JP6385988B2 - グリコシル化された免疫グロブリンの調製方法 - Google Patents

グリコシル化された免疫グロブリンの調製方法 Download PDF

Info

Publication number
JP6385988B2
JP6385988B2 JP2016147229A JP2016147229A JP6385988B2 JP 6385988 B2 JP6385988 B2 JP 6385988B2 JP 2016147229 A JP2016147229 A JP 2016147229A JP 2016147229 A JP2016147229 A JP 2016147229A JP 6385988 B2 JP6385988 B2 JP 6385988B2
Authority
JP
Japan
Prior art keywords
cells
immunoglobulin
glucose
culture
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016147229A
Other languages
English (en)
Other versions
JP2017019799A (ja
Inventor
フランツェ,ラインハルト
親 平島
親 平島
リンク,トマス
良智 高木
良智 高木
晋也 田熊
晋也 田熊
祐理子 津田
祐理子 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42060615&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6385988(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2017019799A publication Critical patent/JP2017019799A/ja
Application granted granted Critical
Publication of JP6385988B2 publication Critical patent/JP6385988B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

本明細書には、細胞における免疫グロブリン調製の分野の方法であって、調製される免疫グロブリンのグリコシル化パターンを培養条件に基づいて改変できる方法を記述する。
近年、免疫グロブリンの生産は常に増加しており、近い将来に免疫グロブリンは各種疾患の処置に利用できる最大グループの療法薬となるであろうと思われる。免疫グロブリンの影響はそれらの特異性から生じる;それには、それらの特異的な標的認識および結合の機能、ならびに抗原/Fc受容体の結合と同時または結合後の特異的作用の活性化が含まれる。
特異的な標的認識および結合は、免疫グロブリンの可変部により仲介される。作用が生じる他の免疫グロブリン分子部分は、翻訳後修飾、たとえばグリコシル化パターンである。翻訳後修飾は実際に、免疫グロブリンの有効性、安定性、免疫原力潜在性、結合などに対して影響をもつ。それに関連して、補体依存性細胞傷害性(complement-dependent cytotoxicity)(CDC)、抗体依存性細胞性細胞傷害性(antibody-dependent cellular cytotoxicity)(ADCC)、およびアポトーシス誘導に対処しなければならない。
免疫グロブリンのグリコシル化パターン、すなわち結合した糖構造体の糖の組成および数が生物学的特性に強い影響をもつことが報告された(たとえば、Jefferis, R., Biotechnol. Prog. 21 (2005) 11-16を参照)。哺乳動物細胞により産生される免疫グロブリンは2〜3質量%の炭水化物を含有する(Taniguchi, T., et al., Biochem. 24 (1985) 5551-5557)。これは、たとえばクラスGの免疫グロブリン(IgG)において、マウス由来のIgGにおける2.3個のオリゴ糖残基(Mizuochi, T., et al., Arch. Biochem. Biophys. 257 (1987) 387-394)、およびヒト由来のIgGにおける2.8個のオリゴ糖残基と同等であり(Parekh, R.B., et al., Nature 316 (1985) 452-457)、これらのうち一般に2個はFc領域、残りは可変部に位置する(Saba, J.A., et al., Anal. Biochem. 305 (2002) 16-31)。
クラスGの免疫グロブリンのFc領域において、オリゴ糖残基はアミノ酸残基297、すなわちアスパラギン残基(Asn297と表記される)にN−グリコシル化により導入される可能性がある。Youingsらは、ポリクローナルIgG分子の15%〜20%でFc
領域にさらに他のN−グリコシル化部位が存在することを示した(Youings, A., et al., Biochem. J., 314 (1996) 621-630;たとえば、Endo, T., et al., Mol. Immunol. 32 (1995) 931-940も参照)。不均一な、すなわち非対称的なオリゴ糖プロセシングのため、異なるグリコシル化パターンをもつ多数のイソ形免疫グロブリンが存在する(Patel, T.P., et al., Biochem. J. 285 (1992) 839-845; Ip, C.C., et al., Arch. Biochem. Biophys. 308 (1994) 387-399; Lund, J., et al., Mol. Immunol. 30 (1993) 741-748)。同時に、オリゴ糖の構造および分布は高度に再現性があり(すなわち、非ランダム)、かつ部位特異的である(Dwek, R.A., et al., J. Anat. 187 (1995) 279-292)。
免疫グロブリンの幾つかの特性はFc領域のグリコシル化に直接関連する(たとえば、Dwek, R.A., et al., J. Anat. 187 (1995) 279-292; Lund, J., et al., J. Immunol. 157 (1996) 4963-4969; Lund, J., FASEB J. 9 (1995) 115-119; Wright, A. and Morrison, S.L., J. Immunol. 160 (1998) 3393-3402を参照);たとえば、熱安定性および溶解性(West, C.M., Mol. Cell. Biochem. 72 (1986) 3-20)、抗原性(Turco, S.J., Arch. Biochem. Biophys. 205 (1980) 330-339)、免疫原性(Bradshaw, J.P., et al., Biochim. Biophys. Acta 847 (1985) 344-351; Feizi, T. and Childs, R.A., Biochem. J. 245 (1987) 1-11; Schauer, R., Adv. Exp. Med. Biol. 228 (1988) 47-72)、クリアランス速度/循環半減期(Ashwell, G. and Harford, J., Ann. Rev. Biochem. 51 (1982) 531-554; McFarlane, I.G., Clin. Sci. 64 (1983) 127-135; Baenziger, J.U., Am. J. Path. 121 (1985) 382-391; Chan, V.T. and Wolf, G., Biochem. J. 247 (1987) 53-62; Wright, A., et al., Glycobiology 10 (2000) 1347-1355; Rifai, A., et al., J. Exp. Med. 191 (2000) 2171-2182; Zukier, L.S., et al., Cancer Res. 58 (1998) 3905-3908)、ならびに特異的生物活性(Jefferis, R. and Lund, J., Antibody Engineering, ed. by Capra, J.D., Chem. Immunol. Basel, Karger, 65 (1997) 111-128)。
グリコシル化パターンに影響を及ぼす要因が調べられた:たとえば、発酵培地中のウシ胎仔血清の存在(Gawlitzek, M., et al., J. Biotechnol. 42(2) (1995) 117-131)、緩衝作用条件(Muething, J., et al., Biotechnol. Bioeng. 83 (2003) 321-334)、溶存酸素
濃度(Saba, J.A., et al., Anal. Biochem. 305 (2002) 16-31; Kunkel, J.P., et al., J. Biotechnol. 62 (1998) 55-71; Lin, A.A., et al., Biotechnol. Bioeng. 42 (1993)
339-350)、オリゴ糖の位置およびコンホメーション、ならびに宿主細胞タイプおよび細
胞増殖状態(Hahn, T.J. and Goochee, C.F., J. Biol. Chem. 267 (1992) 23982-23987; Jenkins, N., et al., Nat. Biotechnol. 14 (1996) 975-981)、細胞のヌクレオチド−糖代謝(Hills, A.E., et al., Biotechnol. Bioeng. 75 (2001) 239-251)、栄養素制限(Gawlitzek, M., et al., Biotechnol. Bioeng. 46 (1995) 536-544; Hayter, P.M., et al., Biotechnol. Bioeng. 39 (1992) 327-335)、特にグルコース制限(Tachibana, H., et al., Cytotechnology 16 (1994) 151-157)、ならびに細胞外pH(Borys, M.C., et al., Bio/Technology 11 (1993) 720-724)。
たとえばNS0骨髄腫細胞における免疫グロブリンの組換え発現により、オリゴマンノース構造体およびトランケート型オリゴ糖構造体の増加が観察された(Ip, C.C., et al., Arch. Biochem. Biophys. 308 (1994) 387-399; Robinson, D.K., et al., Biotechnol. Bioeng. 44 (1994) 727-735)。グルコース飢餓条件下で、グリコシル化の変動、たとえばより小さな前駆オリゴ糖の結合またはオリゴ糖部分の完全な不存在が、CHO細胞、ネズミ3T3細胞、ラット肝癌細胞、ラット腎細胞およびネズミ骨髄腫細胞において観察された(Rearick, J.I., et al., J. Biol. Chem. 256 (1981) 6255-6261; Davidson, S.K. and Hunt, L.A., J. Gen. Virol. 66 (1985) 1457-1468; Gershman, H. and Robbins, P.W., J. Biol. Chem. 256 (1981) 7774-7780; Baumann, H. and Jahreis, G.P., J. Biol. Chem. 258 (1983) 3942-3949; Strube, K.-H., et al., J. Biol. Chem. 263 (1988) 3762-3771; Stark, N.J. and Heath, E.C., Arch. Biochem. Biophys. 192 (1979) 599-609)。低グルタミン/グルコース濃度に基づく方法がWong, D.C.F., et al., Biotechnol. Bioeng. 89 (2005) 164-177により報告された。
日本国特許出願JP 62-258252には哺乳動物細胞の潅流培養が記述され、一方、US 5,443,968にはタンパク質分泌細胞のフェドバッチ(fed-batch)培養法(流加培養法)が報告されている。WO 98/41611には、低い乳酸産生を特徴とする代謝状態に細胞を適応させるのに有効な細胞培養法が報告されている。物質を産生させるために細胞を培養する方法がWO 2004/048556に報告されている。Elbein, A.D., Ann. Rev. Biochem. 56 (1987) 497-534には、グルコースの不存在下でインキュベートした哺乳動物細胞はマンノース−9含有構造体の代わりにマンノース−5含有構造体をタンパク質へ伝達することが報告されている。pCO2の依存性は、グルコース制限に際してCHO細胞の増殖、代謝およびIgG産生に影響を及ぼすことがTakuma, S., et al. in Biotechnol. Bioeng. 97 (2007) 1479-1488により報告されている。
JP 62-258252 US 5,443,968 WO 98/41611 WO 2004/048556
Jefferis, R., Biotechnol. Prog. 21 (2005) 11-16 Taniguchi, T., et al., Biochem. 24 (1985) 5551-5557 Mizuochi, T., et al., Arch. Biochem. Biophys. 257 (1987) 387-394 Parekh, R.B., et al., Nature 316 (1985) 452-457 Saba, J.A., et al., Anal. Biochem. 305 (2002) 16-31 Youings, A., et al., Biochem. J., 314 (1996) 621-630 Endo, T., et al., Mol. Immunol. 32 (1995) 931-940 Patel, T.P., et al., Biochem. J. 285 (1992) 839-845 Ip, C.C., et al., Arch. Biochem. Biophys. 308 (1994) 387-399 Lund, J., et al., Mol. Immunol. 30 (1993) 741-748 Dwek, R.A., et al., J. Anat. 187 (1995) 279-292 Lund, J., et al., J. Immunol. 157 (1996) 4963-4969 Lund, J., FASEB J. 9 (1995) 115-119 Wright, A. and Morrison, S.L., J. Immunol. 160 (1998) 3393-3402 West, C.M., Mol. Cell. Biochem. 72 (1986) 3-20 Turco, S.J., Arch. Biochem. Biophys. 205 (1980) 330-339 Bradshaw, J.P., et al., Biochim. Biophys. Acta 847 (1985) 344-351 Feizi, T. and Childs, R.A., Biochem. J. 245 (1987) 1-11 Schauer, R., Adv. Exp. Med. Biol. 228 (1988) 47-72 Ashwell, G. and Harford, J., Ann. Rev. Biochem. 51 (1982) 531-554 McFarlane, I.G., Clin. Sci. 64 (1983) 127-135 Baenziger, J.U., Am. J. Path. 121 (1985) 382-391 Chan, V.T. and Wolf, G., Biochem. J. 247 (1987) 53-62 Wright, A., et al., Glycobiology 10 (2000) 1347-1355 Rifai, A., et al., J. Exp. Med. 191 (2000) 2171-2182 Zukier, L.S., et al., Cancer Res. 58 (1998) 3905-3908 Jefferis, R. and Lund, J., Antibody Engineering, ed. by Capra, J.D., Chem. Immunol. Basel, Karger, 65 (1997) 111-128 Gawlitzek, M., et al., J. Biotechnol. 42(2) (1995) 117-131 Muething, J., et al., Biotechnol. Bioeng. 83 (2003) 321-334 Kunkel, J.P., et al., J. Biotechnol. 62 (1998) 55-71 Lin, A.A., et al., Biotechnol. Bioeng. 42 (1993) 339-350 Hahn, T.J. and Goochee, C.F., J. Biol. Chem. 267 (1992) 23982-23987 Jenkins, N., et al., Nat. Biotechnol. 14 (1996) 975-981 Hills, A.E., et al., Biotechnol. Bioeng. 75 (2001) 239-251 Gawlitzek, M., et al., Biotechnol. Bioeng. 46 (1995) 536-544 Hayter, P.M., et al., Biotechnol. Bioeng. 39 (1992) 327-335 Tachibana, H., et al., Cytotechnology 16 (1994) 151-157 Borys, M.C., et al., Bio/Technology 11 (1993) 720-724 Robinson, D.K., et al., Biotechnol. Bioeng. 44 (1994) 727-735 Rearick, J.I., et al., J. Biol. Chem. 256 (1981) 6255-6261 Davidson, S.K. and Hunt, L.A., J. Gen. Virol. 66 (1985) 1457-1468 Gershman, H. and Robbins, P.W., J. Biol. Chem. 256 (1981) 7774-7780 Baumann, H. and Jahreis, G.P., J. Biol. Chem. 258 (1983) 3942-3949 Strube, K.-H., et al., J. Biol. Chem. 263 (1988) 3762-3771 Stark, N.J. and Heath, E.C., Arch. Biochem. Biophys. 192 (1979) 599-609 Wong, D.C.F., et al., Biotechnol. Bioeng. 89 (2005) 164-177 Elbein, A.D., Ann. Rev. Biochem. 56 (1987) 497-534 Takuma, S., et al. in Biotechnol. Bioeng. 97 (2007) 1479-1488
真核細胞が産生するポリペプチドのグリコシル化パターンにおけるマンノース−5糖構造体の量を、培養プロセスで細胞に流加するグルコースの量に基づいて改変できることが見出された。利用できるグルコースの量を減らすことによって、たとえばDGL値を1.0からより小さな、たとえば0.8、0.6、0.5、0.4または0.2の値に変化させることによって、グリコシル化パターンにおけるマンノース−5糖構造体の量の改変を達成できる。DGL値またはそれぞれ単位時間当たり利用できるグルコースの量を、一定にかつ単位時間当たり規定した低い値に維持しなければならない。
本明細書に記述する第一観点は、真核細胞においてポリペプチド(一態様においては免疫グロブリン)を調製するための下記の工程を含む方法である:
a)ポリペプチドをコードする核酸を含む真核細胞を用意し、
b)グルコース制限度(degree of glucose limitation)(DGL)が一定に維持され、かつDGLが0.8未満である条件下で、その細胞を培養し、そして
c)培養物からポリペプチドを回収する;
その際、マンノース−5糖構造体を含むポリペプチドの画分は、マンノース−5糖構造体を含むポリペプチドの量、ポリペプチドG(0)イソ型の量、ポリペプチドG(1)イソ型の量、およびポリペプチドG(2)イソ型の量を含めた合計の10%以下である。
一態様において、DGLを0.8から0.2までの範囲で一定に維持する。さらに他の態様において、DGLを0.6から0.4までの範囲で一定に維持する。他の態様において、マンノース−5糖構造体を含むポリペプチドの画分は、マンノース−5糖構造体を含むポリペプチド、ポリペプチドG(0)イソ型、ポリペプチドG(1)イソ型、およびポリペプチドG(2)イソ型を含めた合計の8%以下である。さらに他の態様においてポリペプチドは免疫グロブリンであり、一態様においてクラスGまたはEの免疫グロブリンである。
本明細書に記述する他の観点は、免疫グロブリンを調製するための下記の工程を含む方
法である:
a)免疫グロブリンをコードする核酸を含む哺乳動物細胞を用意し、
b)培地中の単位時間当たり利用できるグルコースの量が一定に維持され、かつ単位時間当たりその培地中でその細胞が最大限に利用できる量の80%未満に制限された培地中で、前記の真核細胞を培養し、そして
c)細胞または培地から免疫グロブリンを回収する。
一態様において、培地中の単位時間当たり利用できるグルコースの量は一定に維持され、かつ80%から20%までの範囲の値に制限される。さらに他の態様において、この範囲は60%から40%までである。他の態様において、培地中の細胞はその培地中で生存可能な細胞である。
本明細書に記述する観点の一態様において、真核細胞はCHO細胞、NS0細胞、HEK細胞、BHK細胞、ハイブリドーマ細胞、PER.C6(登録商標)細胞、昆虫細胞、またはSp2/0細胞から選択される。一態様において、真核細胞はチャイニーズハムスター卵巣(CHO)細胞である。本明細書に記述する観点の他の態様において、培養は約pH7.0から約pH7.2までの範囲のpH値で行なわれる。
本明細書に記述する観点のさらに他の態様において、培養は連続培養またはフェドバッチ培養である。本方法は、他の態様において、ポリペプチドを精製する最終工程を含むことができる。さらに他の態様において、細胞を6〜20日間、または6〜15日間、培養する。さらに他の態様において、細胞を6〜8日間培養する。
本明細書に記述する他の観点は免疫グロブリンを含む組成物であり、その際、組成物は本明細書に記述する方法で調製されたものである。
一態様において、免疫グロブリンは抗IL−6R抗体である。さらに他の態様において、抗IL−6R抗体はトシリズマブ(Tocilizumab)を含む。他の態様において、抗IL−6R抗体に結合したマンノース−5糖構造体は8%以下である。さらに他の態様において、マンノース−5糖構造体は6%以下である。他の態様において、マンノース−5糖構造体は4%以下である。さらに他の態様において、抗IL−6R抗体に結合したG(0)糖構造体は40%から46%までの範囲であり、抗IL−6R抗体に結合したG(2)糖構造体は9%から11%までの範囲である。
図1は、DGL制御を用いたフェドバッチ方式における生細胞密度(a)および細胞生存率プロフィール(b)である;中空丸:初発細胞密度8×10細胞/ml;中実三角:初発細胞密度10×10細胞/ml;中空四角:初発細胞密度12×10細胞/ml。 図2は、免疫グロブリン産生におけるフェドバッチ方式でのDGLの経時的変化である;丸:初発細胞密度8×10細胞/ml;三角:初発細胞密度10×10細胞/ml;四角:初発細胞密度12×10細胞/ml。 図3は、免疫グロブリン産生におけるフェドバッチ方式によるDGLに基づく流加培地の流加プロフィールである;丸:初発細胞密度8×10細胞/ml;三角:初発細胞密度10×10細胞/ml;四角:初発細胞密度12×10細胞/ml 図4は、DGL制御でのフェドバッチ方式による免疫グロブリン産生プロフィールである;中空丸:初発細胞密度8×10細胞/ml;中実三角:初発細胞密度10×10細胞/ml;中空四角:初発細胞密度12×10細胞/ml;中実小丸:一定流加法:FR=0.02gグルコース/時間(対照)。 図5は、細胞のフェドバッチ培養に際してのDGLの時間経過である:菱形:単一流加培地流加で毎日流加,四角:二種流加培地流加で毎日流加;三角:単一流加培地流加でプロフィール流加;X:二種流加培地流加でプロフィール流加。
本明細書には下記の工程を含む、免疫グロブリンの調製方法を記述する:
a)免疫グロブリンをコードする核酸を含む哺乳動物細胞を、0.8未満の一定のDGL(すなわち、単位時間当たり利用できるグルコースの量が一定であり、かつ単位時間当たりその細胞が最大限に利用できるグルコースの量の80%以下である)の培地中で培養し、そして
b)細胞または培地から免疫グロブリンを回収する。
本明細書に記述する方法で免疫グロブリンを得ることができ、その際、マンノース−5糖構造体を含む免疫グロブリンの量は調整したDGL値に依存し、その量はマンノース−5糖構造体を含む免疫グロブリンの量、および免疫グロブリンG(0)イソ型の量、および免疫グロブリンG(1)イソ型の量、および免疫グロブリンG(2)イソ型の量の合計のうちの画分である。一態様において、DGLは0.8から0.2までである。この態様において、画分は10%以下である。他の態様において、DGLは0.6から0.4までである。この態様において、画分は6%以下である。本明細書に記述する方法で、マンノース−5糖構造体をもつ免疫グロブリンの画分が、マンノース−5糖構造体を含む免疫グロブリンの量、免疫グロブリンG(0)イソ型の量、免疫グロブリンG(1)イソ型の量、および免疫グロブリンG(2)イソ型の量を含む合計の10%以下である免疫グロブリンを得ることができる。他の態様において、画分は液体クロマトグラフィー法で測定した面積%画分である。一態様において、DGLは0.8から0.2までの範囲に維持される。他の態様において、DGLは0.6から0.2までの範囲に維持される。さらに他の態様において、DGLは0.6から0.4までの範囲に維持される。一態様において、単位時間当たり細胞が最大限に利用できるグルコースの量は、すべての化合物が過剰にある(すなわち、細胞の増殖を制限する化合物がない)培養に際して利用されるグルコースの平均量であり、少なくとも5回の培養に基づいて決定される。一態様において、この画分は培養7日目に測定される。
本発明を実施するのに有用な、当業者に既知の方法および技術は、たとえば下記に記載されている:Ausubel, F.M. (ed.), Current Protocols in Molecular Biology, Volumes
I to III (1997), Wiley and Sons; Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001); Glover, N.D. (ed.), DNA Cloning: A Practical Approach, Volumes I and II (1985); Freshney, R.I. (ed.), Animal Cell Culture (1986); Miller, J.H. and Calos, M.P. (eds.), Gene Transfer Vectors for Mammalian Cells, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1987); Watson, J.D., et al., Recombinant DNA, Second Edition, N.Y., W.H. Freeman and Co (1992); Winnacker, E.L., From Genes to Clones, N.Y., VCH Publishers (1987); Celis, J. (ed.), Cell Biology, Second Edition, Academic Press (1998); Freshney, R.I., Culture of Animal Cells: A Manual of Basic Techniques, Second Edition, Alan R. Liss, Inc., N.Y. (1987)。
組換えDNA技術を用いてポリペプチドの多数の誘導体を製造することができる。そのような誘導体は、たとえば個々のまたは数個のアミノ酸位置において、置換、変更または交換により修飾されたものであってもよい。誘導体化は、たとえば部位特異的変異誘発により実施できる。そのようなバリエーションは当業者が容易に実施できる(Sambrook, J.,
et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, New York, USA (2001); Hames, B.D. and Higgins, S.G., Nucleic acid hybridization - a practical approach (1985) IRL Press, Oxford, England)。
用語“核酸”は、天然に存在するか、または一部もしくは全体が天然に存在しない核酸分子であって、ポリペプチドをコードするものを表わす。核酸は、単離されるかあるいは化学的手段で合成できるDNAフラグメントの構築体(build up)であってもよい。核酸は、たとえば発現プラスミドにおいて、または真核細胞のゲノム/染色体において、他の核酸に組み込むことができる。用語“プラスミド”には、シャトルプラスミドおよび発現プラスミドが含まれる。一般にプラスミドは、それぞれ原核細胞におけるプラスミドの複製および選択のための複製起点(たとえば、ColE1複製起点)および選択マーカー(たとえば、アンピシリンまたはテトラサイクリン耐性遺伝子)を含めた、原核細胞増殖ユニットをも含むであろう。当業者には、たとえばポリペプチドのアミノ酸配列を、各アミノ酸配列をコードする対応する核酸に変換するための手順および方法が周知である。したがって核酸は、個々のヌクレオチドからなるその核酸配列によっても、またそれによりコードされるポリペプチドのアミノ酸配列によっても特徴付けられる。
用語“発現カセット”は、少なくとも含まれる構造遺伝子が細胞において発現し、場合により細胞から分泌されるのに必要なエレメント、たとえばプロモーター、ポリアデニル化部位、ならびに3’側および5’側−非翻訳領域を含む核酸を表わす。
用語“遺伝子”は、たとえば染色体上またはプラスミド上のセグメントであって、ポリペプチドの発現に必要なものを表わす。遺伝子は、コード領域のほかに、プロモーター、イントロン、および1以上の転写ターミネーターを含めた、他の機能性エレメントを含む。“構造遺伝子”は、遺伝子のシグナル配列を含まないコード領域を表わす。
用語“発現”は、細胞内での構造遺伝子の転写および翻訳を表わす。細胞内での構造遺伝子の転写のレベルは、細胞内に存在する対応するmRNAの量に基づいて測定できる。たとえば、選択した核酸から転写されるmRNAは、PCRにより、またはノーザンハイブリダイゼーションにより定量できる(たとえば、Sambrook et al. (前掲)を参照)。核酸によりコードされるポリペプチドは、種々の方法により定量できる;たとえば、ELISAによるか、そのポリペプチドの生物活性の測定によるか、またはそのような活性とは無関係な方法、たとえばウェスタンブロット法もしくはラジオイムノアッセイの使用、そのポリペプチドを認識してそれに結合する抗体の使用による(たとえば、Sambrook et al. (前掲)を参照)。
用語“細胞”は、ポリペプチドをコードする核酸(一態様においては異種ポリペプチド)が導入された細胞を表わす。用語“細胞”は、プラスミド/ベクターの増殖のために用いる原核細胞と、構造遺伝子の発現のために用いる真核細胞の両方を含む。一態様において、免疫グロブリンの発現のための真核細胞は哺乳動物細胞である。他の態様において、哺乳動物細胞はCHO細胞、NS0細胞、Sp2/0細胞、COS細胞、HEK細胞、BHK細胞、PER.C6(登録商標)細胞、およびハイブリドーマ細胞から選択される。真核細胞はさらに昆虫細胞、たとえば毛虫の細胞(ヨトウガ(Spodoptera frugiperda)、sf細胞)、ショウジョウバエの細胞(キイロショウジョウバエ(Drosophila melanogaster))、蚊の細胞(ネッタイシマカ(Aedes aegypti)、セスジヤブカ(ヒトスジシマカ)(Aedes albopictus))、およびカイコの細胞(カイコガ(Bombyx Mori))などから選択できる。
用語“ポリペプチド”は、自然界または合成のいずれで生成したかにかかわらず、ペプチド結合により連結したアミノ酸残基のポリマーを表わす。約20アミノ酸残基未満のポリペプチドを“ペプチド”と呼ぶことができる。100アミノ酸残基を超えるポリペプチド、または1より多いポリペプチドを含む共有結合および非共有結合した凝集物を“タンパク質”と呼ぶことができる。ポリペプチドは非アミノ酸成分、たとえば炭水化物基を含
む場合がある。非アミノ酸成分はそのポリペプチドを産生する細胞によってポリペプチドに付加される可能性があり、細胞のタイプに応じて異なる可能性がある。本明細書中でポリペプチドはそれらのアミノ酸配列によりN末端からC末端方向に規定される。それらへの炭水化物基などの付加物は一般に明記されないが、それにもかかわらず存在する可能性がある。
用語“異種DNA”または“異種ポリペプチド”は、その細胞内に自然界では存在しないDNA分子もしくはポリペプチドまたはDNA分子の集団もしくはポリペプチドの集団を表わす。細胞種に由来するDNA(すなわち内在性DNA)が宿主のものではないDNA(すなわち外来DNA)と結合するならば、特定の細胞にとって異種であるDNA分子はその細胞種に由来するDNAを含む可能性がある。たとえば、細胞のものではないDNAセグメント(たとえば、ポリペプチドをコードするもの)が細胞のDNAセグメント(たとえば、プロモーターを含む)に作動可能な状態で連結したものを含むDNA分子は、異種DNA分子とみなすことができる。同様に、異種DNA分子は外来プロモーターに作動可能な状態で連結した内在性構造遺伝子を含むことができる。異種DNA分子によりコードされるポリペプチドは“異種”ポリペプチドである。
用語“発現プラスミド”は、発現させるべきポリペプチドをコードする少なくとも1つの構造遺伝子を含む核酸を表わす。一般に、発現プラスミドは下記のものを含む;原核細胞プラスミド増殖ユニット:これには、複製起点、および選択マーカー、たとえば大腸菌(E. coli)については真核細胞選択マーカーが含まれる;ならびに目的とする構造遺伝
子(単数または複数)の発現のための1以上の発現カセット:これらはそれぞれ、プロモーター、少なくとも1つの構造遺伝子、および転写ターミネーター(ポリアデニル化シグナルを含む)を含む。遺伝子発現は通常はプロモーターの制御下に置かれ、そのような構造遺伝子はプロモーターに“作動可能な状態で連結”しているべきである。同様に、調節エレメントとコアプロモーターは、その調節エレメントがそのコアプロモーターの活性を調節するならば、作動可能な状態で連結している。
用語“単離されたポリペプチド”は、付随する細胞成分、たとえばそのポリペプチドと共有結合していない炭水化物、脂質、または他のタンパク性もしくは非タンパク性の不純物を本質的に含まないポリペプチドを表わす。一般に、単離されたポリペプチドの調製物は、ある態様においてはそのポリペプチドを高純度形態で、すなわち少なくとも約80%の純度、少なくとも約90%の純度、少なくとも約95%の純度、95%を超える純度、または99%を超える純度で含有する。特定のタンパク質調製物が単離されたポリペプチドを含有することを示すための1方法は、調製物のドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動(SDS−page)およびそのゲルのクーマシーブリリアントブルー染色の後に単一バンドが出現することによる。しかし、用語“単離された”は、同じポリペプチドが別の物理的形態、たとえば二量体で、または別のグリコシル化もしくは誘導体化形態で存在するのを除外しない。
免疫グロブリンは一般に5つの異なるクラスに配属される:IgA(クラスAの免疫グロブリン)、IgD、IgE、IgGおよびIgM。これらのクラス間で、免疫グロブリンはそれらの全体的構造および/またはアミノ酸配列が異なるが、同じ構築ブロックをもつ。完全な免疫グロブリンは2対のポリペプチド鎖から構成される:それぞれ、免疫グロブリン軽ポリペプチド鎖(短い:軽鎖)および免疫グロブリン重ポリペプチド鎖(短い:重鎖)を含む。これらの鎖は可変部と定常部を含む。軽鎖においては両領域とも1ドメインからなり、これに対し重鎖においては可変部は1ドメインからなり、定常部は最高5つのドメインからなる(N末端からC末端方向へ):C1ドメイン、場合によりヒンジ部ドメイン、C2ドメイン、C3ドメイン、および場合によりC4ドメイン。免疫グロブリンはFab領域とFc領域に分けることができる。軽鎖全体、重鎖可変ドメイン、
およびC1ドメインをFab領域(フラグメント抗原結合領域)と呼ぶ。Fc領域は、C2ドメイン、C3ドメイン、および場合によりC4ドメインを含む。
本明細書中で用いる用語“免疫グロブリン”は、1以上のポリペプチドからなるタンパク質を表わす。エンコーディング免疫グロブリン遺伝子は、種々の定常部遺伝子および無数の免疫グロブリン可変部遺伝子を含む。“免疫グロブリン”には、一態様において、モノクローナル抗体、およびそのフラグメント、たとえば単離された重鎖、または重鎖定常部、ならびに融合ポリペプチドであって少なくとも免疫グロブリン重鎖C2ドメインを含むものが含まれる。本明細書に記述する方法の一態様において免疫グロブリンは完全な免疫グロブリンであり、他の態様において免疫グロブリンは完全な免疫グロブリンのFc領域である。他の態様において、免疫グロブリンは免疫グロブリン、または免疫グロブリンフラグメント、または免疫グロブリンコンジュゲートである。
用語“免疫グロブリンフラグメント”は、少なくとも免疫グロブリン デルタ、イプシロンもしくはアルファ重鎖のC2ドメイン、および/または免疫グロブリン イプシロンもしくはデルタ重鎖のC3ドメインを含む、ポリペプチドを表わす。その誘導体およびバリアントであって、C2ドメインまたはC3ドメイン中のN−グリコシル化モチーフAsn−Xaa−Ser/Thrが変化していないものも包含される。
用語“免疫グロブリンコンジュゲート”は、少なくとも免疫グロブリン デルタ、イプシロンもしくはアルファ重鎖のC2ドメインおよび/または免疫グロブリン イプシロンもしくはデルタ重鎖のC3ドメインが、非免疫グロブリンポリペプチドに融合したものを含むポリペプチドを表わす。それらにおいて、C2ドメインまたはC3ドメイン中のN−グリコシル化モチーフAsn−Xaa−Ser/Thrは変化していない。
免疫グロブリン重鎖のC2ドメインのAsn297(IgG、IgE)もしくはAsn263(IgA)に、および/またはC3ドメインのAsn394、Asn445、またはAsn496(IgE、IgD)に結合したオリゴ糖は、二分岐(biantennary)
構造をもつ(Mizuochi, T., et al., Arch. Biochem. Biophys. 257 (1987) 387-394)、すなわちそれらはコア構造
Man(α1-4)GlcNAc(β1-4)GlcNAc→Asn
からなり、末端GlcNAc残基に任意選択的Fuc(α1−6)結合をもつ。このコア構造の末端マンノースに次式をもつ2つの外側アームが結合している:
Gal(β1-4)GlcNAc(β1-2)Man(α1-6)→Man、および
Gal(β1-4)GlcNAc(β1-2)Man(α1-3)→Man
これらにおいて末端ガラクトース残基は任意選択的である(Man=マンノース、GlcNAc=N−アセチルグルコース、Gal=ガラクトース;Fuc=フコース)。
Figure 0006385988
用語“免疫グロブリンG(0)イソ型の量、免疫グロブリンG(1)イソ型の量、および免疫グロブリンG(2)イソ型の量”は、免疫グロブリンのアスパラギン(Asn)にN−結合した種々の異種二分岐オリゴ糖の量の合計を表わす。G(2)イソ型はオリゴ糖構造体の外側アームそれぞれに末端ガラクトース残基をもち、G(1)イソ型は(α1−6)または(α1−3)結合した外側アームのいずれかのみにガラクトース残基を保有し、G(0)イソ型は両方の外側アームにガラクトース残基を保有しない。
用語“マンノース−5糖構造体”は、ポリペプチドのAsn残基に連結して、5つのマンノース残基および2つのN−アセチルグルコースコア残基を含むかあるいはそれらからなる三分岐(triantennary)構造を形成した、オリゴマンノース構造体を表わす。
本明細書に記述する1観点は、下記の工程を含む免疫グロブリンの調製方法である:
a)免疫グロブリンをコードする1以上の核酸を含む真核細胞、好ましくは哺乳動物細胞を、培地中の単位時間当たり利用できるグルコースの量が一定に維持され、かつ単位時間当たりその培地中でその細胞が最大限に利用できる量の80%未満の値に制限された培地中で培養し、そして
b)細胞または培地から免疫グロブリンを回収し、これにより免疫グロブリンを調製する。
この方法で、マンノース−糖5構造体を含む免疫グロブリンを最大で10%含む免疫グロブリンが得られる。この10%は、マンノース−5糖構造体を含む免疫グロブリンの量、免疫グロブリンG(0)イソ型の量、免疫グロブリンG(1)イソ型の量、および免疫グロブリンG(2)イソ型の量の合計に基づいて計算される。
用語“グルコース制限度”とそれの略号“DGL”は、本明細書中で互換性をもって使用でき、培養物中の単一細胞の現時点のグルコース比消費速度−対−その単一細胞または同じ種類の単一細胞の既知の最大グルコース比消費速度の比を表わす。グルコース制限度は下記のとおり定義される:
Figure 0006385988
ここで、
qGlc=単一細胞の現時点のグルコース比消費速度;
qGlcmax=その単一細胞または同じ種類の単一細胞について既知の最大グルコース比消費速度。
DGLはDGLmaintenanceと1の間で変動させることができ、ここでDGLmaintenance(<1および>0)は完全な増殖制限を表わし、1は無制限または完全なグルコース過剰を表わす。
ポリペプチド、たとえば免疫グロブリンへの糖構造体の導入は翻訳後修飾である。各細胞のグリコシル化操作は不完全であるため、発現した各ポリペプチドは、種々の糖構造体を含むグリコシル化パターンで得られる。したがって、ポリペプチドはそれを発現する細胞から、同一ポリペプチド、すなわち同一アミノ酸配列をもつものの、異なるグリコシル化形態を含む組成物の形態で得られる。個々の糖構造体の合計はグリコシル化パターンとして表わされ、これには糖構造体を全く含まないポリペプチド、異なるプロセシングを受
けた糖構造体および/または異なる組成の糖構造体を含むポリペプチドが含まれる。
糖構造体のひとつはマンノース−5糖構造体(高マンノース、Man5、M5、またはオリゴ−マンノースとも表記される)である。培養時間の長期化に伴って、またはグルコース飢餓状態で、マンノース−5糖構造体を含む組換え産生されたポリペプチドの画分が増加すると報告されている(Robinson, D.K., et al., Biotechnol. Bioeng. 44 (1994) 727-735; Elbein, A.D., Ann. Rev. Biochem. 56 (1987) 497-534)。
真核細胞が産生するポリペプチドのグリコシル化パターンにおけるマンノース−5糖構造体の量を、培養プロセスで細胞に流加するグルコースの量に基づいて改変できることが見出された。グルコースの量を減らすことによって、すなわちDGL値を1.0からより小さな、たとえば0.8、0.6、0.5、0.4または0.2の値に変化させることによって、グリコシル化パターンにおけるマンノース−5糖構造体の量の改変を達成できることが見出された。一態様において、DGL値は0.8から0.2まで、または0.6から0.4までの範囲内の値で一定に維持される。すなわち、ポリペプチド、一態様において免疫グロブリンの調製は、グリコシル化パターンにおいて規定量のマンノース−5糖構造体を含むポリペプチドを得るために、培養細胞が利用できるグルコースの量を制限した条件下で実施できる。細胞が(一態様においては、対数増殖している細胞が)単位時間当たり最大限に利用できるグルコースの量の80%以下の量のグルコースを単位時間当たり利用できる(すなわち、0.8以下のDGLをもつ)培養により、1.0のDGLをもつ培養と比較してマンノース−5糖構造体の量が変化したグリコシル化パターンをもつポリペプチドが得られることが見出された。一態様において、細胞密度は生細胞密度である。さらに、得られるポリペプチド収率が増大する。
用語“細胞が単位時間当たり最大限に利用できるグルコースの量”は、単一細胞が最適増殖条件下で対数増殖期に何ら栄養素制限のない培養において単位時間当たり最大限に消費または利用または代謝できるグルコースの量を表わす。したがって、細胞が単位時間当たり最大限に利用できるグルコースの量は、何ら栄養素制限のない培養において細胞が最適増殖条件下で対数増殖期に単位時間当たり代謝するグルコースの量を測定することにより決定できる。利用できるグルコースの量をそれ以上増加させても、細胞が単位時間当たり最大限に利用できるグルコースの量はそれ以上は増加しない、すなわち変化しないであろう。この量が単一細胞の最大グルコース消費レベルを規定する。これは、遺伝子修飾した形の細胞がよりいっそう高い最大グルコース消費レベルをもつ可能性がないことを意味するものではない。あるいは、細胞が単位時間当たり最大限に利用できるグルコースの量は、これまでの培養およびモニターされたデータに基づいて決定できる。
本明細書に記述する方法は、測定および制御のための努力が最小限に抑えられることに関連して特に実施するのが簡単であり、特に経済的である。
限定ではないが、たとえば栄養素供給が不十分であると、培養細胞は不経済な状態で増殖して栄養素を最大速度で消費する。消費される培地栄養素のひとつはグルコースであり、これは培養細胞が細胞の代謝のためのエネルギーおよび構築ブロックを産生するために代謝する。過剰のグルコースの存在下では、細胞の代謝はグルコースについて最大の代謝回転速度で進行している。細胞が単位時間当たり最大限に利用できるグルコースの量は、たとえば、制限されたグルコースでの、すなわちその細胞が単位時間当たり利用できる量より少ないグルコース量での培養にも用いられる同じ培養条件を用いてまたは同じ培養条件下で培養された、過剰のグルコースの存在下で対数増殖している細胞のグルコース消費量から決定できる。この最大量は、固定した時間範囲の最初と最後の細胞密度およびグルコース濃度を測定することによって、容易に計算できる。この値は、普通は0.006から190mmol/時間/10細胞までの範囲にある(Baker, K.N., et al., Biotechnol. Bioeng. 73 (2001) 188-202; WO 98/41611; Muething, J., et al., Biotechnol. Bi
oeng. 83 (2003) 321-334; WO 2004/048556)。一態様において、標準的なプロセス条件下にpH7.0で、qGlcmaxは約0.142mmol/時間/10細胞である。
本明細書に記述する方法は、一態様において、単位時間当たり利用できるグルコースの量が一定に、かつ単位時間当たりその細胞が最大限に利用できるグルコースの量の80%以下(0.8≧DGL>0)に維持される条件下で実施され、一態様においては利用できるグルコースの量は一定に、かつ60%以下(0.6≧DGL>0)に、他の態様においては50%以下(0.5≧DGL>0)に、さらに他の態様においては約40%に維持される。本出願で用いる用語“約”は、その数値が厳密な数値ではなく、それはある範囲の中央点にすぎないことを表わし、その際、その数値は最大10%変動できる;すなわち、用語“約40%”は44%から36%までの範囲(DGL=0.44〜0.36)を表わす。
一態様において、培養は、単位時間当たりその細胞が最大限に利用できるグルコースの量の80%〜10%の範囲で一定に維持される量のグルコースを単位時間当たり利用できる状態で行なわれる(0.8≧DGL≧0.1)。他の態様において、利用できるグルコースの量は60%〜10%の範囲で一定に維持される(0.6≧DGL≧0.1)。さらに他の態様において、利用できるグルコースの量は50%〜10%の範囲で一定に維持される(0.5≧DGL≧0.1)。他の態様において、利用できるグルコースの量は45%〜20%の範囲で一定に維持される(0.45≧DGL≧0.2)。同様に、ある態様において、利用できるグルコースの量は80%〜60%の範囲で一定に維持される(0.8≧DGL≧0.6)。
一態様において本方法は、DGLが一定に約0.4の値に維持される条件下で細胞を培養する工程を含み、これによれば培養は1.0〜0.5のDGLで開始され、DGLを約0.4の値に低下させ、その後はこのDGLを一定に維持することを含む。一態様において、DGLの低下は100時間以内の期間である。用語“DGLを一定に維持する”および文法的にそれの均等物は、そのDGL値がある期間維持されること、すなわちDGL値の変動がその数値の10%以内であることを表わす(たとえば、図2を参照)。
免疫グロブリンは、産生後に、直接または細胞を破壊した後に回収される。回収された免疫グロブリンは、一態様において、当業者に既知の方法で精製される。タンパク質精製のために種々の方法が十分に確立され、広く使用されている;たとえば、微生物タンパク質によるアフィニティークロマトグラフィー(たとえば、プロテインAまたはプロテインGアフィニティークロマトグラフィー)、イオン交換クロマトグラフィー(たとえば、陽イオン交換(カルボキシメチル樹脂)、陰イオン交換(アミノエチル樹脂)および混合型交換)、チオ親和性(thiophilic)吸着(たとえば、ベータ−メルカプトエタノールその他のSHリガンドによる)、疎水性相互作用または芳香族吸着クロマトグラフィー(たとえば、フェニル−セファロース、アザ−アレン親和性(aza-arenophilic)樹脂、またはm−アミノフェニルボロン酸による)、金属キレートアフィニティークロマトグラフィー(たとえば、Ni(II)−およびCu(II)−アフィニティー材料による)、サイズ排除クロマトグラフィー、および電気泳動法(たとえば、ゲル電気泳動、毛細管電気泳動)(Vijayalakshmi, M.A., Appl. Biochem. Biotech. 75 (1998) 93-102)。
たとえば、免疫グロブリンの精製法は一般に多工程クロマトグラフィー部分を含む。第1工程で、たとえば、プロテインAまたはプロテインGによるアフィニティークロマトグラフィーにより、免疫グロブリンではないポリペプチドを免疫グロブリン画分から分離する。その後、たとえばイオン交換クロマトグラフィーを実施して、個々のクラスの免疫グロブリンを分離し、かつ第1カラムから共溶出した痕跡量のプロテインAを除去する。最後に、クロマトグラフィー工程を用いて免疫グロブリン単量体を同じクラスの多量体およ
びフラグメントから分離する。
一般的なクロマトグラフィー法およびそれらの使用は当業者に既知である。たとえば下記を参照:Heftmann, E. (ed.), Chromatography, 5th edition, Part A: Fundamentals and Techniques, Elsevier Science Publishing Company, New York, (1992); Deyl, Z. (ed.), Advanced Chromatographic and Electromigration Methods in Biosciences, Elsevier Science BV, Amsterdam, The Netherlands, (1998); Poole, C. F. and Poole, S. K., Chromatography Today, Elsevier Science Publishing Company, New York (1991); Scopes, R.K., Protein Purification: Principles and Practice (1982); Sambrook, J., et al. (eds.), Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001);またはAusubel, F. M., et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York (1990)。
一態様において、回収した免疫グロブリンを、集団の量、すなわちマンノース−5糖構造体を含む免疫グロブリン、免疫グロブリンG(0)イソ型、免疫グロブリンG(1)イソ型、および免疫グロブリンG(2)イソ型の量の合計に対する、マンノース−5糖構造体を含む免疫グロブリンの量により特性分析する。本明細書に記述する方法によれば、マンノース−5糖構造体を含む免疫グロブリンの量は集団の10%以下であり、他の態様においては集団の8%以下であり、さらに他の態様においては集団の6%以下である。
本明細書に記述する方法は、ある態様において、連続培養として、フェドバッチ培養として、またはその組合わせとして、たとえばフェドバッチ培養として開始した後に連続培養に切り換えて、実施できる。さらに、本明細書に記述する方法は種々の様式で実施できる。たとえば一態様においては、DGL値が1.0未満の条件下で、すなわちたとえば利用できるグルコースの量が単位時間当たりその細胞がその培養で最大限に利用できるグルコースの量の80%以下である条件下で培養する前に、過剰のグルコース、すなわちDGL値が1.0の状態で培養する。他の態様において、たとえば前規定した細胞密度(たとえば、一態様において10細胞/ml)を得るために、標準培地に含有される量のグルコース、たとえば1〜10g/l(培地)で培養を開始する。さらに他の態様において、培養の開始を過剰量のグルコースの存在下で、すなわち1.0のDGLで行ない、そして単位時間当たりある量のグルコースを添加する;これは単位時間当たりその細胞がその培養で最大限に利用できるグルコースの量の80%以下である。他の態様においては、培地中に存在するグルコースの量がその培養に際して前設定した値以下に低下した時点で流加を開始する。最後の2例では、培養に際して利用できるグルコースの量は培養における細胞の代謝によって減少する。
一態様において、本明細書に記述する方法では単位時間当たり利用できるグルコースの量または添加するグルコースの量(最大限に利用できるグルコースの量より少ない)を同じ値に、すなわち一定に維持する。たとえば、単位時間当たり最大限に利用できるグルコースの量の50%の量を利用できるように制御する場合、この制御量(DGL値に基づく)はグルコース制限流加を実施しているすべての期間に適用される。ただし、この数値は生細胞の絶対密度に依存した相対値であるので、生細胞密度が培養中に変化する(すなわち、それは初期に増加し、最大に達し、その後、再び低下する)のに伴って、利用できるグルコースの絶対量は変化する。相対値は一定に(すなわち、たとえば80%に)維持されるけれども絶対基準値が変化する(すなわち、生細胞密度が増大する)ので、相対的な絶対値も変化する(すなわち、増加する数値の80%も増加する)。
用語“単位時間当たり”は、固定した時間範囲、たとえば1分、1時間、6時間、12時間、または24時間を表わす。一態様において、単位時間は12時間または24時間で
ある。本出願で用いる用語“単位時間当たり利用できるグルコースの量”は、下記のものの合計を表わす:1)固定した時間範囲の開始時の培養の培地中に含有されるグルコースの量、および2)その単位時間中に添加した、すなわち流加したグルコースの量。したがって、ある量のグルコースを細胞培養培地に、たとえば培養容器に添加すると、これは固定した時間範囲の開始時の培地中のグルコースの量を前決定量まで増加させる。この量のグルコースは、固体として、水に溶解して、緩衝液に溶解して、または栄養培地に溶解して添加することができ、その際、水および緩衝液はグルコースを含有すべきではない。添加されるグルコースの量は、利用できるグルコースの量から培養容器内の培地中に存在するグルコースの量を差し引いたものに相当する。この量のグルコースを添加するプロセスは、前記の単位時間中に1回添加として、少量の等分の多数回添加として、または連続添加として実施できる。
本明細書に記述する方法はいかなる種類の培養にも、またいかなる培養規模にも適切である。たとえば、一態様において、この方法は連続法またはフェドバッチ法に用いられる;他の態様において培養容量は100mlから50,000lまでであり、他の態様においては100lから10,000lまでである。本明細書に記述する方法は、マンノース−5糖構造体をもつ免疫グロブリンが10%以下、または8%以下、または6%以下である免疫グロブリンの調製に有用である。一態様において、免疫グロブリンは免疫グロブリンGまたはEである。本明細書に記述する方法は真核細胞を含み、この細胞は免疫グロブリンの重鎖またはそのフラグメントをコードする核酸、および免疫グロブリンの軽鎖またはそのフラグメントをコードする核酸を含む。真核細胞は、一態様においてCHO細胞、NS0細胞、BHK細胞、ハイブリドーマ細胞、PER.C6(登録商標)細胞、Sp2/0細胞、HEK細胞、および昆虫細胞から選択される。
当業者はグルコースの量のほか、種々の細胞が最適増殖のために要求する培地の組成および成分ならびに栄養素濃度を周知しており、その細胞の培養に適切な培地を選択するであろう(たとえば、Mather, J.P., et al., Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, Vol. 2 (1999) 777-785を参照)。
一態様において、本明細書に記述する方法に従った培養に際して細胞が利用できるはずのグルコースの量は、培養容器内において特定の培養時点でその容量の培養容器および最大限に利用できるグルコースの量で普通に達成できる生細胞密度に、単位時間当たりの対数増殖中の細胞数、および意図するDGLを掛けることにより計算される。より詳細には、その実際の時点以前の培養中のグルコース濃度の経過および培養中の細胞密度の経過から、将来のグルコース濃度および細胞密度の経過を推定する。この推定を用いて、意図するDGLを達成するために添加しなければならないグルコースの量を、次式により計算する:
(グルコース添加量[グルコースpg/ml/時間])=
(現時点の細胞密度[細胞/ml])×(細胞の最大グルコース消費速度[グルコースpg/細胞/時
間])×(DGL値)−培養容器内の培地中に存在するグルコースの量
一態様において、培養のpH値はpH6.5〜pH7.8である。他の態様において、pH値はpH6.9〜pH7.3である。さらに態様において、pH値はpH7.0〜7.2である。実施例1に概説するように、一定流加法で制限グルコース流加とpH値7.0を組み合わせると、pH値7.2と比較してM5含量を規定値、すなわち8%未満に効率的に調節できることが見出された。それぞれ7.0または7.2のpH値でフェドバッチ法での培養に際して、DGL制御法を用いるとM5含量を5.5%未満に調節できることが見出された。培養のpH値を低下させるとDGL値の低下によるM5量の増加に対抗できることが見出された。
培養は、一態様において27℃〜39℃で、他の態様において35℃〜37.5℃で実
施される。
本明細書に記述する方法では、糖構造体を含むいずれかのポリペプチド、たとえば免疫グロブリン、インターフェロン、サイトカイン、増殖因子、ホルモン、プラスミノーゲンアクチベーター、エリスロポエチンなどを調製できる。
本明細書に記述する方法における培養は、哺乳動物細胞培養のためのいずれかの撹拌式または振とう式装置、たとえば発酵槽タイプのタンク培養装置、エアリフト(air lift)タイプの培養装置、培養フラスコタイプの培養装置、スピナーフラスコタイプの培養装置、マイクロキャリヤータイプの培養装置、流動床タイプの培養装置、中空繊維タイプの培養装置、ローラーボトルタイプの培養装置、または充填床タイプの培養装置を用いて実施できる。
本明細書に記述する方法は、一態様において最高15日間実施される。他の態様において、培養は6〜15日間行なわれる。一態様において、免疫グロブリンは抗IL−6R抗体である。
本明細書に記述する方法を、たとえばEP 0 409 607、EP 0 628 639、US 5,670,373、またはUS 5,795,965(本明細書にそれらの全体を援用する)に記述されたヒトインターロイキン−6受容体に対する抗体について例示する;この抗体およびそれを発現する細胞系は本発明の時点で我々の実験室において十分な量で入手できたからである。これは本発明の範囲を限定するものではない。
以下の実施例および図面は本発明の理解を補助するために示すものであり、本発明の真の範囲は特許請求の範囲に示される。ここに示す方法において本発明の精神から逸脱することなく改変をなしうることを理解すべきである。
材料および方法
細胞系:
組換え産生される免疫グロブリンのマンノース−5糖構造体の量を改変できるCHO細胞系の例は、EP 0 409 607およびUS 5,795,965による抗IL−6R抗体をコードする核酸を含むCHO細胞系である。この組換えCHO細胞の培養のためには、本発明の方法によるグルコース補給を実施できる限り、いかなる培地も使用できる。培地の例はIMDM、DMEMもしくはHamのF12培地、またはその組合わせであり、それらを培地成分とグルコースの質量比が受け継がれるように本明細書に記述する方法に適合させた。培地からグルコースを排除し、それを別個に培養に添加することもできる。
培養:
抗IL−6R抗体を発現するCHO細胞を1lまたは2lの発酵容器で培養した。流加培地は15〜40g/lのグルコースを含有していた。グルコースは、たとえば400g/lのグルコースを含有する別個の濃厚溶液で流加することができた。pH7.0から7.2までの範囲のpH値で培養を実施した。
糖構造体の決定:
IgGグリコシル化パターンの分析のために、Kondoらによる方法(Kondo, A., et al.,
Agric. Biol. Chem. 54 (1990) 2169-2170)を用いた。IgGを、培地の遠心上清から小規模プロテインAカラムを用いて精製した。精製IgGのオリゴ糖をN−グリコシダーゼF(Roche Diagnostics GmbH, Mannheim, Germany)により放出させ、還元末端を2−アミ
ノピリジンで標識した。標識したオリゴ糖を逆相クロマトグラフィー(HPLC)により分析した。質量分析およびオリゴ糖の標準品の両方により、各ピークの帰属を判定した。
グルコースの測定:
YSI 2700 SELECT(商標)分析計(YSI, Yellow Springs, OH, USA)を用い、製造業者の
マニュアルに従った方法でグルコース濃度を測定した。
生細胞密度の測定:
自動イメージプロセシングおよび分析システム(CEDEX(登録商標); Innovatis, Germany)、ならびにトリパンブルー色素排除法を用いて、生細胞密度を測定した。
実施例1
DGL制御およびpHが抗体産生およびマンノース−5糖構造体(M5)含量に及ぼす影響
ヒト化した抗IL−6受容体抗体(トシリズマブ(Tocilizumab), RoACTEMRA(登録商
標))を産生するCHO細胞株を用いて試験を実施した;これは、日本国公開特許公報第99902/1996の参考例2に記載された方法に従い、国際特許出願公開No. WO 92/19759 (US 5,795,965、US 5,817,790、およびUS 7,479,543に対応する)の例10に記述されたヒト伸
長因子Iαプロモーターを用いて調製された。
定速流加法で、pH制御が免疫グロブリン産生に及ぼす影響を観察した。表2は、定速流加法でpH制御が抗体オリゴ糖産生およびM5含量に及ぼす影響を示す。
Figure 0006385988
pH7.0では、マンノース−5糖構造体(M5)の量は5.5%未満に調節された。DGL値は細胞密度の変化のため0.80から0.21まで低下した。他方、pH7.2ではM5の量は8.7%と25.2%の間で変動し、pH7.0の場合より高かった。pH7.2におけるDGL値は0.73から0.25までの範囲であった。さらに、この場合、pH7.2での免疫グロブリン産生は120%を超えた(pH7.0に比較した相対値)。定速流加法で免疫グロブリン産生がより高いと、より高い8%を超えるM5含量が誘導される。したがって、定速流加法でpH7.0に制御して、pH7.2に制御した方法と比較してM5含量をより低い値、すなわち8%未満に効率的に調節できた。
種々のpHでのフェドバッチ方式による免疫グロブリン産生のために、DGL制御法(=一定相対量流加法)も採用し、M5含量を分析した。表3は、流加開始後2〜3日目のDGL制御およびpHが免疫グロブリン産生およびM5含量に及ぼす影響を示す。
Figure 0006385988
pH7.0において、0.2から0.8までの範囲のDGLでDGL制御法を適用した。その結果、M5含量は4.0%以下に調節された。他方、pH7.2ではDGL値を0.4から0.6までの範囲で操作した。この場合、M5含量を5.5%未満に制御できた。
実施例2
種々のDGL値での培養
抗IL−6R抗体をコードする核酸を含むCHO細胞の培養を種々のDGL値で実施した。結果を下記の表4にまとめる。
Figure 0006385988
定速流加法と比較して、DGL値0.4〜0.6での制御DGL法はマンノース−5含量の低下を示す。
実施例3
種々の流加法での培養
抗IL−6R抗体をコードする核酸を含むCHO細胞の培養を1種類のDGL値で、ただし種々の流加法を用いて実施した。結果を下記の表5にまとめる。
Figure 0006385988
単一流加培地流加実験では、すべての栄養素およびグルコースを含有する単一の流加物を用いた。二種培地流加実験では、すべての栄養素およびグルコースを含有する2種類の流加物を用いた:第1流加物はすべての栄養素および15g/lの低濃度のグルコースを含有し、第2流加物は高濃度のグルコースを含有する。これらの種々の流加実験を、一方の設定では流加速度を毎日調整して実施し、他方の設定では以前の培養における生細胞密度変化記録計に基づく前決定プロフィールに従って実施した。表5から分かるように、生存率および生細胞密度は採用した流加法とは無関係に類似する。
実施例4
フェドバッチ方式による免疫グロブリン調製のためのグルコース制限度(DGL)制御
CHO細胞(8.0〜12×10細胞/ml)を前記の無血清培地に接種した。細胞を37℃、98%相対湿度、および10% COの雰囲気で増殖させた。フェドバッチ培養で、主発酵槽へ培養開始から2日目または3日目に流加するように、グルコースを含有する培地の流加を開始した。流加法はグルコース制限度(DGL)を制御するための米国特許出願公開公報 US 2006/0127975 A1による方法に従った。DGLは、観察されたグ
ルコース比消費速度−対−これらの細胞が自由にグルコースを利用できる場合の既知の最大グルコース比消費速度の比として定義できる(DGL=Q(glc)/Q(glc)max,ここで、Q(glc)=現時点で観察されたグルコース比消費速度;Q(glc)max=これらの細胞についての既知の最大グルコース比消費速度)。
図1は、この培養の生細胞密度および細胞生存率プロフィールを示す。図2に示すように、種々の細胞密度でDGLを0.4〜0.5の値になるように制御した。その時点の細胞密度に応じて流加速度を1日1回または2回変化させた。図3は、フェドバッチ方式によるDGLに基づく流加プロフィールを示す。細胞密度に応じて流加速度を0.8〜1.6ml/時間で変化させた。この流加法を適用して、図4に示す免疫グロブリン産生プロフィールが得られた。表6に示すように10×10細胞/mlおよび12×10細胞/mlの接種サイズを用いると、7日目に免疫グロブリン産生はほぼ同じであり、一定流加法(グルコース0.02g/時間の流加速度)での免疫グロブリン産生の120%を超えた。初期細胞密度の差20%にもかかわらず、DGL制御法ではほぼ同等の免疫グロブリン力価を得ることができた。さらに、接種サイズを8.0×10細胞/mlに設定した場合、流加開始点の20時間の遅れにもかかわらず、得られた免疫グロブリンは7日目に110%(相対値)を超えた。これらの結果において、DGL制御法は種々の接種サイズで安定な免疫グロブリン産生を達成できた。
実施例5
DGL制御がオリゴ糖のマンノース−5糖構造体およびガラクトシル化に及ぼす影響
DGL制御を用いるフェドバッチ培養により産生された免疫グロブリンについて、グリ
コシル化パターンを分析した。表6は、DGL制御フェドバッチ培養から得られた免疫グロブリンについてのオリゴ糖分析の結果を、一定流加法(流加速度:グルコース0.02g/時間)と比較して示す。8.0×10細胞/mlの接種サイズでは、マンノース−5糖構造体(M5)の含量は2.8%であった。10×10細胞/mlおよび12×10細胞/mlの接種サイズでは、M5含量はそれぞれ4.1%および3.8%であった。すべての培養条件で、DGL制御法はM5含量を5.0%未満に調節できた。
一方、各条件で、免疫グロブリンG(0)イソ型および免疫グロブリンG(2)イソ型は、それぞれ40%から46%まで、および9.0%から11%までの範囲で制御された。
Figure 0006385988

Claims (14)

  1. a)免疫グロブリンをコードする核酸を含む真核細胞を、培地中の単位時間当たり利用できるグルコースの量が一定に維持され、かつ単位時間当たりその培地中でその細胞が最大限に利用できる量の80%未満の一定値に制限された培地中で培養し、そして
    b)培養物から免疫グロブリンを回収する
    ことを含み、
    前記培養がフェドバッチ培養であり、
    培地中に存在するグルコースの量がその培養に際して前設定した値以下に低下した時点で流加を開始する、
    免疫グロブリンの調製方法。
  2. 前記一定値が80%未満であって10%以上であることを特徴とする、請求項1に記載の方法。
  3. 前記一定値が50%〜10%であることを特徴とする、請求項1または2に記載の方法。
  4. 前記一定値が45%〜20%であることを特徴とする、請求項1または2に記載の方法。
  5. 前記一定値が80%未満であって20%を超えることを特徴とする、請求項1または2に記載の方法。
  6. 培養がフェドバッチ培養であり、その際、流加を培養2日目または3日目に開始することを特徴とする、請求項1〜5のいずれか1項に記載の方法。
  7. 培養をpH6.5から7.5までのpH値で行なうことを特徴とする、請求項1〜6のいずれか1項に記載の方法。
  8. 培養をpH6.9から7.3までのpH値で行なうことを特徴とする、請求項7に記載の方法。
  9. 培養をpH6.95からpH7.05までのpH値、またはpH7.15からpH7.25までのpH値で行なうことを特徴とする、請求項8に記載の方法。
  10. 免疫グロブリンがクラスGまたはクラスEの免疫グロブリンであることを特徴とする、請求項1〜9のいずれか1項に記載の方法。
  11. 真核宿主細胞がCHO細胞、NS0細胞、HEK細胞、BHK細胞、ハイブリドーマ細胞、PER.C6(登録商標)細胞、昆虫細胞、およびSp2/0細胞を含む群から選択されることを特徴とする、請求項1〜10のいずれか1項に記載の方法。
  12. 真核細胞がチャイニーズハムスター卵巣(CHO)細胞であることを特徴とする、請求項11に記載の方法。
  13. 宿主細胞の培養を6〜20日間実施することを特徴とする、請求項1〜12のいずれか1項に記載の方法。
  14. 免疫グロブリンが抗IL−6R抗体であることを特徴とする、請求項1〜13のいずれか1項に記載の方法。
JP2016147229A 2009-10-26 2016-07-27 グリコシル化された免疫グロブリンの調製方法 Active JP6385988B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09013455 2009-10-26
EP09013455.2 2009-10-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015036676A Division JP5982024B2 (ja) 2009-10-26 2015-02-26 グリコシル化された免疫グロブリンの調製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018148327A Division JP2019001796A (ja) 2009-10-26 2018-08-07 グリコシル化された免疫グロブリンの調製方法

Publications (2)

Publication Number Publication Date
JP2017019799A JP2017019799A (ja) 2017-01-26
JP6385988B2 true JP6385988B2 (ja) 2018-09-05

Family

ID=42060615

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2012535769A Active JP5711751B2 (ja) 2009-10-26 2010-10-25 グリコシル化された免疫グロブリンの調製方法
JP2015036676A Active JP5982024B2 (ja) 2009-10-26 2015-02-26 グリコシル化された免疫グロブリンの調製方法
JP2016147229A Active JP6385988B2 (ja) 2009-10-26 2016-07-27 グリコシル化された免疫グロブリンの調製方法
JP2018148327A Pending JP2019001796A (ja) 2009-10-26 2018-08-07 グリコシル化された免疫グロブリンの調製方法
JP2019230063A Active JP7083802B2 (ja) 2009-10-26 2019-12-20 グリコシル化された免疫グロブリンの調製方法
JP2022089545A Pending JP2022116264A (ja) 2009-10-26 2022-06-01 グリコシル化された免疫グロブリンの調製方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012535769A Active JP5711751B2 (ja) 2009-10-26 2010-10-25 グリコシル化された免疫グロブリンの調製方法
JP2015036676A Active JP5982024B2 (ja) 2009-10-26 2015-02-26 グリコシル化された免疫グロブリンの調製方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018148327A Pending JP2019001796A (ja) 2009-10-26 2018-08-07 グリコシル化された免疫グロブリンの調製方法
JP2019230063A Active JP7083802B2 (ja) 2009-10-26 2019-12-20 グリコシル化された免疫グロブリンの調製方法
JP2022089545A Pending JP2022116264A (ja) 2009-10-26 2022-06-01 グリコシル化された免疫グロブリンの調製方法

Country Status (19)

Country Link
US (8) US20110117087A1 (ja)
EP (3) EP3202785B1 (ja)
JP (6) JP5711751B2 (ja)
KR (8) KR20160084500A (ja)
CN (2) CN104928336B (ja)
AU (1) AU2010311567B2 (ja)
BR (2) BR122022001178B1 (ja)
CA (1) CA2773522C (ja)
DK (1) DK2493922T3 (ja)
ES (1) ES2622366T3 (ja)
HK (2) HK1171237A1 (ja)
HU (1) HUE033758T2 (ja)
IL (2) IL218997A0 (ja)
MX (2) MX2012004682A (ja)
PL (1) PL2493922T3 (ja)
SG (2) SG10201510640QA (ja)
SI (1) SI2493922T1 (ja)
TW (7) TWI534264B (ja)
WO (1) WO2011051231A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2312184T3 (es) 1997-03-21 2009-02-16 Chugai Seiyaku Kabushiki Kaisha Agentes preventivos terapeuticos para el tratamiento de esclerosis multiple, que contienen anticuerpos anti-receptores de il-6 antagonistas.
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
EP2311489A3 (en) 2002-02-14 2013-08-21 Chugai Seiyaku Kabushiki Kaisha Formulation of antibody-containing solutions comprising a sugar as a stabilizer
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
WO2005090405A1 (ja) 2004-03-24 2005-09-29 Chugai Seiyaku Kabushiki Kaisha インターロイキン-6受容体に対するヒト型化抗体のサブタイプ
PE20091174A1 (es) * 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
JP5711751B2 (ja) 2009-10-26 2015-05-07 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft グリコシル化された免疫グロブリンの調製方法
MX2013005024A (es) 2010-11-08 2013-11-21 Chugai Pharmaceutical Co Ltd Anticuerpo anti-il-6 receptor administrado subcutaneamente.
EP2765192A4 (en) * 2011-10-05 2015-04-15 Chugai Pharmaceutical Co Ltd ANTIGEN BINDING MOLECULE FOR PROMOTING THE PLASMA CLAIR OF AN ANTIGEN COMPRISING A SACCHARIDIC CHAIN TYPE RECEPTOR BINDING DOMAIN
WO2014159831A1 (en) 2013-03-13 2014-10-02 Merck Sharp & Dohme Corp. Adapted lepidopteran insect cells for the production of recombinant proteins
CA2913687C (en) 2013-07-04 2022-12-13 F. Hoffmann-La Roche Ag Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
JP6695814B2 (ja) * 2014-06-04 2020-05-20 アムジエン・インコーポレーテツド 哺乳類細胞培養物を回収するための方法
AR104050A1 (es) * 2015-03-26 2017-06-21 Chugai Pharmaceutical Co Ltd Proceso de producción con iones de cobre controlados
TW201723174A (zh) * 2015-09-03 2017-07-01 持田製藥股份有限公司 重組蛋白質的製造方法
WO2017147169A1 (en) 2016-02-22 2017-08-31 Ohio State Innovation Foundation Chemoprevention using controlled-release formulations of anti-interleukin 6 agents, synthetic vitamin a analogues or metabolites, and estradiol metabolites
WO2018170405A1 (en) 2017-03-17 2018-09-20 Ohio State Innovation Foundation Nanoparticles for delivery of chemopreventive agents
JP2022527972A (ja) 2019-04-02 2022-06-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 前悪性病変を有する患者において癌を予測及び予防する方法

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926723A (en) 1974-08-08 1975-12-16 Massachusetts Inst Technology Method of controllably releasing glucose to a cell culture medium
US4657863A (en) * 1982-07-02 1987-04-14 Celanese Corporation Stabilization of a mutant microorganism population
AU597574B2 (en) 1986-03-07 1990-06-07 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
JPS62258252A (ja) 1986-04-30 1987-11-10 Koyo Seiko Co Ltd ベルト用オ−トテンシヨナ
JPH066054B2 (ja) 1987-10-15 1994-01-26 帝人株式会社 動物細胞の培養方法
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
CA1312030C (en) 1987-11-18 1992-12-29 Brian Maiorella Method to increase antibody titer
US6238891B1 (en) 1987-11-18 2001-05-29 Cetus Oncology Corporation Method of increasing product expression through solute stress
US5670373A (en) 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US6428979B1 (en) 1988-01-22 2002-08-06 Tadamitsu Kishimoto Receptor protein for human B cell stimulatory factor-2
CA1341152C (en) 1988-01-22 2000-12-12 Tadamitsu Kishimoto Receptor protein for human b cell stimulatory factor-2
KR0132666B1 (en) 1989-03-14 1998-04-14 Hitachi Kk Method for controlling cultivation conditions for animal cells
SG42954A1 (en) 1989-07-20 1997-10-17 Tadamitsu Kishimoto Antibody to human interleukin-6 receptor
HUT60768A (en) 1990-03-16 1992-10-28 Sandoz Ag Process for producing cd25 fixing molecules
WO1991015238A1 (en) 1990-04-03 1991-10-17 Genentech, Inc. Methods and compositions for vaccination against hiv
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
GB9022545D0 (en) * 1990-10-17 1990-11-28 Wellcome Found Culture medium
DE4037325A1 (de) 1990-11-23 1992-05-27 Karl Mueller U Co Kg Verfahren zur erzeugung von zellmasse und/oder fermentierungsprodukten unter sterilen bedingungen sowie vorrichtung zur durchfuehrung des verfahrens
JPH05227970A (ja) 1992-02-19 1993-09-07 Chugai Pharmaceut Co Ltd ヒトインターロイキン−6受容体に対する再構成ヒト抗体
AU668349B2 (en) 1991-04-25 1996-05-02 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
US5821121A (en) 1991-06-24 1998-10-13 Pacific Biomedical Research, Inc. Hormone-secreting cells maintained in long-term culture
EP0605428B9 (en) 1991-06-24 2003-01-02 hCell Technology, Inc. Hormone-secreting pancreatic cells maintained in long-term culture
US5610297A (en) 1991-12-27 1997-03-11 Georgia Tech Research Corp. Peptides ketoamides
US5252216A (en) * 1992-03-24 1993-10-12 Smithkline Beecham Corporation Protein purification
EP0567738A3 (en) 1992-05-01 1995-09-06 American Cyanamid Co Controlling perfusion rates in continuous bioreactor culture of animal cells
JPH08508875A (ja) 1992-05-01 1996-09-24 帝人株式会社 蛋白分泌細胞の流加回分培養法
DK0669836T3 (da) 1992-11-13 1996-10-14 Idec Pharma Corp Terapeutisk anvendelse af kimære og radioaktivt mærkede antistoffer og humant B-lymfocytbegrænset differentieringsantigen til behandling af B-cellelymfom
JPH06292592A (ja) * 1993-02-09 1994-10-21 Snow Brand Milk Prod Co Ltd 糖蛋白質の生産方法
WO1994026087A2 (en) 1993-05-14 1994-11-24 Connor Kim C O Recombinant protein production and insect cell culture and process
US5888510A (en) 1993-07-21 1999-03-30 Chugai Seiyaku Kabushiki Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
USH1532H (en) 1993-11-03 1996-05-07 Genetics Institute, Inc. Adaption of mammalian cell lines to high cell densities
DK0730740T3 (da) 1993-11-23 1998-09-28 Genentech Inc Kinasereceptoraktiveringsassay
US20030108545A1 (en) 1994-02-10 2003-06-12 Patricia Rockwell Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist
JP3083324B2 (ja) 1994-02-18 2000-09-04 帝人株式会社 動物細胞の培養方法
US5856179A (en) 1994-03-10 1999-01-05 Genentech, Inc. Polypeptide production in animal cell culture
US20020106370A1 (en) 1994-05-13 2002-08-08 Donald Leonard Nicholas Cardy Improvements in or relating to peptide delivery
US8017121B2 (en) * 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
JP3630453B2 (ja) 1994-09-30 2005-03-16 中外製薬株式会社 Il−6レセプター抗体を有効成分とする未熟型骨髄腫細胞治療剤
CN101011574B (zh) 1994-10-21 2012-10-03 岸本忠三 Il-6受体的抗体在制备药物组合物中的用途
CN1075387C (zh) 1994-12-29 2001-11-28 中外制药株式会社 含有il-6拮抗剂的抗肿瘤剂的作用增强剂
DK0811384T3 (da) 1995-02-13 2006-10-09 Chugai Pharmaceutical Co Ltd Muskelproteinnedbrydningsinhibitor indeholdende IL-6-receptor-antistof
GB9506249D0 (en) * 1995-03-27 1995-05-17 Karobio Ab Media for insect cell cultures
US5705364A (en) 1995-06-06 1998-01-06 Genentech, Inc. Mammalian cell culture process
JP3596108B2 (ja) 1995-08-30 2004-12-02 株式会社デンソー 車両用空調装置
US6087129A (en) 1996-01-19 2000-07-11 Betagene, Inc. Recombinant expression of proteins from secretory cell lines
DK0923941T3 (da) 1996-06-27 2006-09-18 Chugai Pharmaceutical Co Ltd Midler mod myelom der skal anvendes sammen med nitrogensennepantitumormidler
US7147851B1 (en) 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
EP0852951A1 (de) 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stabile lyophilisierte pharmazeutische Zubereitungen von mono- oder polyklonalen Antikörpern
US6156570A (en) 1997-03-20 2000-12-05 Regents Of The University Of Minnesota Process for the continuous culture of cells
ES2312184T3 (es) 1997-03-21 2009-02-16 Chugai Seiyaku Kabushiki Kaisha Agentes preventivos terapeuticos para el tratamiento de esclerosis multiple, que contienen anticuerpos anti-receptores de il-6 antagonistas.
JP3707583B2 (ja) 1997-06-06 2005-10-19 株式会社ブリヂストン 金属線用ガイド
US20020187150A1 (en) 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
PL201461B1 (pl) 1998-03-17 2009-04-30 Chugai Pharmaceutical Co Ltd Czynnik zapobiegający lub terapeutyczny do leczenia zapalenia jelita, zawierający antagonistę IL-6 jako składnik aktywny
ES2532910T3 (es) 1998-04-02 2015-04-01 Genentech, Inc. Variantes de anticuerpos y fragmentos de los mismos
DK2180007T4 (da) 1998-04-20 2017-11-27 Roche Glycart Ag Glycosyleringsteknik for antistoffer til forbedring af antistofafhængig cellecytotoxicitet
US6537782B1 (en) 1998-06-01 2003-03-25 Chugai Seiyaku Kabushiki Kaisha Media for culturing animal cells and process for producing protein by using the same
US6406909B1 (en) * 1998-07-10 2002-06-18 Chugai Seiyaku Kabushiki Kaisha Serum-free medium for culturing animal cells
DK1108435T3 (da) 1998-08-24 2007-02-05 Chugai Pharmaceutical Co Ltd Forebyggende midler eller midler mod pancreatitis indeholdende anti-IL-6-receptor-antistoffer som den aktive bestanddel
ES2571230T3 (es) 1999-04-09 2016-05-24 Kyowa Hakko Kirin Co Ltd Procedimiento para controlar la actividad de una molécula inmunofuncional
EP1178999B1 (en) 1999-05-04 2007-03-14 Santaris Pharma A/S L-ribo-lna analogues
US6338964B1 (en) 1999-05-07 2002-01-15 Bayer Corporation Process and medium for mammalian cell culture under low dissolved carbon dioxide concentration
CA2381770C (en) 1999-08-24 2007-08-07 Medarex, Inc. Human ctla-4 antibodies and their uses
JP2001101882A (ja) 1999-09-29 2001-04-13 Sony Corp 不揮発性半導体記憶装置
US6284453B1 (en) 1999-09-29 2001-09-04 Steven Anthony Siano Method for controlling fermentation growth and metabolism
AU5901501A (en) 1999-10-19 2001-10-23 Nicholas R. Abu-Absi Measurement of nutrient uptake in cells and methods based thereon
GB0001448D0 (en) 2000-01-21 2000-03-08 Novartis Ag Organic compounds
NZ523459A (en) 2000-05-30 2004-08-27 Lactascan Aps Method for producing lactic acid
US20030165502A1 (en) 2000-06-13 2003-09-04 City Of Hope Single-chain antibodies against human insulin-like growth factor I receptor: expression, purification, and effect on tumor growth
WO2002002793A1 (fr) 2000-07-05 2002-01-10 Japan As Represented By Secretary Of Osaka University Processus de production de glycoproteine
JP4812228B2 (ja) 2000-08-10 2011-11-09 中外製薬株式会社 抗体含有溶液の凝集物生成または白濁抑制方法
AU2001277781A1 (en) * 2000-08-11 2002-02-25 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing preparations
GB0020685D0 (en) 2000-08-22 2000-10-11 Novartis Ag Organic compounds
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
CA2424977C (en) 2000-10-06 2008-03-18 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
ES2332402T5 (es) * 2000-10-12 2018-05-14 Genentech, Inc. Formulaciones de proteína concentradas de viscosidad reducida
US8703126B2 (en) * 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
EP2351838A1 (en) 2000-10-20 2011-08-03 Chugai Seiyaku Kabushiki Kaisha Crosslinking agonistic antibodies
CA2426084C (en) 2000-10-20 2013-12-10 Bioteknologisk Institut Improved fermentation method for production of heterologous gene products in lactic acid bacteria
DK1334731T3 (da) * 2000-10-25 2008-05-26 Chugai Pharmaceutical Co Ltd Forebyggende eller terapeutisk middel mod psoriasis omfattende anti-IL-6-receptorantistof som aktiv bestanddel
AU2000279625A1 (en) 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
AU2000279624A1 (en) * 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blooe vegf level-lowering agent containing il-6 antagonist as the active ingredient
EP1332222B1 (en) 2000-11-03 2009-03-25 Genentech, Inc. Metabolic rate shifts in fermentations expressing recombinant proteins
JP2004521619A (ja) 2000-11-22 2004-07-22 カージル ダウ ポリマーズ エルエルシー 有機生成物の合成のための方法及び材料
EP2275446A3 (en) 2001-01-05 2012-08-15 Pfizer Inc. Antibodies to insulin-like growth factor I receptor
BR0206586A (pt) 2001-01-19 2006-01-24 Basf Ag Processo para a produção de pantotenato aumentada, produto, composição, e, microorganismo recombinante para a produção de pantotenato aumentada
EP2336149A1 (en) 2001-03-09 2011-06-22 Chugai Seiyaku Kabushiki Kaisha Protein purification method
WO2002076578A1 (en) 2001-03-27 2002-10-03 Smithkline Beecham Corporation Control of glycoforms in igg
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
US7531358B2 (en) 2001-04-17 2009-05-12 Chugai Seiyaku Kabushiki Kaisha Method of quantifying surfactant
KR20020088848A (ko) 2001-05-21 2002-11-29 (주)코아바이오텍 세포배양관 및 이를 이용한 대량 세포배양기
JP2004532642A (ja) 2001-06-13 2004-10-28 ジェネンテック・インコーポレーテッド 動物細胞の培養方法と動物細胞でのポリペプチド産生
EP1416947A4 (en) 2001-07-23 2005-07-20 Zymogenetics Inc FERMENTATION MEDIUM AND METHOD
EP1798242B1 (fr) 2002-01-18 2013-01-23 Pierre Fabre Medicament Anticorps anti-IGF-IR et leurs applications
US7241444B2 (en) 2002-01-18 2007-07-10 Pierre Fabre Medicament Anti-IGF-IR antibodies and uses thereof
US7553485B2 (en) 2002-01-18 2009-06-30 Pierre Fabre Medicament Anti-IGF-IR and/or anti-insulin/IGF-I hybrid receptors antibodies and uses thereof
JP2006504394A (ja) 2002-02-08 2006-02-09 ジェネンコー・インターナショナル・インク 炭素基質から最終生成物を生成する方法
EP2311489A3 (en) 2002-02-14 2013-08-21 Chugai Seiyaku Kabushiki Kaisha Formulation of antibody-containing solutions comprising a sugar as a stabilizer
CA2417689C (en) 2002-03-05 2006-05-09 F. Hoffmann-La Roche Ag Improved methods for growing mammalian cells in vitro
JP3958089B2 (ja) 2002-03-26 2007-08-15 有限会社新世紀発酵研究所 嫌気性菌の連続培養法
JP3822137B2 (ja) 2002-05-20 2006-09-13 中外製薬株式会社 動物細胞培養用培地の添加剤およびそれを用いたタンパク質の製造方法
KR101086533B1 (ko) 2002-05-24 2011-11-23 쉐링 코포레이션 중화 사람 항-igfr 항체, 이를 제조하는 방법 및 이를 포함하는 조성물
US8142810B2 (en) 2002-05-30 2012-03-27 The Procter & Gamble Company Dietary method for modulating glucose metabolism and associated conditions and increasing longevity
US7538195B2 (en) 2002-06-14 2009-05-26 Immunogen Inc. Anti-IGF-I receptor antibody
AU2002316575A1 (en) 2002-07-03 2004-01-23 Basf Aktiengesellschaft Microorganisms and processes for enhanced production of pantothenate
CA2491145A1 (en) 2002-07-03 2004-01-15 Basf Aktiengesellschaft Microorganisms and processes for enhanced production of pantothenate
CN1470632A (zh) 2002-07-25 2004-01-28 谢良志 一种动物细胞的优化流加悬浮培养方法
HUE027134T2 (en) 2002-09-11 2016-10-28 Chugai Pharmaceutical Co Ltd Method for protein purification
US20040209930A1 (en) 2002-10-02 2004-10-21 Carboni Joan M. Synergistic methods and compositions for treating cancer
AU2003291254A1 (en) 2002-11-05 2004-06-07 Mount Sinai School Of Medicine Of New York University ; Ptpn11 (shp-2) mutations and cancer
DE10255508A1 (de) 2002-11-27 2004-06-17 Forschungszentrum Jülich GmbH Verfahren zur Kultivierung von Zellen zur Produktion von Substanzen
ES2542885T3 (es) 2003-01-22 2015-08-12 Roche Glycart Ag Constructos de fusión y uso de los mismos para producir anticuerpos con mayor afinidad de unión al receptor de Fc y función efectora
EP1596885A2 (en) 2003-02-13 2005-11-23 Pfizer Products Inc. Uses of anti-insulin-like growth factor i receptor antibodies
JP4555924B2 (ja) 2003-02-24 2010-10-06 中外製薬株式会社 インターロイキン−6アンタゴニストを含有する脊髄損傷治療剤
CA2518980A1 (en) 2003-03-14 2004-09-30 Pharmacia Corporation Antibodies to igf-i receptor for the treatment of cancers
ATE549359T1 (de) 2003-04-02 2012-03-15 Hoffmann La Roche Antikörper gegen den insulinähnlichen wachstumsfaktor i-rezeptor und deren verwendungen
US20050158303A1 (en) 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
CN1798575A (zh) 2003-04-04 2006-07-05 健泰科生物技术公司 高浓度抗体和蛋白制剂
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
US7638605B2 (en) 2003-05-01 2009-12-29 ImClone, LLC Fully human antibodies directed against the human insulin-like growth factor-1 receptor
PT1623019E (pt) * 2003-05-15 2010-07-20 Wyeth Llc ALIMENTAÆO COM GLUCOSE DE MODO LIMITADO PARA CULTURA DE CéLULAS ANIMAIS
US7579157B2 (en) 2003-07-10 2009-08-25 Hoffmann-La Roche Inc. Antibody selection method against IGF-IR
CA2535071A1 (en) 2003-08-13 2005-02-24 Pfizer Products Inc. Modified human igf-1r antibodies
GB0321100D0 (en) 2003-09-09 2003-10-08 Celltech R&D Ltd Biological products
AR045614A1 (es) 2003-09-10 2005-11-02 Hoffmann La Roche Anticuerpos contra el recepctor de la interleuquina- 1 y los usos de los mismos
RU2392967C2 (ru) 2003-10-17 2010-06-27 Тугаи Сейяку Кабусики Кайся Терапевтический агент для мезотелиомы
FR2861080B1 (fr) 2003-10-20 2006-02-17 Lab Francais Du Fractionnement Anticorps presentant un taux de fucose et de galactose optimise
WO2005058967A2 (en) 2003-12-16 2005-06-30 Pierre Fabre Medicament Novel anti-insulin/igf-i hybrid receptor or anti-insulin/igf-i hybrid receptor and igf-ir antibodies and uses thereof
US8617550B2 (en) 2003-12-19 2013-12-31 Chugai Seiyaku Kabushiki Kaisha Treatment of vasculitis with IL-6 antagonist
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
JP2007523956A (ja) 2004-02-25 2007-08-23 ダナ−ファーバー キャンサー インスティテュート インク. 腫瘍細胞増殖を阻害するための方法
AR048335A1 (es) * 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
WO2005090405A1 (ja) 2004-03-24 2005-09-29 Chugai Seiyaku Kabushiki Kaisha インターロイキン-6受容体に対するヒト型化抗体のサブタイプ
WO2005115453A2 (en) 2004-04-16 2005-12-08 Genentech, Inc. Treatment of polychondritis and mononeuritis multiplex with anti-cd20 antibodies
EP2322215A3 (en) 2004-07-16 2011-09-28 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody
FR2873699B1 (fr) 2004-07-29 2009-08-21 Pierre Fabre Medicament Sa Nouveaux anticorps anti igf ir rt leurs utilisations
US7432359B2 (en) 2004-09-06 2008-10-07 Kirin Pharma Kabushiki Kaisha Anti-A33 antibody
EP1835022B1 (en) 2005-01-05 2015-02-11 Chugai Seiyaku Kabushiki Kaisha Cell culture method and utilization of the same
AU2006300234B2 (en) * 2005-10-14 2013-01-10 Chugai Seiyaku Kabushiki Kaisha Agents for suppressing damage to transplanted islets after islet transplantation
CN101330930B (zh) 2005-10-21 2011-11-23 中外制药株式会社 心脏病治疗剂
CA2626542C (en) 2005-10-21 2018-07-03 Gtc Biotherapeutics, Inc. Antibodies with enhanced antibody-dependent cellular cytotoxicity activity, methods of their production and use
AR057582A1 (es) 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
AU2006316629A1 (en) 2005-11-17 2007-05-31 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with alpha 4 beta 7 integrin
TW200803894A (en) 2005-11-25 2008-01-16 Univ Keio Prostate cancer therapeutic agents
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd STABILIZER PREPARATION CONTAINING ANTIBODIES
US20070190057A1 (en) * 2006-01-23 2007-08-16 Jian Wu Methods for modulating mannose content of recombinant proteins
US8771686B2 (en) 2006-01-27 2014-07-08 Chugai Seiyaku Kabushiki Kaisha Methods for treating a disease involving choroidal neovascularization by administering an IL-6 receptor antibody
BRPI0708677A2 (pt) 2006-03-09 2011-06-21 Hoffmann La Roche ensaio de anticorpo antifármaco
US7612178B2 (en) 2006-03-28 2009-11-03 Biogen Idec Ma Inc Anti-IGF-1R antibodies and uses thereof
WO2007116962A1 (ja) 2006-04-07 2007-10-18 Osaka University 筋再生促進剤
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
US20080014203A1 (en) 2006-04-11 2008-01-17 Silke Hansen Antibodies against insulin-like growth factor I receptor and uses thereof
DK2374818T3 (da) * 2006-06-02 2013-01-21 Regeneron Pharma Højaffinitetsantistoffer mod human IL-6-receptor
WO2008016134A1 (fr) 2006-08-04 2008-02-07 Norihiro Nishimoto PROCÉDÉ POUR PRÉDIRE LE PRONOSTIC DES PATIENTS ATTEINTS DE POLYARTHRITE rhumatoïde
US10982250B2 (en) 2006-09-18 2021-04-20 Genentech, Inc. Methods of protein production
JP4355743B2 (ja) * 2006-12-04 2009-11-04 株式会社神戸製鋼所 Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット
JP2010095445A (ja) 2006-12-27 2010-04-30 Tokyo Medical & Dental Univ Il−6アンタゴニストを有効成分とする炎症性筋疾患治療剤
MX2009007830A (es) 2007-01-23 2009-10-07 Univ Shinshu Inhibidor de rechazo cronico.
WO2008144763A2 (en) * 2007-05-21 2008-11-27 Alder Biopharmaceuticals, Inc. Antibodies to il-6 and use thereof
JP5424330B2 (ja) 2007-07-26 2014-02-26 国立大学法人大阪大学 インターロイキン6受容体阻害剤を有効成分とする眼炎症疾患治療剤
WO2009041621A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗il-6レセプター抗体
AU2008308163B2 (en) 2007-10-02 2013-03-21 Chugai Seiyaku Kabushiki Kaisha Therapeutic agents for graft-versus-host disease comprising interleukin 6 receptor inhibitor as active ingredient
JP2009092508A (ja) 2007-10-09 2009-04-30 Norihiro Nishimoto リウマチ治療剤の効果の予測方法
MX2010004007A (es) 2007-10-15 2010-06-15 Chugai Pharmaceutical Co Ltd Metodo para la produccion de un anticuerpo.
GB2453939A (en) 2007-10-22 2009-04-29 Ubidyne Inc Clockless analogue band-pass delta-sigma modulator
US8227195B2 (en) * 2007-12-15 2012-07-24 Hoffman-La Roche Inc. Distinguishing assay
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
AU2009223054A1 (en) 2008-03-11 2009-09-17 Genentech, Inc. Antibodies with enhanced ADCC function
DE102008013899A1 (de) * 2008-03-12 2009-09-17 F. Hoffmann-La Roche Ag Verfahren zur Herstellung rekombinanter Proteine bei konstantem Gehalt von pCO2 im Medium
TWI528973B (zh) * 2008-06-05 2016-04-11 Chugai Pharmaceutical Co Ltd Nerve infiltration inhibitor
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
JP5752038B2 (ja) 2009-07-31 2015-07-22 愼 前田 癌の転移抑制剤
US20110053223A1 (en) * 2009-08-14 2011-03-03 Robert Bayer Cell culture methods to make antibodies with enhanced adcc function
JP5711751B2 (ja) * 2009-10-26 2015-05-07 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft グリコシル化された免疫グロブリンの調製方法
AR080428A1 (es) 2010-01-20 2012-04-11 Chugai Pharmaceutical Co Ltd Formulaciones liquidas estabilizadas contentivas de anticuerpos
WO2011128096A1 (en) * 2010-04-16 2011-10-20 Roche Diagnostics Gmbh Polymorphism markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment
WO2011149046A1 (ja) 2010-05-28 2011-12-01 独立行政法人国立がん研究センター 膵癌治療剤
US9539322B2 (en) 2010-05-28 2017-01-10 National University Corporation Hokkaido University Method of enhancing an antitumor T cell response by administering an anti-IL-6 receptor antibody
CN103119176A (zh) * 2010-06-07 2013-05-22 霍夫曼-拉罗奇有限公司 用于预测对白介素-6受体抑制性单克隆抗体药物治疗的响应的基因表达标记
RU2591523C2 (ru) 2010-11-05 2016-07-20 Ф. Хоффманн-Ля Рош Аг Оптимизированный метод захвата антител хроматографией смешанного типа
MX2013005024A (es) 2010-11-08 2013-11-21 Chugai Pharmaceutical Co Ltd Anticuerpo anti-il-6 receptor administrado subcutaneamente.
KR101993488B1 (ko) 2011-09-01 2019-06-26 추가이 세이야쿠 가부시키가이샤 한외여과에 의해 고도로 농축된 항체를 포함하는 조성물의 제조 방법
KR20200085942A (ko) 2013-04-16 2020-07-15 제넨테크, 인크. 페르투주맙 변이체 및 그의 평가
CA2913687C (en) 2013-07-04 2022-12-13 F. Hoffmann-La Roche Ag Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
AU2016224409B2 (en) 2015-02-27 2021-01-28 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
AR104050A1 (es) 2015-03-26 2017-06-21 Chugai Pharmaceutical Co Ltd Proceso de producción con iones de cobre controlados

Also Published As

Publication number Publication date
US20220380827A1 (en) 2022-12-01
KR101961254B1 (ko) 2019-03-22
CA2773522A1 (en) 2011-05-05
CN104928336A (zh) 2015-09-23
KR20190031342A (ko) 2019-03-25
BR112012009828B1 (pt) 2022-05-03
MX2019000097A (es) 2023-01-05
ES2622366T3 (es) 2017-07-06
JP2013507979A (ja) 2013-03-07
HUE033758T2 (en) 2017-12-28
EP3202785A1 (en) 2017-08-09
TWI724448B (zh) 2021-04-11
CN102596995B (zh) 2015-08-12
KR101436219B1 (ko) 2014-09-01
TW201540837A (zh) 2015-11-01
MX2012004682A (es) 2012-09-07
US20210381020A1 (en) 2021-12-09
AU2010311567A1 (en) 2012-04-19
PL2493922T3 (pl) 2017-07-31
TW202330028A (zh) 2023-08-01
KR20140091070A (ko) 2014-07-18
TW201812013A (zh) 2018-04-01
US20200181669A1 (en) 2020-06-11
HK1171237A1 (en) 2013-03-22
KR102071834B1 (ko) 2020-01-30
US11021728B2 (en) 2021-06-01
US11377678B2 (en) 2022-07-05
HK1210224A1 (en) 2016-04-15
KR102223417B1 (ko) 2021-03-05
JP5711751B2 (ja) 2015-05-07
AU2010311567B2 (en) 2015-03-26
TWI675104B (zh) 2019-10-21
JP2015128436A (ja) 2015-07-16
TW201938197A (zh) 2019-10-01
CN102596995A (zh) 2012-07-18
EP3202785B1 (en) 2024-05-08
BR112012009828A8 (pt) 2020-09-24
KR101985153B1 (ko) 2019-05-31
TW201619392A (zh) 2016-06-01
KR102319842B1 (ko) 2021-11-01
EP2493922B1 (en) 2017-02-15
KR20190060877A (ko) 2019-06-03
CN104928336B (zh) 2020-05-08
IL218997A0 (en) 2012-06-28
US20110117087A1 (en) 2011-05-19
TWI534264B (zh) 2016-05-21
DK2493922T3 (en) 2017-04-24
SG10201913329XA (en) 2020-02-27
KR101860175B1 (ko) 2018-05-21
KR20120080640A (ko) 2012-07-17
KR20160084500A (ko) 2016-07-13
TWI670375B (zh) 2019-09-01
BR112012009828A2 (pt) 2020-08-18
CA2773522C (en) 2023-04-18
SG10201510640QA (en) 2016-01-28
KR20170110167A (ko) 2017-10-10
JP7083802B2 (ja) 2022-06-13
JP5982024B2 (ja) 2016-08-31
BR112012009828B8 (pt) 2022-10-25
US20220282298A1 (en) 2022-09-08
EP2493922A1 (en) 2012-09-05
US11136610B2 (en) 2021-10-05
BR122022001178B1 (pt) 2022-10-04
WO2011051231A1 (en) 2011-05-05
TW202116354A (zh) 2021-05-01
JP2022116264A (ja) 2022-08-09
JP2017019799A (ja) 2017-01-26
TWI795722B (zh) 2023-03-11
US10501769B2 (en) 2019-12-10
JP2020058371A (ja) 2020-04-16
US20210246478A1 (en) 2021-08-12
KR20180014847A (ko) 2018-02-09
TWI832492B (zh) 2024-02-11
IL263849A (en) 2019-01-31
US20160186228A1 (en) 2016-06-30
JP2019001796A (ja) 2019-01-10
SI2493922T1 (sl) 2017-06-30
US20200080125A1 (en) 2020-03-12
KR20210024685A (ko) 2021-03-05
TW201125976A (en) 2011-08-01
EP4406615A2 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
JP6385988B2 (ja) グリコシル化された免疫グロブリンの調製方法
AU2018203733B2 (en) Method for the production of a glycosylated immunoglobulin
AU2015203309B2 (en) Method for the production of a glycosylated immunoglobulin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250