JP6427399B2 - 変位検出装置 - Google Patents

変位検出装置 Download PDF

Info

Publication number
JP6427399B2
JP6427399B2 JP2014240549A JP2014240549A JP6427399B2 JP 6427399 B2 JP6427399 B2 JP 6427399B2 JP 2014240549 A JP2014240549 A JP 2014240549A JP 2014240549 A JP2014240549 A JP 2014240549A JP 6427399 B2 JP6427399 B2 JP 6427399B2
Authority
JP
Japan
Prior art keywords
light
measured
light flux
flux
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014240549A
Other languages
English (en)
Other versions
JP2015212682A (ja
Inventor
田宮 英明
英明 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2014240549A priority Critical patent/JP6427399B2/ja
Priority to US14/686,392 priority patent/US9612104B2/en
Priority to EP15163498.7A priority patent/EP2933609B1/en
Publication of JP2015212682A publication Critical patent/JP2015212682A/ja
Application granted granted Critical
Publication of JP6427399B2 publication Critical patent/JP6427399B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02022Interferometers characterised by the beam path configuration contacting one object by grazing incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02078Caused by ambiguity
    • G01B9/02079Quadrature detection, i.e. detecting relatively phase-shifted signals
    • G01B9/02081Quadrature detection, i.e. detecting relatively phase-shifted signals simultaneous quadrature detection, e.g. by spatial phase shifting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

本発明は、光源から出射された光を用いた非接触センサによって被測定面の変位を検出する変位検出装置に関し、詳しくは被測定面の垂直な方向の変位を検出する技術に係わる。
従来から、被測定面の変位や形状を非接触で測定する装置として光を用いた変位検出装置が広く利用されている。代表的な例としては、レーザ光を被測定面に照射し、反射光の位置の変化をPSDで検出する方法がある。しかしながら、この方法では、被測定面の傾きの影響を受けやすく、感度が低く、測定範囲を広げると測定の分解能が落ちるという問題があった。
これに対し、被測定面をミラーとしてマイケルソンの干渉計を使用する方法がある。この方法は、検出範囲が広く、直線性に優れるが、測定範囲が広がると光源の波長の変化と空気の屈折率の変化を受ける。
一方、光源から出射した光を対物レンズで被測定面に集光し、被測定面で反射した反射光を非点光学素子で集光して受光素子に入射させて、非点収差法によりフォーカスエラー信号を生成する。そして、フォーカスエラー信号を用いてサーボ機構を駆動させ、対物レンズの焦点位置が被測定面となるように対物レンズを変位させる。このとき、対物レンズに連結部材を介して一体的に取り付けられたリニアスケールの目盛を読み取ることで、被測定面の変位を検出する方式がある(例えば、特許文献1を参照)。この方法では、被測定面の傾きの変化を受けにくく、大きな測定範囲を高い分解能で計測できるメリットがあった。
特許文献1に開示された変位検出装置では、変位検出の高精度化を図るために、対物レンズの開口数(NA:Numerical Aperture)を大きくして被測定面に集光させるビーム径を小さくしている。例えば、被測定面に結像されるビーム径を2μm程度にすると、リニアスケールの検出精度は、数nm〜100数nm程度になる。
特開平5−89480号公報
しかしながら、従来の特許文献1に記載された変位検出装置では、例えば磁石とコイルを用いたアクチュエータ等のような駆動機構により対物レンズをその光軸方向に上下運動させている。そのため、アクチュエータの構造や質量によって対物レンズの上下運動のメカ的な応答周波数が制限されていた。その結果、特許文献1に記載された変位検出装置では、高速で振動する被測定物の計測は難しかった。また、検出点を絞れる反面、被測定物上の異物やビーム形状に近い細かな形状変化の影響を受け、大きな誤差を発生する、という問題があり、その使用条件に制約が生じてしまっていた。
本発明の目的は、高精度に被測定部材の高さ方向の変位を検出でき、高速で安定した計測が可能な変位検出装置を提供することにある。
上記課題を解決し、本発明の目的を達成するため、本発明の変位検出装置は、光を照射する光源と、光束分割部と、反射透過部と、位相板と、透過型の回折格子と、光束結合部と、受光部と、相対位置情報出力手段と、を備えている。
光束分割部は、光源から出射された光を被測定部材に入射させる第1の光束と、参照光となる第2の光束に分割する。反射透過部は、第1の光束の偏光方向に応じて、第1の光束を透過又は反射させて、被測定部材に入射させる。位相板は、第1の光束の偏光方向を変化させる。参照用反射部は、光束分割部によって分割された第2の光束を反射する。回折格子は、被測定部材の被測定面から反射した第1の光束を回折し、かつ回折した第1の光束を再び反射透過部へ入射させる。光束結合部は、回折格子によって回折された第1の光束と参照用反射部によって反射された第2の光束を重ね合わせる。受光部は、光束結合部により重ね合わされた第1の光束及び第2の光束の干渉光を受光する。相対位置情報出力手段は、受光部により受光した干渉光強度に基づいて被測定部材における被測定面の高さ方向の変位情報を出力する。そして、反射透過部は、被測定部材が基準位置にある場合、第1の光束を、被測定部材の特定の位置に導く。さらに、被測定部材で再び反射された際の第1の光束の光路が、被測定部材における特定の位置で第1の光束が反射した際の光路と重なる。
また、反射透過部は、光束分割部によって分割された第1の光束を被測定部材に向けて透過させ、被測定部材で反射され、かつ回折格子によって1回目の回折が行われた第1の光束を被測定部材に向けて反射させる。
また、第1の光束における光束分割部から光束結合部までの光路長と、第2の光束における光束分割部から光束結合部までの光路長を略等しく設定する。
本発明の変位検出装置によれば、従来のような駆動機構を必要としないので、使用時に発生する熱を抑制できる。さらに、駆動機構を駆動させる必要が無いので、応答周波数といった問題も解消され、使用条件を広くすることができる。
さらに、反射透過部により、第1の光束を、被測定部材の特定の位置に導くことで、被測定部材の被測定面に入射する第1の光束の光路、重ねることができる。これにより、被測定面上の特定の1点を計測することができ、より狭い範囲の被測定面の計測が可能となる。
また、第1の光束の光路長と第2の光束の光路長の長さを等しく設定しているため、気圧や湿度、温度の変化による光源の波長変動があったとしても、第1の光束及び第2の光束が受ける影響を等しくすることができる。その結果、気圧補正や湿度補正、温度補正を行う必要がなく、安定した計測が可能となる。
本発明の変位検出装置の第1の実施の形態例の構成を示す概略構成図である。 本発明の変位検出装置の第1の実施の形態例にかかる回折格子を示すもので、図2Aは回折格子の一例を示す断面図、図2Bは回折格子の第2の例を示す断面図である。 本発明の変位検出装置の第1の実施の形態例にかかる相対位置情報出力手段を示すブロック図である。 本発明の変位検出装置の第1の実施の形態例にかかる要部を示す説明図である。 本発明の変位検出装置の第2の実施の形態例の構成を示す概略構成図である。 本発明の変位検出装置の第3の実施の形態例の構成を示す概略構成図である。 本発明の変位検出装置の第1の利用例を示す模式図である。 本発明の変位検出装置の第2の利用例を示す模式図である。
以下、本発明の変位検出装置の実施の形態例について、図1〜図8を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。また、本発明は、以下の形態に限定されるものではない。
また、以下の説明において記載される各種のレンズは、単レンズであってもよいし、レンズ群であってもよい。
1.変位検出装置の第1の実施の形態例
まず、本発明の変位検出装置の第1の実施の形態例(以下、「本例」という。)の構成を図1〜図3に従って説明する。
1−1.変位検出装置の構成例
図1は、変位検出装置の構成を示す概略構成図である。
本例の変位検出装置1は、透過型の回折格子を用いて、被測定面における垂直な方向の変位を検出することができる変位検出装置である。図1に示すように、変位検出装置1は、光源2と、光源から出射される光を2つの光束LA, LBに分割する光束分割部3と、透過型の回折格子5と、反射部材の一例を示すミラー4と、参照用反射部6と、受光部8とを有している。
また、変位検出装置1は、光束結合部19と、光束LA,LBの偏光に応じて反射又は透過する反射透過部14と、第1の位相板12と、第2の位相板13とを有している。さらに、変位検出装置1は、被測定部材9の被測定面の直交する方向、すなわち高さ方向の相対位置情報(変位情報)を出力する相対位置情報出力手段10を備えている。
光源2には、例えば半導体レーザダイオードやスーパールミネッセンスダイオード、ガスレーザ、固体レーザ、発光ダイオード等が挙げられる。
光源2として、可干渉距離が長い光源を用いると、被測定部材9の被測定面のチルト等による物体光と参照光の光路長差の影響を受けにくくチルト許容範囲が広くなる。また、光源2の可干渉距離が短くなるほど、不要な迷光の干渉によるノイズを防ぐことができ、高精度な計測をすることができる。
さらに、光源2として、シングルモードのレーザを用いると、波長を安定させるために、光源2の温度をコントロールすることが望ましい。また、シングルモードのレーザの光に、高周波重畳などを付加して、光の可干渉性を低下させてもよい。さらに、マルチモードのレーザを用いる場合も、ペルチェ素子等で光源2の温度をコントロールすることで、不要な迷光の干渉によるノイズを防ぎ、さらに安定した計測が可能になる。
なお、光源2の数は、1つに限定されるものではなく、複数の光源2を配置して互いの光りを重ね合わせることで光量を増加させてもよい。
この光源2から出射された光Lは、光束分割部3に入射する。なお。光源2と光束分割部3の間には、コリメートレンズ等からなるレンズ11が配置されている。レンズ11は、光源2から出射された光を平行光にコリメートする。そのため、光束分割部3には、レンズ11により平行光にコリメートされた光が入射される。
光束分割部3は、コリメートされた光を物体光である第1の光束LAと、参照光である第2の光束LBに分割する。第1の光束LAは、被測定部材9に照射され、第2の光束LBは、参照用反射部6に照射される。光束分割部3としては、例えば、入射された光Lを等しく分配するハーフミラーが適用される。
また、光源2と光束分割部3との間に偏光板を設けてもよい。これにより、それぞれの偏光に対して直行した偏光成分としてわずかに存在する漏れ光、ノイズを除去することができる。
光束分割部3と被測定部材9との間には、反射透過部14と、第1の位相板12が配置されている。反射透過部14は、例えば、偏光ビームスプリッタにより構成されている。本例では、反射透過部14は、p偏光の光を透過させ、s偏光の光を反射する。
第1の位相板12は、通過する光の偏光方向を変化させるものであり、例えば、1/4波長板等から構成されている。そのため、通過する光の偏光方向がp偏光の場合、ある方向に回転する円偏光に変化させる。また、通過する光の偏光方向がある方向に回転する円偏光の場合、s偏光に変化させる。さらに、通過する光の偏光方向がs偏光の場合、ある方向と反対方向に回転する円偏光に変化させる。さらに、ある方向と反対方向に回転する円偏光の場合では、p偏光に変化させる。
被測定部材9が基準位置に配置されている場合、第1の位相板12を通過した第1の光束LAは、被測定部材9における被測定面9aのほぼ同じ位置である基準点(特定の位置)P0に入射される。そして、被測定部材9は、被測定面9aに入射した第1の光束LAを反射する。
被測定部材9で反射された第1の光束LAの進行方向には、ミラー4が配置されている。また、ミラー4と対向するようにして、透過型の回折格子5が配置されている。ミラー4は、被測定部材9で反射された第1の光束LAを回折格子5へ反射する。回折格子5は、入射した光を透過させると共に、回折する。
回折格子5は、被測定部材9の被測定面9aに対して略直角、すなわち回折格子5の回折面と被測定部材9の被測定面9aで形成される角度がほぼ90°となるように配置されている。
また、ミラー4は、その反射面4aが回折格子5の回折面と略平行に配置されている。そのため、ミラー4の反射面4aと、被測定部材9の被測定面9aで形成される角度がほぼ90°となる。そのため、例えば、被測定部材9に入射角θ1で入射した光は、回折格子5に対して入射角π/2−θ1で入射し、被測定部材9に入射角θ2で入射した光は、回折格子5に対して入射角π/2−θ2で入射する(図4参照)。
なお、回折格子5における被測定部材9に対する配置精度及びミラー4における被測定部材9に対する配置精度は、変位検出装置1に要求する測定精度によって種々設定されるものである。すなわち、変位検出装置1に高い精度を要求する場合、回折格子5及びミラー4を被測定部材9の被測定面に対して90°±0.5°の範囲に配置することが好ましい。これに対し、回折格子を被測定部材の被測定面に対して90°から±2°の範囲で配置しても、変位検出装置1を工作機械等の低精度の測定に用いる場合には、十分である。
回折格子5の格子ピッチΛは、回折角が回折格子5への入射角とほぼ等しくてもよく、あるいは、等しくなくてもよい。すなわち、回折格子5の格子ピッチΛは、被測定部材9への一回目の入射角をθ1、二回目の入射角をθ2、波長をλとすると、次の式3を満たす値に設定することが好ましい。
[式1]
Λ=nλ/(sin(π/2−θ1)+sin(π/2−θ2))
なお、nは、正の次数である。
回折格子としては、例えば、図2A及び図2Bに示すような回折格子5A、5Bを用いてもよい。
図2Aは、回折格子の一例を示す断面図、図2Bは、回折格子の他の例を示す断面図である。
図2Aに示す回折格子5Aは、略透明なガラス基板5aの一面に例えばクロム(Cr)からなる格子部5bを形成したものである。一般的に、格子部5bは、ガラス基板5aの一面にクロム等の薄膜を真空蒸着によって形成されるため、その厚みは、1μm以下である。
図2Bに示す回折格子5Bは、写真乾板を用いた、いわゆるボリュームタイプのホログラムである。吸収型のホログラムを用いてもよいが、ここでは位相型のホログラムについて説明する。この回折格子5Bにおける格子部5cは、例えば次のようにして形成される。まず、ガラス基板5aの一面に光に感光する銀塩の乳剤を塗布し、干渉縞を露光し、現像後、漂白する。これにより、格子部5cには、銀の粒子が残っている箇所5dと、残っていない箇所5eが形成される。ここで、銀の粒子が残っている箇所5dは、屈折率が高く、銀の粒子が残っていない箇所5eは、屈折率が低くなる。すなわち、位相型のホログラムである。また、材料として写真乾板の代わりにホログラム記録用フォトポリマーを使用してもよい。
このような構成を有する回折格子5Bの場合、所定の角度(入射角)で光が入射すると、所定の角度(回折角)で光が出力(回折)される。さらに、式3に示すブラッグ条件を満たすときに、回折格子5Bによって回折される回折光の出力を最大にすることができる。すなわち、回折格子5Bによって回折された回折光の光量が低下することを防ぐことができる。
この回折格子5Bの格子部5cの厚みN1は、格子ピッチΛの4倍以上が好ましい。しかしながら、光が格子部5cで吸収されることを考慮すると、格子部5cの厚みN1は、格子ピッチΛの約4〜20倍程度に設定することが好ましい。
また、図2Bに示すような、ボリュームタイプのホログラムからなる回折格子5Bは、ミラー4を介して、被測定部材9から反射した第1の光束LAや、参照用反射部6から反射した第2の光束LBの回折効率を高めることができ、信号のノイズの低下させることができる。
図1に戻り、回折格子5を間に挟んで、被測定部材9と対向する位置には、参照用反射部6が配置されている。また、光束分割部3と参照用反射部6の間には、上述した反射透過部14と、第2の位相板13が配置されている。第2の位相板13の構成は、第1の位相板12と同一であるため、ここでは、その説明は省略する。
参照用反射部6には、第2の位相板を通過した第2の光束LBが入射する。第2の光束LBは、参照用反射部6の反射面における照射スポットS0に入射される。そして、参照用反射部6は、入射した第2の光束LBをミラー4へ反射させる。
また、参照用反射部6の反射面は、被測定部材9の被測定面9aと略平行に配置される。そのため、参照用反射部6の反射面と回折格子5の回折面及びミラー4の反射面4aで形成される角度がほぼ90°となるように、参照用反射部6、回折格子5及びミラー4は配置される。
また、光束分割部3の近傍には、光束結合部19と、第1の補助ミラー15及び第2の補助ミラー16が配置されている。第1の補助ミラー15は、第2の位相板13を通過し、かつ反射透過部14の反射透過面14aを通過した第1の光束LAを光束結合部19に向けて反射する。第2の補助ミラー16は、第1の位相板12を通過し、かつ反射透過部14の反射透過面14aを透過した第2の光束LBを光束結合部19に向けて反射する。
また、光束結合部19と第1の補助ミラー15の間には、第3の位相板17が配置されており、光束結合部19と第2の補助ミラー16の間には、第4の位相板18が配置されている。第3の位相板17及び第4の位相板18は、通過する第1の光束LA及び第2の光束LBを円偏光に変化させると共に、互いに回転方向が逆向きとなるように、位相板の光軸が設定されている。
そして、光束結合部19は、第1の光束LA及び第2の光束LBを重ね合わせると共に、重ね合わせた光を再び2分割にする。そして、光束結合部19は、分割した光を受光部8へ導く。
受光部8は、第1の偏光ビームスプリッタ20と、第2の偏光ビームスプリッタ21とを有している。
第1の偏光ビームスプリッタ20は、入射される光束の偏光方向が入射面に対して45度傾くように配置されている。この第1の偏光ビームスプリッタ20における光の出射口側には、第1の受光素子33と、第2の受光素子34が設けられている。また、第2の偏光ビームスプリッタ21における光の出射口側には、第3の受光素子35と、第4の受光素子36が設けられている。
これら第1の偏光ビームスプリッタ20及び第2の偏光ビームスプリッタ21は、s偏光成分を有する干渉光を反射させ、p偏光成分を有する干渉光を透過させて、光を分割するものである。そして、受光部8には、相対位置情報出力手段10が接続されている。
図3は、本例の変位検出装置1における相対位置情報出力手段10の概略構成を示すブロック図である。
図3に示すように、相対位置情報出力手段10は第1の差動増幅器61aと、第2の差動増幅器61bと、第1のA/D変換器62aと、第2のA/D変換器62bと、波形補正処理部63と、インクリメンタル信号発生器64とを有している。
第1の差動増幅器61aには、第1の受光素子33及び第2の受光素子34が接続されており、第2の差動増幅器61bには、第3の受光素子35及び第4の受光素子36が接続されている。また、第1の差動増幅器61aには、第1のA/D変換器62aが接続されており、第2の差動増幅器61bには、第2のA/D変換器62bが接続されている。そして、第1のA/D変換器62a及び第2のA/D変換器62bは、波形補正処理部63と接続している。
また、光束分割部3、反射透過部14、第1の補助ミラー15、第2の補助ミラー16、第3の位相板17、第4の位相板18及び光束結合部19は、一つの六角形のプリズムに一体に形成される。すなわち、光束分割部3、反射透過部14、第1の補助ミラー15、第2の補助ミラー16、第3の位相板17、第4の位相板18及び光束結合部19の機能を有し、かつ全て同じ屈折率を有する複数の板状部材を形成する。そして、これらの板状部材を所定の位置に配置して、板状部材と同じ屈折率を有する材料によって一体に成型する。これにより、一つの六角形のプリズム内に、光束分割部3、反射透過部14、第1の補助ミラー15、第2の補助ミラー16、第3の位相板17、第4の位相板18及び光束結合部19が形成される。
また、同じ屈折率を有する複数のプリズムの所定の面に、光束分割部3、反射透過部14、第1の補助ミラー15、第2の補助ミラー16、第3の位相板17、第4の位相板18及び光束結合部19を形成する。そして、この複数のプリズムを貼り合わせることで、六角形のプリズムを形成してもよい。また、成膜により機能を付加できるものは、各プリズムの表面に成膜により形成してもよい。
なお、光束分割部3、反射透過部14、第1の補助ミラー15、第2の補助ミラー16、第3の位相板17、第4の位相板18及び光束結合部19を構成する六角形のプリズムの形成方法は、上述したものに限定されるものではなく、その他各種の方法を用いてもよい。
1−2.変位検出装置の動作
次に、図1〜図4を参照して、本例の変位検出装置1の動作について説明する。
図4は、変位検出装置の要部を示す説明図である。
図1に示すように、光源から出射した光Lは、レンズ11によりコリメートされて平行光となる。そして、レンズ11によりコリメートされた平行光は、光束分割部3に入射する。光束分割部3に入射した光は、第1の光束LAと第2の光束LBに分割される。そして、分割された第1の光束LA及び第2の光束LBは、それぞれ反射透過部14へ入射される。
なお、光束分割部3により分割された第1の光束LAと第2の光束LBは、それぞれp偏光の光である。そのため、反射透過部14は、入射した第1の光束LA及び第2の光束LBを透過させる。
次に、反射透過部14を透過した第1の光束LAは、第1の位相板12に照射され、第2の光束LBは、第2の位相板13に照射される。そして、第1の光束LA及び第2の光束LBは、互いに円偏光となる。
図4に示すように、被測定部材9が基準位置にある場合、円偏光となった第1の光束LA0は、被測定部材9の基準点P0に入射角θで入射する。そして、第1の第1の光束LA0は、被測定部材9によって1回目の反射をし、ミラー4を介して回折格子5の任意の回折位置T0に入射角π/2−θで入射する。
第1の光束LA0は、回折格子5により回折されて、第2の位相板13に照射される。そして、第1の光束LA0は、第2の位相板13を通過することで、s偏光となり、再び反射透過部14へ入射する。第1の光束LA0は、s偏光であるため、反射透過部14の反射透過面14aにより反射される。そして、再び、第1の位相板12を通過することで、第1の光束LA0は、円偏光となる。なお、第1の光束LA0の円偏光の回転方向は、最初に第1の位相板12を通過したときと、逆向きになる。
ここで、反射透過部14の反射透過面14aは、第1の光束LA0を一回目と同じ基準点P0に同じ入射角θで入射可能なように配置されている。そのため、被測定部材9が基準位置にある場合、第1の光束LA0は、一回目とほぼ同じ位置である被測定部材9の基準点P0に入射角θで入射する。
その後、1回目の光路とほぼ同じ光路をたどり、回折格子5によって回折された後、再び第2の位相板13を通過する。なお、被測定部材9の基準点P0に入射されて、図4に実線で示す第1の光束LA0の光路を基準光路という。
ここで、第1の光束LA0は、1回目と逆向きの回転方向の円偏光である。そのため、第1の光束LA0は、第2の位相板13を通過すると、p偏光となる。従って、第2の位相板13を通過した第1の光束LA0は、反射透過部14の反射透過面14aを透過する。そして、第1の光束LA0は、第1の補助ミラー15及び第3の位相板17を介して光束結合部19へ入射される。
このように、被測定部材9が基準位置にある場合、本例では、第1の光束LAにおける被測定部材9に対する1回目の照射位置と2回目の照射位置を基準位置P0のほぼ同じ位置に照射させることができる。これにより、被測定部材9における検出ポイント間隔Qを極力小さくすることができる。
また、図に示すように、円偏光となった第2の光束LBは、参照用反射部6の照射スポットS0に入射する。そして、第2の光束LBは、参照用反射部6で反射され、かつミラー4を介して回折格子5に入射される。回折格子5で回折された第2の光束LBは、第1の位相板12によって、s偏光になり、反射透過部14で反射される。そして、再び第2の光束LBは、第2の位相板13で、円偏光になる。その後は、1回目と同じ光路をたどり、第1の位相板12に入射する。
第1の位相板12では、第2の光束LBは、第1の光束LAと同様に、p偏光となり、反射透過部14を透過する。そして、第2の光束LBは、第2の補助ミラー16及び第4の位相板18を介して光束結合部19へ入射される。
ここで、第1の光束LAにおける光束分割部3から光束結合部19までの光路長と、第2の光束LBにおける光束分割部3から光束結合部19までの光路長は、互いに等しくなるように、参照用反射部6及びミラー4が配置されている。これにより、変位検出装置1を製造する際に、第1の光束LAの光路長と第2の光束LBの光路長や光軸の角度を調整し易くすることができる。その結果、気圧補正、湿度補正や温度補正を行うことなく、周囲環境に関わらず安定した測定を行うことができる。
さらに、第1の光束LA及び第2の光束LBを同じ回折格子5に入射させて回折させている。これにより、温度変化によって回折格子5の回折角に変化が起きても、第1の光束LA及び第2の光束LBが受ける影響を等しくすることができる。
ここで、図4に示すように、被測定部材9が基準位置から高さ方向へx/2だけ移動した場合について説明する。
図4に示すように、被測定部材9が基準位置から高さ方向へx/2だけ移動すると、1回目の第1の光束LA1の照射位置は、被測定部材9の基準点P0から第1の照射位置P1に移動する。なお、被測定部材9への入射角θ1は、基準点P0に照射される第1の光束LA0の入射角θと同じである。そして、第1の光束LA1は、点線で示す光路をたどり、回折格子5に入射角π/2−θ1で入射する。なお、被測定部材9への入射角が等しいため、移動した際の第1の光束LA1における回折格子5への入射角π/2―θ1は、基準光路をたどる第1の光束LA0の回折格子5への入射角π/2−θと同じである。
さらに、第1の光束LA1における回折格子5への入射位置は、回折位置T0から回折位置T1に移動する。ここで、回折格子5は、被測定部材9の被測定面に対して略直角に配置されているため、回折位置T0と回折位置T1の間隔は、被測定部材9の移動距離の2倍のxとなる。そして、第1の光束LAには、回折格子5上を移動したx分の波数のみの位相が加算される。
そして、第1の光束LA1は、反射透過部14に反射されて、再び被測定部材9に入射する。2回目の第1の光束LA2の照射位置は、被測定部材9の第1の照射位置P1から第2の照射位置P2に移動する。なお、被測定部材9への入射角θ2は、基準点P0に照射される第1の光束LA0の入射角θ及び、1回目の第1の光束LA1の入射角θ1と同じである。
また、被測定部材9に照射された2回目の第1の光束LA2は、一点鎖線で示す光路は、基準光路と一致する。そのため、第1の光束LA2は、回折格子5の回折位置T0に入射される。さらに、第1の光束LAの光路長は、被測定部材9が高さ方向に変位しても、常に一定となっている。すなわち、第1の光束LAの波長は、変化しない。従って、第1の光束LAには、回折格子5上を回折位置T0から回折位置T1まで移動したx分の波数のみの位相が加算される。
また、変位検出装置1は、第1の照射位置P1と第2の照射位置P2の間の中心位置Paを検出位置として、検出する。図4に示すように、中心位置Paは、基準位置P0とほぼ一致している。そのため、被測定部材9が高さ方向に移動しても、常にほぼ同じ検出位置の変位を検出することができる。これにより、検出ポイント間隔Qが狭い被測定面の計測が可能となる。
図1に戻り、光束結合部19に入射した第1の光束LAと第2の光束LBは、光束結合部19により重ね合わされて、干渉光となる。ここで、第1の光束LAと第2の光束LBは、回転方向が互いに逆向きの円偏光である。また、第1の光束LAには、回折格子上を移動した分の波数の位相が加算されている。そのため、第1の光束LAにおける回折格子上を移動した分の波数の位相加算に伴って回転する直線偏光を有する干渉光を得ることができる。この直線偏光の回転は、被測定部材9が回折格子5の格子ピッチΛだけ高さ方向に移動すると1回転する。
また、この干渉光は、光束結合部19により2つに分割されて受光部8の第1の偏光ビームスプリッタ20及び第2の偏光ビームスプリッタ21に入射する。そして、第1の偏光ビームスプリッタ20及び第2の偏光ビームスプリッタ21は、s偏光成分を有する干渉光を反射させ、p偏光成分を有する干渉光を透過させて、光を分割する。
第1の偏光ビームスプリッタ20によって反射された干渉光は、第1の受光素子33によって受光される。また、第1の偏光ビームスプリッタ20を透過した干渉光は、第2の受光素子34によって受光される。ここで、第1の受光素子33と第2の受光素子34とによって光電変換される信号は、180度位相の異なる信号となる。
同様に、第2の偏光ビームスプリッタ21によって反射された干渉光は、第3の受光素子35によって受光される。また、第2の偏光ビームスプリッタ21を透過した干渉光は、第4の受光素子36によって受光される。ここで、第3の受光素子35と第4の受光素子36とによって光電変換される信号は、180度位相の異なる信号となる。
そして、第1の受光素子33と第2の受光素子34、第3の受光素子35と第4の受光素子36によって得られる干渉信号は、Acos(2Kx+δ)の干渉信号が得られる。Aは、干渉の振幅であり、Kは2π/Λで示される波数である。また、xは、被測定部材9における高さ方向の移動量を示しており、δは、初期位相を示している。Λは、回折格子5における格子のピッチである。
上述したように、被測定部材9が高さ方向にx/2だけ移動すると、被測定部材9の測定面に照射される第1の光束LAは、基準位置P0から第1の照射位置P1に移動する。また、被測定部材9に反射された第1の光束LAは、回折格子5の回折位置T0から回折位置T1に移動する。そして、回折位置T0と回折位置T1の間隔は、基準位置P0と第1の照射位置P1の間隔の2倍のxとなる。すなわち、回折格子5上を移動する第1の光束LAの移動量は、被測定部材9を移動した際の2倍のxとなる。
また、回折格子5が被測定部材9の被測定面に対して略直角に配置されているため、被測定部材9が高さ方向に変位しても、第1の光束LAの光路長は常に一定となる。すなわち、第1の光束LAの波長は、変化しない。そして、被測定部材9が高さ方向に変位すると、回折格子5に入射する位置だけが変化する。
すなわち、被測定部材9が高さ方向にxだけ移動すると、回折された第1の光束LAには、2Kxの位相が加わる。そのため、2周期の光の明暗が生じる干渉光が、第1の受光素子33、第2の受光素子34、第3の受光素子35及び第4の受光素子36によって受光される。
ここで、第1の受光素子33、第2の受光素子34、第3の受光素子35及び第4の受光素子36によって得られる干渉信号には、光源2の波長に関する成分が含まれていない。よって、気圧や湿度、温度の変化による光源の波長に変動が起きても干渉強度には、影響を受けない。
なお、本実施形態では、第1の偏光ビームスプリッタ20と第2の偏光ビームスプリッタ21は、相対的に45度傾けて配置している。このため、第3の受光素子35と第4の受光素子36において得られる信号は、第1の受光素子33と第2の受光素子34において得られる信号に対し、90度位相がずれている。
したがって、例えば第1の受光素子33と第2の受光素子34で得られる信号をsin信号、第3の受光素子35と第4の受光素子36において得られる信号をcos信号として用いることによりリサージュ信号を取得することができる。
これらの受光素子によって得られる信号は、相対位置情報出力手段10によって演算され、被測定面の変位量がカウントされる。
に示すように、例えば、本例の相対位置情報出力手段10では、まず、第1の受光
素子33と第2の受光素子34で得られた位相が互いに180度異なる信号を第1の差動
増幅器61aによって差動増幅し、干渉信号の直流成分をキャンセルする。
そして、この信号は、第1のA/D変換器62aによってA/D変換され、波形補正処理部63によって信号振幅とオフセットと位相が補正される。この信号は、例えばA相のインクリメンタル信号としてインクリメンタル信号発生器64において演算される。
また同様に、第3の受光素子35及び第4の受光素子36で得られた信号は、第2の差動増幅器61bによって差動増幅され、第2のA/D変換器62bによってA/D変換される。そして、波形補正処理部63により信号振幅とオフセットと位相とが補正され、A相と位相が90度異なるB相のインクリメンタル信号としてインクリメンタル信号発生器64から出力される。
こうして得られた2相のインクリメンタル信号は、図示しないパルス弁別回路等により正逆の判別が行われ、これにより、被測定部材9の高さ方向の変位量が、プラス方向であるかマイナス方向であるかを検出できる。
また、図示しないカウンタによってインクリメンタル信号のパルス数をカウントすることにより、第1の光束LAと第2の光束LBの干渉光強度が上述の周期の何周期分変化したのかを計測できる。これにより、被測定部材9の変位量が検出される。
なお、本例の相対位置情報出力手段10の出力する相対位置情報は、上述の2相のインクリメンタル信号であってもよいし、それから算出された変位量、変位方向を含む信号であってもよい。
2.第2の実施の形態例
次に、第2に実施の形態例にかかる変位検出装置について図5を参照して説明する。
図5は、第2の実施の形態例に構成を示す概略構成図である。
この第2の実施の形態例にかかる変位検出装置100が第1の実施の形態例にかかる変位検出装置1と異なる点は、反射部材として第1の光束用ミラー104と、第2の光束用ミラー105を設けたものである。そのため、ここでは、第1の光束用ミラー104と、第2の光束用ミラー105について説明し、第1の実施の形態例にかかる変位検出装置1と共通する部分には同一の符号を付して重複した説明を省略する。
図5に示すように、回折格子5と対向するように、第1の光束用ミラー104と、第2の光束用ミラー105が配置されている。第1の光束用ミラー104は、被測定部材9から反射された第1の光束LAを回折格子5に向けて反射する。第2の光束用ミラー105は、参照用反射部6から反射された第2の光束LBを回折格子5に向けて反射する。
第1の光束用ミラー104の反射面104aは、回折格子5の回折面と略平行で、かつ被測定部材9の被測定面9aに対してほぼ90°となるように配置されている。また、第2の光束用ミラー105の反射面105aは、回折格子5の回折面と略平行で、かつ参照用反射部の反射面に対してほぼ90°となるように配置されている。
その他の構成は、第1の実施の形態にかかる変位検出装置1と同様であるため、それらの説明は省略する。このような構成を有する変位検出装置100によっても、上述した第1の実施の形態例にかかる変位検出装置1と同様の作用効果を得ることができる。
また、この第2の実施の形態例にかかる変位検出装置100によれば、第1の光束LA及び第2の光束LBにおける光路長や角度をそれぞれ別々に微調整することができる。これにより、気圧、湿度や温度の変化による光源2の波長変動の影響をより受けにくくすることができる。
3.第3の実施の形態例
次に、第3に実施の形態例にかかる変位検出装置について図6を参照して説明する。
図6は、第2の実施の形態例に構成を示す概略構成図である。
この第3の実施の形態例にかかる変位検出装置200が第1の実施の形態例にかかる変位検出装置1と異なる点は、反射部材の代わりに結合部側反射透過部を設けた点である。そのため、ここでは、結合部側反射透過部について説明し、第1の実施の形態例にかかる変位検出装置1と共通する部分には同一の符号を付して重複した説明を省略する。
図6に示すように、変位検出装置200は、反射透過部204と、結合部側反射透過部207とを有している。また、結合部側反射透過部207は、回折格子5を間に挟んで反射透過部204と対向するように配置されている。そして、結合部側反射透過部207の近傍には、光束結合部19と、第3の位相板17及び第4の位相板18と、受光部8が配置されている。
反射透過部204は、第1の実施の形態例にかかる反射透過部14の構成と同一であるため、その説明は省略する。また、反射透過部204と被測定部材9との間には、第1の位相板202が配置されており、反射透過部204と参照用反射部6との間には、第2の位相板203が配置されている。
第1の位相板202と、第2の位相板203は、それぞれ1/2波長板である。そのため、第1の位相板202及び第2の位相板203は、それぞれp偏光の光をs偏光に変化させ、s偏光の光をp偏光に変化させる。また、第1の位相板202には、第1の光束LAのみが通過し、第2の位相板203には、第2の光束LBのみが通過する。
結合部側反射透過部207は、反射透過部204と同様に、偏光ビームスプリッタである。結合部側反射透過部207は、p偏光の光を透過させ、s偏光の光を反射する。また、結合部側反射透過部207は、その反射透過面207aが回折格子5の回折面と略平行で、かつ被測定部材9の被測定面9a及び参照用反射部6の反射面に対してほぼ90°となるように、配置されている。
光束分割部3により分割された第1の光束LAと第2の光束LBは、それぞれp偏光の光である。そのため、光束分割部3から反射透過部204に入射した第1の光束LAは、反射透過面204aと透過し、第1の位相板202に入射する。そして、第1の光束LAは、第1の位相板202によりp偏光からs偏光になる。
第1の位相板202を通過した第1の光束LA1は、被測定部材9で反射されて、結合部側反射透過部207に入射する。そして、第1の光束LA1は、s偏光であるため、結合部側反射透過部207の反射透過面207aで反射されて、回折格子5に入射する。そして、回折光となった第1の光束LAは、反射透過部204で反射し、第1の位相板202に入射する。
第1の位相板202を再び通過することで、第1の光束LA2は、p偏光に戻る。そして、p偏光となった第1の光束LA2は、被測定部材9で再び反射される。また、結合部側反射透過部207では、再び反射された第1の光束LA2を透過させる。そして、第1の光束LA2は、回折格子5に向かうことなく、光束結合部19に向かう。
なお、第2の光束LBの光路も、第1の光束LAと同様であるため、その説明は、省略する。
その他の構成は、第1の実施の形態にかかる変位検出装置1と同様であるため、それらの説明は省略する。このような構成を有する変位検出装置200によっても、上述した第1の実施の形態例にかかる変位検出装置1と同様の作用効果を得ることができる。
この第3の実施の形態例にかかる変位検出装置200では、第1の光束LA及び第2の光束LBにおける回折格子5を通過する回数は、それぞれ1回ずつとなる。そのため、第1の光束LA及び第2の光束LBが回折格子5を痛感する回数を最小限に抑えることで、透過光量を増やし、ノイズを減らすことができる。
また、第1の光束LA及び第2の光束LBの光路長を、第1の実施の形態例にかかる第1の光束LA及び第2の光束LBよりも大幅に短くすることができる。その結果、光路長が短くなることで、空気の揺らぎ等による影響を受けにくくすることもできる。
4.変位検出装置の利用例
次に、上述した第1〜第の実施の形態例にかかる変位検出装置の利用例について図7及び図8を参照して説明する。
図7は、第1の利用例について示す模式図である。図8、第2の利用例について示す模式図である。
なお、図7及び図8に示す利用例における被測定部材9は、例えば、回折格子スケールを用いたものである。
図7に示す利用例では、被測定部材9における被測定面と平行をなす第1の方向Xの変位検出するX軸用リニアエンコーダ901と、被測定部材9における被測定面と平行をなし、第1の方向Yと直交する第2の方向Yの変位を検出するY軸用リニアエンコーダ902が設けられている。また、被測定部材9の被測定面の高さ方向Zの検出するために上述した本例の変位検出装置1を設けている。
これにより、X軸用リニアエンコーダ901及びY軸用リニアエンコーダ902によって、被測定部材9のX軸Y軸の変位を計測し、本例の変位検出装置1によって被測定部材9の被測定面の高さ方向、すなわちZ軸の変位を検出することができる。これにより、3次元の計測が可能となる。
図8に示す利用例における被測定部材9Hは、Z軸を中心に回転するものである。そして、この利用例では、被測定部材9Hの角度情報を検出するロータリーエンコーダ903と、被測定部材9の高さ方向Zの検出するために上述した本例の変位検出装置1を設けている。この利用例では、被測定部材9Hの角度情報θと、Z軸の変位を検出することができ、3次元の計測が可能となる。
なお、本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。上述した実施の形態例では、光源から照射される光は、気体中だけでなく、液体中又は真空中の空間を飛ばして光を供給するようにしてもよい。
また、参照用反射部6を被測定部材9の移動に連動するように移動させてもよい。すなわち、被測定部材9における高さ方向の移動量と同じ移動量だけ参照用反射部6を移動させる。これにより、第2の光束LBに第1の光束LAと正負の異なる位相を加えることができる。
1,100,200…変位検出装置、 2…光源、 3…光束分割部、 4…ミラー(反射部材)、4a…反射面、 5…回折格子、 6…参照用反射部、 8…受光部、 9…被測定部材、 9a…被測定面、 10…相対位置情報出力手段、 11…レンズ、 12,202…第1の位相板、 13,203…第2の位相板、 14,204…反射透過部、 14a…反射透過面、 19…光束結合部、 104…第1の光束用ミラー、 105…第2の光束用ミラー、 207…結合部側反射透過部、 LA…第1の光束、 LB…第2の光束、 P0…基準位置(特定の位置)、 P1…第1の照射位置、 P2…第2の照射位置、 T0…回折位置、 T1…回折位置

Claims (5)

  1. 光を照射する光源と、
    前記光源から出射された光を被測定部材に入射させる第1の光束と、参照光となる第2の光束に分割する光束分割部と、
    前記第1の光束の偏光方向に応じて、前記第1の光束を透過又は反射させて、前記被測定部材に入射させる反射透過部と、
    前記第1の光束の偏光方向を変化させる位相板と、
    前記光束分割部によって分割された前記第2の光束を反射する参照用反射部と、
    前記被測定部材の被測定面から反射した前記第1の光束を回折し、かつ回折した前記第1の光束を再び前記反射透過部へ入射させる透過型の回折格子と、
    前記回折格子によって回折された前記第1の光束と前記参照用反射部によって反射された前記第2の光束を重ね合わせる光束結合部と、
    前記光束結合部により重ね合わされた前記第1の光束及び前記第2の光束の干渉光を受光する受光部と、
    前記受光部により受光した干渉光強度に基づいて前記被測定面の高さ方向の変位情報を出力する相対位置情報出力手段と、を備え、
    前記反射透過部は、前記被測定部材が基準位置にある場合、前記第1の光束を、前記被測定部材の特定の位置に導き、
    前記被測定部材で再び反射された際の前記第1の光束の光路が、前記被測定部材における前記特定の位置で前記第1の光束が反射した際の光路と重なり、
    前記反射透過部は、前記光束分割部によって分割された前記第1の光束を前記被測定部材に向けて透過させ、前記被測定部材で反射され、かつ前記回折格子によって1回目の回折が行われた前記第1の光束を前記被測定部材に向けて反射させる
    変位検出装置。
  2. 前記第1の光束における前記光束分割部から前記回折格子を介して前記光束結合部までの光路長と、前記第2の光束における前記光束分割部から前記反射部を介して前記光束結合部までの光路長は、略等しく設定されている
    請求項1に記載の変位検出装置。
  3. 前記回折格子の回折面は、前記被測定部材の被測定面に対して略直角に配置される
    請求項1または2に記載の変位検出装置。
  4. 前記被測定部材により反射された前記第1の光束を、前記第1の光束の偏光方向に応じて、反射又は透過し、前記回折格子又は前記光束結合部に導く結合部側反射透過部を設けた
    請求項1〜3のいずれかに記載の変位検出装置。
  5. 前記被測定部材により反射された前記第1の光束を、前記回折格子に反射させる反射部材を設けた
    請求項1〜3のいずれかに記載の変位検出装置。
JP2014240549A 2014-04-14 2014-11-27 変位検出装置 Active JP6427399B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014240549A JP6427399B2 (ja) 2014-04-14 2014-11-27 変位検出装置
US14/686,392 US9612104B2 (en) 2014-04-14 2015-04-14 Displacement detecting device
EP15163498.7A EP2933609B1 (en) 2014-04-14 2015-04-14 Displacement detecting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014082475 2014-04-14
JP2014082475 2014-04-14
JP2014240549A JP6427399B2 (ja) 2014-04-14 2014-11-27 変位検出装置

Publications (2)

Publication Number Publication Date
JP2015212682A JP2015212682A (ja) 2015-11-26
JP6427399B2 true JP6427399B2 (ja) 2018-11-21

Family

ID=52997229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240549A Active JP6427399B2 (ja) 2014-04-14 2014-11-27 変位検出装置

Country Status (3)

Country Link
US (1) US9612104B2 (ja)
EP (1) EP2933609B1 (ja)
JP (1) JP6427399B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194277A1 (en) * 2016-05-09 2017-11-16 Asml Netherlands B.V. Position measurement system, calibration method, lithographic apparatus and device manufacturing method
JP2018185210A (ja) * 2017-04-25 2018-11-22 セイコーエプソン株式会社 エンコーダー、プリンターおよびロボット
TWI666422B (zh) * 2017-08-09 2019-07-21 億光電子工業股份有限公司 一種位移偵測裝置及物體位移的測量方法
JP2019066235A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 エンコーダー、プリンターおよびロボット
CN116642413B (zh) * 2023-02-28 2024-03-01 华为技术有限公司 一种光学模块及光学设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809481A (en) * 1972-12-01 1974-05-07 Nasa Single reflector interference spectrometer and drive system therefor
US4278351A (en) * 1979-05-09 1981-07-14 Nasa Interferometer
EP0146244B2 (en) * 1983-11-04 2002-07-03 Sony Precision Technology Inc. Optical instrument for measuring displacement
JPH0718714B2 (ja) * 1988-05-10 1995-03-06 キヤノン株式会社 エンコーダー
JP2629948B2 (ja) * 1989-03-03 1997-07-16 キヤノン株式会社 エンコーダー
JP2973636B2 (ja) 1991-09-26 1999-11-08 ソニー・プレシジョン・テクノロジー株式会社 変位検出装置
JP2001050709A (ja) * 1999-08-06 2001-02-23 Mitsutoyo Corp 位置検出装置
US7187449B2 (en) * 2002-04-26 2007-03-06 Sony Precision Technology Inc. Light-receiving/emitting composite unit, method for manufacturing the same, and displacement detection device
US20060145066A1 (en) * 2004-12-13 2006-07-06 Hideaki Tamiya Displacement detection apparatus, displacement gauging apparatus and fixed point detection apparatus
JP4722474B2 (ja) * 2004-12-24 2011-07-13 株式会社ミツトヨ 変位検出装置
JP2006275654A (ja) * 2005-03-28 2006-10-12 Sony Corp 変位検出装置及び変位計測装置並びに定点検出装置
JP4852318B2 (ja) * 2006-02-20 2012-01-11 株式会社マグネスケール 変位検出装置、偏光ビームスプリッタ及び回折格子
JP2009041946A (ja) * 2007-08-06 2009-02-26 Topcon Corp 光画像計測装置
JP5095475B2 (ja) * 2008-04-14 2012-12-12 株式会社森精機製作所 光学式変位測定装置
JP2010169402A (ja) * 2009-01-20 2010-08-05 Canon Inc 変位測定装置及び変位測定方法
KR101725529B1 (ko) * 2010-03-30 2017-04-10 지고 코포레이션 간섭계 인코더 시스템
JP5566203B2 (ja) * 2010-06-21 2014-08-06 Dmg森精機株式会社 変位検出装置
US8885172B2 (en) * 2011-02-01 2014-11-11 Zygo Corporation Interferometric heterodyne optical encoder system
JP6076589B2 (ja) * 2011-05-11 2017-02-08 Dmg森精機株式会社 変位検出装置
JP5905729B2 (ja) * 2011-10-26 2016-04-20 Dmg森精機株式会社 変位検出装置
TWI489081B (zh) * 2011-11-09 2015-06-21 Zygo Corp 使用編碼器系統的低同調干涉技術
JP6093965B2 (ja) * 2012-02-17 2017-03-15 株式会社ミツトヨ 光電式エンコーダ
JP5936399B2 (ja) * 2012-03-19 2016-06-22 Dmg森精機株式会社 位置検出装置
TWI516746B (zh) * 2012-04-20 2016-01-11 賽格股份有限公司 在干涉編碼系統中執行非諧循環錯誤補償的方法、裝置及計算機程式產品,以及微影系統

Also Published As

Publication number Publication date
US20150292870A1 (en) 2015-10-15
EP2933609A1 (en) 2015-10-21
EP2933609B1 (en) 2017-02-01
US9612104B2 (en) 2017-04-04
JP2015212682A (ja) 2015-11-26

Similar Documents

Publication Publication Date Title
US9074861B2 (en) Displacement detecting device
KR101876816B1 (ko) 변위 검출 장치
JP6322069B2 (ja) 変位検出装置
JP6427399B2 (ja) 変位検出装置
CN108931190B (zh) 位移检测装置
US10451401B2 (en) Displacement detecting device with controlled heat generation
JP7159017B2 (ja) 変位検出装置
JP7141313B2 (ja) 変位検出装置
KR100531693B1 (ko) 광학식 변위측정장치
JP5918592B2 (ja) 位置検出装置
JP5936399B2 (ja) 位置検出装置
JP6251126B2 (ja) 変位検出装置
JP7042183B2 (ja) 変位検出装置
Chen et al. Multi-DOF incremental optical encoder with laser wavelength compensation
JP5969274B2 (ja) 位置検出装置
JP2517027B2 (ja) 移動量測定方法及び移動量測定装置
JPH03115809A (ja) エンコーダ
JPS62204124A (ja) エンコ−ダ−
JPS62201314A (ja) エンコ−ダ−
JPS62163924A (ja) エンコ−ダ−
JPS62200220A (ja) ロ−タリ−エンコ−ダ−
JPS62163922A (ja) ロ−タリ−エンコ−ダ−

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250