JP5668700B2 - 車両空調システム - Google Patents

車両空調システム Download PDF

Info

Publication number
JP5668700B2
JP5668700B2 JP2012013233A JP2012013233A JP5668700B2 JP 5668700 B2 JP5668700 B2 JP 5668700B2 JP 2012013233 A JP2012013233 A JP 2012013233A JP 2012013233 A JP2012013233 A JP 2012013233A JP 5668700 B2 JP5668700 B2 JP 5668700B2
Authority
JP
Japan
Prior art keywords
air
battery
refrigerant
vehicle
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012013233A
Other languages
English (en)
Other versions
JP2013151231A (ja
Inventor
一志 好則
好則 一志
泰司 近藤
泰司 近藤
柳町 佳宣
柳町  佳宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012013233A priority Critical patent/JP5668700B2/ja
Publication of JP2013151231A publication Critical patent/JP2013151231A/ja
Application granted granted Critical
Publication of JP5668700B2 publication Critical patent/JP5668700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、圧縮機を用いて蒸発器に冷媒を送り、車室内を空調すると共に電池を冷却する車両空調システムに関する。
従来、特許文献1に記載の電池温度制御装置が知られている。この特許文献1には、電池冷却に空調用の冷媒を用いる考え方が開示されている。また、電池の加温に要する電力量を低減するために、電池用冷媒流路に強電系部品であるDC/DCコンバータと充電器が配置されている。そして、DC/DCコンバータと充電器からの排熱を利用して電池に供給される冷媒を加熱している。また、電池を迂回して冷媒を循環させるバイパス流路を有している。これにより、電池の加温に要する電力量を削減することができる。
また従来、特許文献2に記載の電気自動車用空調措置が知られている。この特許文献2は、作動音低減を目的にブロワ風量に応じて圧縮機最高回転数を規制する考え方を開示している。具体的には、送風機のLo運転時における送風騒音を低減するとともに、冷媒圧縮機のハンチングを少なくするために、圧縮機を駆動する電動機が、インバータの出力周波数に応じて回転数を可変されている。そして、インバータは、乗員によって手動操作される温度調節レバーが最小能力位置(最小冷房能力、最小暖房能力)にセットされた時に、出力周波数が最小とされている。
また、温度調節レバーが最大能力位置(最大冷房能力、最大暖房能力)にセットされた時に出力周波数が最大となる。空調制御装置により、温度調節レバーの操作位置に対応して出力周波数を可変する。また、空調制御装置は、風量切替えスイッチによって設定される風量レベルが「Lo」レベルの時は、「Me2」レベル以上の時に対して、電動機の最高回転数が低下するようにインバータの周波数特性を変更している。
特開2010−272289号公報 特開平7−315041号公報
空調用の冷媒を利用して質量の大きい電池冷却を行う時、電池冷却と蒸発器冷却を同時に行うと、蒸発器温度が上昇し、吹出温度が上昇するため、乗員が不快に感じることがある。更に、空調負荷が大きい時は、電池冷却が十分にできない可能性がある。しかし、上記特許文献1および2には、この問題点を解決する示唆が開示されていない。
本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、圧縮機の動力を利用して電池を冷却する時に、通常時の空調作用の静粛性を維持しながら、十分な空調性能と十分な電池冷却性能とを確保できる車両空調システムを提供することにある。
従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。
本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を圧縮する圧縮機(2)、冷媒を蒸発させることにより車両の室内を空調する空調風を冷却する蒸発器(8)、および冷媒により冷却される電池(101)を備え、更に、冷媒により電池(101)の冷却を行っている時は、電池(101)の冷却を行っていない時に比べて、圧縮機(2)の最高回転数(IVOmax)を高く設定するか、または、圧縮機が吐出する冷媒の最高吐出量を多く設定する手段(S1005、S1007)を備え、更に、車両の車速が所定車速を超えるか否かを判定する手段(S1003)と空調風を送風する空調用送風機(21)を有し、
所定車速を超えない場合は、空調用送風機(21)の回転数に応じて最高回転数(IVOmax)を高く設定するか、または、最高吐出量を多く設定し、
所定車速を超える場合は、冷媒により電池(101)の冷却を行っているか否かに応じて最高回転数(IVOmax)、または、最高吐出量を設定することを特徴としている。
この発明によれば、圧縮機から吐出された冷媒を利用して電池の冷却を行っている場合は、電池の冷却を行っていない場合に比べて、圧縮機の最高回転数を高く設定するか、または、最高吐出量を多く設定しているから、騒音上昇よりも蒸発器を通った空調風の吹出温度の上昇を抑えることを優先することができる。これによって、乗員の快適性を維持できると共に、電池の冷却性能も向上する。また、電池冷却時の車室内騒音が多少増加することで、車両を操縦するユーザーに、車速を抑制させたり、マイルドな車両加速を推奨したりすることができる。更に、車速を抑制したり、マイルドな加速で運転したりすれば、電池を冷やす必要も少なくなる。また、車速が所定車速を超えない低速走行の場合は、空調用送風機(21)の回転数に応じて圧縮機(2)の例えば最高回転数(IVOmax)を高く設定しているから、車内騒音を考慮して上限回転数を設定し、静粛な空調を行うことができる。また、高速走行の場合は、車内騒音を気にせずに吹出温度の上昇による乗員の不快感を軽減することができる。更に、高速走行時には電池の発熱量が増えるが、電池の冷却を十分に行うことができる。このように、乗員の快適性を維持できると共に、電池の冷却性能も向上する。また、電池冷却時の車室内騒音が多少増加することで、車両を操縦するユーザーに、車速を抑制させたり、マイルドな車両加速を推奨したりすることができ安全運転につながる。更に、車速を抑制したり、マイルドな加速で運転したりすれば、結果的に電池を冷やす必要も少なくなり、車室内騒音も少なくなる。
請求項2に記載の発明では、蒸発器(8)による空調風の冷却と、電池(101)の冷却を同時に行っている時、ユーザーへ電池冷却を行っているので冷房性能が低下する旨をユーザーに報知する手段(S1104)を備えたことを特徴としている。
この発明によれば、電池冷却を行っているので冷房性能が低下する旨をユーザーに報知するから、空調風の吹出温度が高くなったことに対するユーザーの不満足感を軽減することができる。更に、上記報知によって、車両を運転操作するユーザーに車速の抑制操作や、マイルドな加速操作を推奨することができる。そして、この推奨で、電池温度を低下させ、電池冷却の必要性を少なくすることで、空調風の吹出温度の上昇が抑えられ、空調の快適性を維持することができる。
請求項3に記載の発明では、冷媒により冷却される電池用熱交換器(102)を流れる冷却媒体により電池が冷却され、冷媒により電池(101)の冷却を行っているか否かは、電池用熱交換器(102)に冷媒が流れているか否かにより判定することを特徴としている。
この発明によれば、電池(101)の冷却を行っているか否かが容易に判定できる。
請求項に記載の発明では、報知する手段(S1104)による報知は、ディスプレイ上の通常表示の上に警告文字を重ねるポップアップ表示であることを特徴としている。
この発明によれば、電池冷却を行っているので冷房性能が低下する旨の報知は、ディスプレイ上の通常表示の上に警告文字を重ねるポップアップ表示であるから、運転者に対する警告効果が高く、車速の抑制につながる。
なお、特許請求の範囲および上記各手段に記載の括弧内の符号ないし説明は、後述する実施形態に記載の具体的手段との対応関係を分かり易く示す一例であり、発明の内容を限定するものではない。
本発明の第1実施形態における車両用空調システムのCOOLサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるHOTサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるDRY EVAサイクル時の冷媒の流れを説明する模式図である。 上記実施形態におけるDRY ALLサイクル時の冷媒の流れを説明する模式図である。 上記実施形態における各サイクルを切替える電磁弁および三方弁の動作状態を示す図表である。 上記実施形態におけるエアコンECUへの電磁弁等の接続を示すブロック構成図である。 上記実施形態におけるエアコンECUによる基本的な制御処理を示したフローチャートである。 図7のサイクル・PTC選択処理を示すフローチャートである。 図7のブロワ電圧決定処理を示すフローチャートである。 図7の圧縮機回転数等決定処理を示すフローチャートである。 本発明の第2実施形態を示す空調装置の表示部の制御を示す一部フローチャートである。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。
(第1実施形態)
以下、本発明の第1実施形態について図1〜図10を用いて詳細に説明する。第1実施形態は、蒸気圧縮式冷凍機をハイブリッド車両用の空調装置と電池冷却装置からなる車両用空調システムに適用したものである。図1は、本発明の第1実施形態となる車両用空調システムのCOOLサイクル時の冷媒の流れを説明する模式図である。図2は、上記実施形態におけるHOTサイクル時の冷媒の流れを説明する模式図である。図3は、上記実施形態におけるDRY EVAサイクル時の冷媒の流れを説明する模式図である。図4は、上記実施形態におけるDRY ALLサイクル時の冷媒の流れを説明する模式図である。図5は、上記各サイクルにおいて、各電磁弁および三方弁の動作状態を示す図表である。図6は、上記実施形態におけるエアコンECUへの接続を示すブロック構成図である。
ハイブリッド車両は、ガソリン等の液体燃料を爆発燃焼させて動力を発生させる走行用内燃機関をなすエンジン30(図1)、走行補助用電動機機能および発電機機能を備える図示しない走行補助用の電動発電機、エンジン30への燃料供給量や点火時期等を制御するエンジン用電子制御装置(以下、エンジンECU60(図6)ともいう)、電動発電機やエンジンECU60等に電力を供給する電池(車載用蓄電装置)101、電動発電機の制御および無断変速機等の制御を行うと共にエンジンECU60に制御信号を出力するハイブリッド電子制御装置(以下、ハイブリッドECU70(図6)ともいう)を備えている。
したがってハイブリッド車両は、走行するための駆動源としてエンジン30と電動発電機とを有する。ハイブリッドECU70は、電動発電機およびエンジン30のいずれの駆動力を駆動輪に伝達するかの駆動切替えを制御する機能、および電池101の充放電を制御する機能を備えている。
また電池101は、車載用蓄電装置であって、車室内空調、走行等によって消費した電力を充電するための充電装置を備えており、例えばニッケル水素蓄電池、リチウムイオン電池等が用いられる。この充電装置は、電力供給源としての電気スタンドや商業用電源(家庭用電源)に接続されるコンセントを備えており、このコンセントに電源供給源を接続することにより、電池の充電を行うこともできる。
車両用空調システム100は、乗員の乗車前に行われる車室内空調運転(以下、乗車前空調運転またはプレ空調運転という)が実施可能な空調システムである。車両のユーザーが、乗車前空調運転を行いたいときに携帯する携帯機52(図6)を操作すると、エアコンECU50は、携帯機52から送信される乗車前空調運転の命令信号を受信し、所定のプログラムによる演算を行って乗車前空調運転を実行するものである。
ユーザーは、車両に乗車しようとする前に車室内の空調環境を快適にしておくために、携帯機52を操作して、車両の空調システムに対して乗車前空調運転の指令を送信する。この乗車前空調運転は、原則として、車両のイグニッションスイッチがOFF状態であること、あるいはエアコンECU50に対して乗員が乗車している信号が送信されていないことが許容条件となる。
図1から図4に示す各サイクルにおいて、各電磁弁11〜14および三方弁4の動作状態を図5の図表に示している。また、図1から図4において、各サイクルにおける冷媒が流れる経路は太字実線で示し、冷媒が流れない経路は破線で示している。
図1において、車両用空調システム100は、アキュムレータ式冷凍サイクルであるヒートポンプサイクル1(以下、単にヒートポンプとも言う)を用いた装置であり、車室内に送風空気を導く空調ケース20、この空調ケース20内に空気を導入して車室内へ送る室内用ブロワ21(空調用送風機)、および図6のように、エンジンECU60に接続されたエアコン電子制御装置(以下、エアコンECU50ともいう)を備える。
室内用ブロワ21は、ブロワケース(図示せず)、ファン、ブロワモータよりなり、このブロワモータへの印加電圧に応じて、ブロワモータの回転速度が決定される。ブロワモータへの印加電圧は、上記エアコンECU50からの制御信号に基づいている。この結果、送風量がエアコンECU50により制御される。
室内用ブロワ21のブロワケースの一方側には、空気を取り入れる空気取入口として、車室内空気(内気)を導入する内気導入口(図示せず)と、車室外空気(外気)を導入する外気導入口(図示せず)とが形成されるとともに、内気導入口と外気導入口との開口割合を調節する内外気切替手段を成す内外気切替ドア25(図6)が設けられている。
室内用ブロワ21よりも送風空気の下流側における空調ケース20内の通風路には、上流側から下流側に進むにしたがい順に、図1の蒸発器8(冷却用熱交換器またはエバポレータとも言う)、エアミックスドア22、ヒータコア23、凝縮器3(加熱用熱交換器)、PTCヒータ24(電気式補助熱源)が配置されている。
空調ケース20の他方側の下流端(図1の上方)は、車両のフロントウィンドウ(窓ガラス)の内表面に向かって送風空気を吐出するデフロスタ吹出口(図示せず)、乗員の上半身に向かって送風空気を吐出するフェイス吹出口(図示せず)、乗員足元に向かって送風空気を吐出するフット吹出口(図示せず)に接続されている。
蒸発器8は、室内用ブロワ21直後の通路(通風路)全体を横断するように配置されており、室内用ブロワ21から吹き出された空気全部が通過するようになっている。蒸発器8は、COOLサイクル運転時や除湿サイクル運転時において、内部を流れる冷媒の吸熱作用によって、送風空気を除湿したり冷却したりする冷却用熱交換器として機能する。
ヒータコア23は、少なくともその伝熱部分が空調ケース20内の温風側通路のみに位
置するように蒸発器8よりも送風空気の下流側に配置されている。ヒータコア23は、H
OTサイクル運転時において、内部を流れるエンジン30の冷却水の熱(水温)を利用して、周囲の空気を加熱する加熱用熱交換器として機能する。
凝縮器3は、少なくともその伝熱部分が、空調ケース20内の温風側通路のみに位置して配置されており、ヒータコア23よりもさらに送風空気の下流側に配置されている。凝縮器3はHOT(暖房)サイクル運転時、除湿サイクル運転時およびCOOLサイクル運転時において内部を流れる冷媒の放熱作用によって温風側通路を流れる送風空気を加熱する熱交換器として機能する。
PTC(positive temperature coefficient)ヒータ24は、少なくともその伝熱部分が温風側通路のみに位置して設置されており、凝縮器3よりもさらに送風空気の下流側に配置されている。PTCヒータ24は、HOTサイクル運転やCOOLサイクル運転において、温風側通路を流れる送風空気を加熱する補助的な加熱手段である。PTCヒータ24は、複数本の通電発熱素子部を備え、スイッチまたはリレーにて任意の本数の通電発熱素子部に通電されることによって発熱し、周囲の空気を暖めることができる。
この通電発熱素子部は、耐熱性を有する樹脂材料(例えば、66ナイロンやポリブタジエンテレフタレート等)で成形された樹脂枠の中にPTC素子を嵌め込むことにより構成したものである。また、PTCヒータ24は、さらに通電発熱素子部からの発熱を伝達する熱交換フィン部を有してもよい。
この熱交換フィン部は、アルミニウムの薄板を波形状に成形したコルゲートフィンと、このコルゲートフィンを一定の形状に保つとともにPTC素子や電極板との接触面積を確保するアルミニウムプレートとを有している。コルゲートフィンとアルミニウムプレートとは、ろう付により接合されている。
蒸発器8よりも下流側であってヒータコア23や凝縮器3よりも上流側の通風路には、蒸発器8を通過した空気を、凝縮器3を通る空気と凝縮器3を迂回する空気とに分けたり、切り替えたりして、これらの空気の風量比を調整できるエアミックスドア22が設けられている。
エアミックスドア22は、アクチュエータ等によりそのドア本***置を変化させることで、空調ケース20内の二分された通路である温風側通路および冷風側通路のそれぞれの一部または全部を塞ぐことができる。そして、エアミックスドア22による温風側通路の開度は、温風側通路の横断方向の開口が開放される割合のことであり、0から100%の範囲で調整可能である。また、エアミックスドア22による冷風側通路の開度は、冷風側通路の横断方向の開口が開放される割合のことであり、0から100%の範囲で調整可能である。
ヒートポンプは、電動圧縮機(単に圧縮機とも言う)2、凝縮器3、三方弁4、室外熱交換器5、第1膨張弁10、第2膨張弁7、蒸発器8、アキュムレータ9、および各電磁弁11〜14を備える。このヒートポンプは、冷凍サイクル内を流れる冷媒(例えば、R134a、CO2等)の状態変化を利用することにより、冷房用の蒸発器8と暖房用の凝縮器3によって冷房、暖房および除湿を行うことができる。また、蒸発器8と凝縮器3とは、室外熱交換器5に対して、室内熱交換器を構成する。
COOLサイクル運転時の冷媒は、図1の太字実線の経路を白抜き矢印の向きに流れる。このCOOLサイクルは、除湿能力が大きく、図1に示すように、冷媒を吸入して吐出する電動圧縮機2と、電動圧縮機2から吐出された冷媒が流入する凝縮器3と、COOLサイクル運転時に、凝縮器3から流入する冷媒が空気と熱交換して放熱する室外熱交換器5と、凝縮器3を流出した冷媒を室外熱交換器5に向かわせる三方弁4と、室外熱交換器5から蒸発器8への冷媒流れを制御するように設けられた電磁弁11と、電磁弁11によって開放された流路を通ってきた冷媒を減圧する第2膨張弁7とを備える。
更に、COOLサイクルは、第2膨張弁7で減圧された冷媒が蒸発して送風空気を冷却する蒸発器8と、冷媒を気液分離するアキュムレータ9とを備え、これらを配管により環状に接続することにより形成されている。COOLサイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→室外熱交換器5→電磁弁11→第2膨張弁7→蒸発器8→アキュムレータ9→電動圧縮機2となる。
このようにCOOLサイクル運転経路は、三方弁4を室外熱交換器5側の流路と連通するように切り替えることによって、COOLサイクル運転時に、凝縮器3で送風空気と熱交換して冷却された冷媒が、第1膨張弁10を通らないで室外熱交換器5に流入し、更に電磁弁11によって開放された流路を通り、第2膨張弁7で減圧された後、蒸発器8に流入し、アキュムレータ9を経由して電動圧縮機2に吸入される。
COOLサイクル運転では、凝縮器として機能する室外熱交換器5から、熱が室外に放出され、蒸発器8から熱が吸収される。このとき、凝縮器3も発熱しているが、エアミックスドア22の位置制御で、車室内空気との熱交換量を少なくすることができる。また、電磁弁11と第2膨張弁7との間の通路には、逆流防止用の逆止弁15が設けられている。
電池用熱交換器102によって冷却される冷却水(ブライン)によって電池101が冷却される。冷却水はウォータポンプ103によって電池101と電池用熱交換器102とを循環する。電池用熱交換器102への冷媒の流入は電池用電磁弁104によって制御される。
電池の温度は、電池内を流れる冷却水の温度を検出するセンサ信号で判定する。電池が所定温度(40℃)以上であり高温と判定された場合は、図示しない電池ECUは電池用電磁弁104を開放し、ウォータポンプ103を回転させて電池冷却中の状態とする。
このように電池101を冷却する電池用熱交換器102は、蒸発器8とは並列に冷媒回路が接続されている。よって、電池冷却中は、冷媒流量が電池側に取られるために、蒸発器8による空調風の冷却作用が低下し、空調風の温度が上昇する。
次に、ヒートポンプのHOTサイクル運転時の冷媒は、図2の太字実線の経路を黒塗り矢印の向きに流れる。HOTサイクルは、暖房性能が大であり、除湿能力無しの運転である。図2に示すように、HOTサイクルは、電動圧縮機2と、HOTサイクル運転時に電動圧縮機2から吐出された冷媒と空気とを熱交換させて空気を加熱する凝縮器3と、凝縮器3から流入した冷媒を減圧する減圧装置としての第1膨張弁10と、第1膨張弁10から室外熱交換器5への冷媒流れを制御するように設けられた電磁弁14と、第1膨張弁10で減圧された冷媒を蒸発させる室外熱交換器5と、室外熱交換器5から電動圧縮機2への冷媒流れを制御するように設けられた電磁弁12と、アキュムレータ9と、を配管により環状に接続することにより形成されている。
HOTサイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁14→室外熱交換器5→電磁弁12→アキュムレータ9→電動圧縮機2となる。また、電磁弁12とアキュムレータ9との間の通路には、逆流防止用の逆止弁16が設けられている。
なお、室外空気が極めて低いときは、HOTサイクルによる暖房は効率が悪いので、COOLサイクルにてエンジン30を稼動させ、エンジン冷却水(温水)の温度を上げて、ヒータコア23の熱で車室内が暖房される。また、図2のホットサイクルによる暖房時は、電池用電磁弁104が閉じており、ウォータポンプ103が回転していない。
次に、第1の除湿(DRY EVA)サイクル運転時の冷媒は、図3の太字実線の経路を斜線太矢印の向きに流れる。ヒートポンプの第1の除湿サイクルは、暖房性能が小、除湿能力が中レベルの運転であり、例えば、操作パネル51(図6)の操作等により、暖房能力が小レベルで車室内の除湿を行うときに選択されて実行される。
第1の除湿サイクルは、図3に示すように電動圧縮機2、凝縮器3、第1膨張弁10、第1膨張弁10から蒸発器8への冷媒流れを制御するように設けられた電磁弁13、第1膨張弁10で減圧された冷媒を蒸発させる蒸発器8、およびアキュムレータ9を配管により環状に接続することにより形成されている。
第1の除湿サイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁13→蒸発器8→アキュムレータ9→電動圧縮機2となる。この第1の除湿サイクル運転経路は、第1膨張弁10で減圧された冷媒が室外熱交換器5に流入しないで蒸発器8に流入して送風空気を冷却した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路である。
次に、第2の除湿(DRY ALL)サイクル運転時の冷媒は、図4の太字実線の経路を斜線太矢印の向きに流れる。ヒートポンプの第2の除湿サイクルは、暖房性能が中レベル、除湿能力が小レベルの運転であり、例えば、操作パネル51の操作等により、暖房能力が中レベルで車室内の除湿を行うときに選択されて実行される。
第2の除湿サイクルは、図4に示すように第1の除湿サイクル運転経路に加え、第1膨張弁10と電磁弁13の間で分岐した冷媒経路を有する。この分岐する冷媒経路は、第1膨張弁10と電磁弁13の間の通路から電磁弁14、室外熱交換器5および電磁弁12を通り、蒸発器8とアキュムレータ9の間の通路に合流するようになっている。
これにより、第2の除湿サイクル運転経路は、電動圧縮機2→凝縮器3→三方弁4→第1膨張弁10→電磁弁13→蒸発器8→アキュムレータ9→電動圧縮機2の経路と、第1膨張弁10→室外熱交換器5→電磁弁12→アキュムレータ9の経路とで構成される。この第2の除湿サイクル運転経路は、第1膨張弁10で減圧された冷媒が、室外熱交換器5に流入しないで蒸発器8に流入して送風空気を冷却した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路と、室外熱交換器5に流入して空気から吸熱した後、アキュムレータ9を経由して電動圧縮機2に吸入される経路とを有している。
電動圧縮機2は、内蔵された電動機2aにより駆動され、回転数制御が可能であり、回転数に応じて冷媒吐出流量が可変である。電動圧縮機2はインバータ90(図6)により周波数が調整された交流電圧が印加されて、その電動機2aの回転速度が制御される。インバータ90は車載電池から直流電源の供給を受け、エアコンECU50により制御される。
室外熱交換器5は、エンジンコンパートメント等の車室外に配置されて、外気と冷媒との熱交換を行うもので、室外ファン6から強制的に送風を受けてHOTサイクル運転時には蒸発器として機能し、COOLサイクル運転時には凝縮器として機能する。
第1膨張弁10は固定絞り等の固定式膨張弁(例えばキャピラリチューブ)、定圧式膨張弁、機械式膨張弁等で構成される。第1膨張弁10は、HOTサイクル運転時に室外熱交換器5へ供給される冷媒を減圧膨脹させる。
第2膨張弁7は感温筒を備え、蒸発器8出口の冷媒の蒸発状態が適度な過熱度をもつように出口冷媒温度をフィードバックし適切な弁開度によって冷媒流量を制御する温度作動方式を採用している。HOTサイクルおよび各除湿サイクルでは、第2膨張弁7で減圧された低圧冷媒を蒸発器8で吸熱して蒸発させ、蒸発器8を通過した冷媒をアキュムレータ9に流入させ、アキュムレータ9で蒸発器8の出口冷媒の気液を分離し、アキュムレータ9内のガス冷媒を電動圧縮機2に吸入させる。
蒸発器(エバポレータ)8は、送風空気を冷却する冷却用熱交換器であり、COOLサイクル運転時に空調風を冷却する部材として機能する。この蒸発器8は、第2膨張弁7で減圧膨脹された低温低圧の冷媒と空気との熱交換を行うことにより、コア部を通過する空気を冷却する。
凝縮器3は、送風空気を加熱する加熱用熱交換器であり、空調ケース20内で蒸発器8の下流(風下)に配設されて、電動圧縮機2で圧縮された高温高圧の冷媒と空気との熱交換を行うことにより、コア部を通過する空気を加熱する。ウォータポンプ31は、エンジン冷却水が循環する回路に設けられ、エンジン冷却水から成る温水をヒータコア23に供給する。このヒータコア23は、凝縮器3と共に送風空気を加熱する加熱器として機能する。
エアミックスドア22は、蒸発器8からの冷風と凝縮器3等(加熱器)との暖風との混合割合を制御する。アキュムレータ9は、冷凍サイクル内の過剰冷媒を一時蓄えると共に、気相冷媒のみを送り出して、電動圧縮機2に液冷媒が吸い込まれるのを防止する。三方弁4、常開型の電磁弁11、常閉型の電磁弁12、常閉型の電磁弁13、および常開型の電磁弁14は、流路切替手段であり、これらの上記各サイクルにおける動作状態は図5に示すとおりである。
冷媒圧力センサ40は、ヒートポンプの高圧側の流路に設けられ、凝縮器3よりも上流の冷媒の高圧圧力、すなわち電動圧縮機2の吐出圧力Preを検出する。また、冷媒吸入温度センサ41は、室外熱交換器5の冷媒流れの下流側に設けられ、冷媒吸入温度を検出する。
図6のエアコンECU50は、車室内の空調運転を制御する制御手段であり、マイクロコンピュータと、車室内前面に設けられた操作パネル51上の各種スイッチからの信号や、冷媒圧力センサ40、冷媒吸入温度センサ41、内気センサ42、外気センサ(外気温検出手段)43、日射センサ44、入口温度センサ45等からセンサ信号が入力される入力回路と、各種アクチュエータに出力信号を送る出力回路とを備えている。
マイクロコンピュータは、ROM(読み込み専用記憶装置)、RAM(読み込み書き込み可能記憶装置)等のメモリおよびCPU(中央演算装置)等から構成されており、操作パネル51等から送信された運転命令に基づいた演算に使用される各種プログラムを有している。
また、エアコンECU50は、上記の各サイクル運転時に、エアコン環境情報、エアコン運転条件情報および車両環境情報を受信してこれらを演算し、電動圧縮機2の設定容量を算出する。そして、エアコンECU50は、演算結果に基づいてインバータ90に対して制御信号を出力し、インバータ90によって電動圧縮機2の出力電力量が制御される。
このように乗員による操作パネル51や携帯機52の操作によって、空調システムの運転・停止等の操作信号および設定温度等がエアコンECU50に入力されて各種センサの検出信号が入力されると、エアコンECU50は、エンジンECU60、ハイブリッドECU70、ナビゲーションECU80等と通信し、各種の演算結果に基づいて、電動圧縮機2、室内用ブロワ(空調用送風機とも言う)21、室外ファン6、PTCヒータ24、三方弁4、電磁弁11〜14、内外気切替ドア25、吹出口切替ドア26等の各機器の運転を制御する。ナビゲーションECU80は、たとえば自車の位置情報等をエアコンECU50に送信する。
図7は、上記実施形態におけるエアコンECU50による基本的な制御処理を示したフローチャートである。イグニッションスイッチが投入されてエアコンECU50に電源が供給されると図7の制御がスタートする。以降の各ステップに係る処理は、エアコンECU50によって実行されるものである。
(プレ空調判定)
エアコンECU50は、上記の各種センサからの信号、操作パネル51に設けられた各種操作部材からの信号、または遠隔操作可能な操作手段である携帯機52からの信号等に基づいて、車室内を空調するように構成されている。車両が継続的に停止して乗員が搭乗していないときには、エアコンECU50は、上記携帯機52からのプレ空調要求の有無、または予め設定されたプレ空調運転指令を監視している。
図7は、上記実施形態によるエアコンECUにおける全体制御を示すフローチャートである。この図7のステップS1では、携帯機52からプレ空調要求があった場合、または予め送信入力された空調要求時刻に基づいてプレ空調を開始するタイミングとなった場合には、車両が停止状態であるか否かを判断するとともに、電源電力がプレ空調作動時の要求電力に対し大きいか否か判断する。車両が停止状態であり、電源電力がプレ空調要求電力より大きいことを確認したら、プレ空調の実施を許可するためにプレ空調フラグを立てる。
(初期化)
次に、ステップS2で図6のエアコンECU50内のRAM等に記憶されている各パラメータ等を初期化(イニシャライズ)する。
(スイッチ信号読み込み)
次に、ステップS3で操作パネル51等からのスイッチ信号等を読み込む。
(センサ信号読み込み)
次に、ステップS4で上記の各種センサからの信号を読み込む。
(TAO算出・目標エバポレータ温度演算)
次に、ステップS5で、ROMに記憶された下記の数式1を用いて、車室内に吹き出す空気の目標吹出温度TAOを算出する。
(数式1)TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C
ここで、Tsetは、温度設定スイッチにて設定された設定温度、Trは内気センサ42にて検出された内気温度、Tamは外気センサ43にて検出された外気温度、Tsは日射センサ44にて検出された日射量である。また、Kset,Kr,KamおよびKsは各ゲインであり、Cは全体にかかる補正用の定数である。そして、このTAOおよび上記各種センサからの信号により、エアミックスドア22のアクチュエータの制御値およびウォータポンプ31の回転数の制御値等を算出する。また、このステップS5では、目標吹出温度TAOに応じて、目標エバポレータ温度TEOを、目標吹出温度TAOと目標エバポレータ温度TEOとの関係を規定したマップを用いて決定する。例えば、目標吹出温度TAOが10℃になると、それまで一定であった目標エバポレータ温度TEOが目標吹出温度TAOに比例して大きくなるように設定される。
(サイクル・PTC選択)
次に、図7のステップS6で、サイクルとPTCヒータ選択との処理を行う。図8は、図7のサイクル・PTC選択処理を示すフローチャートである。図8において、ステップS801において、プレ空調か否かを判定する。プレ空調の場合は、ステップS802にて外気温が−3℃より低いか否かを判定する。
外気温が−3℃より低い場合は、ヒートポンプの効率が悪くなり、かつ、着霜しやすくなるので、ステップS803にてPTCヒータに通電することによるプレ空調を行う。外気温が−3℃より低くない場合は、ステップS804にて、自動選択されている吹出口モードがフェイス(FACE)か否かを判定する。
自動選択されている吹出口モードがフェイスの場合は、HOTサイクルによる暖房の必要が無いと判断して、ステップS805にてCOOLサイクルでのプレ空調を行う。吹出口モードがフェイスでない場合は、ステップS806にて、HOTサイクルでのプレ空調を行う。
ステップS801において、プレ空調か否かを判定して、プレ空調ではないと判定された場合は、ステップS807にて、外気温が−3℃より低いか否かを判定する。−3℃より低い場合は、ヒートポンプの効率が悪くなり、かつ着霜しやすくなるので、ステップS808にて、COOLサイクルによる空調を行い、エンジン30を稼動(エンジンON)させる。
ステップS807にて、外気温が−3℃より低いか否かを判定した結果、外気温が−3℃より低くない場合は、ステップS809にて、吹出口モードがフェイスか否かを判定する。フェイスの場合は、HOTサイクルの必要が無いと判断して、ステップS810にてCOOLサイクルの空調を行う。ステップS809にて、吹出口モードがフェイスか否かを判定した結果、フェイスでない場合は、ステップS811にて、HOTサイクルの空調を行う。
以上のように、たとえばプレ空調フラグが立っており、外気温が−3℃より低い場合は、ヒートポンプによる暖房の効率が悪くなり、かつ室外熱交換器5に着霜しやすくなるため、PTCヒータ24によるプレ空調を実施するため、PTCヒータ24に通電する。
また、外気温が−3℃以上の場合は、自動運転での吹出口モードがフェイスモードの場合には、ヒートポンプによる暖房の必要なしと判断して、COOLサイクルによるプレ空調を実施する。外気温が−3℃以上であり、フェイスモード以外の場合には、HOTサイクルによる暖房のプレ空調を実施する。
プレ空調フラグが立っておらず、プレ空調でなく、外気温が−3℃より低い場合は、ヒートポンプによる暖房の効率が悪くなり、かつ、室外熱交換器5に着霜しやすくなるため、COOLサイクルによる空調を実施する。なお、このときは、エンジン30を稼動し、温水およびヒータコア23の温度を上昇させるようにする。なお、図1〜図4に示した各サイクルの選定は、操作パネル51を介して、マニュアル操作でも行うことができる。
(ブロワ電圧決定)
次に、図7に示すステップS7において、ROMに記憶されたマップを用いて目標吹出温度TAOに対応するブロワ電圧(室内用ブロワ21のブロワモータに印加する電圧)を決定する。このステップS7は、具体的には図9に基づいて実行される。図9は、図7のステップS7におけるブロワ電圧決定処理を示すフローチャートである。
図9に示すように、ステップS901において、ブロワ制御がオートか否かを判定する。オートの場合、ステップS902にて、ベースとなる仮のブロワレベルf(TAO)を算出する。
次に、ステップS903において、ヒータコア23の水温およびPTCヒータ24の作動本数に応じて、ウオームアップ風量f(TW)を算出する。更に、ステップS904にて、吹出口がフット(FOOT)、バイレベル(B/L)、フットデフ(F/D)のいずれかであるか否かを判定する。いずれかであるときは、ステップS905に進み、いずれでもないときは、ステップS906に進む。
ステップS905では、ブロワレベルを、その時のf(TAO)とf(TW)とを比較し、そのうちの大きい方をブロワレベルとして決定する。次に、ステップS907では、決定されたブロワレベルをブロワ電圧に変換する。一方、ステップS906では、ブロワレベルを、f(TAO)で決定し、次に、ステップS908では決定されたブロワレベルをブロワ電圧に変換する。
ステップS901でブロワ風量の制御がオートでないと判定されたときは、ステップS909でLoからHiまでのマニュアル操作で、指定されたブロワレベルに従って4ボルトから12ボルトの電圧をブロワモータに印加する。
(吸込口モード決定)
次に、図7のステップS8で、ROMに記憶されたマップから、目標吹出温度TAOに対応する吸込口モードを決定する。具体的には、周知のように、目標吹出温度TAOが高いときには、内気循環モードが選択され、目標吹出温度TAOが低いときには、外気導入モードが選択される。
(吹出口モード決定)
次に、図7のステップS9で、ROMに記憶されたマップから、目標吹出温度TAOに対応する吹出口モードを周知のように決定する。目標吹出温度TAOが高いときには、フットモード(FOOT)が選択され、目標吹出温度TAOの低下に伴ってバイレベルモード(B/L)、さらにはフェイスモード(FACE)の順に選択され、本制御を終了する。
(電動圧縮機回転数等決定)
次に、図7のステップS10で電動圧縮機回転数等の決定処理を実行する。ステップS10は、具体的には図10に基づいて決定される。図10は、図7の電動圧縮機回転数等の決定処理を示すフローチャートである。このフローチャートでは、まず、特開2000−318435号公報等に開示されたファジィ制御により、クーラ時にフロストを防止するための圧縮機回転数変化量を演算する。次に、ヒートポンプ時に異常高圧を防止するための圧縮機回転数変化量を演算する。以下具体的に図10を用いて説明する。
図10において、ステップS1001において、COOLサイクル時にフロストを防止するための圧縮機回転数変化量ΔfCを演算する。まず、エアコンECU50は、ステップS1001において、各種センサの検出信号を用いて算出した目標エバポレータ温度TEOと、実際の蒸発器温度TE(図示しない蒸発器温度センサによって検出された温度)との温度偏差Enを以下の数式2を用いて演算する。
(数式2) En=TEO−TE
さらに、以下の数式3を用いて偏差変化量EDOTを演算する。
(数式3) EDOT=En−En−1
ここで、Enは、1秒に1回更新されるため、En−1は、Enに対して1秒前の値と
なる。
さらに、エアコンECU50は、算出したEn及びEDOTと、図10のステップS1001に示すマップとを用いて、1秒前の電動機2aの「COOLサイクル時の圧縮機回転数変化量ΔfCを算出する。このCOOLサイクル時の圧縮機回転数変化量ΔfCは、COOLサイクル時の熱交換器のフロスト防止に貢献する値である。
図10に示すマップは、偏差Enと偏差変化量EDOTとの関係を示すマップであり、予めROMに記憶されている。なお、この温度偏差En及び偏差変化量EDOTにおける圧縮機回転数変化量ΔfCは、ROMに記憶された所定のメンバーシップ関数およびルールに基づいて、上記ファジィ制御にて求められる。
次に、ステップS1002において、同様に、HOTサイクル時に異常高圧を防止するための圧縮機回転数変化量ΔfHを演算する。このステップS1002では、目標圧力PDO、高圧圧力Pre(Preは冷媒圧力センサ40(図1、図6)にて測定した高圧圧力)、偏差Pn、偏差変化量PDOTを用いて、電動圧縮機2の圧縮機回転数変化量ΔfHを以下のように求める。
ヒートポンプによるHOTサイクル運転時において、図10のステップS1002において、先に求められた目標吹出温度TAOを、冷凍サイクルの高圧側を流れる冷媒の目標圧力PDO(以下、単にPDOともいう)に変換する。この変換は、周知の方法を用いればよく、目標吹出温度TAOを変換用マップでPDOに変換してもよい。
また、目標吹出温度TAOと、室内用ブロワ21の風量Vによって異なる温度効率φと、凝縮器3の吸入側空気温度とから飽和冷媒温度Tcを求め、この飽和冷媒温度Tcと飽和圧力Pc(凝縮器3の凝縮圧力)との関係に基づいて、上記飽和冷媒温度Tcに対応する飽和圧力Pcを求めて、この飽和圧力Pcを目標圧力PDOとしてもよい。次に、目標圧力PDOと、冷媒圧力センサ40にて検出された高圧圧力Preとの圧力偏差Pnを下記数式4によって算出する。
(数式4) Pn=PDO−Pre
また、偏差変化量PDOTを下記数式5によって算出する。
(数式5) PDOT=Pn−Pn−1
なお、Pn−1は、偏差Pnの先回の値である。また、nは自然数である。
図10のステップS1002には、圧力偏差Pnと、偏差変化量PDOTと、圧縮機回転数変化量ΔfHとの関係を示すマップを記載している。次に、このPnとPDOTと、エアコンECU50のROMに記憶された図10に示すマップとを用いて、1秒前の電動圧縮機回転数fn−1に対して増減する圧縮機回転数変化量ΔfHを求める。
なお、この圧力偏差Pnおよび偏差変化量PDOTにおける圧縮機回転数変化量ΔfHは、ROMに記憶された所定のメンバーシップ関数及び所定のルールに基づいて、ファジィ制御にて求める。
更に、ステップS1003において、車速が30(km/h)を超えているか否かを判定する。車速が30(km/h)以下の低速の場合は、ステップS1004にて、ブロワ電圧に応じた最高回転数IVOmax(rpm)を演算する。車速が30(km/h)以上の高速走行で騒音や振動が気にならない場合は、ステップS1005において、電池冷却中か否かを判定する。電池冷却中か否かは、図1の電池用電磁弁104が開放されて冷媒が電池用熱交換器102に流入しており、かつウォータポンプ103が回転して電池用熱交換器102に電池用熱交換器102で冷却された冷却水が流れ込んでいる場合を電池冷却中と判定し、そうでない場合を電池冷却中でないと判定する。
ステップS1005において、電池冷却中でない場合、ステップS1006にて圧縮機最高回転数IVOmax=7000(rpm)を設定する。電池冷却中の場合、ステップS1007にて圧縮機最高回転数IVOmax=10000(rpm)を設定する。
次に、ステップS1008にて、クーラサイクルか否かを判定する。クーラサイクルの場合は、ステップS1009にてΔfとしてΔfCを選択することで、フロスト防止できる。ヒートポンプサイクルの場合は、ステップS1010にて、ΔfとしてΔfHを選択することで、異常高圧防止を図ることができる。更に、ステップS1011にて、今回の圧縮機回転数が、前回の圧縮機回転数にΔfを加えた値か、S1004で設定されたIVOmaxのうちいずれか小さいほうが選択されることで、今回の圧縮機回転数がS1004で設定されたIVOmaxで制限される。
以上のように、電動圧縮機2は、車内騒音、車内振動、車外騒音、耐久性を考慮して上限回転数を設定している。蒸発器8の冷却と電池101の冷却を同時に行う場合は、同時に行わない場合に比べて蒸発器温度が上昇し、車両室内への空調風の吹出温度が上昇する。この吹出温度の上昇により、乗員が不快に感じることがある。また、蒸発器8の冷却と電池101の冷却を同時におこなっているときに、空調負荷が大きい時は、電池101の冷却が十分にできない傾向がある。
そのため、電池101の冷却を行っている時は、行っていない時に比べて圧縮機回転数の上限を高くすることで、騒音および振動上昇よりも吹出温度の上昇を抑えることを優先する。これによって、乗員の快適性を維持できると共に、電池101の冷却性能も向上する。また、電池冷却時の車室内騒音が多少増加することで、車両を操縦するユーザーに、車速を抑制させたり、マイルドな車両加速を推奨したりすることができる。更に、車速を抑制したり、マイルドな加速で運転したりすれば、電池101を冷やす必要性も少なくなるので、車室内騒音も低下する。
よって、圧縮機2の動力を利用して電池101を冷却する時に、圧縮機2の最高回転数を高く設定することで、通常時の空調作用の静粛性を維持しながら、十分な空調性能と十分な電池冷却性能とを確保できる車両空調システムが得られる。
(各弁ON/OFF決定)
次に、図7のステップS11において、所定の各サイクルで制御が実行できるよう、サイクル中の三方弁4および電磁弁11〜14のONまたはOFF作動について決定する。この制御では、図5に示した各サイクルに対応する各弁の動作状態となるように、各弁の作動をオン、オフする出力信号を決定する。
(制御信号出力)
次に、図7のステップS12において、上記各ステップS1〜S11で算出または決定された各制御状態が得られるように、エンジンECU60、インバータ90、PTCヒータ24、各種アクチュエータ、三方弁4および電磁弁11〜14等に対して制御信号を出力する。そして、図7のステップS13において所定時間の経過を待って、ステップS3に戻り、継続して各ステップが実行される。
(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。図11は、本発明の第2実施形態を示す空調装置の表示部の制御を示す一部フローチャートである。図11において、このフローチャートと図10のフローチャートは並列に作動している。図11のフローチャートは車両内の運転席に設けられたエアコン用ディスプレイの制御フローチャートであって、メータECU内で実行される。
図11のステップS1101において、蒸発器8を冷却中か否か(つまり、図1のCOOLサイクルで作動しているか否か)を判定する。蒸発器冷却中ではない場合は、ステップS1102に進みユーザーへのポップアップ報知は特に行わないで通常のエアコンの作動状態を表示する。ステップS1101において、蒸発器8を冷却中の場合は、ステップS1103において、電池冷却中か否かを判定する。電池101の冷却水が低温(例えば40℃未満)で電池冷却中ではない場合は、ステップS1102に進む。
ステップS1103において、電池101の冷却水が高温(40℃以上)で電池冷却中の場合、ステップS1104において5秒間、「電池冷却中につき、冷房性能が低下します」とユーザー報知を行う。この報知は、ディスプレイによる表示で行っても音声による通知で行っても良いが、図11ではディスプレイにポップアップ表示がなされた状態を図示している。なお、本発明に言うポップアップ表示とは、通常の空調作動状態の表示の上に報知すべき表示が重なって表示されることを言い、単に報知すべき表示を空いているスペースに追加するよりも注意喚起作用が大きい。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。例えば、前述の第1実施形態では、ハイブリッド自動車に本発明を適用しているが、ハイブリッド自動車に限るものではなく、エンジンの無い電気自動車(EV)であってもよい。
また、前述の第1実施形態では、電気式補助熱源としてPTCヒータ24を採用しているが、これに限定するものではない。電気式補助熱源は、通電されることにより、発熱体等から発熱して周囲の空気や物体を加熱できれば他の装置でもよいし、省略しても良い。
また、ヒートポンプサイクルの車両用空調システムを実施形態にて示したが、本発明は、クーラサイクル(エアコンサイクルとも呼ばれる)を使用した車両用空調システムにも適用できる。なお、クーラサイクルとは、ヒータコアでエンジン冷却水温を使用して暖房を行い、かつ高圧、かつ液体の冷媒を車内にある膨張弁で減圧して気化を開始させた状態で空調ケース内の蒸発器へ導き、気化した冷媒を電動圧縮機で圧縮して、空調ケース外部のコンデンサへ送るサイクルである。
第1実施形態では、圧縮機から吐出された冷媒を利用して電池の冷却を行っている時は、電池の冷却を行っていない時に比べて、圧縮機の最高回転数を高く設定したが、圧縮機の回転数を大きくすると圧縮機の冷媒吐出量も多くなる。従って、圧縮機から吐出された冷媒を利用して電池の冷却を行っている時は、電池の冷却を行っていない時に比べて、圧縮機が吐出する冷媒の最高吐出量が多くなるように設定しても良い。
2 圧縮機(電動圧縮機)
8 蒸発器(冷却用熱交換器)
21 室内用ブロワ
30 エンジン
50 エアコンECU(制御手段)
100 車両用空調システム
101 電池
IVOmax 圧縮機の最高回転数
S1005、S1007 最高吐出量を多く設定する手段
S1104 報知する手段

Claims (4)

  1. 冷媒を圧縮する圧縮機(2)、
    前記冷媒を蒸発させることにより車両の室内を空調する空調風を冷却する蒸発器(8)、および
    前記冷媒により冷却される電池(101)を備え、
    更に、前記冷媒により前記電池(101)の冷却を行っている時は、前記電池(101)の冷却を行っていない時に比べて、前記圧縮機(2)の最高回転数(IVOmax)を高く設定するか、または、前記圧縮機が吐出する前記冷媒の最高吐出量を多く設定する手段(S1005、S1007)を備え、
    更に、前記車両の車速が所定車速を超えるか否かを判定する手段(S1003)と前記空調風を送風する空調用送風機(21)を有し、
    前記所定車速を超えない場合は、前記空調用送風機(21)の回転数に応じて前記最高回転数(IVOmax)を高く設定するか、または、前記最高吐出量を多く設定し、
    前記所定車速を超える場合は、前記冷媒により前記電池(101)の冷却を行っているか否かに応じて前記最高回転数(IVOmax)、または、前記最高吐出量を設定することを特徴とする車両空調システム。
  2. 前記蒸発器(8)による前記空調風の冷却と、前記電池(101)の冷却を同時に行っている時、ユーザーへ電池冷却を行っているので冷房性能が低下する旨を報知する手段(S1104)を備えたことを特徴とする請求項1に記載の車両空調システム。
  3. 前記冷媒により冷却される電池用熱交換器(102)を流れる冷却媒体により前記電池が冷却され、前記冷媒により前記電池(101)の冷却を行っているか否かは、前記電池用熱交換器(102)に前記冷媒が流れているか否かにより判定することを特徴とする請求項1または2に記載の車両空調システム。
  4. 前記報知する手段(S1104)による報知は、ディスプレイ上の通常表示の上に警告文字を重ねるポップアップ表示であることを特徴とする請求項2に記載の車両空調システム。
JP2012013233A 2012-01-25 2012-01-25 車両空調システム Active JP5668700B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013233A JP5668700B2 (ja) 2012-01-25 2012-01-25 車両空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013233A JP5668700B2 (ja) 2012-01-25 2012-01-25 車両空調システム

Publications (2)

Publication Number Publication Date
JP2013151231A JP2013151231A (ja) 2013-08-08
JP5668700B2 true JP5668700B2 (ja) 2015-02-12

Family

ID=49048000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013233A Active JP5668700B2 (ja) 2012-01-25 2012-01-25 車両空調システム

Country Status (1)

Country Link
JP (1) JP5668700B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121737A1 (ja) * 2018-12-12 2020-06-18 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE112020003639T5 (de) 2019-07-29 2022-04-14 Sanden Automotive Climate Systems Corporation Fahrzeugklimaanlage
DE112021001870T5 (de) 2020-03-26 2023-01-12 Sanden Corporation Fahrzeugklimaanlage

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703604B1 (ko) * 2015-10-19 2017-02-07 현대자동차 주식회사 차량용 배터리 냉각 시스템
JP6673294B2 (ja) * 2016-08-30 2020-03-25 株式会社デンソー 冷凍サイクル装置
KR102502174B1 (ko) * 2018-04-11 2023-02-21 한온시스템 주식회사 자동차의 통합 열관리 시스템
JP7200618B2 (ja) * 2018-11-21 2023-01-10 株式会社デンソー 乗り物用電池温度調節装置
JP7300264B2 (ja) * 2018-11-27 2023-06-29 サンデン株式会社 車両用空気調和装置
JP7233915B2 (ja) * 2018-12-25 2023-03-07 サンデン株式会社 車両用空気調和装置
FR3097310A1 (fr) * 2019-06-14 2020-12-18 Valeo Systemes Thermiques Procédé de gestion d’un dispositif de gestion thermique pour véhicule automobile et dispositif de gestion thermique associé.
JP7382118B2 (ja) * 2019-09-04 2023-11-16 株式会社デンソー 車両用空調装置
JP7360278B2 (ja) * 2019-09-04 2023-10-12 株式会社デンソー 車両用空調装置
JP7445374B2 (ja) * 2019-09-04 2024-03-07 株式会社デンソー 車両用空調装置
JP7404719B2 (ja) * 2019-09-04 2023-12-26 株式会社デンソー 車両用空調装置
JP2021037859A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
CN113525017B (zh) * 2020-04-17 2023-05-16 广汽埃安新能源汽车有限公司 一种电池冷却与乘员舱制冷的制冷量分配方法及***
US11235641B2 (en) * 2020-06-02 2022-02-01 GM Global Technology Operations LLC Thermal system control for a vehicle
JP7501410B2 (ja) 2021-03-08 2024-06-18 トヨタ自動車株式会社 車両用空調制御装置
CN114559857B (zh) * 2022-04-06 2023-12-12 广汽埃安新能源汽车有限公司 一种热管理***控制方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025515U (ja) * 1983-07-29 1985-02-21 日産自動車株式会社 車両用冷房装置の能力低下警告装置
JP3287110B2 (ja) * 1993-12-15 2002-05-27 株式会社デンソー 電気自動車用空調装置
JP3910384B2 (ja) * 2000-10-13 2007-04-25 本田技研工業株式会社 車両用バッテリ冷却装置
JP4548480B2 (ja) * 2000-12-28 2010-09-22 株式会社デンソー ハイブリッド車用空調装置
JP4140328B2 (ja) * 2002-09-25 2008-08-27 株式会社デンソー 車両用操作装置
JP4385678B2 (ja) * 2003-08-05 2009-12-16 株式会社デンソー 車両用バッテリ冷却システム
JP2006127921A (ja) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd 電源装置
JP2007240096A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd 給湯機リモコンおよびそのプログラム
JP2009228923A (ja) * 2008-03-19 2009-10-08 Mitsubishi Electric Corp 空気調和機
US7975757B2 (en) * 2008-07-21 2011-07-12 GM Global Technology Operations LLC Vehicle HVAC and RESS thermal management
JP2011245894A (ja) * 2010-05-24 2011-12-08 Suzuki Motor Corp 車両用空調装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121737A1 (ja) * 2018-12-12 2020-06-18 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE112020003639T5 (de) 2019-07-29 2022-04-14 Sanden Automotive Climate Systems Corporation Fahrzeugklimaanlage
US11958337B2 (en) 2019-07-29 2024-04-16 Sanden Corporation Vehicle air conditioning apparatus
DE112021001870T5 (de) 2020-03-26 2023-01-12 Sanden Corporation Fahrzeugklimaanlage

Also Published As

Publication number Publication date
JP2013151231A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5668700B2 (ja) 車両空調システム
JP5835036B2 (ja) 車両用空調システム
JP5668704B2 (ja) 車両空調システム
JP5831322B2 (ja) 車両用空調システム
JP5494312B2 (ja) 車両用空調装置
JP3633482B2 (ja) ハイブリッド車両およびその空調装置
JP5532029B2 (ja) 車両用空調装置
JP5459060B2 (ja) 車両用空調装置
JP2011005982A (ja) 車両用空調装置
JP2006199247A (ja) 車両用空調装置
JP5867166B2 (ja) 車両用空調装置
JP2010126136A (ja) 車両用空調装置
JP2011005980A (ja) 車両用空調装置
JP5360006B2 (ja) 車両用空調装置
JP5533516B2 (ja) 車両用空調装置
JP2018052165A (ja) 車両用空調装置
JP5494595B2 (ja) 車両用空調装置
JP5472015B2 (ja) 車両の運転モード入力装置
JP5505236B2 (ja) 車両用空調装置
JP2015089710A (ja) 車両用空調装置
JP2019143916A (ja) 車両用温度調整装置
JP5582118B2 (ja) 車両用空調装置
JP5472412B2 (ja) 車両用空調装置
JP5598451B2 (ja) 車両制御システム
JP3750291B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250