる(P形では電流と同方向、N形では電流と逆方向に移動させる)、あるいは、両配線基板間に温度差を付与して各熱電素子にゼーベック効果により起電力を生じさせるもので、冷却、加熱、あるいは、発電としての利用が可能である。   The thermoelectric conversion module is configured by alternately arranging a pair of P-type thermoelectric elements and N-type thermoelectric elements in a connected state with electrodes between a pair of wiring boards in the order of P, N, P, and N. In this way, both ends are connected to a DC power source, and heat is transferred in each thermoelectric element by the Peltier effect (in the same direction as the current in the P type, the current in the N type). It is moved in the opposite direction), or an electromotive force is generated by the Seebeck effect in each thermoelectric element by giving a temperature difference between both wiring boards, and can be used for cooling, heating, or power generation.

ところで、P型、N型の各熱電素子の熱電変換性能は、ZTと呼ばれる無次元の性能指数で表わされ、素子選定の目安になるが、同じ母材を用いたとしても、同じ使用温度環境でもP型とN型では必ずしも同じ熱電変換性能が出ない場合が多く、調整が必要である。   By the way, the thermoelectric conversion performance of each of the P-type and N-type thermoelectric elements is expressed by a dimensionless figure of merit called ZT, which is a guideline for element selection. Even if the same base material is used, the same operating temperature is used. Even in the environment, the P-type and the N-type often do not always have the same thermoelectric conversion performance, and adjustment is necessary.

例えば、特許文献1には、通常は横断面正方形の角柱状に形成される素子を、横断面長方形状に形成するとともに、P形、N形それぞれのキャリア濃度に応じて、双方で異なる形で形成することが記載されている。
特許文献2には、反りが生じた基板に熱電変換素子をはんだ付けする際に、基板と素子との間の距離に応じてはんだ層の厚さを異ならせることが記載されている。
For example, in Patent Document 1, an element that is normally formed in a prismatic shape having a square cross section is formed in a rectangular shape in cross section, and in a different form depending on the carrier concentration of each of P-type and N-type. It is described to form.
Patent Document 2 describes that when a thermoelectric conversion element is soldered to a warped substrate, the thickness of the solder layer is varied according to the distance between the substrate and the element.

同じ使用温度環境においてより近い熱電変換性能(ZT)を得るために、P形及びN形の熱電素子を異種の母材により選択することも考えられるが、異種材料では素子結晶の強度、熱膨張係数なども異なるため、強度の低い素子のダメージが大きくなる(割れ等が優先的に発生する)。   In order to obtain closer thermoelectric conversion performance (ZT) in the same operating temperature environment, it is conceivable to select P-type and N-type thermoelectric elements with different base materials. Since the coefficients and the like are different, the damage of the low-strength element is increased (breaking or the like occurs preferentially).

そこで、特許文献3には、熱電素子と低温側あるいは高温側との間に、圧縮性の熱伝導層を介在させることが記載されている。
また、特許文献4には、熱電素子の結晶の配向を制御することにより、耐荷重強度を向上させることが記載されている。
しかしながら、いずれの場合でも、素子の割れ等を防止するには不十分である。
Therefore, Patent Document 3 describes that a compressible heat conductive layer is interposed between the thermoelectric element and the low temperature side or the high temperature side.
Patent Document 4 describes that the load-bearing strength is improved by controlling the crystal orientation of the thermoelectric element.
However, in either case, it is insufficient to prevent the element from cracking.

特開2013−12571号公報JP 2013-12571 A 特開2013−157348号公報JP 2013-157348 A 特開2014−508404号公報JP 2014-508404 A 特開2011−29543号公報JP 2011-29543 A

本発明は、このような事情に鑑みてなされたものであり、強度の低い素子の割れ等の発生を防止し、異なる材質からなるP形、N形の熱電素子の使用を可能にして、安定した熱電変換性能を有する熱電変換モジュールを得ることを目的とする。   The present invention has been made in view of such circumstances, prevents the occurrence of cracks in low-strength elements, enables the use of P-type and N-type thermoelectric elements made of different materials, and is stable. An object is to obtain a thermoelectric conversion module having the thermoelectric conversion performance.

本発明の熱電変換モジュールは、一組の対向する配線基板の間に、P型熱電素子及びN型熱電素子を複数対組み合わせて前記配線基板を介して直列に接続するとともに線状又は面状に配列してなる熱電変換モジュールであって、前記線状又は面状の配列の外側端部に、前記P型熱電素子及びN型熱電素子のうち、強度が高い熱電素子が配置されている。   In the thermoelectric conversion module of the present invention, a plurality of pairs of P-type thermoelectric elements and N-type thermoelectric elements are combined in series between a pair of opposing wiring boards and connected in series via the wiring board. The thermoelectric conversion module is an array, and a thermoelectric element having a high strength is arranged at the outer end of the linear or planar array among the P-type thermoelectric element and the N-type thermoelectric element.

この場合、配列の外側端部とは、線状配列の場合は両端であり、面状配列の場合は少なくとも周縁部の周方向に間隔をおいた複数箇所であって、均等位置であるのが好ましい。この熱電変換モジュールを金属や樹脂等でパッケージ化する際に圧縮荷重が作用するが、配列の外側に強度が高い熱電素子を配置したことにより、その荷重をこれら強度が高い熱電素子が配列の外側端部で支え、強度の低い熱電素子への負担を軽減して割れ等の発生を防止することができる。したがって、P型熱電素子及びN型熱電素子を異なる材質で形成するなど、材料の選択肢が広がり、両熱電素子の性能を揃えて安定した性能の熱電変換モジュールを得ることができる。   In this case, the outer end portions of the array are both ends in the case of a linear array, and in the case of a planar array, at least a plurality of locations spaced in the circumferential direction of the peripheral edge, and being at equal positions. preferable. When this thermoelectric conversion module is packaged with metal, resin, etc., a compressive load is applied, but by placing thermoelectric elements with high strength outside the array, the thermoelectric elements with high strength are placed outside the array. It can be supported by the end portion, and the burden on the thermoelectric element having low strength can be reduced to prevent the occurrence of cracks and the like. Accordingly, the choice of materials is widened, such as forming the P-type thermoelectric element and the N-type thermoelectric element with different materials, and the thermoelectric conversion module with stable performance can be obtained by aligning the performance of both thermoelectric elements.

本発明の熱電変換モジュールにおいて、前記強度が高い熱電素子の熱膨張係数は、前記強度が低い熱電素子の熱膨張係数より小さい場合、前記強度が低い熱電素子における前記配線基板の対向方向に沿う長さは、前記強度が高い熱電素子より短いとよい。   In the thermoelectric conversion module of the present invention, when the coefficient of thermal expansion of the thermoelectric element having high strength is smaller than the coefficient of thermal expansion of the thermoelectric element having low strength, the length along the facing direction of the wiring board in the thermoelectric element having low strength. The length is preferably shorter than the thermoelectric element having the high strength.

両熱電素子の熱膨張係数が異なると、膨張収縮量の違いにより、配線基板に貼り付けている熱電素子が剥がれる場合や、熱電素子にクラックが生じる場合がある。熱電素子が剥がれた場合や熱電素子にクラックが生じた場合には、電気が流れなくなったり、電気伝導度が大幅に低下して、モジュールが動作不能になったり、動作不能に至らなくても発電量が大幅に低下するという問題がある。   When the thermal expansion coefficients of the two thermoelectric elements are different, the thermoelectric element attached to the wiring board may be peeled off or a crack may be generated in the thermoelectric element due to the difference in expansion and contraction. If the thermoelectric element is peeled off or a crack occurs in the thermoelectric element, electricity will not flow or the electrical conductivity will drop significantly, causing the module to become inoperable or inoperable. There is a problem that the amount is greatly reduced.

本発明においては、強度が高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数よりも小さい場合には、強度の低い熱電素子の長さを強度が高い熱電素子よりも短くすることにより、使用環境での最高温度時に熱膨張が生じた場合に、予め長く設定された強度が高い熱電素子の熱膨張は小さいのに対して、それより短く強度が低い熱電素子の方が熱膨張が大きくなるので、強度が高い熱電素子の熱膨張により強度が低い熱電素子に引張応力が作用することを少なくすることができる。両者の熱電素子の長さが同じ場合には、温度の上昇とともに、熱膨張係数が大きく強度の低い熱電素子は圧縮応力を受け、圧縮応力が大きくなるとクラックが生じ、熱電素子が割れるおそれがある。
両熱電素子の長さの差は、使用環境での最高温度における両熱電素子の熱膨張差に合せるとよい。
In the present invention, when the thermal expansion coefficient of the thermoelectric element having high strength is smaller than the thermal expansion coefficient of the thermoelectric element having low strength, the length of the thermoelectric element having low strength is made shorter than that of the thermoelectric element having high strength. Therefore, when thermal expansion occurs at the maximum temperature in the environment of use, the thermal expansion of the thermoelectric element set for a long time with a high strength is small, whereas the thermoelectric element with a shorter strength and lower strength is thermal expansion. Therefore, it is possible to reduce a tensile stress from acting on a thermoelectric element having a low strength due to thermal expansion of the thermoelectric element having a high strength. When both thermoelectric elements have the same length, as the temperature rises, the thermoelectric elements having a large thermal expansion coefficient and low strength are subjected to compressive stress. If the compressive stress increases, cracks may occur and the thermoelectric elements may break. .
The difference in length between the two thermoelectric elements may be matched to the difference in thermal expansion between the two thermoelectric elements at the maximum temperature in the usage environment.

前記強度が低い熱電素子の長さを前記強度が高い熱電素子より短く設定する場合、前記強度が低い熱電素子と前記配線基板との間に、前記熱電素子より軟質材からなる導電性スペーサが設けられている   When setting the length of the low-strength thermoelectric element shorter than the high-strength thermoelectric element, a conductive spacer made of a softer material than the thermoelectric element is provided between the low-strength thermoelectric element and the wiring board. Has been

本発明の熱電変換モジュールによれば、強度の低い熱電素子の割れや配線基板との間の剥離等の発生を防止することができるので、異なる材質からなるP形、N形の熱電素子を組み合わせるなど、材料の選択肢が広がり、両熱電素子の性能を揃えて安定した熱電変換モジュールを得ることができる。   According to the thermoelectric conversion module of the present invention, it is possible to prevent the occurrence of cracking of the thermoelectric element having low strength, separation from the wiring board, etc., so that P-type and N-type thermoelectric elements made of different materials are combined. Thus, the choice of materials is widened, and a stable thermoelectric conversion module can be obtained by aligning the performance of both thermoelectric elements.

本発明の第1実施形態の熱電変換モジュールの縦断面図である。It is a longitudinal cross-sectional view of the thermoelectric conversion module of 1st Embodiment of this invention. 図1のA−A線の矢視方向の平断面図である。It is a plane sectional view of the arrow direction of the AA line of FIG. 図1のB−B線に矢視方向の平断面図である。It is a plane sectional view of the direction of an arrow in the BB line of FIG. 本発明の第2実施形態の熱電変換モジュールの図2同様の平断面図である。It is a plane sectional view similar to FIG. 2 of the thermoelectric conversion module of the second embodiment of the present invention. 第2実施形態の図3同様の平断面図である。It is a plane sectional view similar to FIG. 3 of the second embodiment.

以下、本発明の実施形態について、図面を参照して説明する。
第1実施形態の熱電変換モジュール1は、図1〜図3に示すように、一組の対向した配線基板2A,2Bの間に、P型熱電素子3及びN型熱電素子4を線状(一次元)に配列した構成である。簡便にするため、図1〜図3には、P型熱電素子3及びN型熱電素子4が二対で配列された例を示しており、合計4個の熱電素子3,4が一列に並んで設けられる。この熱電変換モジュール1は、全体がケース5内に収容され、高温ガスが流れる高温側流路6と、冷却水が流れる低温側流路7との間に介在するように取り付けられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3, the thermoelectric conversion module 1 according to the first embodiment includes a P-type thermoelectric element 3 and an N-type thermoelectric element 4 in a linear shape between a pair of opposing wiring boards 2A and 2B ( 1-dimensional). For simplicity, FIGS. 1 to 3 show an example in which two pairs of P-type thermoelectric elements 3 and N-type thermoelectric elements 4 are arranged, and a total of four thermoelectric elements 3 and 4 are arranged in a line. Is provided. The entire thermoelectric conversion module 1 is housed in a case 5 and is attached so as to be interposed between a high temperature side flow path 6 through which high temperature gas flows and a low temperature side flow path 7 through which cooling water flows.

配線基板2A,2Bは、窒化アルミニウム(AlN)、アルミナ(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、カーボン板、グラファイト板上に成膜したダイヤモンド薄膜基板等の熱伝導性の高い絶縁性セラミックス基板が用いられる。
P型熱電素子3及びN型熱電素子4の材料としては、シリサイド系材料、酸化物系材料、スクッテルダイト(遷移金属とプニクトゲンの金属間化合物)、ハーフホイッスラー等を用いることができ、例えば、表1に示す組合せのものが用いられる。
The wiring substrates 2A and 2B are aluminum nitride (AlN), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), carbon plate, diamond thin film substrate formed on a graphite plate, etc. An insulating ceramic substrate having a high thermal conductivity is used.
As a material of the P-type thermoelectric element 3 and the N-type thermoelectric element 4, a silicide-based material, an oxide-based material, a skutterudite (intermetallic compound of transition metal and pnictogen), a half-Whistler, and the like can be used. The combinations shown in Table 1 are used.

Figure 2016174114
Figure 2016174114

これらの材料のうち、環境への影響が少なく、資源埋蔵量も豊富なシリサイド系材料が注目されており、本実施形態でもシリサイド系材料を用いて説明する。
シリサイド系材料であるマンガンシリサイド(MnSi1.73)、及びマグネシウムシリサイド(MgSi)は、それぞれ母合金を作製して、ボールミルにて例えば粒径75μm以下に粉砕後、プラズマ放電焼結、ホットプレス、熱間等方圧加圧法により例えば円盤状、角板状のバルク材を作製し、これを例えば角柱状に切断して熱電素子3,4とし、両端面にニッケルめっき等からなる端面電極(図示略)を形成する。
Of these materials, silicide-based materials that have little influence on the environment and have abundant resource reserves are attracting attention. This embodiment will also be described using silicide-based materials.
Manganese silicide (MnSi 1.73 ) and magnesium silicide (Mg 2 Si), which are silicide-based materials, are respectively prepared as mother alloys and pulverized to, for example, a particle size of 75 μm or less by a ball mill, followed by plasma discharge sintering, hot pressing, For example, a disk-shaped or square-plate-shaped bulk material is manufactured by a hot isostatic pressing method, and this is cut into, for example, a prismatic shape to form thermoelectric elements 3 and 4, and end electrodes (not shown) made of nickel plating or the like on both end surfaces. Abbreviation).

そして、セラミックス基板からなる一組の配線基板2A,2Bの間に、マンガンシリサイドから構成されたP型熱電素子3と、マグネシウムシリサイドから構成されたN型熱電素子4とを並べて接続する。この場合、マンガンシリサイド(P型熱電素子3)と、マグネシウムシリサイド(N型熱電素子4)とでは、その圧縮強度が異なり、マンガンシリサイドが例えば室温で2300MPa(500℃で1200MPa)であるのに対して、マグネシウムシリサイドは例えば室温で1000MPa(500℃で260MPa)である。そこで、両熱電素子3,4を線状に配列した第1実施形態では、両熱電素子3,4のうち、強度が高いP型熱電素子3を列の両端部に配置し、両配線基板2A,2Bの間に、一端(図1の左端)からP型熱電素子3、N型熱電素子4、N型熱電素子4、P型熱電素子3の順に配列する。   A P-type thermoelectric element 3 made of manganese silicide and an N-type thermoelectric element 4 made of magnesium silicide are connected side by side between a pair of wiring boards 2A and 2B made of a ceramic substrate. In this case, the compressive strength is different between manganese silicide (P-type thermoelectric element 3) and magnesium silicide (N-type thermoelectric element 4), whereas manganese silicide is 2300 MPa (1200 MPa at 500 ° C.) at room temperature, for example. Magnesium silicide is, for example, 1000 MPa (260 MPa at 500 ° C.) at room temperature. Therefore, in the first embodiment in which both thermoelectric elements 3 and 4 are linearly arranged, the P-type thermoelectric elements 3 having high strength among the thermoelectric elements 3 and 4 are arranged at both ends of the row, and both wiring boards 2A. , 2B, the P-type thermoelectric element 3, the N-type thermoelectric element 4, the N-type thermoelectric element 4, and the P-type thermoelectric element 3 are arranged in this order from one end (the left end in FIG. 1).

また、これら熱電素子3,4は、例えば横断面が正方形(例えば、一辺が1mm〜8mm)の角柱状に形成されるが、P型熱電素子3を構成するマンガンシリサイドとN型熱電素子4を構成するマグネシウムシリサイドとで熱膨張係数が異なるため、両熱電素子3,4の長さ(配線基板2A,2Bの対向方向に沿う長さ)は、使用環境温度において両熱電素子3,4がほぼ同じ長さになるように、熱膨張係数が大きいN型熱電素子4の長さはP型熱電素子3の長さよりも短く設定される。本実施形態において、P型熱電素子3及びN型熱電素子4の長さは、約6mmに設定されるが、両熱電素子3,4の熱膨張係数の差及び使用環境温度に応じて長さに若干の差が設定される。例えば、マンガンシリサイド(P型熱電素子3)の熱膨張係数が10.8×10−6/Kで、マグネシウムシリサイド(N型熱電素子4)の熱膨張係数が12.5×10−6/Kであり、使用環境での最高温度が500℃の場合、約0.008mmの差で形成される。 The thermoelectric elements 3 and 4 are formed in a square column shape having a square cross section (for example, 1 mm to 8 mm on one side), for example, but the manganese silicide and the N type thermoelectric element 4 constituting the P type thermoelectric element 3 are formed. Since the coefficient of thermal expansion differs between the magnesium silicide and the constituent magnesium silicide, the length of both thermoelectric elements 3 and 4 (the length along the opposing direction of the wiring boards 2A and 2B) is approximately the same as that of both thermoelectric elements 3 and 4 at the use environment temperature. The length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is set to be shorter than the length of the P-type thermoelectric element 3 so as to have the same length. In the present embodiment, the lengths of the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are set to about 6 mm, but the length depends on the difference in thermal expansion coefficient between the thermoelectric elements 3 and 4 and the use environment temperature. A slight difference is set. For example, the thermal expansion coefficient of manganese silicide (P-type thermoelectric element 3) is 10.8 × 10 −6 / K, and the thermal expansion coefficient of magnesium silicide (N-type thermoelectric element 4) is 12.5 × 10 −6 / K. When the maximum temperature in the use environment is 500 ° C., the difference is about 0.008 mm.

これら両熱電素子3,4を直列に接続するため、一方の配線基板である図1の上側の第1配線基板2Aには、図2に示すように、隣合うP型熱電素子3とN型熱電素子4との二つの対ごとにそれぞれ接続する平面視長方形状の2個の電極部11が形成され、他方の配線基板である図1の下側の第2配線基板2Bには、図3に示すように、各熱電素子3,4の個々に接続される平面視正方形状の4個の電極部12と、第1配線基板2Aの電極部11により接続状態となる各対の両熱電素子3,4のうち、一方の対のN型熱電素子4と他方の対のP型熱電素子3とを接続状態とする内部配線部13と、一方の対のP型熱電素子3及び他方の対のN型熱電素子4をそれぞれ外部に接続するための外部配線部14A,14Bとが形成されている。   In order to connect the two thermoelectric elements 3 and 4 in series, as shown in FIG. 2, an adjacent first P-type thermoelectric element 3 and N-type are provided on one upper wiring board 2A in FIG. Two electrode portions 11 having a rectangular shape in a plan view are formed to be connected to each of the two pairs with the thermoelectric element 4, and the second wiring substrate 2B on the lower side of FIG. As shown in FIG. 4, each pair of thermoelectric elements 3 and 4 is connected to each other by four electrode parts 12 having a square shape in plan view and the electrode parts 11 of the first wiring board 2 </ b> A. 3, 4, an internal wiring portion 13 for connecting one pair of N-type thermoelectric elements 4 and the other pair of P-type thermoelectric elements 3, one pair of P-type thermoelectric elements 3, and the other pair External wiring portions 14A and 14B for connecting the N-type thermoelectric elements 4 to the outside are formed.

これら電極部11,12は、銅、アルミニウム、あるいはこれらの積層板が配線基板2A,2Bに接合されることにより形成されている。電極部11,12の大きさは、熱電素子3,4の大きさに応じて適宜設定される。本実施形態では、4mm四方の横断面の熱電素子3,4に対して、電極部11が5mm×10mmの長方形、電極部12が4.5mm四方の正方形に形成されている。電極部11,12の厚さは、0.05mm〜2.0mmの範囲とすることができ、本実施形態では、厚さが0.3mmに形成される。なお、配線基板2A,2Bは、各電極部11,12の間、及び周囲に幅2mm以上のスペースを確保できる程度の平面形状に形成され、厚さは、例えば、窒化アルミニウム、アルミナの場合は0.1mm〜1.5mmの範囲で、窒化ケイ素の場合は0.05mm〜1.5mmの範囲とすることができる。本実施形態では、配線基板2A,2Bとして窒化アルミニウムからなるセラミックス板を用い、大きさは30mm×12.5mm、厚さ0.6mmで形成されている。
また、配線部13,14A,14Bは、例えば、銅やアルミニウムからなる線材により形成される。幅は0.3mm〜2.0mmの範囲とされ、厚さは0.05mmから4.0mmの範囲のものを用いることできる。本実施形態では、銅からなる幅1mm、厚さ2mmの線材を用いた。
These electrode portions 11 and 12 are formed by bonding copper, aluminum, or a laminate of these to the wiring boards 2A and 2B. The sizes of the electrode portions 11 and 12 are appropriately set according to the size of the thermoelectric elements 3 and 4. In this embodiment, with respect to the thermoelectric elements 3 and 4 having a cross section of 4 mm square, the electrode part 11 is formed in a 5 mm × 10 mm rectangle and the electrode part 12 is formed in a 4.5 mm square. The thickness of the electrode portions 11 and 12 can be in the range of 0.05 mm to 2.0 mm, and in this embodiment, the thickness is formed to 0.3 mm. The wiring boards 2A and 2B are formed in a planar shape that can secure a space of 2 mm or more in width between and around the electrode portions 11 and 12, and the thickness is, for example, in the case of aluminum nitride or alumina In the range of 0.1 mm to 1.5 mm, in the case of silicon nitride, the range can be 0.05 mm to 1.5 mm. In the present embodiment, ceramic boards made of aluminum nitride are used as the wiring boards 2A and 2B, and the size is 30 mm × 12.5 mm and the thickness is 0.6 mm.
Moreover, the wiring parts 13, 14A, 14B are formed of, for example, a wire made of copper or aluminum. The width is in the range of 0.3 mm to 2.0 mm, and the thickness is in the range of 0.05 mm to 4.0 mm. In the present embodiment, a wire made of copper having a width of 1 mm and a thickness of 2 mm was used.

そして、両配線基板2A,2Bの間に熱電素子3,4を接続することにより、両外部配線部14A,14Bの間で各熱電素子3,4が直列に接続されるようになっている。   Then, by connecting the thermoelectric elements 3 and 4 between the wiring boards 2A and 2B, the thermoelectric elements 3 and 4 are connected in series between the external wiring portions 14A and 14B.

また、前述したように、使用温度環境での熱膨張差に応じて、P型熱電素子3とN型熱電素子4との長さに差を設けたので、長さが短いN型熱電素子4と一方の配線基板(例えば第1配線基板2A)の電極部11との間には、図1に示すように、その隙間を埋める導電性材料スペーサ15が設けられる。この導電性スペーサ15は、純度99.99%以上の高純度アルミニウム、グラファイト、銀等からなるものが用いられ、使用環境温度が低い場合には導電性樹脂等も用いられる。熱膨張時の応力緩和のために、熱電素子3,4より軟質材である高純度アルミニウムやグラファイト等で形成するのが好ましい。   Further, as described above, since the difference between the lengths of the P-type thermoelectric element 3 and the N-type thermoelectric element 4 is provided according to the difference in thermal expansion in the operating temperature environment, the N-type thermoelectric element 4 having a short length is provided. As shown in FIG. 1, a conductive material spacer 15 that fills the gap is provided between the electrode portion 11 of the one wiring board (for example, the first wiring board 2A). The conductive spacer 15 is made of high-purity aluminum having a purity of 99.99% or more, graphite, silver or the like, and a conductive resin or the like is also used when the use environment temperature is low. In order to relieve stress at the time of thermal expansion, it is preferable to use high-purity aluminum or graphite, which is a softer material than the thermoelectric elements 3 and 4.

そして、両配線基板2A,2Bが相互に平行に配置され、その間で各電極部11,12間に熱電素子3,4が銀接合材等を用いて接合され、ステンレス鋼等により形成したケース5内に気密に収容され、内部を真空又は減圧状態に保持してパッケージ化され熱電変換モジュール1が製出される。
このパッケージ化の際に、各熱電素子3,4に圧縮荷重が作用するが、本実施形態では、強度が高いP型熱電3を列の両端部に配置したことにより、強度が高い熱電素子3が、配列の両端位置で荷重を支え、強度の低い熱電素子4への荷重の負荷を軽減して割れ等の発生を防止することができる。なお、外部配線部14A,14Bは、ケース5に対して絶縁状態で外部に引き出される。
The wiring board 2A and 2B are arranged in parallel to each other, and the thermoelectric elements 3 and 4 are joined between the electrode portions 11 and 12 using a silver joining material or the like between them, and the case 5 is formed of stainless steel or the like. The thermoelectric conversion module 1 is produced by being housed in an airtight manner and packaged by keeping the inside in a vacuum or reduced pressure state.
At the time of packaging, a compressive load acts on each thermoelectric element 3, 4. In this embodiment, the thermoelectric element 3 having high strength is provided by arranging the P-type thermoelectrics 3 having high strength at both ends of the row. However, it is possible to support the load at both ends of the array and reduce the load on the thermoelectric element 4 having a low strength, thereby preventing the occurrence of cracks and the like. The external wiring portions 14 </ b> A and 14 </ b> B are drawn out to the outside in an insulated state with respect to the case 5.

このように構成した熱電変換モジュール1は、両配線基板2A,2Bのうちの一方の配線基板2A側に外部の熱源として図示例の場合には内燃機関の排ガス等の高温流体が矢印で示すように流通する高温側流路6が接触され、他方の配線基板2B側に熱媒体として冷却水が流通する低温側流路7が接触される。これにより、各熱電素子3,4に両配線基板2A,2Bの温度差に応じた起電力が発生し、配列の両端の外部配線部14A,14B間に、各熱電素子3,4に生じる起電力の総和の電位差を得ることができる。なお、高温側流路6内には、棒状の放熱フィン8aを有するヒートシンク8が設けられ、この放熱フィンを配線基板2Aに向けて押圧するバネ等の弾性部材9が設けられている。   In the case of the illustrated example, the thermoelectric conversion module 1 configured as described above is shown with an arrow as a high-temperature fluid such as exhaust gas of an internal combustion engine as an external heat source on one of the wiring boards 2A and 2B. The high-temperature side flow path 6 that circulates in contact is contacted, and the low-temperature side flow path 7 through which cooling water circulates as a heat medium is contacted on the other wiring board 2B side. As a result, an electromotive force corresponding to the temperature difference between the two wiring substrates 2A and 2B is generated in each thermoelectric element 3 and 4, and the electromotive force generated in each thermoelectric element 3 and 4 between the external wiring portions 14A and 14B at both ends of the array. The potential difference of the total power can be obtained. A heat sink 8 having rod-shaped heat radiation fins 8a is provided in the high temperature side flow path 6, and an elastic member 9 such as a spring for pressing the heat radiation fins toward the wiring board 2A is provided.

この使用環境において、両熱電素子3,4の熱膨張に差が生じるが、その熱膨張差に応じて、予め、熱膨張係数が大きいN型熱電素子4の長さがP型熱電素子3の長さよりも短く設定されているので、使用環境温度においては両熱電素子3,4の長さがほぼ等しくなり、したがって、強度が低いN型熱電素子4にP型熱電素子3の熱膨張に起因する引張応力が作用することを抑制することができ、熱電素子の割れや配線基板2A,2Bとの間の剥離等の発生を防止することができる。   In this use environment, there is a difference in the thermal expansion between the thermoelectric elements 3 and 4, but the length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is previously set to the P-type thermoelectric element 3 according to the thermal expansion difference. Since the length is set shorter than the length, the lengths of the two thermoelectric elements 3 and 4 are substantially equal at the use environment temperature, and therefore the N-type thermoelectric element 4 having a low strength is caused by the thermal expansion of the P-type thermoelectric element 3. It is possible to prevent the tensile stress from acting, and it is possible to prevent the occurrence of cracks in the thermoelectric element and peeling between the wiring boards 2A and 2B.

図4及び図5は、P型熱電素子3及びN型熱電素子4を面状(二次元)に配列した第2実施形態の熱電変換モジュール21を示している。この第2実施形態において、第1実施形態の図1に相当する図面は省略するが、縦断面構造は図1とほぼ同様であり、必要に応じて、図1も参照しながら説明する。   4 and 5 show the thermoelectric conversion module 21 of the second embodiment in which the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are arranged in a planar shape (two-dimensional). In the second embodiment, although the drawing corresponding to FIG. 1 of the first embodiment is omitted, the longitudinal sectional structure is substantially the same as that of FIG. 1, and will be described with reference to FIG. 1 as necessary.

この熱電変換モジュール21は、一組の配線基板22A,22Bの間に、P型熱電素子3及びN型熱電素子4が合計8対設けられており、4列×4行の正方形の平面配置とされている。そして、その正方形の四隅に強度が高いP型熱電素子3が配置されるように配列されている。この図4及び図5に示す例では、正方形の中央部にもP型熱電素子3が集合して配置されているが、四隅にP型熱電素子3が配置されていれば、中央部については、この図の配置に限定されるものではない。   In this thermoelectric conversion module 21, a total of eight pairs of P-type thermoelectric elements 3 and N-type thermoelectric elements 4 are provided between a pair of wiring boards 22A and 22B. Has been. The P-type thermoelectric elements 3 having high strength are arranged at the four corners of the square. In the example shown in FIGS. 4 and 5, the P-type thermoelectric elements 3 are collectively arranged at the central portion of the square, but if the P-type thermoelectric elements 3 are arranged at the four corners, However, it is not limited to the arrangement of this figure.

そして、両配線基板22A,22Bのうちの第1配線基板22Aには、図4に示すように、隣合うP型熱電素子3とN型熱電素子4との対ごとにそれぞれ接続する合計8個の平面視長方形状の電極部11が形成されている。一方、第2配線基板22Bには、図5に示すように、1個のP型熱電素子3又はN型熱電素子4を単独で接続する平面視正方形状の電極部12が8個形成されるとともに、第1配線基板22Aとは異なる対の2個のP型熱電素子3及びN型熱電素子4を接続状態とする平面視長方形状の電極部23が4個形成されている。また、平面視正方形状の8個の電極部12のうち、6個の電極部12は、2個ずつ対になって内部配線部24によって斜めに接続されており、第1配線基板22Aの電極部11により接続状態となる対の熱電素子とは異なる組み合わせでP型熱電素子3とN型熱電素子4とが接続されるようになっている。   Further, as shown in FIG. 4, the first wiring board 22A of the two wiring boards 22A and 22B is connected in total for each pair of the adjacent P-type thermoelectric element 3 and N-type thermoelectric element 4, respectively. The electrode part 11 having a rectangular shape in plan view is formed. On the other hand, on the second wiring board 22B, as shown in FIG. 5, eight electrode portions 12 having a square shape in a plan view for connecting one P-type thermoelectric element 3 or N-type thermoelectric element 4 alone are formed. In addition, four electrode portions 23 having a rectangular shape in plan view are formed to connect two P-type thermoelectric elements 3 and N-type thermoelectric elements 4 in a different pair from the first wiring board 22A. Of the eight electrode parts 12 having a square shape in plan view, six electrode parts 12 are paired and connected obliquely by the internal wiring part 24, and the electrodes of the first wiring board 22A The P-type thermoelectric element 3 and the N-type thermoelectric element 4 are connected in a combination different from the pair of thermoelectric elements connected by the portion 11.

また、第2配線基板22Bの単独で設けられている残る2個の電極部12には、外部配線部25A,25Bが形成され、両配線基板22A,22B間に熱電素子3,4を接続することにより、両外部配線部25A,25B間に各熱電素子3,4が直列に接続されるようになっている。
なお、両配線基板22A,22Bは、各熱電素子3,4が第1実施形態と同じ諸寸法の場合、例えば30mm四方の正方形に形成される。また、四隅にP型熱電素子3が配置されていれば、各電極部の形状、接続順序等の具体的接続形態は、図示例のものに限るものではない。
The remaining two electrode portions 12 provided independently of the second wiring board 22B are formed with external wiring parts 25A and 25B, and the thermoelectric elements 3 and 4 are connected between the wiring boards 22A and 22B. As a result, the thermoelectric elements 3 and 4 are connected in series between the external wiring portions 25A and 25B.
Both the wiring boards 22A and 22B are formed in, for example, a 30 mm square when the thermoelectric elements 3 and 4 have the same dimensions as in the first embodiment. In addition, as long as the P-type thermoelectric elements 3 are arranged at the four corners, the specific connection form such as the shape of each electrode part and the connection order is not limited to the illustrated example.

また、P型熱電素子3とN型熱電素子4とは第1実施形態の場合と同じ材質のもので形成されており、これら熱電素子3,4の熱膨張係数の差及び使用環境温度に応じて、N型熱電素子4がP型熱電素子4よりも長さが短く設定され、P型熱電素子3と電極部との間に、第1実施形態の場合と同様、その隙間を埋める導電性スペーサ(図4及び図5では略、図1参照)が設けられる。   Further, the P-type thermoelectric element 3 and the N-type thermoelectric element 4 are made of the same material as in the first embodiment, and depending on the difference in thermal expansion coefficient between these thermoelectric elements 3 and 4 and the use environment temperature. Thus, the N-type thermoelectric element 4 is set to be shorter than the P-type thermoelectric element 4, and the conductivity that fills the gap between the P-type thermoelectric element 3 and the electrode portion is the same as in the first embodiment. A spacer (not shown in FIGS. 4 and 5; see FIG. 1) is provided.

両配線基板22A,22Bが相互に平行に配置され、その間で電極部11と、電極部12,23,24との間に熱電素子3,4が銀接合材等を用いて接合され、ステンレス鋼等により形成したケース内に気密に収容され(図1参照)、内部を真空又は減圧状態に保持して熱電変換モジュール21が構成される。そして、図1の場合と同様、両配線基板22A,22Bのうちの一方の配線基板22A側に外部の高温側流路が接続され、他方の配線基板22B側に冷却側流路が接触されることにより、外部配線部25A,25B間に、各熱電素子3,4に生じる起電力の総和の電位差を得ることができる。   Both wiring boards 22A and 22B are arranged in parallel to each other, and the thermoelectric elements 3 and 4 are joined between the electrode portion 11 and the electrode portions 12, 23, and 24 using a silver bonding material or the like between them. The thermoelectric conversion module 21 is configured by being hermetically accommodated in a case formed by the above method (see FIG. 1) and holding the inside in a vacuum or a reduced pressure state. As in the case of FIG. 1, an external high temperature side flow path is connected to one of the wiring boards 22A and 22B, and a cooling side flow path is brought into contact with the other wiring board 22B side. As a result, a potential difference of the sum of electromotive forces generated in the thermoelectric elements 3 and 4 can be obtained between the external wiring portions 25A and 25B.

この第2実施形態の熱電変換モジュール21においても、強度が高いP型熱電素子3が、四隅で荷重を支え、強度の低いN型熱電素子4への荷重の負荷を軽減しているので、その割れ等の発生を防止することができる。また、熱膨張係数が大きいN型熱電素子4の長さがP型熱電素子3の長さよりも短く設定されているので、使用温度環境においては両熱電素子3,4の長さがほぼ等しくなり、強度が低いN型熱電素子4に割れや配線基板22A,22Bとの間の剥離等の発生を防止することができる。   Also in the thermoelectric conversion module 21 of the second embodiment, the high-strength P-type thermoelectric element 3 supports the load at the four corners and reduces the load on the low-strength N-type thermoelectric element 4. Generation | occurrence | production of a crack etc. can be prevented. In addition, since the length of the N-type thermoelectric element 4 having a large thermal expansion coefficient is set to be shorter than the length of the P-type thermoelectric element 3, the lengths of both thermoelectric elements 3 and 4 are substantially equal in the operating temperature environment. Further, it is possible to prevent the N-type thermoelectric element 4 having low strength from cracking or peeling from the wiring boards 22A and 22B.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上記以外の種々の変更を加えることも可能である。
両熱電素子を面状に配列する場合、平面視正方形となる配置だけでなく、平面視が長方形、円形等となる配置としてもよい。その場合、周縁部における周方向に適宜の間隔をおいた複数箇所に強度が高い熱電素子が配置されればよく、均等に配置するのが好ましい。
また、各熱電素子の横断面形状も正方形としたが、長方形、円形等に形成してもよい。
Note that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be added without departing from the spirit of the present invention.
When both the thermoelectric elements are arranged in a planar shape, the arrangement may be not only an arrangement that becomes a square in plan view but also an arrangement that becomes a rectangle, a circle, etc. in plan view. In that case, it is only necessary that thermoelectric elements having high strength are arranged at a plurality of locations at appropriate intervals in the circumferential direction in the peripheral portion, and it is preferable to arrange them uniformly.
Moreover, although the cross-sectional shape of each thermoelectric element is also square, it may be formed in a rectangle, a circle, or the like.

さらに、強度の高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数より小さい場合について説明したが、逆に、強度の高い熱電素子の熱膨張係数が強度の低い熱電素子の熱膨張係数より大きい場合は、両熱電素子の長さを同じに設定しておいてもよい。
また、両配線基板を高温側流路又は低温側流路に接触させたが、必ずしも流路構成のものに限らず、熱源と冷却媒体とに接するものであればよい。
Furthermore, although the case where the thermal expansion coefficient of the high-strength thermoelectric element is smaller than the thermal expansion coefficient of the low-strength thermoelectric element has been described, conversely, the thermal expansion coefficient of the high-strength thermoelectric element has the thermal expansion coefficient of the low-strength thermoelectric element. When it is larger than the coefficient, the lengths of both thermoelectric elements may be set to be the same.
Moreover, although both the wiring boards are brought into contact with the high-temperature side flow path or the low-temperature side flow path, the circuit board is not necessarily limited to the one having the flow path configuration, and may be anything that contacts the heat source and the cooling medium.

1 熱電変換モジュール
2A,2B 配線基板
3 P型熱電素子
4 N型熱電素子
5 ケース
6 高温側流路
7 低温側流路
8 ヒートシンク
8a 放熱フィン
9 弾性部材
11,12 電極部
13 内部配線部
14A,14B 外部配線部
15 導電性スペーサ
21 熱電変換モジュール
22A,22B 配線基板
23,24 電極部
24a 個別電極部
24b 内部配線部
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2A, 2B Wiring board 3 P type thermoelectric element 4 N type thermoelectric element 5 Case 6 High temperature side flow path 7 Low temperature side flow path 8 Heat sink 8a Heat radiation fin 9 Elastic member 11, 12 Electrode part 13 Internal wiring part 14A, 14B External wiring part 15 Conductive spacer 21 Thermoelectric conversion modules 22A and 22B Wiring boards 23 and 24 Electrode part 24a Individual electrode part 24b Internal wiring part

Claims (3)

一組の対向する配線基板の間に、P型熱電素子及びN型熱電素子を複数対組み合わせて前記配線基板を介して直列に接続するとともに線状又は面状に配列してなる熱電変換モジュールであって、前記線状又は面状の配列の外側端部に、前記P型熱電素子及びN型熱電素子のうち、強度が高い熱電素子が配置されていることを特徴とする熱電変換モジュール。   A thermoelectric conversion module in which a plurality of pairs of P-type thermoelectric elements and N-type thermoelectric elements are combined in series between a pair of opposing wiring boards and connected in series via the wiring board and arranged in a line or a plane. A thermoelectric conversion module, wherein a thermoelectric element having a high strength among the P-type thermoelectric element and the N-type thermoelectric element is arranged at an outer end of the linear or planar arrangement. 前記強度が高い熱電素子の熱膨張係数は、前記強度が低い熱電素子の熱膨張係数より小さく、前記強度が低い熱電素子における前記配線基板の対向方向に沿う長さは、前記強度が高い熱電素子より短いことを特徴とする請求項1記載の熱電変換モジュール。   The thermal expansion coefficient of the high-strength thermoelectric element is smaller than the thermal expansion coefficient of the low-strength thermoelectric element, and the length along the facing direction of the wiring board in the low-strength thermoelectric element is the high-strength thermoelectric element. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is shorter. 前記強度が低い熱電素子と前記配線基板との間に、前記熱電素子より軟質材からなる導電性スペーサが設けられていることを特徴とする請求項2記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 2, wherein a conductive spacer made of a softer material than the thermoelectric element is provided between the thermoelectric element having a low strength and the wiring board.
JP2015054176A 2015-03-18 2015-03-18 Thermoelectric conversion module Active JP6507745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054176A JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054176A JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2016174114A true JP2016174114A (en) 2016-09-29
JP6507745B2 JP6507745B2 (en) 2019-05-08

Family

ID=57009207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054176A Active JP6507745B2 (en) 2015-03-18 2015-03-18 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6507745B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057259A1 (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2018067589A (en) * 2016-10-18 2018-04-26 三菱マテリアル株式会社 Method for manufacturing thermoelectric conversion module
JP2018148037A (en) * 2017-03-06 2018-09-20 昭和電線ケーブルシステム株式会社 Thermoelectric conversion module
WO2020040479A1 (en) * 2018-08-21 2020-02-27 주식회사 엘지화학 Thermoelectric module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110154A (en) * 2001-09-28 2003-04-11 Hitachi Ltd Electronic device with peltier module, optical module and manufacturing method for them
JP2004235367A (en) * 2003-01-29 2004-08-19 Kyocera Corp Thermoelectric module
JP2005317834A (en) * 2004-04-30 2005-11-10 Hitachi Powdered Metals Co Ltd Thermoelectric transformation module and method of manufacturing the same
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2011249492A (en) * 2010-05-26 2011-12-08 Furukawa Co Ltd Thermoelectric conversion module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110154A (en) * 2001-09-28 2003-04-11 Hitachi Ltd Electronic device with peltier module, optical module and manufacturing method for them
JP2004235367A (en) * 2003-01-29 2004-08-19 Kyocera Corp Thermoelectric module
JP2005317834A (en) * 2004-04-30 2005-11-10 Hitachi Powdered Metals Co Ltd Thermoelectric transformation module and method of manufacturing the same
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2011249492A (en) * 2010-05-26 2011-12-08 Furukawa Co Ltd Thermoelectric conversion module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057259A1 (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
US10573798B2 (en) 2015-09-28 2020-02-25 Mitsubishi Materials Corporation Thermoelectric conversion module and thermoelectric conversion device
JP2018067589A (en) * 2016-10-18 2018-04-26 三菱マテリアル株式会社 Method for manufacturing thermoelectric conversion module
JP7047244B2 (en) 2016-10-18 2022-04-05 三菱マテリアル株式会社 Manufacturing method of thermoelectric conversion module
JP2018148037A (en) * 2017-03-06 2018-09-20 昭和電線ケーブルシステム株式会社 Thermoelectric conversion module
WO2020040479A1 (en) * 2018-08-21 2020-02-27 주식회사 엘지화학 Thermoelectric module
JP2020535661A (en) * 2018-08-21 2020-12-03 エルジー・ケム・リミテッド Thermoelectric module
JP7012835B2 (en) 2018-08-21 2022-01-28 エルジー・ケム・リミテッド Thermoelectric module
US11430936B2 (en) 2018-08-21 2022-08-30 Lg Chem, Ltd. Thermoelectric module

Also Published As

Publication number Publication date
JP6507745B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP6507745B2 (en) Thermoelectric conversion module
RU2546830C2 (en) Thermoelectric element
US20140182644A1 (en) Structures and methods for multi-leg package thermoelectric devices
JP2009081286A (en) Thermoelectric conversion module
EP2660888A1 (en) Thermoelectric conversion member
CN108028306B (en) Thermoelectric conversion module and thermoelectric conversion device
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JP7052200B2 (en) Thermoelectric conversion module
TWI758431B (en) Thermoelectric conversion module and its manufacturing method
JP7047244B2 (en) Manufacturing method of thermoelectric conversion module
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2017069443A (en) Thermoelectric conversion module
KR102456680B1 (en) Thermoelectric element
JP2021022712A (en) Thermoelectric module and manufacturing method of thermoelectric module
KR102581613B1 (en) Thermoelectric element
JP2013247123A (en) Thermoelectric conversion device
JP6822609B1 (en) Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module
JP2014110245A (en) Thermoelectric conversion device
WO2021157565A1 (en) Thermoelectric conversion structure
JP6933055B2 (en) Thermoelectric conversion module and its manufacturing method
JP6170013B2 (en) Thermoelectric module and thermoelectric device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150