WO2017164217A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2017164217A1
WO2017164217A1 PCT/JP2017/011376 JP2017011376W WO2017164217A1 WO 2017164217 A1 WO2017164217 A1 WO 2017164217A1 JP 2017011376 W JP2017011376 W JP 2017011376W WO 2017164217 A1 WO2017164217 A1 WO 2017164217A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
type thermoelectric
conversion element
surface side
conversion module
Prior art date
Application number
PCT/JP2017/011376
Other languages
French (fr)
Japanese (ja)
Inventor
中田 嘉信
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017033837A external-priority patent/JP7052200B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201780015595.XA priority Critical patent/CN108713259B/en
Priority to KR1020187026564A priority patent/KR102405156B1/en
Priority to US16/086,397 priority patent/US10897001B2/en
Priority to EP17770257.8A priority patent/EP3435431B1/en
Publication of WO2017164217A1 publication Critical patent/WO2017164217A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • thermoelectric conversion module formed by electrically connecting a plurality of thermoelectric conversion elements.
  • Thermoelectric conversion elements are electronic elements such as Seebeck effect and Peltier effect that can mutually convert heat and electricity.
  • the Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material.
  • thermoelectric power generation utilizing this effect has been actively developed (for example, see Patent Document 1).
  • the Peltier effect is an effect that converts electrical energy into thermal energy.
  • an electrode or the like is formed at both ends of a thermoelectric conversion material to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion material. is there.
  • An element having such an effect is particularly referred to as a Peltier element, and is used for cooling and temperature control of precision instruments and small refrigerators (for example, see Patent Document 2).
  • thermoelectric conversion module configured by electrically connecting a plurality of such thermoelectric conversion elements is generally a semiconductor type different from a unileg type thermoelectric conversion module in which thermoelectric conversion elements having the same semiconductor type are connected to each other, That is, a ⁇ (pi) type thermoelectric conversion module in which n type thermoelectric conversion elements and p type thermoelectric conversion elements are alternately connected is known.
  • the ⁇ (pi) type thermoelectric conversion module can simplify the electrical connection configuration compared to the unileg type thermoelectric conversion module, and can efficiently perform thermoelectric conversion by pn connection. it can.
  • a ⁇ -type thermoelectric conversion module has a configuration in which one side and the other side of a number of n-type thermoelectric conversion elements and p-type thermoelectric conversion elements connected to each other by electrode plates or the like are joined to one insulating plate. It has become.
  • thermoelectric conversion module when thermoelectric conversion materials having different compositions are used, the n-type thermoelectric conversion element and the p-type thermoelectric conversion element also have different thermal expansion coefficients. For this reason, in the conventional configuration in which one side and the other side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are joined to one insulating plate, the n-type thermoelectric conversion element and the p-type thermoelectric element are connected. Depending on the difference in thermal expansion coefficient from the conversion element, there is a concern that either one of the thermoelectric conversion elements may be peeled off from the insulating plate or the element may be broken.
  • the present invention has been made in view of the above-described circumstances, and is a thermoelectric conversion module formed by combining an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different coefficients of thermal expansion.
  • the purpose of the present invention is to provide a thermoelectric conversion module that can prevent the thermoelectric conversion element from peeling off from the substrate or the thermoelectric conversion element from cracking.
  • thermoelectric conversion module is a thermoelectric conversion module in which n-type thermoelectric conversion elements and p-type thermoelectric conversion elements are alternately connected in series via electrode plates.
  • the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are made of materials having different coefficients of thermal expansion, and one side of the n-type thermoelectric conversion element and one side of the p-type thermoelectric conversion element Are arranged side by side on one side of a common insulating substrate and bonded to each other, and a heat conductive member is independent on the other side of the n-type thermoelectric conversion element and the other side of the p-type thermoelectric conversion element. It is characterized by being formed individually.
  • the n-type thermoelectric conversion material and the p-type thermoelectric conversion material formed of materials having different thermal expansion coefficients have different sizes due to the heat on the high heat side. It expands thermally. For example, when the n-type thermoelectric conversion material has a larger coefficient of thermal expansion than the p-type thermoelectric conversion material, the n-type thermoelectric conversion material expands more than the p-type thermoelectric conversion material.
  • thermoelectric conversion module having this configuration, the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are bonded to a common insulating substrate only on one surface side, and the heat conductive members formed on the other surface side are individually.
  • the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are independently formed and do not interfere with each other. Therefore, there is no concern that the heat conductive member is peeled off from the n-type thermoelectric conversion element or the p-type thermoelectric conversion element or the element is cracked.
  • the n-type thermoelectric conversion element is allowed to expand larger than the p-type thermoelectric conversion element, and the end portion of the heat conductive member formed in the n-type thermoelectric conversion element is heat conduction formed in the p-type thermoelectric conversion element. It can protrude rather than the front-end
  • thermoelectric conversion module the other surface side of the n-type thermoelectric conversion element and the heat conductive member, and the other surface side of the p-type thermoelectric conversion element and the heat conductive member. It is preferable that a thermally conductive insulating layer is disposed between the two. In this case, since insulation between the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element and the heat conductive member is ensured, the heat conductive member is in contact with another metal member. Current leakage occurring at the time can be prevented, and a highly safe thermoelectric conversion module can be realized.
  • thermoelectric conversion module which is one aspect of the present invention, it is preferable to further dispose a heat shield member between the n-type thermoelectric conversion element and the p-type thermoelectric conversion element adjacent to each other.
  • heat transfer from one surface side to the other surface side is suppressed by the heat shielding member, and a temperature difference can be maintained between one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element. This improves power generation efficiency.
  • the heat shield member is a heat shield plate having a large number of openings through which the n-type thermoelectric conversion element and the p-type thermoelectric conversion element can pass. Is preferred. In this case, transmission of radiant heat on one surface side to the other surface side is suppressed by the heat shield plate, and a temperature difference is generated between the one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element. The power generation efficiency is improved.
  • thermoelectric conversion module in the thermoelectric conversion module according to one aspect of the present invention, a protective cover is provided so as to surround the other surface side of the insulating substrate and a region where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are arranged. Is preferably formed.
  • the protective cover can prevent corrosion and fouling of the thermoelectric conversion module, and can prevent a decrease in thermoelectric conversion efficiency of the thermoelectric conversion module.
  • the thermal conductive member is preferably made of a material having a thermal conductivity of 10 W / (mK) or more.
  • the thermal conductivity of the thermal conductive member is relatively large, such as 10 W / (mK) or more, it is possible to efficiently absorb and dissipate heat.
  • thermoelectric conversion module the other end side of the n-type thermoelectric conversion element and the front end portion of the thermally conductive member formed on the other side of the p-type thermoelectric conversion element are cooled. It is preferable to be immersed in the liquid. According to the thermoelectric conversion module of this configuration, the tip of the thermally conductive member formed on the other surface side of the n-type thermoelectric conversion element and the other surface side of the p-type thermoelectric conversion element is immersed in the coolant. By doing so, a temperature difference can be maintained between the one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element, and the power generation efficiency is improved.
  • thermoelectric conversion module a metal layer is formed on a surface of the insulating substrate opposite to a surface where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are bonded. Preferably it is.
  • the metal layer is formed on the surface of the insulating substrate opposite to the surface where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are joined, A heat source can be disposed through this metal layer, and thermal shock to the insulating substrate can be suppressed, and the life of the insulating substrate can be extended.
  • thermoelectric conversion module of the present invention in a thermoelectric conversion module formed by combining an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different thermal expansion coefficients, a thermoelectric conversion element is formed from a substrate. Can be prevented from peeling off and the thermoelectric conversion element can be prevented from cracking.
  • thermoelectric conversion module of 1st embodiment is seen from the side. It is a principal part expanded sectional view which showed the mode at the time of operation
  • thermoelectric conversion module of the present invention will be described with reference to the drawings.
  • Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
  • drawings used in the following description in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the dimensional ratio of each component is the same as the actual one. Not necessarily.
  • Drawing 1 is a sectional view when the thermoelectric conversion module of a first embodiment is seen from the side.
  • the thermoelectric conversion module 20 of the first embodiment is a ⁇ (pi) type thermoelectric conversion module formed by connecting different semiconductor type, for example, p-type and n-type thermoelectric conversion materials in series.
  • the thermoelectric conversion module 20 includes an insulating substrate 21, and n-type thermoelectric conversion elements 10 ⁇ / b> A and p-type thermoelectric conversion elements 10 ⁇ / b> B arranged alternately on one side 21 a of the insulating substrate 21.
  • the insulating substrate 21 is a common substrate to which all n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are bonded.
  • the insulating substrate 21 can be made of an insulating material having excellent thermal conductivity, for example, a plate material such as silicon carbide, nitrogen silicon, aluminum nitride, aluminum oxide, and sialon.
  • the insulating substrate 21 may be a composite substrate in which a conductive metal material is used as a base material and an insulating layer such as a resin film or a ceramic thin film is formed around it.
  • Such an insulating substrate 21 is a medium that applies heat to or absorbs heat on one surface 11a of thermoelectric conversion materials 11A and 11B described later.
  • the thermal conductivity of the insulating substrate 21 is preferably 20 W / (mK) or more, for example.
  • the thermal conductivity of the insulating substrate 21 is more preferably 30 W / (mK) or more, and further preferably 40 W / (mK) or more.
  • thermoelectric conversion element 10A is bonded to the insulating substrate 21 on one surface side 10a, and metallized layers 12a and 12b are formed on one surface 11a and the other surface 11b of the n-type thermoelectric conversion material 11A, respectively.
  • thermoelectric conversion material 11A As a specific example of the n-type thermoelectric conversion material 11A, a thermoelectric conversion material obtained by adding antimony (Sb) as a dopant to magnesium silicide (Mg 2 Si) and sintering is cut and processed into a desired shape. Can be manufactured. In addition, 0.5 mol% to 13.0 mol% of silicon oxide such as SiO 2 can be added at the time of sintering. By adding silicon oxide, the hardness of the thermoelectric conversion material and the power generation efficiency are increased.
  • Sb antimony
  • Mg 2 Si magnesium silicide
  • the n-type thermoelectric conversion material 11A of the present embodiment uses a magnesium-based sintered body made of Mg 2 Si containing 0.5 at% antimony.
  • antimony which is a pentavalent donor provides an n-type thermoelectric conversion material with a high carrier density.
  • the thermal expansion coefficient of the n-type thermoelectric conversion material 11A of the present embodiment is 500 ° C., for example 12.5 ⁇ 10 -6 /K ⁇ 17.5 ⁇ 10 -6 / degree K.
  • magnesium-based compound constituting the n-type thermoelectric conversion material 11A in addition to Mg 2 Si, Mg 2 Si X Ge 1-X, Mg 2 Si X Sn 1-x , etc., other elements Mg 2 Si A compound added with can also be used in the same manner.
  • thermoelectric conversion material 11A bismuth, aluminum, phosphorus, arsenic, or the like can be used in addition to antimony.
  • thermoelectric conversion element 10B is bonded to the insulating substrate 21 on one surface side 10a, and metallized layers 12a and 12b are formed on one surface 11a and the other surface 11b of the p-type thermoelectric conversion material 11B, respectively.
  • thermoelectric conversion materials obtained by sintering MnSi 1.73 , Mn 34.6 W 1.8 Si 63.6 , Mn 30.4 Re 6 Si 63.6, and the like. Can be cut and processed into a desired shape.
  • a manganese-based sintered body made of MnSi 1.73 is used as the p-type thermoelectric conversion material 11B, and the coefficient of thermal expansion is, for example, 10.0 ⁇ 10 ⁇ 6 / K to 11.5 ⁇ 10 ⁇ at 500 ° C. It is about 6 / K.
  • the metallized layers 12a and 12b are intermediate layers for joining the electrode plates 13a and 13b to the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B.
  • nickel, silver, cobalt, tungsten, molybdenum, or the like A non-woven fabric made of metal fibers is used.
  • nickel is used for the metallized layers 12a and 12b.
  • the metallized layers 12a and 12b can be formed by sintering, plating, electrodeposition or the like.
  • the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B arranged adjacent to each other are electrically connected in series via the electrode plates 13a and 13b.
  • the metallized layer 12a of the n-type thermoelectric conversion material 11A and the metallized layer 12a of the p-type thermoelectric conversion material 11B disposed adjacent to each other are connected by the electrode plate 13a.
  • the metallized layer 12b of the p-type thermoelectric conversion material 11B and the metallized layer 12b of the n-type thermoelectric conversion material 11A disposed adjacent to each other are connected by the electrode plate 13b.
  • the electrode plates 13a and 13b are formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In this embodiment, an aluminum rolled plate is used. Further, the metallized layers 12a and 12b and the electrode plates 13a and 13b can be joined by Ag brazing, Ag paste, or the like.
  • thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B arranged in this way are connected in series so as to be electrically connected. That is, in the ⁇ (pi) type thermoelectric conversion module 20, n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are alternately and repeatedly connected in series.
  • thermoelectric conversion elements 10A and the p-type thermoelectric conversion elements 10B for one row on the front side are shown, but actually, the n-type thermoelectric conversion elements 10A and Several rows of p-type thermoelectric conversion elements 10B are alternately arranged.
  • thermoelectric conversion element 10A a temperature difference is generated between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, thereby causing a potential difference between the electrode plate 13a and the electrode plate 13b.
  • It can be used as a Seebeck element that causes
  • the temperature between the one side 10a and the other side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B is determined. It can be used as a Peltier element that causes a difference. For example, by flowing a current between the electrode plate 13a side and the electrode plate 13b, the one surface side 10a or the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B can be cooled or heated. it can.
  • a heat conductive member 22 is formed on the other surface side 10b of each of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B. That is, an independent thermal conductive member 22 is formed for each n-type thermoelectric conversion element 10A and p-type thermoelectric conversion element 10B.
  • Such a heat conductive member 22 is an insulating material having excellent heat conductivity, for example, a rod or plate material such as silicon carbide, nitrogen silicon, aluminum nitride, and aluminum oxide, or a large surface area. A bar or plate having a structure with unevenness on the surface can be used.
  • the thermally conductive member 22 is a medium that applies heat to or absorbs the other surface 11b of the thermoelectric conversion materials 11A and 11B. That is, it is a member for heat dissipation or heat absorption.
  • the heat conductivity of the heat conductive member 22 is preferably 10 W / (mK) or more, for example.
  • the thermal conductivity of the heat conductive member 22 is more preferably 20 W / (mK) or more, and further preferably 30 W / (mK) or more.
  • these heat conductive members 22 are made of a metal material having excellent heat conductivity, for example, a bar or plate material such as aluminum or aluminum alloy, magnesium or magnesium alloy, copper or copper alloy, or a large surface area. It is also possible to use a bar or plate having a structure with irregularities on the surface.
  • the heat conductivity of the heat conductive member 22 is preferably 200 W / (mK) or more, and is 400 W / (mK) or more. It is more preferable.
  • a heat shield member 24 is disposed between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B adjacent to each other.
  • the heat shield member 24 is composed of a heat shield plate having a large number of openings through which the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B can pass, and the n-type thermoelectric conversion elements 10A and p.
  • the other surface side 10b of the type thermoelectric conversion element 10B is formed so as to cover the gap between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B.
  • Such a heat shield member 24 has a temperature difference between the one surface side 10a and the other surface side 10b, as radiant heat propagates from the one surface side 10a of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B to the other surface side 10b. Is reduced and the thermoelectric conversion efficiency is prevented from lowering.
  • the heat shield member 24 may be a member that prevents radiant heat from propagating from the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B to the one surface side 10a.
  • the heat shielding member 24 is composed of a heat insulating material having low thermal conductivity and an insulating member, for example, an insulating material made of fibers such as alumina, a sialon plate, a rock wool insulating material, alumina, and silica. Further, as the heat shielding member 24, a metal plate or foil such as stainless steel, aluminum, copper, or steel that reflects infrared rays can be used. In this case, the metal plate or foil is used as the thermoelectric conversion element 10A or the like. It is necessary to provide an opening that does not contact 10B.
  • the heat shielding member 24 and the insulating substrate 21 are integrated at the peripheral portion so as to sandwich the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B by a fastening member 23 made of, for example, screws and screws. ing.
  • a protective cover 25 is formed so as to surround the other surface side 21b of the insulating substrate and the area where the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are arranged. Such a protective cover 25 prevents corrosion and fouling of the thermoelectric conversion module 20 and prevents a decrease in thermoelectric conversion efficiency of the thermoelectric conversion module 20.
  • the protective cover 25 is made of, for example, a plate material made of stainless steel, steel, or aluminum.
  • thermoelectric conversion module 20 of the present embodiment having the above configuration will be described.
  • the thermoelectric conversion module 20 is used as, for example, a Seebeck element
  • the insulating substrate 21 and the thermal conductive members 22 respectively formed on the individual n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are respectively used.
  • a potential difference is generated between the electrode plate 13a and the electrode plate 13b by generating a temperature difference between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the present embodiment during operation.
  • the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B formed of materials having different thermal expansion coefficients are on the high heat side, for example, the one surface side 10a. The heat expands so as to have different sizes.
  • the n-type thermoelectric conversion material 11A has a larger coefficient of thermal expansion than the p-type thermoelectric conversion material 11B, for example, the n-type thermoelectric conversion material 11A is more than the p-type thermoelectric conversion material 11B along the thickness direction. It expands greatly.
  • the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are bonded to the insulating substrate 21 which is a common substrate only on one surface side 10a via the electrode plate 13a, and the heat formed on the other surface side 10b. Since the conductive member 22 is formed independently for each n-type thermoelectric conversion element 10A and p-type thermoelectric conversion element 10B, the metallized layer 12a is formed from the n-type thermoelectric conversion element 10A or the p-type thermoelectric conversion element 10B. 12b or the electrode plates 13a and 13b are not concerned. Moreover, there is no fear that the thermoelectric conversion elements 10A and 10B are cracked.
  • the n-type thermoelectric conversion element 10A is allowed to expand larger than the p-type thermoelectric conversion element 10B, and the tip of the heat conductive member 22 formed in the n-type thermoelectric conversion element 10A is formed in the p-type thermoelectric conversion element 10B. It can protrude from the tip of the heat conductive member 22 made.
  • the electrode plate 13b is bent slightly due to the difference in thermal expansion coefficient between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, but the electrode plate 13b is a plate material such as copper or aluminum having excellent malleability and ductility. Since it is formed from the electrode which laminated the foil and foil in the multilayer, even if it bends, it will not peel from 10A of n-type thermoelectric conversion elements, or the p-type thermoelectric conversion element 10B.
  • thermoelectric conversion module 20 of the present embodiment the n-type thermoelectric conversion element 10A formed using the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B having different coefficients of thermal expansion, and Even in the thermoelectric conversion module 20 formed by combining the p-type thermoelectric conversion elements 10B, the thermoelectric conversion elements 10A and 10B can be prevented from being peeled off from the insulating substrate 21 and the heat conductive member 22.
  • FIG. 3 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the second embodiment.
  • thermoelectric conversion module 30 of the second embodiment between the other surface side 10b of the n-type thermoelectric conversion element 10A and the heat conductive member 32 and between the other surface side 10b of the p-type thermoelectric conversion element 10B and the heat conductive member 32. Between these, a heat conductive insulating layer 33 is formed.
  • Such a heat conductive insulating layer 33 can be made of, for example, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide or the like.
  • the insulation between the heat conductive member 32 and the electrode plate 13b is ensured.
  • the heat conductive member 32 is formed using a metal having excellent heat conductivity, current leakage that occurs when the heat conductive member 32 comes into contact with another metal member can be prevented.
  • a highly safe thermoelectric conversion module can be realized.
  • FIG. 4 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the third embodiment.
  • electrode plates 41a and 41b are respectively formed on the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, and the electrode plate 41a and the electrode plate 41b They are connected by flexible lead wires 42.
  • thermoelectric conversion element 10B Even if the positional deviation on the other surface side 10b of the n-type thermoelectric conversion element 10B and the p-type thermoelectric conversion element 10B increases due to the difference in thermal expansion coefficient between the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B.
  • the conductivity can be ensured between the other surface side 10b of the n-type thermoelectric conversion element 10A and the other surface side 10b of the p-type thermoelectric conversion element 10B.
  • the tips of the heat conductive members 22 formed on the other surface side 10 b of the n-type thermoelectric conversion element 10 ⁇ / b> A and the p-type thermoelectric conversion element 10 ⁇ / b> B are stored in the storage tank 51. It is good also as a structure immersed in the cooling fluid 52 which was made. With such a configuration, a temperature difference can be maintained between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, and the power generation efficiency is improved.
  • the metal layer 61 is formed on the surface of the insulating substrate 21 opposite to the surface where the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are joined. May be.
  • a heat conductive member it is not limited to the shape of this embodiment, A various form is employable.
  • it may have a star shape in cross section like a heat conductive member 121 shown in FIG. 7A, a polygonal shape in cross section like a heat conductive member 221 shown in FIG.
  • the surface area may be increased by forming a multi-stage shape like the heat conductive member 321 shown in FIG. 7 or by projecting the fins 421A like the heat conductive member 421 shown in FIG.
  • a through hole 521A may be provided so that the cooling medium flows through the through hole 521A.
  • you may comprise a heat conductive member with a metal porous body.
  • thermoelectric conversion module of the present invention it is possible to prevent the thermoelectric conversion element from being peeled off from the substrate and the thermoelectric conversion element from being cracked.
  • the thermoelectric conversion module of the present invention is suitable for a thermoelectric conversion module that combines an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different thermal expansion coefficients.
  • thermoelectric conversion element 10A n-type thermoelectric conversion element 10B p-type thermoelectric conversion element 11A n-type thermoelectric conversion material 11B p-type thermoelectric conversion material 12a, 12b metallized layer 13a, 13b electrode plates 22, 121, 221, 321, 421, 521 heat conductive member

Abstract

A thermoelectric conversion module according to the present invention is characterized in that: an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are configured from materials having mutually different thermal expansion coefficients; one surface side of the n-type thermoelectric conversion element and one surface side of the p-type thermoelectric conversion element are aligned and joined to one surface side of a shared insulating substrate; and a heat conducting member is independently and individually formed on the other surface side of the n-type thermoelectric conversion element and on the other surface side of the p-type thermoelectric conversion element.

Description

熱電変換モジュールThermoelectric conversion module
 この発明は、複数の熱電変換素子を電気的に接続してなる熱電変換モジュールに関する。
 本願は、2016年3月24日に、日本に出願された特願2016-060866号、及び2017年2月24日に、日本に出願された特願2017-033837号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoelectric conversion module formed by electrically connecting a plurality of thermoelectric conversion elements.
This application claims priority based on Japanese Patent Application No. 2016-060866 filed in Japan on March 24, 2016 and Japanese Patent Application No. 2017-033837 filed on Japan on February 24, 2017. , The contents of which are incorporated herein.
 熱電変換素子はゼーベック効果、ペルティエ効果といった、熱と電気とを相互に変換可能な電子素子である。ゼーベック効果は熱エネルギーを電気エネルギーに変換する効果であり、熱電変換材料の両端に温度差を生じさせると起電力が発生する現象である。こうした起電力は熱電変換材料の特性によって決まる。近年ではこの効果を利用した熱電発電の開発が盛んである(例えば、特許文献1参照)。 Thermoelectric conversion elements are electronic elements such as Seebeck effect and Peltier effect that can mutually convert heat and electricity. The Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material. In recent years, thermoelectric power generation utilizing this effect has been actively developed (for example, see Patent Document 1).
 一方、ペルティエ効果は電気エネルギーを熱エネルギーに変換する効果であり、熱電変換材料の両端に電極等を形成して電極間で電位差を生じさせると、熱電変換材料の両端に温度差が生じる現象である。こうした効果をもつ素子は特にペルティエ素子と呼ばれ、精密機器や小型冷蔵庫などの冷却や温度制御に利用されている(例えば、特許文献2参照)。 On the other hand, the Peltier effect is an effect that converts electrical energy into thermal energy. When an electrode or the like is formed at both ends of a thermoelectric conversion material to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion material. is there. An element having such an effect is particularly referred to as a Peltier element, and is used for cooling and temperature control of precision instruments and small refrigerators (for example, see Patent Document 2).
 こうした熱電変換素子を複数、電気的に接続して構成される熱電変換モジュールは、一般的に、互いに半導体型が同一の熱電変換素子どうしを接続したユニレグ型熱電変換モジュールと、互いに異なる半導体型、即ちn型熱電変換素子とp型熱電変換素子とを交互に接続したπ(パイ)型熱電変換モジュールとが知られている。 A thermoelectric conversion module configured by electrically connecting a plurality of such thermoelectric conversion elements is generally a semiconductor type different from a unileg type thermoelectric conversion module in which thermoelectric conversion elements having the same semiconductor type are connected to each other, That is, a π (pi) type thermoelectric conversion module in which n type thermoelectric conversion elements and p type thermoelectric conversion elements are alternately connected is known.
 このうち、π(パイ)型熱電変換モジュールは、ユニレグ型熱電変換モジュールと比較して電気的な接続構成を単純にすることができ、かつ、p-n接続によって効率よく熱電変換を行うことができる。
 従来、こうしたπ型熱電変換モジュールは、電極板などで互いに接続された多数のn型熱電変換素子とp型熱電変換素子の一面側および他面側を、それぞれ1枚の絶縁板に接合した構成となっている。
Among these, the π (pi) type thermoelectric conversion module can simplify the electrical connection configuration compared to the unileg type thermoelectric conversion module, and can efficiently perform thermoelectric conversion by pn connection. it can.
Conventionally, such a π-type thermoelectric conversion module has a configuration in which one side and the other side of a number of n-type thermoelectric conversion elements and p-type thermoelectric conversion elements connected to each other by electrode plates or the like are joined to one insulating plate. It has become.
特表2012-533972号公報Special table 2012-533972 gazette 特開2011-249742号公報JP 2011-249742 A
 上述したπ(パイ)型熱電変換モジュールにおいて、互いに異なる組成の熱電変換材料を用いる場合には、n型熱電変換素子とp型熱電変換素子の熱膨張率も互いに異なっている。このため、従来のように、n型熱電変換素子とp型熱電変換素子の一面側および他面側を、それぞれ1枚の絶縁板に接合させた構成では、n型熱電変換素子とp型熱電変換素子との熱膨張率の違いによって、どちらか一方の熱電変換素子が絶縁板から剥離したり、素子が割れたりする不具合が生じる懸念があった。 In the above-described π (pi) thermoelectric conversion module, when thermoelectric conversion materials having different compositions are used, the n-type thermoelectric conversion element and the p-type thermoelectric conversion element also have different thermal expansion coefficients. For this reason, in the conventional configuration in which one side and the other side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are joined to one insulating plate, the n-type thermoelectric conversion element and the p-type thermoelectric element are connected. Depending on the difference in thermal expansion coefficient from the conversion element, there is a concern that either one of the thermoelectric conversion elements may be peeled off from the insulating plate or the element may be broken.
 この発明は、前述した事情に鑑みてなされたものであって、互いに異なる熱膨張率の熱電変換材料をそれぞれ用いて形成したn型熱電変換素子およびp型熱電変換素子を組み合わせてなる熱電変換モジュールにおいて、基板から熱電変換素子が剥離すること、あるいは熱電変換素子が割れることを防止できる熱電変換モジュールを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is a thermoelectric conversion module formed by combining an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different coefficients of thermal expansion. The purpose of the present invention is to provide a thermoelectric conversion module that can prevent the thermoelectric conversion element from peeling off from the substrate or the thermoelectric conversion element from cracking.
 上記課題を解決するために、本発明の一態様である熱電変換モジュールは、n型熱電変換素子と、p型熱電変換素子とが、電極板を介して交互に直列接続してなる熱電変換モジュールであって、前記n型熱電変換素子と前記p型熱電変換素子とは、互いに熱膨張率が異なる材料からなり、前記n型熱電変換素子の一面側と、前記p型熱電変換素子の一面側とが、互いに共通の絶縁性基板の一面側に並べて接合され、前記n型熱電変換素子の他面側と、前記p型熱電変換素子の他面側には、それぞれ熱伝導性部材が独立して個々に形成されていることを特徴とする。 In order to solve the above-described problems, a thermoelectric conversion module according to one embodiment of the present invention is a thermoelectric conversion module in which n-type thermoelectric conversion elements and p-type thermoelectric conversion elements are alternately connected in series via electrode plates. The n-type thermoelectric conversion element and the p-type thermoelectric conversion element are made of materials having different coefficients of thermal expansion, and one side of the n-type thermoelectric conversion element and one side of the p-type thermoelectric conversion element Are arranged side by side on one side of a common insulating substrate and bonded to each other, and a heat conductive member is independent on the other side of the n-type thermoelectric conversion element and the other side of the p-type thermoelectric conversion element. It is characterized by being formed individually.
 熱電変換モジュールの動作時(熱電変換時)においては、互いに異なる熱膨張率をもつ材料で形成されたn型熱電変換材料とp型熱電変換材料とは、高熱側の熱によって、互いに異なる大きさとなるように熱膨張する。例えば、n型熱電変換材料がp型熱電変換材料よりも熱膨張率が大きい場合、n型熱電変換材料がp型熱電変換材料よりも大きく膨張する。 During operation of the thermoelectric conversion module (during thermoelectric conversion), the n-type thermoelectric conversion material and the p-type thermoelectric conversion material formed of materials having different thermal expansion coefficients have different sizes due to the heat on the high heat side. It expands thermally. For example, when the n-type thermoelectric conversion material has a larger coefficient of thermal expansion than the p-type thermoelectric conversion material, the n-type thermoelectric conversion material expands more than the p-type thermoelectric conversion material.
 しかし、この構成の熱電変換モジュールにおいて、n型熱電変換素子とp型熱電変換素子は、一面側だけが共通の絶縁性基板に接合され、他面側に形成された熱伝導性部材は、個々のn型熱電変換素子およびp型熱電変換素子ごとにそれぞれ独立して形成され、相互に干渉しない。そのため、n型熱電変換素子やp型熱電変換素子から熱伝導性部材が剥離したり、あるいは素子が割れたりする懸念が無い。n型熱電変換素子はp型熱電変換素子よりも大きく膨張することが許容され、n型熱電変換素子に形成された熱伝導性部材の端部が、p型熱電変換素子に形成された熱伝導性部材の先端よりも突出することができる。 However, in the thermoelectric conversion module having this configuration, the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are bonded to a common insulating substrate only on one surface side, and the heat conductive members formed on the other surface side are individually The n-type thermoelectric conversion element and the p-type thermoelectric conversion element are independently formed and do not interfere with each other. Therefore, there is no concern that the heat conductive member is peeled off from the n-type thermoelectric conversion element or the p-type thermoelectric conversion element or the element is cracked. The n-type thermoelectric conversion element is allowed to expand larger than the p-type thermoelectric conversion element, and the end portion of the heat conductive member formed in the n-type thermoelectric conversion element is heat conduction formed in the p-type thermoelectric conversion element. It can protrude rather than the front-end | tip of a sex member.
 本発明の一態様である熱電変換モジュールにおいては、前記n型熱電変換素子の他面側と前記熱伝導性部材との間、および前記p型熱電変換素子の他面側と前記熱伝導性部材との間には、それぞれ熱伝導性絶縁層が配されていることが好ましい。
 この場合、前記n型熱電変換素子及び前記p型熱電変換素子の他面側と熱伝導性部材との間の絶縁性が確保されるので、熱伝導性部材が他の金属製部材と接触した際に生じる電流リークを防止することができ、安全性の高い熱電変換モジュールを実現できる。
In the thermoelectric conversion module according to one aspect of the present invention, the other surface side of the n-type thermoelectric conversion element and the heat conductive member, and the other surface side of the p-type thermoelectric conversion element and the heat conductive member. It is preferable that a thermally conductive insulating layer is disposed between the two.
In this case, since insulation between the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element and the heat conductive member is ensured, the heat conductive member is in contact with another metal member. Current leakage occurring at the time can be prevented, and a highly safe thermoelectric conversion module can be realized.
 本発明の一態様である熱電変換モジュールにおいては、互いに隣接する前記n型熱電変換素子と前記p型熱電変換素子との間に、更に遮熱部材を配することが好ましい。
 この場合、遮熱部材によって一面側から他面側への伝熱が抑制され、前記n型熱電変換素子及び前記p型熱電変換素子の一面側と他面側とで温度差を維持することができ、発電効率が向上する。
In the thermoelectric conversion module which is one aspect of the present invention, it is preferable to further dispose a heat shield member between the n-type thermoelectric conversion element and the p-type thermoelectric conversion element adjacent to each other.
In this case, heat transfer from one surface side to the other surface side is suppressed by the heat shielding member, and a temperature difference can be maintained between one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element. This improves power generation efficiency.
 本発明の一態様である熱電変換モジュールにおいては、前記遮熱部材は、前記n型熱電変換素子および前記p型熱電変換素子が貫通可能な、多数の開口が形成された遮熱板であることが好ましい。
 この場合、遮熱板によって一面側の輻射熱が他面側へと伝達されることが抑制され、前記n型熱電変換素子及び前記p型熱電変換素子の一面側と他面側とで温度差を維持することができ、発電効率が向上する。
In the thermoelectric conversion module according to an aspect of the present invention, the heat shield member is a heat shield plate having a large number of openings through which the n-type thermoelectric conversion element and the p-type thermoelectric conversion element can pass. Is preferred.
In this case, transmission of radiant heat on one surface side to the other surface side is suppressed by the heat shield plate, and a temperature difference is generated between the one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element. The power generation efficiency is improved.
 本発明の一態様である熱電変換モジュールにおいては、前記絶縁性基板の他面側、および前記n型熱電変換素子および前記p型熱電変換素子が配列された領域の周囲を取り囲むように、保護カバーが形成されていることが好ましい。
 この場合、保護カバーによって、熱電変換モジュールの腐蝕や汚損を防止し、熱電変換モジュールの熱電変換効率の低下を防止することができる。
In the thermoelectric conversion module according to one aspect of the present invention, a protective cover is provided so as to surround the other surface side of the insulating substrate and a region where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are arranged. Is preferably formed.
In this case, the protective cover can prevent corrosion and fouling of the thermoelectric conversion module, and can prevent a decrease in thermoelectric conversion efficiency of the thermoelectric conversion module.
 本発明の一態様である熱電変換モジュールにおいては、前記熱伝導性部材は、熱伝導率が10W/(mK)以上の材料からなることが好ましい。
 この場合、前記熱伝導性部材の熱伝導率が10W/(mK)以上と比較的大きくされているので、効率良く吸熱及び放熱することができる。
In the thermoelectric conversion module which is one aspect of the present invention, the thermal conductive member is preferably made of a material having a thermal conductivity of 10 W / (mK) or more.
In this case, since the thermal conductivity of the thermal conductive member is relatively large, such as 10 W / (mK) or more, it is possible to efficiently absorb and dissipate heat.
 本発明の一態様である熱電変換モジュールにおいては、前記n型熱電変換素子の他面側と、前記p型熱電変換素子の他面側に形成された前記熱伝導性部材の先端部が、冷却液中に浸漬されていることが好ましい。
 この構成の熱電変換モジュールによれば、前記n型熱電変換素子の他面側と、前記p型熱電変換素子の他面側に形成された前記熱伝導性部材の先端部を冷却液中に浸漬させることで、前記n型熱電変換素子及び前記p型熱電変換素子の一面側と他面側とで温度差を維持することができ、発電効率が向上する。
In the thermoelectric conversion module according to one aspect of the present invention, the other end side of the n-type thermoelectric conversion element and the front end portion of the thermally conductive member formed on the other side of the p-type thermoelectric conversion element are cooled. It is preferable to be immersed in the liquid.
According to the thermoelectric conversion module of this configuration, the tip of the thermally conductive member formed on the other surface side of the n-type thermoelectric conversion element and the other surface side of the p-type thermoelectric conversion element is immersed in the coolant. By doing so, a temperature difference can be maintained between the one surface side and the other surface side of the n-type thermoelectric conversion element and the p-type thermoelectric conversion element, and the power generation efficiency is improved.
 本発明の一態様である熱電変換モジュールにおいては、前記絶縁性基板の前記n型熱電変換素子及び前記p型熱電変換素子が接合された面とは反対側の面に、金属層が形成されていることが好ましい。
 この構成の熱電変換モジュールによれば、前記絶縁性基板の前記n型熱電変換素子及び前記p型熱電変換素子が接合された面とは反対側の面に、金属層が形成されているので、この金属層を介して熱源を配置することができ、前記絶縁性基板に対する熱衝撃を抑え、絶縁性基板の寿命延長を図ることができる。
In the thermoelectric conversion module according to one aspect of the present invention, a metal layer is formed on a surface of the insulating substrate opposite to a surface where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are bonded. Preferably it is.
According to the thermoelectric conversion module of this configuration, since the metal layer is formed on the surface of the insulating substrate opposite to the surface where the n-type thermoelectric conversion element and the p-type thermoelectric conversion element are joined, A heat source can be disposed through this metal layer, and thermal shock to the insulating substrate can be suppressed, and the life of the insulating substrate can be extended.
 本発明の熱電変換モジュールによれば、互いに異なる熱膨張率の熱電変換材料をそれぞれ用いて形成したn型熱電変換素子およびp型熱電変換素子を組み合わせてなる熱電変換モジュールにおいて、基板から熱電変換素子が剥離することや熱電変換素子が割れることを防止できる。 According to the thermoelectric conversion module of the present invention, in a thermoelectric conversion module formed by combining an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different thermal expansion coefficients, a thermoelectric conversion element is formed from a substrate. Can be prevented from peeling off and the thermoelectric conversion element can be prevented from cracking.
第一実施形態の熱電変換モジュールを側面から見た時の断面図である。It is sectional drawing when the thermoelectric conversion module of 1st embodiment is seen from the side. 第一実施形態の熱電変換モジュールの動作時の様子を示した要部拡大断面図である。It is a principal part expanded sectional view which showed the mode at the time of operation | movement of the thermoelectric conversion module of 1st embodiment. 第二実施形態の熱電変換モジュールの要部拡大断面図である。It is a principal part expanded sectional view of the thermoelectric conversion module of 2nd embodiment. 第三実施形態の熱電変換モジュールの要部拡大断面図である。It is a principal part expanded sectional view of the thermoelectric conversion module of 3rd embodiment. 本発明の他の実施形態の熱電変換モジュールを側面から見た時の断面図である。It is sectional drawing when the thermoelectric conversion module of other embodiment of this invention is seen from the side surface. 本発明の他の実施形態の熱電変換モジュールを側面から見た時の断面図である。It is sectional drawing when the thermoelectric conversion module of other embodiment of this invention is seen from the side surface. 本発明の実施形態における熱伝導性部材の他の例を示す説明図である。It is explanatory drawing which shows the other example of the heat conductive member in embodiment of this invention.
 以下、図面を参照して、本発明の熱電変換モジュールについて説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, the thermoelectric conversion module of the present invention will be described with reference to the drawings. Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the dimensional ratio of each component is the same as the actual one. Not necessarily.
(熱電変換モジュール:第一実施形態)
 図1は、第一実施形態の熱電変換モジュールを側面から見た時の断面図である。
 第一実施形態の熱電変換モジュール20は、異なる半導体型、例えばp型およびn型の熱電変換材料を直列に接続してなるπ(パイ)型の熱電変換モジュールである。
 熱電変換モジュール20は、絶縁性基板21と、この絶縁性基板21の一面側21aに交互に配列されたn型熱電変換素子10Aおよびp型熱電変換素子10Bと、を備えている。
(Thermoelectric conversion module: first embodiment)
Drawing 1 is a sectional view when the thermoelectric conversion module of a first embodiment is seen from the side.
The thermoelectric conversion module 20 of the first embodiment is a π (pi) type thermoelectric conversion module formed by connecting different semiconductor type, for example, p-type and n-type thermoelectric conversion materials in series.
The thermoelectric conversion module 20 includes an insulating substrate 21, and n-type thermoelectric conversion elements 10 </ b> A and p-type thermoelectric conversion elements 10 </ b> B arranged alternately on one side 21 a of the insulating substrate 21.
 絶縁性基板21は、全てのn型熱電変換素子10Aおよびp型熱電変換素子10Bが接合される共通の1枚の基板である。絶縁性基板21は、絶縁性で、かつ熱伝導性に優れた材料、例えば、炭化ケイ素、窒素ケイ素、窒化アルミニウム、酸化アルミニウム、サイアロンなどの板材を用いることができる。
 なお、絶縁性基板21は、基材として導電性の金属材料を用い、周囲に樹脂膜やセラミックス薄膜などの絶縁層を形成した複合基板を用いることもできる。
The insulating substrate 21 is a common substrate to which all n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are bonded. The insulating substrate 21 can be made of an insulating material having excellent thermal conductivity, for example, a plate material such as silicon carbide, nitrogen silicon, aluminum nitride, aluminum oxide, and sialon.
The insulating substrate 21 may be a composite substrate in which a conductive metal material is used as a base material and an insulating layer such as a resin film or a ceramic thin film is formed around it.
 こうした絶縁性基板21は、後述する熱電変換材料11A,11Bの一方の面11aに熱を加えたり、熱を吸収させたりする媒体である。絶縁性基板21の熱伝導率は、例えば、20W/(mK)以上であることが好ましい。絶縁性基板21の熱伝導率は、30W/(mK)以上であることがより好ましく、40W/(mK)以上であることがさらに好ましい。 Such an insulating substrate 21 is a medium that applies heat to or absorbs heat on one surface 11a of thermoelectric conversion materials 11A and 11B described later. The thermal conductivity of the insulating substrate 21 is preferably 20 W / (mK) or more, for example. The thermal conductivity of the insulating substrate 21 is more preferably 30 W / (mK) or more, and further preferably 40 W / (mK) or more.
 熱電変換素子10Aは、その一面側10aで絶縁性基板21に接合され、n型熱電変換材料11Aの一方の面11aおよび他方の面11bにメタライズ層12a,12bがそれぞれ形成されている。 The thermoelectric conversion element 10A is bonded to the insulating substrate 21 on one surface side 10a, and metallized layers 12a and 12b are formed on one surface 11a and the other surface 11b of the n-type thermoelectric conversion material 11A, respectively.
 n型熱電変換材料11Aの具体例としては、マグネシウムシリサイド(MgSi)にドーパントとしてアンチモン(Sb)を添加して焼結して得られた熱電変換材料を切断し、所望の形状に加工して製造されるものが挙げられる。なお、焼結時にSiO等のシリコン酸化物を0.5mol%~13.0mol%添加することができる。シリコン酸化物を添加することで、熱電変換材料の硬度や、発電効率が上昇する。 As a specific example of the n-type thermoelectric conversion material 11A, a thermoelectric conversion material obtained by adding antimony (Sb) as a dopant to magnesium silicide (Mg 2 Si) and sintering is cut and processed into a desired shape. Can be manufactured. In addition, 0.5 mol% to 13.0 mol% of silicon oxide such as SiO 2 can be added at the time of sintering. By adding silicon oxide, the hardness of the thermoelectric conversion material and the power generation efficiency are increased.
 本実施形態のn型熱電変換材料11Aは、MgSiにアンチモンを0.5at%含むものからなるマグネシウム系焼結体を用いている。なお、本実施形態では、5価ドナーであるアンチモンの添加によって、キャリア密度の高いn型熱電変換材料となっている。なお、本実施形態のn型熱電変換材料11Aの熱膨張率は500℃で例えば12.5×10-6/K~17.5×10-6/K程度である。 The n-type thermoelectric conversion material 11A of the present embodiment uses a magnesium-based sintered body made of Mg 2 Si containing 0.5 at% antimony. In this embodiment, the addition of antimony which is a pentavalent donor provides an n-type thermoelectric conversion material with a high carrier density. The thermal expansion coefficient of the n-type thermoelectric conversion material 11A of the present embodiment is 500 ° C., for example 12.5 × 10 -6 /K~17.5×10 -6 / degree K.
 なお、n型熱電変換材料11Aを構成するマグネシウム系化合物としては、MgSi以外にも、MgSiGe1-X、MgSiSn1-xなど、MgSiに他の元素を付加した化合物も同様に用いることができる。 As the magnesium-based compound constituting the n-type thermoelectric conversion material 11A, in addition to Mg 2 Si, Mg 2 Si X Ge 1-X, Mg 2 Si X Sn 1-x , etc., other elements Mg 2 Si A compound added with can also be used in the same manner.
 また、n型熱電変換材料11Aのドナーとしては、アンチモン以外にも、ビスマス、アルミニウム、リン、ヒ素などを用いることができる。 Further, as the donor of the n-type thermoelectric conversion material 11A, bismuth, aluminum, phosphorus, arsenic, or the like can be used in addition to antimony.
 熱電変換素子10Bは、その一面側10aで絶縁性基板21に接合され、p型熱電変換材料11Bの一方の面11aおよび他方の面11bに、メタライズ層12a,12bがそれぞれ形成されている。 The thermoelectric conversion element 10B is bonded to the insulating substrate 21 on one surface side 10a, and metallized layers 12a and 12b are formed on one surface 11a and the other surface 11b of the p-type thermoelectric conversion material 11B, respectively.
 p型熱電変換材料11Bの具体例としては、MnSi1.73、Mn34.61.8Si63.6、Mn30.4ReSi63.6などを焼結して得られた熱電変換材料を切断し、所望の形状に加工して製造されるものが挙げられる。本実施形態では、p型熱電変換材料11Bとして、MnSi1.73からなるマンガン系焼結体を用い、熱膨張率は、例えば500℃で10.0×10-6/K~11.5×10-6/K程度である。 Specific examples of the p-type thermoelectric conversion material 11B include thermoelectric conversion materials obtained by sintering MnSi 1.73 , Mn 34.6 W 1.8 Si 63.6 , Mn 30.4 Re 6 Si 63.6, and the like. Can be cut and processed into a desired shape. In this embodiment, a manganese-based sintered body made of MnSi 1.73 is used as the p-type thermoelectric conversion material 11B, and the coefficient of thermal expansion is, for example, 10.0 × 10 −6 / K to 11.5 × 10 at 500 ° C. It is about 6 / K.
 メタライズ層12a、12bは、n型熱電変換材料11Aやp型熱電変換材料11Bに電極板13a,13bを接合する中間層であり、例えば、ニッケル、銀、コバルト、タングステン、モリブデン等や、あるいはそれらの金属繊維でできた不織布等が用いられる。
 本実施形態では、メタライズ層12a、12bとしてニッケルを用いている。メタライズ層12a、12bは、焼結、メッキ、電着等によって形成することができる。
The metallized layers 12a and 12b are intermediate layers for joining the electrode plates 13a and 13b to the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B. For example, nickel, silver, cobalt, tungsten, molybdenum, or the like A non-woven fabric made of metal fibers is used.
In this embodiment, nickel is used for the metallized layers 12a and 12b. The metallized layers 12a and 12b can be formed by sintering, plating, electrodeposition or the like.
 互いに隣接して配されたn型熱電変換素子10Aとp型熱電変換素子10Bとは、電極板13a,13bを介して電気的に直列に接続されている。具体的には、n型熱電変換材料11Aのメタライズ層12aと、隣に配されたp型熱電変換材料11Bのメタライズ層12aとが、電極板13aによって接続される。そして、このp型熱電変換材料11Bのメタライズ層12bと、更に隣に配されたn型熱電変換材料11Aのメタライズ層12bとが、電極板13bによって接続される。 The n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B arranged adjacent to each other are electrically connected in series via the electrode plates 13a and 13b. Specifically, the metallized layer 12a of the n-type thermoelectric conversion material 11A and the metallized layer 12a of the p-type thermoelectric conversion material 11B disposed adjacent to each other are connected by the electrode plate 13a. The metallized layer 12b of the p-type thermoelectric conversion material 11B and the metallized layer 12b of the n-type thermoelectric conversion material 11A disposed adjacent to each other are connected by the electrode plate 13b.
 電極板13a,13bは、導電性に優れた金属材料、例えば、銅やアルミニウムなどの板材から形成されている。本実施形態では、アルミニウムの圧延板を用いている。また、メタライズ層12a、12bと電極板13a,13bとは、AgろうやAgペースト等によって接合することができる。 The electrode plates 13a and 13b are formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In this embodiment, an aluminum rolled plate is used. Further, the metallized layers 12a and 12b and the electrode plates 13a and 13b can be joined by Ag brazing, Ag paste, or the like.
 このように配列された多数のn型熱電変換素子10Aとp型熱電変換素子10Bは、電気的に一繋がりとなるように直列に接続されている。即ち、π(パイ)型の熱電変換モジュール20は、n型熱電変換素子10Aと、p型熱電変換素子10Bとが交互に繰り返し直列に接続されている。 A large number of n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B arranged in this way are connected in series so as to be electrically connected. That is, in the π (pi) type thermoelectric conversion module 20, n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are alternately and repeatedly connected in series.
 なお、図1では手前側の1列分のn型熱電変換素子10Aとp型熱電変換素子10Bだけを示しているが、実際には、図面奥行方向にも同様にn型熱電変換素子10Aとp型熱電変換素子10Bとが交互に数列分配置されている。 In FIG. 1, only the n-type thermoelectric conversion elements 10A and the p-type thermoelectric conversion elements 10B for one row on the front side are shown, but actually, the n-type thermoelectric conversion elements 10A and Several rows of p-type thermoelectric conversion elements 10B are alternately arranged.
 こうした構成によって、n型熱電変換素子10Aとp型熱電変換素子10Bの一面側10aと他面側10bとの間に温度差を生じさせることによって、電極板13aと電極板13bとの間に電位差を生じさせるゼーベック素子として用いることができる。 With such a configuration, a temperature difference is generated between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, thereby causing a potential difference between the electrode plate 13a and the electrode plate 13b. It can be used as a Seebeck element that causes
 また、例えば、電極板13a側と電極板13bとの間に電圧を印加することによって、n型熱電変換素子10Aとp型熱電変換素子10Bの一面側10aと他面側10bとの間に温度差を生じさせるペルティエ素子として用いることができる。例えば、電極板13a側と電極板13bとの間に電流を流すことによって、n型熱電変換素子10Aとp型熱電変換素子10Bの一面側10aまたは他面側10bを冷却、または加熱することができる。 Further, for example, by applying a voltage between the electrode plate 13a side and the electrode plate 13b, the temperature between the one side 10a and the other side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B is determined. It can be used as a Peltier element that causes a difference. For example, by flowing a current between the electrode plate 13a side and the electrode plate 13b, the one surface side 10a or the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B can be cooled or heated. it can.
 n型熱電変換素子10Aおよびp型熱電変換素子10Bのそれぞれの他面側10bには、熱伝導性部材22が形成されている。即ち、個々のn型熱電変換素子10Aおよびp型熱電変換素子10Bごとに、それぞれ独立した熱伝導性部材22が形成されている。 A heat conductive member 22 is formed on the other surface side 10b of each of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B. That is, an independent thermal conductive member 22 is formed for each n-type thermoelectric conversion element 10A and p-type thermoelectric conversion element 10B.
 こうした熱伝導性部材22は、絶縁性で、かつ熱伝導性に優れた材料、例えば、炭化ケイ素、窒素ケイ素、窒化アルミニウム、酸化アルミニウムなどの棒材や板材などや、あるいは表面積を大きくとるために表面に凹凸を設けた構造の棒材や板材などを用いることができる。熱伝導性部材22は、熱電変換材料11A,11Bの他方の面11bに熱を加えたり、熱を吸収させたりする媒体である。即ち、放熱あるいは吸熱のための部材である。熱伝導性部材22を絶縁性で、かつ、熱伝導性に優れた材料とする場合、熱伝導性部材22の熱伝導率は、例えば、10W/(mK)以上であることが好ましい。熱伝導性部材22の熱伝導率は、20W/(mK)以上であることがより好ましく、30W/(mK)以上であることがさらに好ましい。
また、これらの熱伝導性部材22は、熱伝導性に優れた金属材料、例えば、アルミニウムやアルミニウム合金、マグネシウムやマグネシウム合金、銅や銅合金などの棒材や板材、あるいは表面積を大きくとるために表面に凹凸を設けた構造の棒材や板材などを用いることもできる。熱伝導性部材22を、熱伝導性に優れた金属材料とする場合、熱伝導性部材22の熱伝導率は、200W/(mK)以上であることが好ましく、400W/(mK)以上であることがより好ましい。
Such a heat conductive member 22 is an insulating material having excellent heat conductivity, for example, a rod or plate material such as silicon carbide, nitrogen silicon, aluminum nitride, and aluminum oxide, or a large surface area. A bar or plate having a structure with unevenness on the surface can be used. The thermally conductive member 22 is a medium that applies heat to or absorbs the other surface 11b of the thermoelectric conversion materials 11A and 11B. That is, it is a member for heat dissipation or heat absorption. When the heat conductive member 22 is made of a material that is insulative and has excellent heat conductivity, the heat conductivity of the heat conductive member 22 is preferably 10 W / (mK) or more, for example. The thermal conductivity of the heat conductive member 22 is more preferably 20 W / (mK) or more, and further preferably 30 W / (mK) or more.
In addition, these heat conductive members 22 are made of a metal material having excellent heat conductivity, for example, a bar or plate material such as aluminum or aluminum alloy, magnesium or magnesium alloy, copper or copper alloy, or a large surface area. It is also possible to use a bar or plate having a structure with irregularities on the surface. When the heat conductive member 22 is a metal material having excellent heat conductivity, the heat conductivity of the heat conductive member 22 is preferably 200 W / (mK) or more, and is 400 W / (mK) or more. It is more preferable.
 更に、互いに隣接するn型熱電変換素子10Aとp型熱電変換素子10Bとの間に、遮熱部材24が配されている。具体的には、遮熱部材24は、n型熱電変換素子10Aおよびp型熱電変換素子10Bが貫通可能な、多数の開口が形成された遮熱板からなり、n型熱電変換素子10Aおよびp型熱電変換素子10Bの他面側10bにおいて、n型熱電変換素子10Aとp型熱電変換素子10Bとの隙間を覆うように形成されている。 Furthermore, a heat shield member 24 is disposed between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B adjacent to each other. Specifically, the heat shield member 24 is composed of a heat shield plate having a large number of openings through which the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B can pass, and the n-type thermoelectric conversion elements 10A and p. The other surface side 10b of the type thermoelectric conversion element 10B is formed so as to cover the gap between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B.
 こうした遮熱部材24は、n型熱電変換素子10Aおよびp型熱電変換素子10Bの一面側10aから輻射熱が他面側10bに伝搬して、一面側10aと他面側10bとの間の温度差が減少し、熱電変換効率が低下することを防止する。
 あるいは遮熱部材24は、n型熱電変換素子10Aおよびp型熱電変換素子10Bの他面側10bから、輻射熱が一面側10aに伝搬することを防止する部材とすることもできる。
Such a heat shield member 24 has a temperature difference between the one surface side 10a and the other surface side 10b, as radiant heat propagates from the one surface side 10a of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B to the other surface side 10b. Is reduced and the thermoelectric conversion efficiency is prevented from lowering.
Alternatively, the heat shield member 24 may be a member that prevents radiant heat from propagating from the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B to the one surface side 10a.
 遮熱部材24は、熱伝導性が低く、かつ絶縁性の部材、例えば、アルミナ、サイアロン板、ロックウール製断熱材、アルミナ、シリカなどの繊維からできた断熱材から構成されている。
 又、遮熱部材24として、赤外線を反射するステンレス、アルミニウム、銅、鋼などの金属の板や箔などを用いることもできるが、この場合、これらの金属の板や箔が熱電変換素子10Aや10Bと接触しない程度の開口部を設ける必要がある。
The heat shielding member 24 is composed of a heat insulating material having low thermal conductivity and an insulating member, for example, an insulating material made of fibers such as alumina, a sialon plate, a rock wool insulating material, alumina, and silica.
Further, as the heat shielding member 24, a metal plate or foil such as stainless steel, aluminum, copper, or steel that reflects infrared rays can be used. In this case, the metal plate or foil is used as the thermoelectric conversion element 10A or the like. It is necessary to provide an opening that does not contact 10B.
 これら遮熱部材24と絶縁性基板21とは、その周縁部分で、例えばネジ及びビスなどからなる締結部材23によって、n型熱電変換素子10Aおよびp型熱電変換素子10Bを挟み込むように一体化されている。 The heat shielding member 24 and the insulating substrate 21 are integrated at the peripheral portion so as to sandwich the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B by a fastening member 23 made of, for example, screws and screws. ing.
 また、絶縁性基板の他面側21b、およびn型熱電変換素子10Aおよびp型熱電変換素子10Bが配列された領域の周囲を取り囲むように、保護カバー25が形成されている。こうした保護カバー25は、熱電変換モジュール20の腐蝕や汚損を防止し、熱電変換モジュール20の熱電変換効率の低下を防止する。
 保護カバー25は、例えば、ステンレス、鋼やアルミニウムからなる板材などから構成されている。
Further, a protective cover 25 is formed so as to surround the other surface side 21b of the insulating substrate and the area where the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are arranged. Such a protective cover 25 prevents corrosion and fouling of the thermoelectric conversion module 20 and prevents a decrease in thermoelectric conversion efficiency of the thermoelectric conversion module 20.
The protective cover 25 is made of, for example, a plate material made of stainless steel, steel, or aluminum.
 以上の様な構成の本実施形態の熱電変換モジュール20の作用を説明する。
 熱電変換モジュール20を、例えばゼーベック素子として用いる際には、絶縁性基板21と、個々のn型熱電変換素子10Aおよびp型熱電変換素子10Bにそれぞれ形成された熱伝導性部材22とをそれぞれ介して、n型熱電変換素子10Aとp型熱電変換素子10Bの一面側10aと他面側10bとの間に温度差を生じさせることによって、電極板13aと電極板13bとの間に電位差を生じさせることができる。
The operation of the thermoelectric conversion module 20 of the present embodiment having the above configuration will be described.
When the thermoelectric conversion module 20 is used as, for example, a Seebeck element, the insulating substrate 21 and the thermal conductive members 22 respectively formed on the individual n-type thermoelectric conversion elements 10A and p-type thermoelectric conversion elements 10B are respectively used. Thus, a potential difference is generated between the electrode plate 13a and the electrode plate 13b by generating a temperature difference between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B. Can be made.
 図2は、本実施形態の熱電変換モジュールの動作時の様子を示した要部拡大断面図である。
 熱電変換モジュール20の動作時(熱電変換時)においては、互いに異なる熱膨張率をもつ材料で形成されたn型熱電変換材料11Aとp型熱電変換材料11Bとは、高熱側、例えば一面側10aの熱によって、互いに異なる大きさとなるように熱膨張する。
FIG. 2 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the present embodiment during operation.
At the time of operation of the thermoelectric conversion module 20 (during thermoelectric conversion), the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B formed of materials having different thermal expansion coefficients are on the high heat side, for example, the one surface side 10a. The heat expands so as to have different sizes.
 本実施形態では、n型熱電変換材料11Aは、p型熱電変換材料11Bよりも熱膨張率が大きいため、例えば、厚み方向に沿ってn型熱電変換材料11Aがp型熱電変換材料11Bよりも大きく膨張する。 In the present embodiment, since the n-type thermoelectric conversion material 11A has a larger coefficient of thermal expansion than the p-type thermoelectric conversion material 11B, for example, the n-type thermoelectric conversion material 11A is more than the p-type thermoelectric conversion material 11B along the thickness direction. It expands greatly.
 しかし、n型熱電変換素子10Aとp型熱電変換素子10Bは、一面側10aだけが共通の基板である絶縁性基板21に電極板13aを介して接合され、他面側10bに形成された熱伝導性部材22は、個々のn型熱電変換素子10Aおよびp型熱電変換素子10Bごとにそれぞれ独立して形成されているため、n型熱電変換素子10Aやp型熱電変換素子10Bからメタライズ層12a、12b、あるいは電極板13a、13bが剥離する懸念が無い。また、熱電変換素子10A、10Bに割れが生じる懸念が無い。n型熱電変換素子10Aはp型熱電変換素子10Bよりも大きく膨張することが許容され、n型熱電変換素子10Aに形成された熱伝導性部材22の先端が、p型熱電変換素子10Bに形成された熱伝導性部材22の先端よりも突出することができる。 However, the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are bonded to the insulating substrate 21 which is a common substrate only on one surface side 10a via the electrode plate 13a, and the heat formed on the other surface side 10b. Since the conductive member 22 is formed independently for each n-type thermoelectric conversion element 10A and p-type thermoelectric conversion element 10B, the metallized layer 12a is formed from the n-type thermoelectric conversion element 10A or the p-type thermoelectric conversion element 10B. 12b or the electrode plates 13a and 13b are not concerned. Moreover, there is no fear that the thermoelectric conversion elements 10A and 10B are cracked. The n-type thermoelectric conversion element 10A is allowed to expand larger than the p-type thermoelectric conversion element 10B, and the tip of the heat conductive member 22 formed in the n-type thermoelectric conversion element 10A is formed in the p-type thermoelectric conversion element 10B. It can protrude from the tip of the heat conductive member 22 made.
 なお、こうしたn型熱電変換素子10Aとp型熱電変換素子10Bの熱膨張率の違いによって、電極板13bは多少屈曲するが、電極板13bは展性や延性に優れた銅やアルミニウムなどの板材や箔、箔を多層に重ねた電極から形成されているので、屈曲してもn型熱電変換素子10Aやp型熱電変換素子10Bから剥離することはない。 The electrode plate 13b is bent slightly due to the difference in thermal expansion coefficient between the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, but the electrode plate 13b is a plate material such as copper or aluminum having excellent malleability and ductility. Since it is formed from the electrode which laminated the foil and foil in the multilayer, even if it bends, it will not peel from 10A of n-type thermoelectric conversion elements, or the p-type thermoelectric conversion element 10B.
 以上のように、本実施形態の熱電変換モジュール20によれば、互いに異なる熱膨張率のn型熱電変換材料11Aとp型熱電変換材料11Bとをそれぞれ用いて形成したn型熱電変換素子10Aおよびp型熱電変換素子10Bを組み合わせてなる熱電変換モジュール20であっても、絶縁性基板21や熱伝導性部材22から熱電変換素子10A,10Bが剥離することを防止できる。 As described above, according to the thermoelectric conversion module 20 of the present embodiment, the n-type thermoelectric conversion element 10A formed using the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B having different coefficients of thermal expansion, and Even in the thermoelectric conversion module 20 formed by combining the p-type thermoelectric conversion elements 10B, the thermoelectric conversion elements 10A and 10B can be prevented from being peeled off from the insulating substrate 21 and the heat conductive member 22.
(熱電変換モジュール:第二実施形態)
 図3は、第二実施形態の熱電変換モジュールを示す要部拡大断面図である。
 第二実施形態の熱電変換モジュール30では、n型熱電変換素子10Aの他面側10bと熱伝導性部材32との間、およびp型熱電変換素子10Bの他面側10bと熱伝導性部材32との間に、それぞれ熱伝導性絶縁層33を形成したものである。
(Thermoelectric conversion module: second embodiment)
FIG. 3 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the second embodiment.
In the thermoelectric conversion module 30 of the second embodiment, between the other surface side 10b of the n-type thermoelectric conversion element 10A and the heat conductive member 32 and between the other surface side 10b of the p-type thermoelectric conversion element 10B and the heat conductive member 32. Between these, a heat conductive insulating layer 33 is formed.
 このような熱伝導性絶縁層33は、例えば、炭化ケイ素、窒素ケイ素、窒化アルミニウム、酸化アルミニウムなどから構成することができる。それぞれの熱伝導性部材32に接して熱伝導性絶縁層33を形成することによって、熱伝導性部材32と電極板13bとの間の絶縁性が確保される。これによって、熱伝導性に優れた金属を用いて、熱伝導性部材32を形成した場合、熱伝導性部材32が他の金属製部材と接触した際に生じる電流リークを防止することができ、安全性の高い熱電変換モジュールを実現できる。 Such a heat conductive insulating layer 33 can be made of, for example, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide or the like. By forming the heat conductive insulating layer 33 in contact with each heat conductive member 32, the insulation between the heat conductive member 32 and the electrode plate 13b is ensured. Thereby, when the heat conductive member 32 is formed using a metal having excellent heat conductivity, current leakage that occurs when the heat conductive member 32 comes into contact with another metal member can be prevented. A highly safe thermoelectric conversion module can be realized.
(熱電変換モジュール:第三実施形態)
 図4は、第三実施形態の熱電変換モジュールを示す要部拡大断面図である。
 第三実施形態の熱電変換モジュール40では、n型熱電変換素子10Aとp型熱電変換素子10Bの他面側10bにそれぞれ電極板41a,41bを形成し、この電極板41aと電極板41bとの間を柔軟なリード線42で接続したものである。
 これによって、n型熱電変換材料11Aとp型熱電変換材料11Bとの熱膨張率差による、n型熱電変換素子10Aとp型熱電変換素子10Bの他面側10bにおける位置ズレが大きくなっても、n型熱電変換素子10Aの他面側10bとp型熱電変換素子10Bの他面側10bとの間で導電性を確保することができる。
(Thermoelectric conversion module: third embodiment)
FIG. 4 is an enlarged cross-sectional view showing a main part of the thermoelectric conversion module according to the third embodiment.
In the thermoelectric conversion module 40 of the third embodiment, electrode plates 41a and 41b are respectively formed on the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, and the electrode plate 41a and the electrode plate 41b They are connected by flexible lead wires 42.
As a result, even if the positional deviation on the other surface side 10b of the n-type thermoelectric conversion element 10B and the p-type thermoelectric conversion element 10B increases due to the difference in thermal expansion coefficient between the n-type thermoelectric conversion material 11A and the p-type thermoelectric conversion material 11B. The conductivity can be ensured between the other surface side 10b of the n-type thermoelectric conversion element 10A and the other surface side 10b of the p-type thermoelectric conversion element 10B.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and gist of the invention.
 例えば、図5に示す熱電変換モジュール50のように、n型熱電変換素子10Aとp型熱電変換素子10Bの他面側10bに形成された熱伝導性部材22の先端を、貯留槽51に貯留した冷却液52中に浸漬する構成としてもよい。このような構成とすることにより、n型熱電変換素子10A及びp型熱電変換素子10Bの一面側10aと他面側10bとで温度差を維持することができ、発電効率が向上する。 For example, like the thermoelectric conversion module 50 shown in FIG. 5, the tips of the heat conductive members 22 formed on the other surface side 10 b of the n-type thermoelectric conversion element 10 </ b> A and the p-type thermoelectric conversion element 10 </ b> B are stored in the storage tank 51. It is good also as a structure immersed in the cooling fluid 52 which was made. With such a configuration, a temperature difference can be maintained between the one surface side 10a and the other surface side 10b of the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B, and the power generation efficiency is improved.
 また、図6に示す熱電変換モジュール60のように、絶縁性基板21のn型熱電変換素子10A及びp型熱電変換素子10Bが接合された面とは反対側の面に、金属層61が形成されていてもよい。このような構成とすることにより、金属層61を介して熱源を配置することができ、絶縁性基板21に対する熱衝撃を抑え、絶縁性基板21の寿命延長を図ることができる。 Further, as in the thermoelectric conversion module 60 shown in FIG. 6, the metal layer 61 is formed on the surface of the insulating substrate 21 opposite to the surface where the n-type thermoelectric conversion element 10A and the p-type thermoelectric conversion element 10B are joined. May be. By adopting such a configuration, a heat source can be disposed through the metal layer 61, the thermal shock to the insulating substrate 21 can be suppressed, and the life of the insulating substrate 21 can be extended.
 さらに、熱伝導性部材の形状については、本実施形態の形状に限定されることはなく、様々な形態を採用することができる。例えば、図7(a)に示す熱伝導性部材121のように断面星形形状としたり、図7(b)に示す熱伝導性部材221のように断面多角形状としたり、図7(c)に示す熱伝導性部材321のように多段形状としたり、図7(d)に示す熱伝導性部材421のようにフィン421Aを突出させたりして、表面積を大きくしてもよい。
 あるいは、図7(e)に示す熱伝導性部材521のように、貫通孔521Aを設けて、この貫通孔521Aに冷却媒体が流通するように構成してもよい。また、熱伝導性部材を金属の多孔質体で構成してもよい。
Furthermore, about the shape of a heat conductive member, it is not limited to the shape of this embodiment, A various form is employable. For example, it may have a star shape in cross section like a heat conductive member 121 shown in FIG. 7A, a polygonal shape in cross section like a heat conductive member 221 shown in FIG. The surface area may be increased by forming a multi-stage shape like the heat conductive member 321 shown in FIG. 7 or by projecting the fins 421A like the heat conductive member 421 shown in FIG.
Alternatively, as in the heat conductive member 521 shown in FIG. 7E, a through hole 521A may be provided so that the cooling medium flows through the through hole 521A. Moreover, you may comprise a heat conductive member with a metal porous body.
 本発明の熱電変換モジュールによれば、基板から熱電変換素子が剥離することや熱電変換素子が割れることを防止できる。本発明の熱電変換モジュールは、互いに異なる熱膨張率の熱電変換材料をそれぞれ用いて形成したn型熱電変換素子およびp型熱電変換素子を組み合わせた熱電変換モジュールに好適である。 According to the thermoelectric conversion module of the present invention, it is possible to prevent the thermoelectric conversion element from being peeled off from the substrate and the thermoelectric conversion element from being cracked. The thermoelectric conversion module of the present invention is suitable for a thermoelectric conversion module that combines an n-type thermoelectric conversion element and a p-type thermoelectric conversion element formed using thermoelectric conversion materials having different thermal expansion coefficients.
 10A  n型熱電変換素子
 10B  p型熱電変換素子
 11A  n型熱電変換材料
 11B  p型熱電変換材料
 12a、12b  メタライズ層
 13a、13b  電極板
 22、121、221、321、421、521  熱伝導性部材
10A n-type thermoelectric conversion element 10B p-type thermoelectric conversion element 11A n-type thermoelectric conversion material 11B p-type thermoelectric conversion material 12a, 12b metallized layer 13a, 13b electrode plates 22, 121, 221, 321, 421, 521 heat conductive member

Claims (8)

  1.  n型熱電変換素子と、p型熱電変換素子とが、電極板を介して交互に直列接続してなる熱電変換モジュールであって、
     前記n型熱電変換素子と前記p型熱電変換素子とは、互いに熱膨張率が異なる材料からなり、
     前記n型熱電変換素子の一面側と、前記p型熱電変換素子の一面側とが、互いに共通の絶縁性基板の一面側に並べて接合され、
     前記n型熱電変換素子の他面側と、前記p型熱電変換素子の他面側には、それぞれ熱伝導性部材が独立して個々に形成されていることを特徴とする熱電変換モジュール。
    An n-type thermoelectric conversion element and a p-type thermoelectric conversion element are thermoelectric conversion modules that are alternately connected in series via electrode plates,
    The n-type thermoelectric conversion element and the p-type thermoelectric conversion element are made of materials having different coefficients of thermal expansion,
    One surface side of the n-type thermoelectric conversion element and one surface side of the p-type thermoelectric conversion element are joined side by side on one surface side of a common insulating substrate,
    A thermoelectric conversion module, wherein a thermally conductive member is independently formed on each of the other surface side of the n-type thermoelectric conversion element and the other surface side of the p-type thermoelectric conversion element.
  2.  前記n型熱電変換素子の他面側と前記熱伝導性部材との間、および前記p型熱電変換素子の他面側と前記熱伝導性部材との間には、それぞれ熱伝導性絶縁層が配されていることを特徴とする請求項1記載の熱電変換モジュール。 Between the other surface side of the n-type thermoelectric conversion element and the heat conductive member, and between the other surface side of the p-type thermoelectric conversion element and the heat conductive member, respectively, a heat conductive insulating layer is provided. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is arranged.
  3.  互いに隣接する前記n型熱電変換素子と前記p型熱電変換素子との間に、更に遮熱部材を配したことを特徴とする請求項1または2記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, further comprising a heat shield member disposed between the n-type thermoelectric conversion element and the p-type thermoelectric conversion element adjacent to each other.
  4.  前記遮熱部材は、前記n型熱電変換素子および前記p型熱電変換素子が貫通可能な、多数の開口が形成された遮熱板であることを特徴とする請求項3記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 3, wherein the heat shield member is a heat shield plate having a large number of openings through which the n-type thermoelectric conversion element and the p-type thermoelectric conversion element can pass.
  5.  前記絶縁性基板の他面側、および前記n型熱電変換素子および前記p型熱電変換素子が配列された領域の周囲を取り囲むように、保護カバーが形成されていることを特徴とする請求項1から請求項4のいずれか一項に記載の熱電変換モジュール。 The protective cover is formed so that the other surface side of the said insulating substrate and the circumference | surroundings of the area | region where the said n-type thermoelectric conversion element and the said p-type thermoelectric conversion element may be enclosed may be formed. The thermoelectric conversion module according to any one of claims 1 to 4.
  6.  前記熱伝導性部材は、熱伝導率が10W/(mK)以上の材料からなることを特徴とする請求項1から請求項5のいずれか一項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 5, wherein the thermal conductive member is made of a material having a thermal conductivity of 10 W / (mK) or more.
  7.  前記n型熱電変換素子の他面側と、前記p型熱電変換素子の他面側に形成された前記熱伝導性部材の先端部が、冷却液中に浸漬されていることを特徴とする請求項1から請求項6のいずれか一項に記載の熱電変換モジュール。 The tip of the thermally conductive member formed on the other surface side of the n-type thermoelectric conversion element and the other surface side of the p-type thermoelectric conversion element is immersed in a coolant. The thermoelectric conversion module according to any one of claims 1 to 6.
  8.  前記絶縁性基板の前記n型熱電変換素子及び前記p型熱電変換素子が接合された面とは反対側の面に、金属層が形成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の熱電変換モジュール。 The metal layer is formed in the surface on the opposite side to the surface where the said n-type thermoelectric conversion element and the said p-type thermoelectric conversion element of the said insulating substrate were joined, The Claim 1-7 characterized by the above-mentioned. The thermoelectric conversion module according to any one of the above.
PCT/JP2017/011376 2016-03-24 2017-03-22 Thermoelectric conversion module WO2017164217A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780015595.XA CN108713259B (en) 2016-03-24 2017-03-22 Thermoelectric conversion module
KR1020187026564A KR102405156B1 (en) 2016-03-24 2017-03-22 thermoelectric conversion module
US16/086,397 US10897001B2 (en) 2016-03-24 2017-03-22 Thermoelectric conversion module
EP17770257.8A EP3435431B1 (en) 2016-03-24 2017-03-22 Thermoelectric conversion module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-060866 2016-03-24
JP2016060866 2016-03-24
JP2017033837A JP7052200B2 (en) 2016-03-24 2017-02-24 Thermoelectric conversion module
JP2017-033837 2017-02-24

Publications (1)

Publication Number Publication Date
WO2017164217A1 true WO2017164217A1 (en) 2017-09-28

Family

ID=59899634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011376 WO2017164217A1 (en) 2016-03-24 2017-03-22 Thermoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2017164217A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771290A (en) * 2018-02-27 2020-10-13 三菱综合材料株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
WO2023176581A1 (en) * 2022-03-16 2023-09-21 古河電気工業株式会社 Thermoelectric conversion module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295684A (en) * 1988-05-20 1989-11-29 Ckd Corp Supply voltage feeder for pneumatic equipment electronic apparatus
JPH1093148A (en) * 1996-09-12 1998-04-10 Matsushita Electric Works Ltd Thermoelectric converter
JPH1187786A (en) * 1997-09-08 1999-03-30 Seru Appl Kk Electron cooling/heating apparatus
JP2000286459A (en) * 1999-03-30 2000-10-13 Aisin Seiki Co Ltd Thermoelectric conversion device
JP2006310506A (en) * 2005-04-28 2006-11-09 Denso Corp Thermoelectric conversion device
JP2008182092A (en) * 2007-01-25 2008-08-07 Toyobo Co Ltd Thermoelectric conversion module
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2011249742A (en) 2010-05-28 2011-12-08 Santoku Corp Magnesium-silicon based thermoelectric conversion material and method of producing the same
JP2012533972A (en) 2009-07-17 2012-12-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric device with tube bundle
JP2014071936A (en) * 2012-09-27 2014-04-21 Toyota Industries Corp Temperature regulator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295684A (en) * 1988-05-20 1989-11-29 Ckd Corp Supply voltage feeder for pneumatic equipment electronic apparatus
JPH1093148A (en) * 1996-09-12 1998-04-10 Matsushita Electric Works Ltd Thermoelectric converter
JPH1187786A (en) * 1997-09-08 1999-03-30 Seru Appl Kk Electron cooling/heating apparatus
JP2000286459A (en) * 1999-03-30 2000-10-13 Aisin Seiki Co Ltd Thermoelectric conversion device
JP2006310506A (en) * 2005-04-28 2006-11-09 Denso Corp Thermoelectric conversion device
JP2008182092A (en) * 2007-01-25 2008-08-07 Toyobo Co Ltd Thermoelectric conversion module
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2012533972A (en) 2009-07-17 2012-12-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric device with tube bundle
JP2011249742A (en) 2010-05-28 2011-12-08 Santoku Corp Magnesium-silicon based thermoelectric conversion material and method of producing the same
JP2014071936A (en) * 2012-09-27 2014-04-21 Toyota Industries Corp Temperature regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435431A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771290A (en) * 2018-02-27 2020-10-13 三菱综合材料株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
WO2023176581A1 (en) * 2022-03-16 2023-09-21 古河電気工業株式会社 Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP4912964B2 (en) Thermoelectric conversion module
US8841540B2 (en) High temperature thermoelectrics
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
US20110259018A1 (en) Thermoelectric module and method for manufacturing the same
WO2010082542A1 (en) Thermoelectric conversion module and thermoelectric conversion module block
JP2012124469A (en) Thermoelectric element and thermoelectric module
JP2010027986A (en) Thermoelectric conversion module and its production process
US20220181533A1 (en) Thermoelectric conversion module
WO2017164217A1 (en) Thermoelectric conversion module
US20130139866A1 (en) Ceramic Plate
JP7052200B2 (en) Thermoelectric conversion module
JP5653455B2 (en) Thermoelectric conversion member
JP2006049736A (en) Thermoelectric module
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP7012835B2 (en) Thermoelectric module
EP3232483B1 (en) Thermoelectric conversion module
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
KR102456680B1 (en) Thermoelectric element
WO2021157565A1 (en) Thermoelectric conversion structure
JP2014110245A (en) Thermoelectric conversion device
JP2017076744A (en) Thermoelectric conversion module and thermal power generation device
JP6957916B2 (en) Thermoelectric conversion module
KR20010068353A (en) Thermoelectric cooling module
JP2021057383A (en) Thermoelectric conversion device
KR20180022249A (en) Thermoelectric module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770257

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770257

Country of ref document: EP

Kind code of ref document: A1