JP5668704B2 - 車両空調システム - Google Patents

車両空調システム Download PDF

Info

Publication number
JP5668704B2
JP5668704B2 JP2012017793A JP2012017793A JP5668704B2 JP 5668704 B2 JP5668704 B2 JP 5668704B2 JP 2012017793 A JP2012017793 A JP 2012017793A JP 2012017793 A JP2012017793 A JP 2012017793A JP 5668704 B2 JP5668704 B2 JP 5668704B2
Authority
JP
Japan
Prior art keywords
evaporator
electric compressor
temperature
battery
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012017793A
Other languages
English (en)
Other versions
JP2013154805A (ja
Inventor
一志 好則
好則 一志
泰司 近藤
泰司 近藤
孝行 鎌田
孝行 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012017793A priority Critical patent/JP5668704B2/ja
Publication of JP2013154805A publication Critical patent/JP2013154805A/ja
Application granted granted Critical
Publication of JP5668704B2 publication Critical patent/JP5668704B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、電動圧縮機を用いて蒸発器に冷媒を送り空調すると共に電池を冷却する車両空調システムに関するものである。
従来、特許文献1に記載の電池温度制御装置が知られている。この特許文献1には、電池の空調に車室内空調用の冷媒を用いる考え方が開示されている。また、電池の加温に要する電力量を低減するために、電池用冷媒流路に強電系部品であるDC/DCコンバータと充電器が配置されている。そして、DC/DCコンバータと充電器からの排熱を利用して電池に供給される冷媒を加熱している。また、電池を迂回して冷媒を循環させるバイパス流路を有している。これにより、電池の加温に要する電力量を削減することができる。
特開2010−272289号公報
上記特許文献1のように、空調用の冷媒を活用して電池を冷却する場合においては、電動圧縮機から吐出された冷媒は、車室内のみを空調するだけでなく、電池も空調しなければならないため、電動圧縮機消費電力が大きくなる。その結果、電池冷却を行う時、同時に冷却している車室内空調用の蒸発器温度の方が下がりすぎ、蒸発器表面の水分が氷結するフロストが起きることがある。フロストが発生すると、蒸発器を空調風が通過できなくなり吹出口から空調風が出なくなったり、凍結臭が発生したりする可能性がある。凍結臭は、氷結した水分の表面に臭い成分が付着することで発生する。
本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、電池冷却中も、蒸発器のフロストを防止できると共に、電動圧縮機消費電力を少なくできる車両用空調システムを提供することにある。
従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。
本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を圧縮する電動圧縮機(2)、電動圧縮機(2)で圧縮された冷媒を蒸発させて冷却され車両の室内へ送風される空調風を冷却する蒸発器(8)、冷媒により冷却される電池(101)、および少なくとも電動圧縮機(2)の制御を行う制御装置(50)を備え、制御装置(50)は、電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている時、蒸発器(8)の温度の低下に伴い電動圧縮機(2)から吐出される冷媒の吐出量を少なくする吐出量減少手段(S1010、S1013)(S1301、S1316)を有し、制御装置(50)は、電動圧縮機(2)で電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている場合に蒸発器(8)の温度(TE)が第1所定温度より低くなったときに電動圧縮機(2)を停止させ、電動圧縮機(2)で電池(101)の冷却を行わず蒸発器(8)の冷却を行っている場合に蒸発器(8)の温度(TE)が第2所定温度より低くなったときに電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有し、第1所定温度は第2所定温度よりも低いことを特徴としている。
この発明によれば、電池の冷却と蒸発器の冷却とを同時に行っている場合、蒸発器の温度の低下に伴い電動圧縮機の吐出量を少なくするから、蒸発器のフロストを防止しつつ、電動圧縮機の消費動力を少なくできる。また、電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている場合の電動圧縮機停止温度である第1所定温度は、電動圧縮機で蒸発器の冷却のみを行っている場合の電動圧縮機停止温度である第2所定温度よりも低いから、電動圧縮機で蒸発器の冷却のみを行っている場合に車両の室内における空調負荷の減少によるフロストの発生を防止することができる。
請求項2に記載の発明では、冷媒を圧縮する電動圧縮機(2)、電動圧縮機(2)で圧縮された冷媒を蒸発させて冷却され車両の室内へ送風される空調風を冷却する蒸発器(8)、冷媒により冷却される電池(101)、および少なくとも電動圧縮機(2)の制御を行う制御装置(50)を備え、制御装置(50)は、電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている時、蒸発器(8)の温度の低下に伴い電動圧縮機(2)から吐出される冷媒の吐出量を少なくする吐出量減少手段(S1010、S1013)(S1301、S1316)を有し、更に、蒸発器(8)に送風する送風機(21)を有し、制御装置(50)は、車両の速度が低速か高速かを判定する車速判定手段(S1003、S1306)と、車両の速度が低速と判定された時に、送風機(21)の送風量に応じて電動圧縮機(2)の最高回転数(IVOmax)を決定する第1最高回転数決定手段(S1004、S1307)と、車両の速度が高速と判定された時に、送風機(21)の送風量に応じて決定された最高回転数(IVOmax)よりも高い回転数に電動圧縮機(2)の最高回転数(IVOmax)を決定する第2最高回転数決定手段(S1005、S1308)と、電池(101)の冷却と蒸発器(8)の冷却を同時に行っていない時に、最高回転数(IVOmax)を使用して電動圧縮機(2)の目標回転数を決定する目標回転数決定手段(S1011、S1312)と、を有することを特徴としている。
この発明によれば、電池の冷却と蒸発器の冷却とを同時に行っている場合、蒸発器の温度の低下に伴い電動圧縮機の吐出量を少なくするから、蒸発器のフロストを防止しつつ、電動圧縮機の消費動力を少なくできる。また、低速時は送風機の送風量に応じて電動圧縮機の最高回転数を決定するから車室内の騒音が大きくなりすぎないように電動圧縮機を駆動することができる。また、高速時においては走行騒音により電動圧縮機の騒音がかき消されるから、低速時に送風機の送風量に応じて決定する最高回転数よりも高い最高回転数を用いて目標回転数を決定することができる。従って、十分に車両の室内における空調を行いながら騒音の発生を抑制できる。
請求項3に記載の発明では、制御装置(50)は、電動圧縮機(2)で電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている場合に蒸発器(8)の温度(TE)が第1所定温度より低くなったときに電動圧縮機(2)を停止させ、電動圧縮機(2)で電池(101)の冷却を行わず蒸発器(8)の冷却を行っている場合に蒸発器(8)の温度(TE)が第2所定温度より低くなったときに電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有し、第1所定温度は第2所定温度よりも低いことを特徴としている。
この発明によれば、電池(101)の冷却と蒸発器(8)の冷却とを同時に行っている場合の電動圧縮機停止温度である第1所定温度は、電動圧縮機で蒸発器の冷却のみを行っている場合の電動圧縮機停止温度である第2所定温度よりも低いから、電動圧縮機で蒸発器の冷却のみを行っている場合に車両の室内における空調負荷の減少によるフロストの発生を防止することができる。
請求項4に記載の発明では、制御装置(50)は、電動圧縮機(2)で電池(101)の冷却を行わず蒸発器(8)の冷却を行っている時に、蒸発器(8)の温度(TE)が第2所定温度より低くなり蒸発器(8)の温度(TE)と目標蒸発器温度(TEO)との関係が所定関係式を満たす場合に電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有することを特徴としている。
この発明によれば、電池(101)の冷却を行っていない時は、蒸発器(8)の温度(TE)と目標蒸発器温度(TEO)との関係が所定関係式(例えばTEO−TE>1)を満たす時に電動圧縮機を停止させるから、電動圧縮機で電池の冷却を行っている場合においても行っていない場合においても車両の室内における空調負荷の減少により蒸発器にフロストが発生することを確実に防止することができると共に、目標蒸発器温度(TEO)を考慮して電動圧縮機の停止を行うことができる。
請求項5に記載の発明では、制御装置(50)は、電池(101)の温度に応じて電動圧縮機(2)の回転数を決定する手段(S1012)を有すると共に、蒸発器(8)の温度に応じて電動圧縮機(2)の回転数を決定する手段(S1013)を有し、決定された回転数のいずれか小さい方で電動圧縮機(8)を制御する手段(S1014)を有することを特徴としている。
この発明によれば、電池の温度に応じて電動圧縮機の回転数を決めると共に、蒸発器の温度が下がりすぎた時は電動圧縮機の回転数を蒸発器の温度に応じて決定して電動圧縮機から吐出される冷媒の吐出量を少なくすることにより、フロストを防止しつつ、電池の冷却を行って電池の温度上昇を軽減することができる。
なお、特許請求の範囲および上記各手段に記載の括弧内の符号ないし説明は、後述する実施形態に記載の具体的手段との対応関係を分かり易く示す一例であり、発明の内容を限定するものではない。
本発明の第1実施形態における車両用空調システムのCOOLサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるHOTサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるDRY EVAサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるDRY ALLサイクル時の冷媒の流れを説明する模式図である。 上記実施形態における各サイクルを切替える電磁弁および三方弁の動作状態を示す図表である。 上記実施形態におけるエアコンECUへの電磁弁等の接続を示すブロック構成図である。 上記実施形態におけるエアコンECUによる基本的な制御処理を示したフローチャートである。 図7のサイクル・PTC選択処理を示すフローチャートである。 図7のブロワ電圧決定処理を示すフローチャートである。 図7の圧縮機回転数等決定処理を示すフローチャートである。 図10に示す圧縮機回転数変化量決定処理の詳細を示す一部フローチャートである。 上記実施形態に用いる目標蒸発器温度と目標吹出温度との関係を示す特性図である。 本発明の第2実施形態における圧縮機回転数等決定処理を示すフローチャートである。 本発明の第3実施形態における車両用空調システムの冷媒の流れを説明する一部模式図である。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。
(第1実施形態)
以下、本発明の第1実施形態について図1〜図12を用いて詳細に説明する。第1実施形態は、蒸気圧縮式冷凍機をハイブリッド車両用の空調装置と電池冷却装置からなる車両用空調システムに適用したものである。
ハイブリッド車両は、ガソリン等の液体燃料を爆発燃焼させて動力を発生させる走行用内燃機関をなすエンジン30(図1)、走行補助用電動機機能および発電機機能を備える図示しない走行補助用の電動発電機、エンジン30への燃料供給量や点火時期等を制御するエンジン用電子制御装置(以下、エンジンECU60(図6)ともいう)、電動発電機やエンジンECU60等に電力を供給する電池(車載用蓄電装置)101、電動発電機の制御および無断変速機等の制御を行うと共にエンジンECU60に制御信号を出力するハイブリッド電子制御装置(以下、ハイブリッドECU70(図6)ともいう)を備えている。
したがってハイブリッド車両は、走行するための駆動源としてエンジン30と電動発電機とを有する。ハイブリッドECU70は、電動発電機およびエンジン30のいずれの駆動力を駆動輪に伝達するかの駆動切替えを制御する機能、および電池101の充放電を制御する機能を備えている。
また電池101は、車載用蓄電装置であって、車室内空調、走行等によって消費した電力を充電するための充電装置を備えており、例えばニッケル水素蓄電池、リチウムイオン電池等が用いられる。この充電装置は、電力供給源としての電気スタンドや商業用電源(家庭用電源)に接続されるコンセントを備えており、このコンセントに電源供給源を接続することにより、電池の充電を行うこともできる。
車両用空調システム100は、乗員の乗車前に行われる車室内空調運転(以下、乗車前空調運転またはプレ空調運転という)が実施可能な空調システムである。車両のユーザーが、乗車前空調運転を行いたいときに携帯する携帯機52(図6)を操作すると、制御装置をなすエアコンECU50は、携帯機52から送信される乗車前空調運転の命令信号を受信し、所定のプログラムによる演算を行って乗車前空調運転を実行するものである。
ユーザーは、車両に乗車しようとする前に車室内の空調環境を快適にしておくために、携帯機52を操作して、車両の空調システムに対して乗車前空調運転の指令を送信する。この乗車前空調運転は、原則として、車両のイグニッションスイッチがOFF状態であること、あるいはエアコンECU50に対して乗員が乗車している信号が送信されていないことが許容条件となる。
図1から図4に示す各サイクルにおいて、各電磁弁11〜14および三方弁4の動作状態を図5の図表に示している。また、図1から図4において、各サイクルにおける冷媒が流れる経路は太字実線で示し、冷媒が流れない経路は破線で示している。図1において、車両用空調システム100は、アキュムレータ式冷凍サイクルであるヒートポンプサイクル1(以下、単にヒートポンプとも言う)を用いた装置であり、車室内に送風空気を導く空調ケース20、この空調ケース20内に空気を導入して車室内へ送る室内用ブロワ21(空調用送風機、又は単に送風機ともいう)、および図6のように、エンジンECU60に接続されたエアコン電子制御装置(以下、エアコンECU50ともいう)を備える。
送風機21は、ブロワケース(図示せず)、ファン、ブロワモータよりなり、このブロワモータへの印加電圧に応じて、ブロワモータの回転速度が決定される。ブロワモータへの印加電圧は、上記エアコンECU50からの制御信号に基づいている。この結果、送風量がエアコンECU50により制御される。
送風機21のブロワケースの一方側には、空気を取り入れる空気取入口として、車室内空気(内気)を導入する内気導入口(図示せず)と、車室外空気(外気)を導入する外気導入口(図示せず)とが形成されるとともに、内気導入口と外気導入口との開口割合を調節する内外気切替手段を成す内外気切替ドア25(図6)が設けられている。
送風機21よりも送風空気の下流側における空調ケース20内の通風路には、上流側から下流側に進むにしたがい順に、図1の蒸発器8(冷却用熱交換器)、エアミックスドア22、ヒータコア23、凝縮器3(加熱用熱交換器)、PTCヒータ24(電気式補助熱源)が配置されている。
空調ケース20の他方側の下流端(図1の上方)は、車両のフロントウィンドウ(窓ガラス)の内表面に向かって送風空気を吐出するデフロスタ吹出口(図示せず)、乗員の上半身に向かって送風空気を吐出するフェイス吹出口(図示せず)、乗員足元に向かって送風空気を吐出するフット吹出口(図示せず)に接続されている。
蒸発器8は、送風機21直後の通路(通風路)全体を横断するように配置されており、送風機21から吹き出された空気全部が通過するようになっている。蒸発器8は、COOLサイクル運転時や除湿サイクル運転時において、内部を流れる冷媒の吸熱作用によって、送風空気を除湿したり冷却したりする冷却用熱交換器として機能する。
ヒータコア23は、少なくともその伝熱部分が空調ケース20内の温風側通路のみに位
置するように蒸発器8よりも送風空気の下流側に配置されている。ヒータコア23は、H
OTサイクル運転時において、内部を流れるエンジン30の冷却水の熱(水温)を利用して、周囲の空気を加熱する加熱用熱交換器として機能する。
凝縮器3は、少なくともその伝熱部分が、空調ケース20内の温風側通路のみに位置して配置されており、ヒータコア23よりもさらに送風空気の下流側に配置されている。凝縮器3はHOT(暖房)サイクル運転時、除湿サイクル運転時およびCOOLサイクル運転時において内部を流れる冷媒の放熱作用によって温風側通路を流れる送風空気を加熱する熱交換器として機能する。
PTC(positive temperature coefficient)ヒータ24は、少なくともその伝熱部分が温風側通路のみに位置して設置されており、凝縮器3よりもさらに送風空気の下流側に配置されている。PTCヒータ24は、HOTサイクル運転(ヒートポンプ運転)やCOOLサイクル運転(クーラ運転)において、温風側通路を流れる送風空気を加熱する補助的な加熱手段である。PTCヒータ24は、複数本の通電発熱素子部を備え、スイッチまたはリレーにて任意の本数の通電発熱素子部に通電されることによって発熱し、周囲の空気を暖めることができる。
この通電発熱素子部は、耐熱性を有する樹脂材料(例えば、66ナイロンやポリブタジエンテレフタレート等)で成形された樹脂枠の中にPTC素子を嵌め込むことにより構成したものである。また、PTCヒータ24は、さらに通電発熱素子部からの発熱を伝達する熱交換フィン部を有してもよい。この熱交換フィン部は、アルミニウムの薄板を波形状に成形したコルゲートフィンと、このコルゲートフィンを一定の形状に保つとともにPTC素子や電極板との接触面積を確保するアルミニウムプレートとを有している。コルゲートフィンとアルミニウムプレートとは、ろう付により接合されている。
蒸発器8よりも下流側であってヒータコア23や凝縮器3よりも上流側の通風路には、蒸発器8を通過した空気を、凝縮器3を通る空気と凝縮器3を迂回する空気とに分けたり、切り替えたりして、これらの空気の風量比を調整できるエアミックスドア22が設けられている。
エアミックスドア22は、アクチュエータ等によりそのドア本***置を変化させることで、空調ケース20内の二分された通路である温風側通路および冷風側通路のそれぞれの一部または全部を塞ぐことができる。そして、エアミックスドア22による温風側通路の開度は、温風側通路の横断方向の開口が開放される割合のことであり、0から100%の範囲で調整可能である。また、エアミックスドア22による冷風側通路の開度は、冷風側通路の横断方向の開口が開放される割合のことであり、0から100%の範囲で調整可能である。
ヒートポンプは、電動圧縮機(単に圧縮機とも言う)2、凝縮器3、三方弁4、室外熱交換器5、第1膨張弁10、第2膨張弁7、蒸発器8、アキュムレータ9、および各電磁弁11〜14を備える。このヒートポンプは、冷凍サイクル内を流れる冷媒(例えば、R134a、CO2等)の状態変化を利用することにより、冷房用の蒸発器8と暖房用の凝縮器3によって冷房、暖房および除湿を行うことができる。また、蒸発器8と凝縮器3とは、室外熱交換器5に対して、室内熱交換器を構成する。
COOLサイクル運転時の冷媒は、図1の太字実線の経路を白抜き矢印の向きに流れる。このCOOLサイクルは、除湿能力が大きく、図1に示すように、冷媒を吸入して吐出する電動圧縮機2と、電動圧縮機2から吐出された冷媒が流入する凝縮器3と、COOLサイクル運転時に、凝縮器3から流入する冷媒が空気と熱交換して放熱する室外熱交換器5と、凝縮器3を流出した冷媒を室外熱交換器5に向かわせる三方弁4と、室外熱交換器5から蒸発器8への冷媒流れを制御するように設けられた電磁弁11と、電磁弁11によって開放された流路を通ってきた冷媒を減圧する第2膨張弁7とを備える。
更に、COOLサイクルは、第2膨張弁7で減圧された冷媒が蒸発して送風空気を冷却する蒸発器8と、冷媒を気液分離するアキュムレータ9とを備え、これらを配管により環状に接続することにより形成されている。COOLサイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→室外熱交換器5→電磁弁11→第2膨張弁7→蒸発器8→アキュムレータ9→電動圧縮機2となる。
このようにCOOLサイクル運転経路は、三方弁4を室外熱交換器5側の流路と連通するように切り替えることによって、COOLサイクル運転時に、凝縮器3で送風空気と熱交換して冷却された冷媒が、第1膨張弁10を通らないで室外熱交換器5に流入し、更に電磁弁11によって開放された流路を通り、第2膨張弁7で減圧された後、蒸発器8に流入し、アキュムレータ9を経由して電動圧縮機2に吸入される。
COOLサイクル運転では、凝縮器として機能する室外熱交換器5から、熱が室外に放出され、蒸発器8から熱が吸収される。このとき、凝縮器3も発熱しているが、エアミックスドア22の位置制御で、車室内空気との熱交換量を少なくすることができる。また、電磁弁11と第2膨張弁7との間の通路には、逆流防止用の逆止弁15が設けられている。
電池用熱交換器102によって冷却される冷却水(ブライン)によって電池101が冷却される。冷却水はウォータポンプ103によって電池101と電池用熱交換器102とを循環する。電池用熱交換器102への冷媒の流入は電池用電磁弁104によって制御される。
電池の温度は、電池内を流れる冷却水の温度を検出するセンサ信号で判定する。電池が所定温度(40℃)以上であり高温と判定された場合は、制御装置をなす図示しない電池ECU、またはエアコン制御装置50は、電池用電磁弁104を開放し、ウォータポンプ103を回転させて電池冷却中の状態とする。このように電池101を冷却する電池用熱交換器102は、蒸発器8とは並列に接続された冷媒回路に設けられている。よって、電池冷却中は、冷媒流量が電池側に取られるために、蒸発器8による空調風の冷却作用が低下し、空調風の温度が上昇する。
次に、ヒートポンプのHOTサイクル運転時の冷媒は、図2の太字実線の経路を黒塗り矢印の向きに流れる。HOTサイクルは、暖房性能が大であり、除湿能力無しの運転である。図2に示すように、電動圧縮機2と、HOTサイクル運転時に電動圧縮機2から吐出された冷媒と空気とを熱交換させて空気を加熱する凝縮器3と、凝縮器3から流入した冷媒を減圧する減圧装置としての第1膨張弁10と、第1膨張弁10から室外熱交換器5への冷媒流れを制御するように設けられた電磁弁14と、第1膨張弁10で減圧された冷媒を蒸発させる室外熱交換器5と、室外熱交換器5から電動圧縮機2への冷媒流れを制御するように設けられた電磁弁12と、アキュムレータ9とを配管により環状に接続することにより、HOTサイクルが形成されている。
HOTサイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁14→室外熱交換器5→電磁弁12→アキュムレータ9→電動圧縮機2となる。また、電磁弁12とアキュムレータ9との間の通路には、逆流防止用の逆止弁16が設けられている。
なお、室外空気が極めて低いときは、HOTサイクルによる暖房は効率が悪いので、COOLサイクルにてエンジン30を稼動させ、エンジン冷却水(温水)の温度を上げて、ヒータコア23の熱で車室内が暖房される。また、図2のホットサイクルによる暖房時は、電池用電磁弁104が閉じており、ウォータポンプ103が回転していない。
次に、第1の除湿(DRY EVA)サイクル運転時の冷媒は、図3の太字実線の経路を斜線太矢印の向きに流れる。ヒートポンプの第1の除湿サイクルは、暖房性能が小、除湿能力が中レベルの運転であり、例えば、操作パネル51(図6)の操作等により、暖房能力が小レベルで車室内の除湿を行うときに選択されて実行される。
第1の除湿サイクルは、図3に示すように電動圧縮機2、凝縮器3、第1膨張弁10、第1膨張弁10から蒸発器8への冷媒流れを制御するように設けられた電磁弁13、第1膨張弁10で減圧された冷媒を蒸発させる蒸発器8、およびアキュムレータ9を配管により環状に接続することにより形成されている。
第1の除湿サイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁13→蒸発器8→アキュムレータ9→電動圧縮機2となる。この第1の除湿サイクル運転経路は、第1膨張弁10で減圧された冷媒が室外熱交換器5に流入しないで蒸発器8に流入して送風空気を冷却した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路である。
次に、第2の除湿(DRY ALL)サイクル運転時の冷媒は、図4の太字実線の経路を斜線太矢印の向きに流れる。ヒートポンプの第2の除湿サイクルは、暖房性能が中レベル、除湿能力が小レベルの運転であり、例えば、操作パネル51の操作等により、暖房能力が中レベルで車室内の除湿を行うときに選択されて実行される。
第2の除湿サイクルは、図4に示すように第1の除湿サイクル運転経路に加え、第1膨張弁10と電磁弁13の間で分岐した冷媒経路を有する。この分岐する冷媒経路は、第1膨張弁10と電磁弁13の間の通路から電磁弁14、室外熱交換器5および電磁弁12を通り、蒸発器8とアキュムレータ9の間の通路に合流するようになっている。
これにより、第2の除湿サイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁13→蒸発器8→アキュムレータ9→電動圧縮機2の経路と、第1膨張弁10→室外熱交換器5→電磁弁12→アキュムレータ9の経路とで構成される。
この第2の除湿サイクル運転経路は、第1膨張弁10で減圧された冷媒が、室外熱交換器5に流入しないで蒸発器8に流入して送風空気を冷却した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路と、室外熱交換器5に流入して空気から吸熱した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路とを有している。
電動圧縮機2は、内蔵された電動機2aにより駆動され、回転数制御が可能であり、回転数に応じて冷媒吐出流量が可変である。電動圧縮機2はインバータ90(図6)により周波数が調整された交流電圧が印加されて、その電動機2aの回転速度が制御される。インバータ90は車載電池から直流電源の供給を受け、エアコンECU50により制御される。
室外熱交換器5は、エンジンコンパートメント等の車室外に配置されて、外気と冷媒との熱交換を行うもので、室外ファン6から強制的に送風を受けてHOTサイクル運転時には蒸発器として機能し、COOLサイクル運転時には凝縮器として機能する。第1膨張弁10は固定絞り等の固定式膨張弁(例えばキャピラリチューブ)、定圧式膨張弁、機械式膨張弁等で構成される。第1膨張弁10は、HOTサイクル運転時に室外熱交換器5へ供給される冷媒を減圧膨脹させる。
第2膨張弁7は感温筒を備え、蒸発器8出口の冷媒の蒸発状態が適度な過熱度をもつように出口冷媒温度をフィードバックし適切な弁開度によって冷媒流量を制御する温度作動方式を採用している。HOTサイクルおよび各除湿サイクルでは、第2膨張弁7で減圧された低圧冷媒を蒸発器8で吸熱して蒸発させ、蒸発器8を通過した冷媒をアキュムレータ9に流入させ、アキュムレータ9で蒸発器8の出口冷媒の気液を分離し、アキュムレータ9内のガス冷媒を電動圧縮機2に吸入させる。
蒸発器(エバポレータ)8は、送風空気を冷却する冷却用熱交換器であり、COOLサイクル運転時に空調風を冷却する部材として機能する。この蒸発器8は、第2膨張弁7で減圧膨脹された低温低圧の冷媒と空気との熱交換を行うことにより、コア部を通過する空気を冷却する。
凝縮器3は、送風空気を加熱する加熱用熱交換器であり、空調ケース20内で蒸発器8の下流(風下)に配設されて、電動圧縮機2で圧縮された高温高圧の冷媒と空気との熱交換を行うことにより、コア部を通過する空気を加熱する。エンジン冷却水用のウォータポンプ31は、エンジン冷却水が循環する回路に設けられ、エンジン冷却水から成る温水をヒータコア23に供給する。このヒータコア23は、凝縮器3と共に送風空気を加熱する加熱器として機能する。
エアミックスドア22は、蒸発器8からの冷風と凝縮器3等(加熱器)との暖風との混合割合を制御する。アキュムレータ9は、冷凍サイクル内の過剰冷媒を一時蓄えると共に、気相冷媒のみを送り出して、電動圧縮機2に液冷媒が吸い込まれるのを防止する。三方弁4、常開型の電磁弁11、常閉型の電磁弁12、常閉型の電磁弁13、および常開型の電磁弁14は、流路切替手段であり、これらの上記各サイクルにおける動作状態は図5に示すとおりである。
冷媒圧力センサ40は、ヒートポンプの高圧側の流路に設けられ、凝縮器3よりも上流の冷媒の高圧圧力、すなわち電動圧縮機2の吐出圧力Preを検出する。また、冷媒吸入温度センサ41は、室外熱交換器5の冷媒流れの下流側に設けられ、冷媒吸入温度を検出する。
図6のエアコンECU50は、車室内の空調運転を制御する制御手段であり、マイクロコンピュータと、車室内前面に設けられた操作パネル51上の各種スイッチからの信号や、冷媒圧力センサ40、冷媒吸入温度センサ41、内気センサ42、外気センサ(外気温検出手段)43、日射センサ44、入口温度センサ45等からセンサ信号が入力される入力回路と、各種アクチュエータに出力信号を送る出力回路とを備えている。
マイクロコンピュータは、ROM(読み込み専用記憶装置)、RAM(読み込み書き込み可能記憶装置)等のメモリおよびCPU(中央演算装置)等から構成されており、操作パネル51等から送信された運転命令に基づいた演算に使用される各種プログラムを有している。
また、エアコンECU50は、上記の各サイクル運転時に、エアコン環境情報、エアコン運転条件情報および車両環境情報を受信してこれらを演算し、電動圧縮機2の設定容量を算出する。そして、エアコンECU50は、演算結果に基づいてインバータ90に対して制御信号を出力し、インバータ90によって電動圧縮機2の出力電力量が制御される。
このように乗員による操作パネル51や携帯機52の操作によって、空調システムの運転・停止等の操作信号および設定温度等がエアコンECU50に入力されて各種センサの検出信号が入力されると、エアコンECU50は、エンジンECU60、ハイブリッドECU70、ナビゲーションECU80等と通信し、各種の演算結果に基づいて、電動圧縮機2、室内用ブロワ(空調用送風機または単に送風機とも言う)21、室外ファン6、PTCヒータ24、三方弁4、電磁弁11〜14、内外気切替ドア25、吹出口切替ドア26等の各機器の運転を制御する。ナビゲーションECU80は、たとえば自車の位置情報等をエアコンECU50に送信する。
図7は、上記実施形態におけるエアコンECU50による基本的な制御処理を示したフローチャートである。イグニッションスイッチが投入されてエアコンECU50に電源が供給されると図7の制御がスタートする。以降の各ステップに係る処理は、エアコンECU50によって実行されるものである。
(プレ空調判定)
エアコンECU50は、上記の各種センサからの信号、操作パネル51に設けられた各種操作部材からの信号、または遠隔操作可能な操作手段である携帯機52からの信号等に基づいて、車室内を空調するように構成されている。車両が継続的に停止して乗員が搭乗していないときには、エアコンECU50は、上記携帯機52からのプレ空調要求の有無、または予め設定されたプレ空調運転指令を監視している。
図7は、上記実施形態によるエアコンECUにおける全体制御を示すフローチャートである。この図7のステップS1では、携帯機52からプレ空調要求があった場合、または予め送信入力された空調要求時刻に基づいてプレ空調を開始するタイミングとなった場合には、車両が停止状態であるか否かを判断するとともに、電源電力がプレ空調作動時の要求電力に対し大きいか否か判断する。車両が停止状態であり、電源電力がプレ空調要求電力より大きいことを確認したら、プレ空調の実施を許可するためにプレ空調フラグを立てる。
次に、ステップS2で図6のエアコンECU50内のRAM等に記憶されている各パラメータ等を初期化(イニシャライズ)する。次に、ステップS3で操作パネル51等からのスイッチ信号等を読み込む。次に、ステップS4で上記の各種センサからの信号を読み込む。
(TAO算出・目標蒸発器温度演算)
次に、ステップS5で、ROMに記憶された下記の数式1を用いて、車室内に吹き出す空気の目標吹出温度TAOを算出する。
(数式1)TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C
ここで、Tsetは、温度設定スイッチにて設定された設定温度、Trは内気センサ42にて検出された内気温度、Tamは外気センサ43にて検出された外気温度、Tsは日射センサ44にて検出された日射量である。また、Kset、Kr、KamおよびKsは各ゲインであり、Cは全体にかかる補正用の定数である。
そして、このTAOおよび上記各種センサからの信号により、エアミックスドア22のアクチュエータの制御値およびウォータポンプ31の回転数の制御値等を算出する。また、このステップS5では、目標吹出温度TAOに応じて、目標蒸発器温度TEOを、目標吹出温度TAOと目標蒸発器温度TEOとの関係を規定したマップ(図12)を用いて決定する。例えば、目標吹出温度TAOが10℃になると、それまで一定であった目標蒸発器温度TEOが目標吹出温度TAOに比例して大きくなるように設定される。
(サイクル・PTC選択)
次に、図7のステップS6で、サイクルとPTCヒータ選択との処理を行う。図8は、図7のサイクル・PTC選択処理を示すフローチャートである。図8において、ステップS801において、プレ空調か否かを判定する。プレ空調の場合は、ステップS802にて外気温が−3℃より低いか否かを判定する。
外気温が−3℃より低い場合は、ヒートポンプの効率が悪くなり、かつ、着霜しやすくなるので、ステップS803にてPTCヒータに通電することによるプレ空調を行う。外気温が−3℃より低くない場合は、ステップS804にて、自動選択されている吹出口モードがフェイス(FACE)か否かを判定する。
自動選択されている吹出口モードがフェイスの場合は、HOTサイクルによる暖房の必要が無いと判断して、ステップS805にてCOOLサイクルでのプレ空調を行う。吹出口モードがフェイスでない場合は、ステップS806にて、HOTサイクルでのプレ空調を行う。
ステップS801において、プレ空調か否かを判定して、プレ空調ではないと判定された場合は、ステップS807にて、外気温が−3℃より低いか否かを判定する。−3℃より低い場合は、ヒートポンプの効率が悪くなり、かつ着霜しやすくなるので、ステップS808にて、COOLサイクルによる空調を行い、エンジン30を稼動(エンジンON)させる。
ステップS807にて、外気温が−3℃より低いか否かを判定した結果、外気温が−3℃より低くない場合は、ステップS809にて、吹出口モードがフェイスか否かを判定する。フェイスの場合は、HOTサイクルの必要が無いと判断して、ステップS810にてCOOLサイクルの空調を行う。ステップS809にて、吹出口モードがフェイスか否かを判定した結果、フェイスでない場合は、ステップS811にて、HOTサイクルの空調を行う。
以上のように、たとえばプレ空調フラグが立っており、外気温が−3℃より低い場合は、ヒートポンプによる暖房の効率が悪くなり、かつ室外熱交換器5に着霜しやすくなるため、PTCヒータ24によるプレ空調を実施するため、PTCヒータ24に通電する。また、外気温が−3℃以上の場合は、自動運転での吹出口モードがフェイスモードの場合には、ヒートポンプによる暖房の必要なしと判断して、COOLサイクルによるプレ空調を実施する。外気温が−3℃以上であり、フェイスモード以外の場合には、HOTサイクルによる暖房のプレ空調を実施する。
プレ空調フラグが立っておらず、プレ空調でなく、外気温が−3℃より低い場合は、ヒートポンプによる暖房の効率が悪くなり、かつ、室外熱交換器5に着霜しやすくなるため、COOLサイクルによる空調を実施する。なお、このときは、エンジン30を稼動し、温水およびヒータコア23の温度を上昇させるようにする。なお、図1〜図4に示した各サイクルの選定は、操作パネル51を介して、マニュアル操作でも行うことができる。
(ブロワ電圧決定)
次に、図7に示すステップS7において、ROMに記憶されたマップを用いて目標吹出温度TAOに対応するブロワ電圧(室内用ブロワ21のブロワモータに印加する電圧)を決定する。このステップS7は、具体的には図9に基づいて実行される。図9は、図7のステップS7におけるブロワ電圧決定処理を示すフローチャートである。図9に示すように、ステップS901において、ブロワ制御がオートか否かを判定する。オートの場合、ステップS902にて、ベースとなる仮のブロワレベルf(TAO)を算出する。
次に、ステップS903において、ヒータコア23の水温およびPTCヒータ24の作動本数に応じて、ウオームアップ風量f(TW)を算出する。更に、ステップS904にて、吹出口がフット(FOOT)、バイレベル(B/L)、フットデフ(F/D)のいずれかであるか否かを判定する。いずれかであるときは、ステップS905に進み、いずれでもないときは、ステップS906に進む。
ステップS905では、ブロワレベルを、その時のf(TAO)の最小値とf(TW)とを比較し、そのうちの大きい方をブロワレベルとして決定する。次に、ステップS907では、決定されたブロワレベルをブロワ電圧に変換する。一方、ステップS906では、ブロワレベルを、f(TAO)で決定し、次に、ステップS908では決定されたブロワレベルをブロワ電圧に変換する。
ステップS901でブロワ風量の制御がオートでないと判定されたときは、ステップS909でLoからHiまでのマニュアル操作で、指定されたブロワレベルに従って4ボルトから12ボルトの電圧をブロワモータに印加する。
(吸込口モード決定)
次に、図7のステップS8で、ROMに記憶されたマップから、目標吹出温度TAOに対応する吸込口モードを決定する。具体的には、周知のように、目標吹出温度TAOが高いときには、内気循環モードが選択され、目標吹出温度TAOが低いときには、外気導入モードが選択される。
(吹出口モード決定)
次に、図7のステップS9で、ROMに記憶されたマップから、目標吹出温度TAOに対応する吹出口モードを周知のように決定する。目標吹出温度TAOが高いときには、フットモード(FOOT)が選択され、目標吹出温度TAOの低下に伴ってバイレベルモード(B/L)、さらにはフェイスモード(FACE)の順に選択され、本制御を終了する。
(圧縮機回転数等決定)
次に、図7のステップS10で電動圧縮機回転数等の決定処理を実行する。ステップS10は、具体的には図10に基づいて決定される。図10は、図7の電動圧縮機回転数等の決定処理を示すフローチャートである。
以下のフローチャートでは、まず、特開2000−318435号公報等に開示されたファジィ制御により、クーラ運転時にフロストを防止するための圧縮機回転数変化量を演算する。次に、ヒートポンプ時に異常高圧を防止するための圧縮機回転数変化量を演算する。以下具体的に図10および図11を用いて説明する。図11に示すマップは、温度偏差Enと偏差変化量EDOTとの関係を示すマップであり、予めROMに記憶されている。なお、この温度偏差En及び偏差変化量EDOTにおける圧縮機回転数変化量ΔfCは、ROMに記憶された所定のメンバーシップ関数およびルールに基づいて、上記ファジィ制御にて求められる。
図10および図11において、ステップS1001において、COOLサイクル時にフロストを防止するための圧縮機回転数変化量ΔfCを演算する。まず、エアコンECU50は、ステップS1001において、各種センサの検出信号を用いて算出した目標蒸発器温度TEOと、実際の蒸発器温度TE(図示しない蒸発器温度センサによって検出された温度)との温度偏差Enを以下の数式2を用いて演算する。なお、TEOは図12に示すマップに従って目標吹出温度TAOから求められる。この図12から判明するように、TEOは2℃から10℃の範囲で選ばれる。
(数式2) En=TEO−TE
さらに、以下の数式3を用いて偏差変化量EDOTを演算する。
(数式3) EDOT=En−En−1
ここで、Enは、1秒に1回更新されるため、En−1は、Enに対して1秒前の値と
なる。
さらに、エアコンECU50は、算出したEn及びEDOTと、図10のステップS1001に示すマップ(後述する図11に一例として記載のマップ)とを用いて、1秒前の電動機2aの「COOLサイクル時の圧縮機回転数変化量ΔfCを算出する。このCOOLサイクル時の圧縮機回転数変化量ΔfCは、COOLサイクル時の熱交換器のフロスト防止に貢献する値である。
次に、図10および図11のステップS1002において、同様に、HOTサイクル時に異常高圧を防止するための圧縮機回転数変化量ΔfHを演算する。このステップS1002では、目標圧力PDO、高圧圧力Pre(Preは冷媒圧力センサ40(図1、図6)にて測定した高圧圧力)、偏差Pn、偏差変化量PDOTを用いて、電動圧縮機2の圧縮機回転数変化量ΔfHを以下のように求める。
ヒートポンプによるHOTサイクル運転時において、図10のステップS1002において、先に求められた目標吹出温度TAOを、冷凍サイクルの高圧側を流れる冷媒の目標圧力PDO(以下、単にPDOともいう)に変換する。この変換は、周知の方法を用いればよく、目標吹出温度TAOを変換用マップでPDOに変換してもよい。
また、目標吹出温度TAOと、室内用ブロワ21の風量Vによって異なる温度効率φと、凝縮器3の吸入側空気温度とから飽和冷媒温度Tcを求め、この飽和冷媒温度Tcと飽和圧力Pc(凝縮器3の凝縮圧力)との関係に基づいて、上記飽和冷媒温度Tcに対応する飽和圧力Pcを求めて、この飽和圧力Pcを目標圧力PDOとしてもよい。次に、目標圧力PDOと、冷媒圧力センサ40にて検出された高圧圧力Preとの圧力偏差Pnを下記数式4によって算出する。
(数式4) Pn=PDO−Pre
また、偏差変化量PDOTを下記数式5によって算出する。
(数式5) PDOT=Pn−Pn−1
なお、Pn−1は、偏差Pnの先回の値である。また、nは自然数である。
図11のステップS1002には、圧力偏差Pnと、偏差変化量PDOTと、圧縮機回転数変化量ΔfHとの関係を示すマップの一例を記載している。次に、このPnとPDOTと、エアコンECU50のROMに記憶された図11に示すマップとを用いて、1秒前の圧縮機回転数fn−1に対して増減する圧縮機回転数変化量ΔfHを求める。なお、この圧力偏差Pnおよび偏差変化量PDOTにおける圧縮機回転数変化量ΔfHは、ROMに記憶された所定のメンバーシップ関数及び所定のルールに基づいて、ファジィ制御にて求める。
更に、図10の車速判定手段をなすステップS1003において、車速が30(km/h)を超えているか否かを判定する。車速が30(km/h)以下の低速の場合は、第1最高回転数決定手段をなすステップS1004にて、ブロワ電圧に応じた最高回転数IVOmax(rpm)を演算する。車速が30(km/h)以上の高速走行で騒音や振動が気にならない場合は、第2最高回転数決定手段をなすステップS1005にて圧縮機最高回転数IVOmax=7000(rpm)を設定する。
次に、ステップS1006にて、クーラ(つまりCOOLサイクル)か否かを判定する。クーラの場合は、ステップS1007にてΔfとしてΔfCを選択することで、フロスト防止できる。ヒートポンプサイクル(つまりHOTサイクル)の場合は、ステップS1008にて、ΔfとしてΔfHを選択することで、異常高圧防止を図ることができる。
更に、ステップS1009にて、仮の圧縮機回転数IVOdが、前回の圧縮機回転数にΔfを加えた値か、S1004で設定されたIVOmaxのうちいずれか小さいほうが選択されることで、今回の圧縮機回転数がS1004で設定されたIVOmaxで制限される。
次に、ステップS1010において電池冷却中か否かを判定する。電池冷却中か否かは、図1の電池用電磁弁104が開放されて冷媒が電池用熱交換器102に流入しており、かつ電池用のウォータポンプ103が回転して電池用熱交換器102で冷却された冷却水が電池101に流れ込んでいる場合を電池冷却中と判定し、そうでない場合を電池冷却中でないと判定する。
ステップS1010において、電池冷却中でない場合、目標回転数決定手段をなすステップS1011にて今回の圧縮機の目標回転数をステップS1009で求めた圧縮機回転数IVOdに設定する。電池冷却用の冷却水の温度が例えば40℃を超え、電池冷却中の場合は、ステップS1012にて、電池温度に応じた圧縮機目標回転数f(BAT)を決定する。更に、ステップS1013では蒸発器のフィン温度(エバフィン温度)に応じた圧縮機最高回転数IVOmaxを決定する。
最後に、ステップS1014で、今回の圧縮機目標回転数を、ステップS1012の圧縮機目標回転数f(BAT)と、ステップS1013の圧縮機最高回転数IVOmaxのうちいずれか小さい方の値として決定する。そして、ステップS1010からステップS1013、S1014は、電池101の冷却と蒸発器8の冷却を同時に行っている時、蒸発器8の温度の低下に伴い電動圧縮機2から吐出される冷媒の最高吐出量を少なくする吐出量減少手段を構成している。
この図10に示した制御においては、走行性能を確保するために電池冷却を行うが、空調負荷が少ないと、電池101(図1)の冷媒回路に対して並列の冷媒回路で冷やしている蒸発器8の温度が下がりすぎてフロストを起こす可能性がある。そのため、基本的には電池温度に応じて圧縮機回転数を決めるが、蒸発器温度が下がりすぎた時には蒸発器温度の低下に応じて圧縮機回転数を制限することにより、フロストを防止しつつ、圧縮機消費電流を少なくできる、これにより電動圧縮機2の電動機2aに供給される電池101の出力電流が減少するため、電池101の温度上昇が軽減される。
(各弁ON/OFF決定)
次に、図7のステップS11において、サイクル中の三方弁4および電磁弁11〜14等のONまたはOFF作動について決定する。この制御では、図5に示した各サイクルに対応する各弁の動作状態となるように、各弁の作動をオン、オフする出力信号を決定する。
(制御信号出力)
次に、図7のステップS12において、上記各ステップS1〜S11で算出または決定された各制御状態が得られるように、エンジンECU60、インバータ90、PTCヒータ24、各種アクチュエータ、三方弁4および電磁弁11〜14等に対して制御信号を出力する。そして、図7のステップS13において所定時間の経過を待って、ステップS3に戻り、継続して各ステップが実行される。
(第1実施形態の作用)
この第1実施形態では、電池101の冷却と蒸発器8の冷却を同時に行っている時、蒸発器温度の低下に伴い、ステップS1013のように、電動圧縮機2の吐出量を少なくするから、蒸発器8のフィンに水分が氷結するフロストを防止しつつ、電動圧縮機2の消費動力を少なくできる。
また、制御装置50は、電池温度に応じて電動圧縮機2の回転数を決定する手段S1012を有すると共に、蒸発器温度に応じて電動圧縮機2の回転数を決定する手段S1013を有し、決定されたいずれか小さい方の回転数で電動圧縮機2を制御する手段S1014を有する。これにより、電池温度に応じて圧縮機回転数を決めると共に、蒸発器温度が下がりすぎた時は電動圧縮機2の回転数を蒸発器温度に応じて決定して電動圧縮機2から吐出される冷媒の吐出量を少なくすることができるから、フロストを防止しつつ、電池冷却をおこなうので、電池101の温度上昇を軽減することができる。
車速判定手段をなすステップS1003で車速を判定し、低速時は送風機21の送風量(ブロワ電圧)に応じて電動圧縮機2の最高回転数を決定する第1最高回転数決定手段(ステップS1004)を有するから車室内の騒音が大きくなりすぎないように電動圧縮機2を駆動することができる。一方、高速時においては、走行騒音により電動圧縮機2の騒音がかき消されるので、送風機21の送風量に応じて決定するよりも高い電動圧縮機2の最高回転数を第2最高回転数決定手段をなすステップS1005で決定することができる。従って、十分に車両の室内における空調を行いながら騒音の発生を抑制できる。
ステップS1010で電池冷却中と判断されたときに、ステップS1013において蒸発器温度を監視し、蒸発器温度が所定温度より低くなる場合には、圧縮機回転数を低下させることで、電池冷却中も、蒸発器8のフロストを防止できると共に、圧縮機消費電力を少なくできる。
本発明によらない場合は、走行性能を確保するために電池冷却を行うと、空調負荷が少ない場合に、蒸発器の温度が下がりすぎてフロストを起こす可能性がある。本発明による第1実施形態では、基本的には電池温度に応じて圧縮機回転数を決定するが、蒸発器温度が下がりすぎた時には、圧縮機回転数を制限することにより、フロストを防止しつつ、圧縮機消費電力を少なくできるので、電池の温度上昇も少なくできる。
(第1実施形態の変形例)
なお、図10のステップS1012では、電池温度に応じて圧縮機目標回転数f(BAT)を演算したが、電池の出力(kw)または出力電流(アンペア)や、電池冷却用の冷却水の水温・流量、気温、車速、アクセル開度、モータトルク等の他の電池温度に関わる要因で、圧縮機目標回転数f(BAT)を決めてもよい。また車両がハイブリッド車でなく電気自動車(EV)の場合は現時点の電池の残存電力量による走行可能距離に応じて圧縮機目標回転数を決めてもよい。
また、図10のステップS1012では、電池温度に応じて圧縮機目標回転数f(BAT)を演算し、かつステップをS1013で、蒸発器フィン温度で最高回転数IVOmax2を演算し、次に、ステップS1014で、電池冷却に必要な今回の目標回転数(rpm)をf(BAT)とIVOmax2とのうちいずれか小さいほうを選択することで決定したが、ステップS1012のf(BAT)を演算せずに、ステップS1013のIVOmax2を今回の目標回転数(rpm)としても良い。
(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。図13において、ステップS1301において、電池101を冷却中か否かを判定する。電池101の冷却中でない場合、ステップS1302で目標蒸発器温度TEOとセンサで検出した蒸発器温度TEとを比較し、蒸発器温度TEと目標蒸発器温度TEOとの関係が所定関係式をなす(TEO−TE>1)を満たす時には、圧縮機停止手段をなすステップS1303にて、省電力のため、電動圧縮機2を停止する。
一方、ステップS1301において、電池101の冷却中と判定された場合は、ステップS1315で蒸発器温度TEと−2℃とを比較し、蒸発器温度TEが(TE<−2℃)を満たす第1所定温度よりも低くなった時には、ステップS1303にて、省電力のため、電動圧縮機2を停止する。また、ステップS1315で蒸発器温度TEが(TE<−2℃)を満たさない時には、ステップS1316にて、蒸発器8のフィン温度(エバフィン温度)に応じて今回の電動圧縮機2の目標回転数を決定する。
このように、図13において、制御装置をなすエアコンECU50は、蒸発器(8)の温度TEに応じて電動圧縮機2を停止させる圧縮機停止手段であるステップS1303を有している。そして、電動圧縮機2で電池101の冷却と蒸発器8の冷却を同時に行っている時(ステップS1301においてYESの時)は、電動圧縮機2で電池101の冷却を行わず蒸発器8の冷却を行っている時(ステップS1301においてNOの時)に比べて、蒸発器8の温度TEを低く設定している。また、目標蒸発器温度TEOは、この実施形態においては図12のように、2℃から10℃の範囲内で目標吹出温度TAOに応じて選定される。
ステップS1301において、電池冷却中でないとき(NOの時)は、蒸発器温度TEと目標蒸発器温度TEOとが所定関係式をなす(TEO−TE>1)を満たさない時(ステップS1302においてNOの時)には、ステップS1304において、特開2000−318435号公報等に開示されたファジィ制御により、クーラ運転時にフロストを防止するための圧縮機回転数変更量を演算する。この演算は、図11のステップS1001と同じである。次に、ステップS1305において、同様に、ヒートポンプ時に異常高圧を防止するための圧縮機回転数変更量を演算する。この演算は、図11のステップS1002と同じである。
次に、ステップS1306において、車速が30(km/h)を超えているか否かを判定する。車速が30(km/h)超えていない低速の場合は、第1最高回転数決定手段を成すステップS1307にて、ブロワ電圧(送風機風量または回転数に関係する値)に応じた最高回転数IVOmaxを演算する。車速が30(km/h)を超えている高速の場合、第2最高回転数決定手段をなすステップS1308において、最高回転数IVOmaxを7000rpmに設定する。
ステップS1309では、クーラ(COOLサイクル)か否かを判定する。クーラの場合、ステップS1310にてΔfCを選択することで、フロスト防止できる。ヒートポンプサイクルの場合は、ステップS1311にて、ΔfHを選択することで、異常高圧防止が図れる。
次に、目標回転数決定手段をなすステップS1312にて、前回の圧縮機回転数に上記Δfを加えた値と最高回転数IVOmaxの値のうちいずれか小さいほうを選択し、今回の目標回転数とする。これにより、設定されたIVOmaxで電動圧縮機2の今回の目標回転数が制限される。
これによれば、車室内の騒音が大きくなりすぎないように電動圧縮機2を駆動することができる。また、高速時においては、走行騒音により電動圧縮機2の騒音がかき消されるから、低速時に送風機21の送風量に応じて決定するよりも高い最高回転数を用いて目標回転数を決定することができる。従って、十分に車両の室内における空調を行いながら騒音の発生を抑制できる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。なお、以降の各実施形態においては、上述した実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。上述の実施形態では、電池側の冷媒流路のみに電池用電磁弁を設けたが、図14のように、蒸発器8側にも蒸発器用電磁弁107を設けても良い。このように蒸発器用電磁弁107と電池用電磁弁104を設けて、それら電磁弁104、107の作動を組み合わせることにより、蒸発器8のみの冷却、電池101のみの冷却、蒸発器8および電池101の両方の冷却を選択できる。
(その他の実施形態)
本発明は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。前述の実施形態では、ハイブリッド自動車に本発明を適用しているが、ハイブリッド自動車に限るものではなく、内燃機関よりなるエンジンの無い電気自動車(EV)であってもよい。更に、前述の実施形態では、電気式補助熱源としてPTCヒータ24を採用しているが、これに限定するものではない。電気式補助熱源は、通電されることにより、発熱体等から発熱して周囲の空気や物体を加熱できれば他の装置でもよいし、PTCヒータ24を省略しても良い。
また、ヒートポンプサイクルの車両用空調システムを実施形態にて示したが、本発明は、クーラサイクル(エアコンサイクルとも呼ばれる)を使用した車両用空調システムにも適用できる。なお、クーラサイクルとは、ヒータコアでエンジン冷却水温を使用して暖房を行い、かつ高圧、かつ液体の冷媒を車内にある膨張弁で減圧して気化を開始させた状態で空調ケース内の蒸発器へ導き、気化した冷媒を電動圧縮機で圧縮して、空調ケース外部のコンデンサへ送るサイクルである。
次に、上記実施形態では、電動圧縮機から吐出された冷媒を利用して電池の冷却を行っている時は、電池の冷却を行っていない時に比べて、電動圧縮機の最高回転数を高く設定したが、電動圧縮機の回転数を大きくすると電動圧縮機の冷媒吐出量も多くなる。従って、電動圧縮機から吐出された冷媒を利用して電池の冷却を行っている時は、電池の冷却を行っていない時に比べて、電動圧縮機が吐出する冷媒の最高吐出量が多くなるように設定しても同じ結果が得られる。
なお、蒸発器の温度の低下に伴い電動圧縮機から吐出される冷媒の吐出量を少なくするとは、蒸発器の温度の低下に応じて図10のステップS1013のように吐出量(最高回転数)を減少させることだけでなく、蒸発器の温度が所定量まで低下したときに、冷媒の吐出量を所定量以下に制限することも含まれる。
2 電動圧縮機
8 蒸発器
21 送風機
50 制御装置
101 電池
S1010、S1013、S1301、S1316 吐出量減少手段
S1012 電池温度に応じて電動圧縮機の回転数を決定する手段
S1013 蒸発器温度に応じて電動圧縮機の回転数を決定する手段
S1014 小さい方の回転数で電動圧縮機を制御する手段
S1303 圧縮機停止手段
S1003、S1306 車速判定手段
S1004、S1307 第1最高回転数決定手段
S1005、S1308 第2最高回転数決定手段
S1011、S1312 目標回転数決定手段
IVOmax 最高回転数
TE 蒸発器の温度

Claims (5)

  1. 冷媒を圧縮する電動圧縮機(2)、
    前記電動圧縮機(2)で圧縮された冷媒を蒸発させて冷却され車両の室内へ送風される空調風を冷却する蒸発器(8)、
    前記冷媒により冷却される電池(101)、および
    少なくとも前記電動圧縮機(2)の制御を行う制御装置(50)を備え、
    前記制御装置(50)は、前記電池(101)の冷却と前記蒸発器(8)の冷却とを同時に行っている時、前記蒸発器(8)の温度の低下に伴い前記電動圧縮機(2)から吐出される前記冷媒の吐出量を少なくする吐出量減少手段(S1010、S1013)(S1301、S1316)を有し、
    前記制御装置(50)は、前記電動圧縮機(2)で前記電池(101)の冷却と前記蒸発器(8)の冷却を同時に行っている場合に前記蒸発器(8)の温度(TE)が第1所定温度より低くなったときに前記電動圧縮機(2)を停止させ、前記電動圧縮機(2)で前記電池(101)の冷却を行わず前記蒸発器(8)の冷却を行っている場合に前記蒸発器(8)の温度(TE)が第2所定温度より低くなったときに前記電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有し、前記第1所定温度は前記第2所定温度よりも低いことを特徴とする車両用空調システム。
  2. 冷媒を圧縮する電動圧縮機(2)、
    前記電動圧縮機(2)で圧縮された冷媒を蒸発させて冷却され車両の室内へ送風される空調風を冷却する蒸発器(8)、
    前記冷媒により冷却される電池(101)、および
    少なくとも前記電動圧縮機(2)の制御を行う制御装置(50)を備え、
    前記制御装置(50)は、前記電池(101)の冷却と前記蒸発器(8)の冷却とを同時に行っている時、前記蒸発器(8)の温度の低下に伴い前記電動圧縮機(2)から吐出される前記冷媒の吐出量を少なくする吐出量減少手段(S1010、S1013)(S1301、S1316)を有し、
    更に、前記蒸発器(8)に送風する送風機(21)を有し、
    前記制御装置(50)は、
    前記車両の速度が低速か高速かを判定する車速判定手段(S1003、S1306)と、
    前記車両の速度が低速と判定された時に、前記送風機(21)の送風量に応じて前記電動圧縮機(2)の最高回転数(IVOmax)を決定する第1最高回転数決定手段(S1004、S1307)と、
    前記車両の速度が高速と判定された時に、前記送風機(21)の送風量に応じて決定された前記最高回転数(IVOmax)よりも高い回転数に前記電動圧縮機(2)の前記最高回転数(IVOmax)を決定する第2最高回転数決定手段(S1005、S1308)と、
    前記電池(101)の冷却と前記蒸発器(8)の冷却を同時に行っていない時に、前記最高回転数(IVOmax)を使用して前記電動圧縮機(2)の目標回転数を決定する目標回転数決定手段(S1011、S1312)と、を有することを特徴とする車両用空調システム。
  3. 前記制御装置(50)は、前記電動圧縮機(2)で前記電池(101)の冷却と前記蒸発器(8)の冷却を同時に行っている場合に前記蒸発器(8)の温度(TE)が第1所定温度より低くなったときに前記電動圧縮機(2)を停止させ、前記電動圧縮機(2)で前記電池(101)の冷却を行わず前記蒸発器(8)の冷却を行っている場合に前記蒸発器(8)の温度(TE)が第2所定温度より低くなったときに前記電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有し、前記第1所定温度は前記第2所定温度よりも低いことを特徴とする請求項に記載の車両用空調システム
  4. 前記制御装置(50)は、前記電動圧縮機(2)で前記電池(101)の冷却を行わず前記蒸発器(8)の冷却を行っている時に、前記蒸発器(8)の温度(TE)が前記第2所定温度より低くなり前記蒸発器(8)の温度(TE)と目標蒸発器温度(TEO)との関係が所定関係式を満たす場合は、前記電動圧縮機(2)を停止させる圧縮機停止手段(S1303)を有することを特徴とする請求項1又は3に記載の車両用空調システム。
  5. 前記制御装置(50)は、前記電池(101)の温度に応じて前記電動圧縮機(2)の回転数を決定する決定手段(S1012)を有すると共に、前記蒸発器(8)の温度に応じて前記電動圧縮機(2)の回転数を決定する決定手段(S1013)を有し、決定された回転数のいずれか小さい方で前記電動圧縮機を制御する手段(S1014)を有することを特徴とする請求項1から4のいずれか一項に記載の車両用空調システム。
JP2012017793A 2012-01-31 2012-01-31 車両空調システム Expired - Fee Related JP5668704B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017793A JP5668704B2 (ja) 2012-01-31 2012-01-31 車両空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017793A JP5668704B2 (ja) 2012-01-31 2012-01-31 車両空調システム

Publications (2)

Publication Number Publication Date
JP2013154805A JP2013154805A (ja) 2013-08-15
JP5668704B2 true JP5668704B2 (ja) 2015-02-12

Family

ID=49050437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017793A Expired - Fee Related JP5668704B2 (ja) 2012-01-31 2012-01-31 車両空調システム

Country Status (1)

Country Link
JP (1) JP5668704B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884807B2 (ja) * 2013-10-16 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両
CN107356023B (zh) * 2016-05-10 2019-12-10 比亚迪股份有限公司 热泵空调***及电动汽车
CN107356021B (zh) * 2016-05-10 2019-11-22 比亚迪股份有限公司 热泵空调***及电动汽车
CN107356022B (zh) * 2016-05-10 2021-02-23 比亚迪股份有限公司 热泵空调***及电动汽车
JP6948146B2 (ja) * 2017-04-18 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6884028B2 (ja) * 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN110385967A (zh) * 2018-04-19 2019-10-29 翰昂汽车零部件有限公司 车辆用空调装置
JP2019219107A (ja) * 2018-06-20 2019-12-26 株式会社デンソー 冷却設備及び冷却設備システム
JP2020093644A (ja) * 2018-12-12 2020-06-18 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR20210022916A (ko) * 2019-08-21 2021-03-04 현대자동차주식회사 차량용 공조 시스템 제어방법
CN113864924B (zh) * 2021-10-11 2022-11-08 广东美的制冷设备有限公司 空气调节装置的控制方法、控制器、装置和存储介质
CN114407610B (zh) * 2022-01-27 2024-03-15 南昌济铃新能源科技有限责任公司 一种预防房车空调结冰的方法和装置
CN115782532B (zh) * 2022-11-28 2024-06-04 重庆长安汽车股份有限公司 一种电动压缩机控制方法、***、电子设备及存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067670A (ja) * 2000-08-31 2002-03-08 Sanyo Electric Co Ltd 自動車用空気調和装置
JP2002067672A (ja) * 2000-08-31 2002-03-08 Sanyo Electric Co Ltd 自動車用空気調和装置
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
CN100376416C (zh) * 2003-02-28 2008-03-26 株式会社电装 用于车辆空调装置的压缩机控制***
JP4385678B2 (ja) * 2003-08-05 2009-12-16 株式会社デンソー 車両用バッテリ冷却システム
US7096683B2 (en) * 2003-09-12 2006-08-29 Ford Global Technologies, Llc Vehicle cooling system
JP2010100264A (ja) * 2008-10-27 2010-05-06 Denso Corp 車両用空調装置
JP2011112312A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 移動体の熱サイクルシステム
JP2011178309A (ja) * 2010-03-02 2011-09-15 Denso Corp 車両用空調装置
JP2011245894A (ja) * 2010-05-24 2011-12-08 Suzuki Motor Corp 車両用空調装置
JP2011246083A (ja) * 2010-05-31 2011-12-08 Suzuki Motor Corp 車両用空調装置

Also Published As

Publication number Publication date
JP2013154805A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5668704B2 (ja) 車両空調システム
JP5835036B2 (ja) 車両用空調システム
JP5668700B2 (ja) 車両空調システム
JP5831322B2 (ja) 車両用空調システム
JP5860361B2 (ja) 電動車両用熱管理システム
JP2001010334A (ja) ヒートポンプ式車両用空調装置
WO2020066719A1 (ja) 車両用空気調和装置
WO2013157214A1 (ja) 車載機器温調装置
JP2007069733A (ja) 車両用空調装置を利用した発熱体冷却システム
JP2004147379A (ja) ハイブリッド車用空調装置
JP5459060B2 (ja) 車両用空調装置
JP2011073668A (ja) 車両用空調装置
JP2011068155A (ja) 車両用空調装置
JP2011068156A (ja) 車両用空調装置
JP2004136699A (ja) ハイブリッド車用空調装置
JPH05270252A (ja) 電気自動車用暖房装置
JP2011020477A (ja) 車両用空調装置
JP5360006B2 (ja) 車両用空調装置
JP5533516B2 (ja) 車両用空調装置
JP2011063250A (ja) 車両用空調装置
JP7164986B2 (ja) 車両用空気調和装置
JP5494595B2 (ja) 車両用空調装置
JP2005178524A (ja) 燃料電池の加熱機能を有するヒートポンプ装置
WO2015068363A1 (ja) 車両用空調装置
JP5472015B2 (ja) 車両の運転モード入力装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees