JP5509458B2 - Negative electrode material and manufacturing method thereof - Google Patents

Negative electrode material and manufacturing method thereof Download PDF

Info

Publication number
JP5509458B2
JP5509458B2 JP2013530531A JP2013530531A JP5509458B2 JP 5509458 B2 JP5509458 B2 JP 5509458B2 JP 2013530531 A JP2013530531 A JP 2013530531A JP 2013530531 A JP2013530531 A JP 2013530531A JP 5509458 B2 JP5509458 B2 JP 5509458B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
temperature
electrode material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013530531A
Other languages
Japanese (ja)
Other versions
JP2013542559A (en
Inventor
ミン ユエ
フイキン ヤン
ミンファ デン
ユユアン ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen BTR New Energy Materials Co Ltd
Original Assignee
Shenzhen BTR New Energy Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen BTR New Energy Materials Co Ltd filed Critical Shenzhen BTR New Energy Materials Co Ltd
Publication of JP2013542559A publication Critical patent/JP2013542559A/en
Application granted granted Critical
Publication of JP5509458B2 publication Critical patent/JP5509458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池の電極材料及びその製造方法に関し、特にリチウムイオン電池用の負極材及びその製造方法に関する。   The present invention relates to a battery electrode material and a manufacturing method thereof, and more particularly, to a negative electrode material for a lithium ion battery and a manufacturing method thereof.

国民経済の快速発展及び人民生活水準の向上に伴い、中国では原油への依存性が日々増えていく傾向があるので、直接にエネルギーの安全性をおびやかしている。また、原油値段値の変動も直接に国民経済の発展に影響を与えるため、新しいエネルギーの探索及び開発をせざるをえない。動力電池及び電気自動車の発展はますます重要な位置に付けられていて、動力電池は電気自動車の大規模適用を制約する要因のひとつである。リチウムイオン電池は、その高エネルギー密度、高電圧、無汚染、500回のサイクルの長サイクル寿命、高速充放電などの面での優れた性能及びますます安くなる製作コストのお蔭で、徐々にこの近い将来の10〜20年間における電気自動車の最適化電池となっている。しかし、その欠点は、値段が比較的に高いということである。なお、動力型リチウムイオン電池の体積が比較的に大きく、安全性能も相応的に悪くなる。これにより、リチウムイオン電池を動力電池として利用することにとって、値段と安全性能はその制約となる主要なボトル−ネックであることが分かる。負極材はリチウムイオン電池の主な材料のひとつであり、その値段は電池の最終値段を決定することに重要な影響を与えると共に、電解液におけるその安定性及び熱伝導性も電池の安全性に大きく影響している。従来技術により製造されたリチウムイオン電池負極材には、複雑な変性処理が必要となるため、生産コストが比較的高く、リチウムイオン動力電池の発展が制約されている。   With the rapid development of the national economy and the improvement of people's standard of living, China's dependence on crude oil tends to increase day by day, which directly threatens energy safety. In addition, since fluctuations in the price of crude oil directly affect the development of the national economy, new energy needs to be explored and developed. The development of power cells and electric vehicles is increasingly important, and power cells are one of the factors that limit the large-scale application of electric vehicles. Lithium-ion batteries are gradually getting better because of their high energy density, high voltage, no pollution, long cycle life of 500 cycles, fast charge / discharge, etc. It has become an optimized battery for electric vehicles in the near future 10-20 years. However, the disadvantage is that the price is relatively high. Note that the volume of the power-type lithium ion battery is relatively large, and the safety performance is accordingly deteriorated. As a result, it can be seen that price and safety performance are the main bottleneck that limit the use of lithium ion batteries as power batteries. The negative electrode material is one of the main materials of lithium ion batteries, and its price has an important influence on determining the final price of the battery, and its stability and thermal conductivity in the electrolyte also contribute to the safety of the battery. It has a big influence. Since the lithium ion battery negative electrode material manufactured by a prior art requires a complicated modification | denaturation process, production cost is comparatively high and development of a lithium ion power battery is restricted.

本発明に係る目的は、負極材及びその製造方法を提供することであり、解決しようとする技術的課題は、リチウムイオン電池の安全性の向上及び生産コストの削減ということである。   An object of the present invention is to provide a negative electrode material and a method for manufacturing the same, and a technical problem to be solved is to improve the safety and reduce the production cost of the lithium ion battery.

本発明は以下の技術的手段を採用する。基体とそれを被覆する被覆層とからなる複合材料の負極材であって、前記基体は炭素含有量が99.9%以上の黒鉛系材料であり、形状は、球形、長短軸比が1.0〜4.5の類似球形塊状及びシート状からなる群より選択されるいずれか一種以上であり、基体にナノメートルミクロ孔またはナノメートル空隙が含有され、ナノメートルミクロ孔またはナノメートル空隙のサイズは10〜500nmであり、空隙率が0.5〜20%で、真密度が2.0〜2.26g/cmであり、前記被覆層は非黒鉛炭材料であり、被覆層の質量は基体質量の0〜20%(但し0は含まず)を占めており、前記複合材料の平均粒度D50は3.0〜50.0μmであり、比表面積が1.0〜20.0m/gであり、複合材料の粉体圧縮密度が1.50〜2.15g/cmであり、前記黒鉛系材料は、天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上であり、前記非黒鉛炭材料は、黒鉛化しやすい軟炭、有機物熱分解炭素または気相成長炭素であり、前記黒鉛化しやすい軟炭は、30〜300℃の軟化点の石炭ピッチ、石油ピッチ、コールタール、石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上であり、前記有機物は、高分子ポリマーであるポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上であり、または、高分子導電性ポリマーであるポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上である。 The present invention employs the following technical means. A composite negative electrode material comprising a substrate and a coating layer covering the substrate, wherein the substrate is a graphite-based material having a carbon content of 99.9% or more, and has a spherical shape and a long / short axis ratio of 1. It is any one or more selected from the group consisting of 0 to 4.5 similar spherical masses and sheets, and the substrate contains nanometer micropores or nanometer voids, and the size of the nanometer micropores or nanometer voids Is 10 to 500 nm, the porosity is 0.5 to 20%, the true density is 2.0 to 2.26 g / cm 3 , the coating layer is a non-graphite carbon material, and the mass of the coating layer is It accounted 0-20% of the base mass (but not including 0), the average particle size D 50 of the composite material is 3.0~50.0Myuemu, specific surface area of 1.0~20.0m 2 / g, and the powder compression density of the composite material is 1.50. Was 2.15 g / cm 3, the graphite-based material, natural flake graphite, natural earth-like graphite, natural massive graphite, artificial graphite, in any one or more selected from the group consisting of carbon particles and conductive graphite The non-graphite carbon material is soft carbon, graphitized carbon, or pyrolytic carbon that is easily graphitized. One or more selected from the group consisting of tar, petroleum industry heavy oil, and heavy aromatic hydrocarbons, and the organic substance is a polymer polymer such as polyvinyl alcohol , polyvinyl chloride, polyethylene glycol, polyethylene oxide , polyvinylidene fluoride, and any one or more selected from the group consisting of acrylic acid resin and polyacrylonitrile, or high Polythiophene is a child conductive polymer, polyaniline, polyacetylene, polypyrrole, polyacene, polyphenylene, either one or more selected from the group consisting of polyphenylene ethylene and polydiacetylene.

(1)黒鉛系材料に対する酸化及び/または還元処理であり、黒鉛系材料を0.1〜100℃/minの速度で昇温させながら温度が100〜1000℃に達するまで0.05〜10m/hの流量で酸化/還元気体または酸化/還元気体と不活性気体との混合気体を導入し、前記黒鉛系材料は、天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上であるステップと、(2)100℃以下に降温すると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止するステップと、(3)酸化/還元処理後の黒鉛系材料を黒鉛基体として、黒鉛化しやすい軟炭または有機物熱分解炭素を利用して固相被覆または液相被覆を行い、非黒鉛炭素材料となるように熱分解させることにより負極材が得られ、被覆層の質量は黒鉛基体質量の0〜20%(但し0は含まず)であり、黒鉛化しやすい軟炭は30〜300℃の軟化点の石炭ピッチ、石油ピッチ、コールタール、石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上であり、前記有機物は高分子ポリマーであるポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上であり、または、高分子導電性ポリマーであるポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上であるステップと、を含む負極材の製造方法である。 (1) Oxidation and / or reduction treatment for graphite material, 0.05 to 10 m 3 until the temperature reaches 100 to 1000 ° C. while raising the temperature of the graphite material at a rate of 0.1 to 100 ° C./min. Introducing oxidizing / reducing gas or mixed gas of oxidizing / reducing gas and inert gas at a flow rate of / h, the graphite-based material is natural scale-like graphite, natural earth graphite, natural block graphite, artificial graphite, carbon A step that is at least one selected from the group consisting of fine particles and conductive graphite, and (2) introduction of an oxidizing / reducing gas or a mixed gas of an oxidizing / reducing gas and an inert gas when the temperature is lowered to 100 ° C. or lower. And (3) solid-phase coating or liquid-phase coating using soft carbon or organic pyrolytic carbon that is easily graphitized using the graphite-based material after oxidation / reduction treatment as a graphite substrate, Material The negative electrode material is obtained by pyrolyzing so that the coating layer has a mass of 0 to 20% (excluding 0) of the mass of the graphite substrate, and the soft coal that is easily graphitized is softened at 30 to 300 ° C. It is at least one selected from the group consisting of coal pitch, petroleum pitch, coal tar, petroleum industry heavy oil and heavy aromatic hydrocarbons, and the organic substance is a polymer polymer such as polyvinyl-alcohol , polyvinyl chloride Any one or more selected from the group consisting of polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic resin and polyacrylonitrile, or a polymer conductive polymer polythiophene , polyaniline, polyacetylene, polypyrrole, Polyacene , polyphenylene , polyphenylene ethylene and polydiase And a step that is at least one selected from the group consisting of ethylene.

本発明において、前記負極材は、100℃以下で加熱する方法または真空乾燥方法により負極材の水分含有量を0.1%以下とする。   In the present invention, the negative electrode material has a water content of 0.1% or less by a method of heating at 100 ° C. or less or a vacuum drying method.

本発明において、前記負極材に対して、3000〜30000Gsの磁気誘導強度で1〜20回の消磁を行い、処理温度が10〜80℃であり、電磁ハンマーによる打つ頻度が3〜180回/秒であり、そして、篩分けを行うことにより、平均粒度D50が3.0〜50.0μmの負極材を得る。 In the present invention, the negative electrode material is demagnetized 1 to 20 times with a magnetic induction strength of 3000 to 30000 Gs, the treatment temperature is 10 to 80 ° C., and the frequency of hitting with an electromagnetic hammer is 3 to 180 times / second. , and the Then, by performing sieving, the average particle size D 50 to obtain a negative electrode material of 3.0~50.0Myuemu.

本発明において、黒鉛系材料に対する酸化/還元処理時において、0〜20rpm(但し0は含まず)の回転速度で黒鉛系材料の酸化/還元用の炉胸を回転させる。   In the present invention, during the oxidation / reduction treatment for the graphite-based material, the furnace for oxidation / reduction of the graphite-based material is rotated at a rotation speed of 0 to 20 rpm (excluding 0).

本発明において、黒鉛系材料に対する酸化/還元処理時において、温度が100〜1000℃に達する時、0〜6h(但し0は含まず)を保温させる。   In the present invention, when the temperature reaches 100 to 1000 ° C. during the oxidation / reduction treatment for the graphite-based material, 0 to 6 hours (excluding 0) is kept warm.

本発明において、降温時において、炉壁と炉壁内の熱伝導層との間に圧縮空気を導入する方式または炉内において自然降温する方式を採用する。   In the present invention, a method of introducing compressed air between the furnace wall and the heat conduction layer in the furnace wall or a method of naturally cooling the temperature in the furnace is adopted when the temperature is lowered.

本発明において、固相被覆に使われる被覆材料は、黒鉛基体質量の1〜20%を占めており、100〜500 r/minの混合速度で、5〜180minの混合被覆を実施するか、または、500〜3000 r/minの融合回転速度で、隙間が0.01〜1.0cmであり、20〜80℃の融合温度で、10〜200minの融合被覆を実施してから、室温まで自然降温させる。   In the present invention, the coating material used for solid-phase coating accounts for 1 to 20% of the mass of the graphite substrate, and the mixed coating is performed at a mixing speed of 100 to 500 r / min for 5 to 180 min. , A fusion rotation speed of 500 to 3000 r / min, a gap of 0.01 to 1.0 cm, a fusion coating of 10 to 200 min at a fusion temperature of 20 to 80 ° C., and a natural temperature drop to room temperature. Let

本発明において、液相被覆時において、黒鉛基体と黒鉛基体質量の0.1〜20%を占める可溶性有機物とを液相混合し、2000〜8000r/minの速度で10〜120minの混合攪拌を行い、前記液相混合用溶剤は水または有機溶剤であり、溶剤の質量が黒鉛基体質量の0.8〜2.0倍であり、混合温度が10〜90℃であり、80〜300℃の条件で1−30hの乾燥処理を実施する。   In the present invention, at the time of liquid phase coating, the graphite substrate and soluble organic matter occupying 0.1 to 20% of the mass of the graphite substrate are mixed in a liquid phase and mixed and stirred at a speed of 2000 to 8000 r / min for 10 to 120 minutes. The liquid phase mixing solvent is water or an organic solvent, the mass of the solvent is 0.8 to 2.0 times the mass of the graphite substrate, the mixing temperature is 10 to 90 ° C., and the conditions are 80 to 300 ° C. 1 to 30 h.

(1)黒鉛系材料に対する酸化及び/または還元処理であり、黒鉛系材料を0.1〜100℃/minの速度で昇温させながら0.05〜10m/hの流量で酸化/還元気体または酸化/還元気体と不活性気体との混合気体を導入し、温度が100〜1000℃に達すると、0〜6h(但し0は含まず)だけ保温するステップと、(2)気相被覆であり、0.05〜15m/hの導入量で炭素含有の気体を導入しつつ、0.1〜5hだけ保持した後、炉内を100℃以下まで降温させると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止し、前記炭素含有の気体はメタン、アセチレン、エチレン、CO、天然ガス、液化石油ガス、ベンゼン及びチオフェンからなる群より選択されるいずれか一種以上であるステップと、を含む負極材の製造方法である。 (1) Oxidation and / or reduction treatment for graphite-based material, oxidizing / reducing gas at a flow rate of 0.05 to 10 m 3 / h while raising the temperature of the graphite-based material at a rate of 0.1 to 100 ° C./min Alternatively, when a mixed gas of an oxidizing / reducing gas and an inert gas is introduced and the temperature reaches 100 to 1000 ° C., the temperature is maintained for 0 to 6 hours (excluding 0); Yes, while introducing a carbon-containing gas at an introduction amount of 0.05 to 15 m 3 / h and holding for 0.1 to 5 h, when the temperature inside the furnace is lowered to 100 ° C. or lower, an oxidizing / reducing gas or an oxidizing gas / Stop the introduction of the mixed gas of reducing gas and inert gas, and the carbon-containing gas is any selected from the group consisting of methane, acetylene, ethylene, CO 2 , natural gas, liquefied petroleum gas, benzene and thiophene Or more And certain steps is a method for producing a negative electrode material containing.

本発明は従来技術と比べて、負極材の表面に対し、通常の表面被覆プロセスを採用せず、表面に処理層及び/または被覆層の表面官能基に対する制御を行い、処理層及び被覆層は薄く且つ均一で、電解液における安定性及び熱伝導性が向上し、さらにリチウムイオン電池の安全性が向上する。また、負極材は高容量かつ高効率という特徴を有し、製造プロセスが簡単で、負極材のコストが低下する。   Compared to the prior art, the present invention does not employ a normal surface coating process on the surface of the negative electrode material, and performs control on the surface functional groups of the treatment layer and / or coating layer on the surface. It is thin and uniform, improving the stability and thermal conductivity in the electrolyte, and further improving the safety of the lithium ion battery. Moreover, the negative electrode material has the characteristics of high capacity and high efficiency, the manufacturing process is simple, and the cost of the negative electrode material is reduced.

実施例1における負極材のSEM図である。2 is a SEM diagram of a negative electrode material in Example 1. FIG. 実施例1における負極材の充放電比容量−電圧曲線図である。2 is a charge / discharge specific capacity-voltage curve diagram of a negative electrode material in Example 1. FIG.

以下に図面と実施例を参照しながら本発明をさらに詳しく説明する。本発明に係る負極材は、基体とそれを被覆する被覆層とからなる複合材料であり、基体は炭素含有量が99.9%以上の黒鉛系材料であり、形状としては、球形、長短軸比が1.0〜4.5である類似球形、塊状及びシート状からなる群より選択されるいずれか一種以上であり、基体にはナノメートルミクロ孔またはナノメートル空隙が含有され、ナノメートルミクロ孔またはナノメートル空隙のサイズが10〜500nmであり、空隙率(ナノメートルミクロ孔またはナノメートル空隙の体積/基体の単位体積)が0.5〜20%であり、真密度が2.0〜2.26g/cmである。被覆層は非黒鉛炭材料からなり、基体質量に占める比率は0〜20%(但し0は含まず)である。複合材料の平均粒度D50が3.0〜50.0μmであり、比表面積が1.0〜20.0m2/gであり、複合材料の粉体圧縮密度が1.85〜2.15g/cmである。 The invention will be described in more detail below with reference to the drawings and examples. The negative electrode material according to the present invention is a composite material comprising a substrate and a coating layer covering the substrate, and the substrate is a graphite-based material having a carbon content of 99.9% or more. It is at least one selected from the group consisting of similar spheres, lumps and sheets having a ratio of 1.0 to 4.5, the substrate contains nanometer micropores or nanometer voids, and nanometer micro The size of the pore or nanometer void is 10 to 500 nm, the porosity (volume of nanometer micropore or nanometer void / unit volume of substrate) is 0.5 to 20%, and the true density is 2.0 to 2.26 g / cm 3 . The coating layer is made of a non-graphite charcoal material, and the ratio of the coating layer to the base mass is 0 to 20% (however, 0 is not included). The average particle size D 50 of the composite material is 3.0~50.0Myuemu, a specific surface area of 1.0~20.0m2 / g, the powder compressed density of the composite material 1.85~2.15g / cm 3 .

前記黒鉛系材料は天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上である。   The graphite material is at least one selected from the group consisting of natural flake graphite, natural earth graphite, natural block graphite, artificial graphite, carbon fine particles, and conductive graphite.

前記非黒鉛炭材料は黒鉛化しやすい軟炭、有機物熱分解炭素または気相成長炭素である。   The non-graphite carbon material is soft carbon, organic pyrolytic carbon, or vapor grown carbon that is easily graphitized.

前記黒鉛化しやすい軟炭は、30〜300℃の軟化点の石炭ピッチ(コールタールピッチ)、石油ピッチ、コールタール及び石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上である。   The soft coal that is easily graphitized is any one selected from the group consisting of coal pitch (coal tar pitch), petroleum pitch, coal tar, petroleum heavy oil and heavy aromatic hydrocarbons having a softening point of 30 to 300 ° C. That's it.

前記有機物は高分子ポリマー及び高分子導電性ポリマーである。前記高分子ポリマーはポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上である。前記高分子導電性ポリマーはポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン(Polyacene)、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上である。 The organic substance is a polymer and a polymer conductive polymer. The polymer is at least one selected from the group consisting of polyvinyl alcohol, polyvinyl chloride, polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic acid resin, and polyacrylonitrile. The polymer conductive polymer is at least one selected from the group consisting of polythiophene, polyaniline, polyacetylene, polypyrrole, polyacene, polyphenylene , polyphenyleneethylene, and polydiacetylene.

本発明に係る負極材の製造方法は、黒鉛系材料に対し、酸化/還元、変性被覆、消磁篩分というステップにより負極材を得る方法であり、以下のステップが含まれている。   The method for producing a negative electrode material according to the present invention is a method for obtaining a negative electrode material by steps of oxidation / reduction, modified coating, and demagnetization sieving for a graphite-based material, and includes the following steps.

(1)黒鉛系材料に対する酸化及び/または還元処理時において、2.8〜45.0μm粒度の黒鉛系材料を回転炉の炉胸に入れた後、0〜20rpmの回転速度で炉胸を回転させると共に、0.1〜100℃/minの速度で昇温させながら0.05〜10m/hの流量で酸化/還元気体または酸化/還元気体と不活性気体との混合気体を導入し、温度が100〜1000℃に達すると、0〜6hだけ保温することにより、黒鉛系材料に対する酸化/還元処理を実施する。 (1) During oxidation and / or reduction treatment of graphite-based material, after placing graphite material having a particle size of 2.8 to 45.0 μm in the hearth of a rotary furnace, the hearth is rotated at a rotational speed of 0 to 20 rpm. And introducing an oxidizing / reducing gas or a mixed gas of an oxidizing / reducing gas and an inert gas at a flow rate of 0.05 to 10 m 3 / h while raising the temperature at a rate of 0.1 to 100 ° C./min, When the temperature reaches 100 to 1000 ° C., the graphite material is oxidized / reduced by maintaining the temperature for 0 to 6 hours.

前記黒鉛系材料は天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上である。   The graphite material is at least one selected from the group consisting of natural flake graphite, natural earth graphite, natural block graphite, artificial graphite, carbon fine particles, and conductive graphite.

前記酸化及び/または還元気体は酸素ガス、空気、塩素ガスCl、臭素ガスBrまたはフッ素ガスFであり、前記不活性気体は窒素ガスまたはアルゴンガスである。 The oxidizing and / or reducing gas is oxygen gas, air, chlorine gas Cl 2 , bromine gas Br 2 or fluorine gas F 2 , and the inert gas is nitrogen gas or argon gas.

(2)炉壁及び炉壁内の熱伝導層の間に圧縮空気を導入しながら降温させる方式、または炉内において自然降温する方式で100℃以下に降温すると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止して黒鉛基体を得る。 (2) When the temperature is lowered to 100 ° C. or lower when the temperature is lowered while introducing compressed air between the furnace wall and the heat conductive layer in the furnace wall, or when the temperature is naturally lowered in the furnace, the oxidation / reduction gas or oxidation / reduction The introduction of the mixed gas of gas and inert gas is stopped to obtain a graphite substrate.

(3)酸化及び/または還元処理後の黒鉛基体に対し、固相、液相または気相の被覆を実施することにより複合材料を得る。被覆材料前駆体の質量が黒鉛基体の質量の0〜20%(但し0は含まず)であり、100℃以下で加熱、真空乾燥またはその他の従来技術により負極材の水分含有量を0.1%以下に抑えている。 (3) A composite material is obtained by performing solid phase, liquid phase, or gas phase coating on the graphite substrate after oxidation and / or reduction treatment. The mass of the coating material precursor is 0 to 20% (excluding 0) of the mass of the graphite substrate, and the negative electrode material has a moisture content of 0.1 by heating at 100 ° C. or less, vacuum drying, or other conventional techniques. % Or less.

1、固相被覆について、黒鉛基体質量の1%〜20%を占める被覆材料前駆体で、従来技術の精密混合機を利用し、100〜500 r/minの混合回転速度で、5〜180minの混合被覆を実施すること、または混合物を従来技術の融合機に入れてから、500〜3000 r/minの融合回転速度で、隙間が0.01〜1.0cmであり、20〜80℃の融合温度で、10〜200minの融合被覆を実施してから、室温まで自然降温させる。従来技術により100〜3000℃の条件で熱処理を行い、非黒鉛炭素材料となるように熱分解させる。被覆材料前駆体は黒鉛化しやすい軟炭を採用でき、黒鉛化しやすい軟炭は30〜300℃の軟化点の石炭ピッチ、石油ピッチ、コールタール、石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上である。 1. For solid phase coating, it is a coating material precursor that occupies 1% to 20% of the mass of the graphite substrate and is 5 to 180 min at a mixing rotation speed of 100 to 500 r / min using a precision mixer of the prior art. After performing the mixed coating or putting the mixture into a prior art fusion machine, at a fusion rotational speed of 500-3000 r / min, the gap is 0.01-1.0 cm and the fusion at 20-80 ° C. After performing the fusion coating for 10 to 200 minutes at the temperature, the temperature is naturally lowered to room temperature. Heat treatment is performed under conditions of 100 to 3000 ° C. according to conventional techniques, and thermal decomposition is performed so that a non-graphitic carbon material is obtained. The coating material precursor can adopt soft carbon which is easy to graphitize, and the soft carbon which is easy to graphitize is a group consisting of coal pitch, petroleum pitch, coal tar, petroleum industry heavy oil and heavy aromatic hydrocarbons having a softening point of 30 to 300 ° C. Any one or more selected from more.

2、液相被覆について、黒鉛基体と黒鉛基体質量の0.1〜20%を占める可溶性有機物とを液相混合した後、従来技術の高速攪拌機を利用し、2000〜8000r/minの速度で10〜120min混合攪拌することにより、混合物を得る。利用される溶剤は水または有機溶剤であり、溶剤の質量が黒鉛基体質量の0.8〜2.0倍であり、混合温度が10〜90℃であり、乾燥箱を利用し、80〜300℃の条件で、1〜30hの乾燥処理を実施する。従来技術により100〜3000℃の条件で熱処理を行い、非黒鉛炭素材料となるように熱分解させる。被覆材料は有機物高分子ポリマー及び高分子導電性ポリマーを採用できる。前記高分子ポリマーはポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上である。前記高分子導電性ポリマーはポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上である。 2. For liquid phase coating, a graphite substrate and a soluble organic substance occupying 0.1 to 20% of the mass of the graphite substrate are mixed in a liquid phase and then used at a speed of 2000 to 8000 r / min using a conventional high-speed stirrer. A mixture is obtained by mixing and stirring for ˜120 min. The solvent used is water or an organic solvent, the mass of the solvent is 0.8 to 2.0 times the mass of the graphite substrate, the mixing temperature is 10 to 90 ° C., and a drying box is used to obtain 80 to 300 A drying treatment for 1 to 30 h is performed under the condition of ° C. Heat treatment is performed under conditions of 100 to 3000 ° C. according to conventional techniques, and thermal decomposition is performed so that a non-graphitic carbon material is obtained. As the coating material, an organic polymer polymer and a polymer conductive polymer can be adopted. The polymer is at least one selected from the group consisting of polyvinyl alcohol, polyvinyl chloride, polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic acid resin, and polyacrylonitrile. The polymer conductive polymer is at least one selected from the group consisting of polythiophene, polyaniline, polyacetylene, polypyrrole, polyacene, polyphenylene , polyphenyleneethylene, and polydiacetylene.

3、気相被覆について、黒鉛系材料に対して酸化/還元処理を行った後、直接に0.05〜15m/hの導入量で炭素含有の気体を導入しつつ、0.1〜5hだけ保持した後、100℃以下まで自然降温させると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止する。気相被覆の前駆体は、炭素含有の気体であり、メタン、アセチレン、エチレン、CO、天然ガス、液化石油ガス、ベンゼン及びチオフェンからなる群より選択されるいずれか一種以上である。 3. For vapor phase coating, after performing oxidation / reduction treatment on the graphite-based material, 0.1 to 5 h while directly introducing carbon-containing gas at an introduction amount of 0.05 to 15 m 3 / h Then, when the temperature is naturally lowered to 100 ° C. or lower, the introduction of the oxidizing / reducing gas or the mixed gas of the oxidizing / reducing gas and the inert gas is stopped. The precursor for vapor phase coating is a carbon-containing gas, and is at least one selected from the group consisting of methane, acetylene, ethylene, CO 2 , natural gas, liquefied petroleum gas, benzene, and thiophene.

(4)複合材料に対する消磁について、3000〜30000Gsの磁気誘導強度で1〜20回の消磁を行い、処理温度が10〜80℃であり、電磁ハンマーによる打つ頻度が3〜180回/秒であり、そして、篩分けを行うことにより、平均粒度D50が3.0〜50.0μmである負極材が得られる。 (4) About demagnetization with respect to the composite material, demagnetization is performed 1 to 20 times with a magnetic induction strength of 3000 to 30000 Gs, the processing temperature is 10 to 80 ° C., and the frequency of hitting with an electromagnetic hammer is 3 to 180 times / second. and, by performing sieving, the negative electrode material having an average particle size D 50 is a 3.0~50.0μm is obtained.

黒鉛系材料に対して酸化/還元処理を行う時、温度が100〜1000℃に達した後、0〜6hだけ保温すると、基体材料においてナノメートル空隙またはナノメートルミクロ孔が形成されることになっている。そのミクロ孔または空隙により電極材料の導電性が向上する。   When oxidation / reduction treatment is performed on a graphite-based material, if the temperature reaches 100 to 1000 ° C. and is kept warm for 0 to 6 hours, nanometer voids or nanometer micropores are formed in the base material. ing. The conductivity of the electrode material is improved by the micropores or voids.

日立Hitachi S4800型のスキャン電子顕微鏡 SEMを利用して実施例に製造された負極材を観測した。   The negative electrode material manufactured by the Example was observed using the Hitachi Hitachi S4800 type | mold scanning electron microscope SEM.

本発明により製造された負極材を用いて実験電池の負極を製作する。負極材とポリフッ化ビニリデン及び導電性カーボンブラックとを98:2の質量比となるように混合させてからN−メチルピロリドンに溶解した後で得られた質量濃度10%の混合漿を10μmの厚さの銅箔上に均一に塗布してプレスにかけてシート状に製造してから、直径lcmの炭素膜となるように製造し、乾燥箱において120℃で12hだけ乾燥させておく。上記のように製造された極パッドを作用電極として、金属リチウムシートを補助電極と参照電極として、体積比が1:1:1となるように混合されたEC、DMC、EMC溶剤により製作された濃度がlmol/LのLiPFを電解液として、アルゴンガスがあふれたグローブボックスにおいて内径がФ12mmのサンプル電池を製造する。武漢の金諾電子有限公司のランド(land)電池テストシステムCT2001C上で電池の充放電テストを行い、充放電電圧範囲が0.01V〜2.0Vであり、電流が0.2Cであり、GB/T 24533−2009リチウムイオン電池黒鉛類負極材のテスト方法で容量及び効率をテストした。 The negative electrode of the experimental battery is manufactured using the negative electrode material manufactured according to the present invention. A negative electrode material, polyvinylidene fluoride and conductive carbon black were mixed so as to have a mass ratio of 98: 2, and then dissolved in N-methylpyrrolidone. Then, it is uniformly coated on a copper foil and manufactured into a sheet by pressing, and then a carbon film having a diameter of 1 cm is produced and dried in a drying box at 120 ° C. for 12 hours. The electrode pad manufactured as described above was used as a working electrode, and a metal lithium sheet was used as an auxiliary electrode and a reference electrode. The electrode pad was manufactured using EC, DMC, and EMC solvent mixed at a volume ratio of 1: 1: 1. A sample battery having an inner diameter of 12 mm is manufactured in a glove box overflowing with argon gas using LiPF 6 having a concentration of 1 mol / L as an electrolyte. The battery charge / discharge test is performed on the land battery test system CT2001C of Wuhan Jinyi Electronics Co., Ltd., the charge / discharge voltage range is 0.01V-2.0V, the current is 0.2C, GB / T 24533-2009 Lithium ion battery Graphite negative electrode materials were tested for capacity and efficiency.

電池の熱安定性について、高温45℃の条件で1C充放電の容量保持率から考量することになり、容量保持率が高ければ高いほど熱安定性がよいということである。   The thermal stability of the battery is determined from the 1C charge / discharge capacity retention rate at a high temperature of 45 ° C., and the higher the capacity retention rate, the better the thermal stability.

実施例1−6及び比較例1のプロセスパラメータを表1に示す。分かりやすくするため、実施例1−6及び比較例1の消磁プロセスパラメータは同様である。実施例1−6及び比較例1の電気性能テスト結果を表2に示す。   Table 1 shows the process parameters of Examples 1-6 and Comparative Example 1. For clarity, the demagnetization process parameters of Example 1-6 and Comparative Example 1 are the same. Table 2 shows the electrical performance test results of Examples 1-6 and Comparative Example 1.

図1に示されるように、黒鉛基体D50=19.2μm材料に対して表面酸化/還元処理を行った後、0.5%のポリピロールにより液相被覆を行い、150℃の熱処理後で得られた材料の比表面積が5.26 m/gであり、粉末圧縮密度が1.90 g/cmであり、SEMの表示によると、黒鉛基体粒子が球形及び類似球形形状を呈し、表面の酸化及び/または還元処理層及び被覆層が均一に、表面に酸化及び/または還元処理が実施されることにより、表面の原子団が減少するため、低い電位での反応が減少し、電解液における熱安定性が良好で、電解液並びに酸化及び/または還元処理層及び被覆層の表面の副反応が少なくなり、SEI膜が安定し、固体電池の高温サイクルが良く、45℃での100サイクル容量保持率が95%である。 As shown in FIG. 1, the graphite substrate D 50 = 19.2 μm was subjected to surface oxidation / reduction treatment, liquid phase coating with 0.5% polypyrrole, and obtained after heat treatment at 150 ° C. The specific surface area of the obtained material is 5.26 m 2 / g, the powder compression density is 1.90 g / cm 3 , and according to the SEM indication, the graphite substrate particles exhibit a spherical shape and a similar spherical shape, Since the oxidation and / or reduction treatment layer and the coating layer of the surface are uniformly oxidized and / or reduced on the surface, the atomic groups on the surface are reduced, so that the reaction at a low potential is reduced. Has good thermal stability, fewer side reactions on the surface of the electrolyte solution and the oxidation and / or reduction treatment layer and coating layer, stable SEI film, good high-temperature cycle of solid state battery, 100 cycles at 45 ° C. Capacity retention is 9 It is%.

図2に示されるように、実施例1に処理された黒鉛系材料は、容量が364.69mAh/gであり、効率が90.18%である。   As shown in FIG. 2, the graphite-based material treated in Example 1 has a capacity of 364.69 mAh / g and an efficiency of 90.18%.

本発明に係る方法は、処理プロセスが容易という特長を有することだけではなく、本発明に係る方法により製造される負極材はさらに高容量且つ高効率という特点も有していることが、表2から分かる。   The method according to the present invention has not only the feature that the treatment process is easy, but also that the negative electrode material produced by the method according to the present invention has the features of higher capacity and higher efficiency. I understand.

[表1]
実施例1−6及び比較例1のプロセスパラメータ
[Table 1]
Process parameters of Examples 1-6 and Comparative Example 1

[表2]
実施例1−6及び比較例1の電気性能テスト結果
[Table 2]
Electrical performance test results of Examples 1-6 and Comparative Example 1

Claims (10)

基体とそれを被覆する被覆層とからなる複合材料の負極材であって、
前記基体は炭素含有量が99.9%以上の黒鉛系材料であり、形状は、球形、長短軸比が1.0〜4.5の類似球形塊状及びシート状からなる群より選択されるいずれか一種以上であり、基体にナノメートルミクロ孔またはナノメートル空隙が含有され、ナノメートルミクロ孔またはナノメートル空隙のサイズは10〜500nmであり、空隙率が0.5〜20%で、真密度が2.0〜2.26g/cmであり、
前記被覆層は非黒鉛炭材料であり、被覆層の質量は基体質量の0〜20%(但し0は含まず)を占めており、
前記複合材料の平均粒度D50は3.0〜50.0μmであり、比表面積が1.0〜20.0m/gであり、複合材料の粉体圧縮密度が1.50〜2.15g/cmであり、
前記黒鉛系材料は、天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上であり、
前記非黒鉛炭材料は、黒鉛化しやすい軟炭、有機物熱分解炭素または気相成長炭素であり、
前記黒鉛化しやすい軟炭は、30〜300℃の軟化点の石炭ピッチ、石油ピッチ、コールタール、石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上であり、
前記有機物は、高分子ポリマーであるポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上であり、または、高分子導電性ポリマーであるポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上であることを特徴とする負極材。
A composite negative electrode material comprising a substrate and a coating layer covering the substrate,
The substrate is a graphite-based material having a carbon content of 99.9% or more, and the shape is any one selected from the group consisting of a spherical shape, a similar spherical lump shape having a major-short axis ratio of 1.0 to 4.5, and a sheet shape. Or more than one, the substrate contains nanometer micropores or nanometer voids, the size of the nanometer micropores or nanometer voids is 10 to 500 nm, the porosity is 0.5 to 20%, and the true density Is 2.0-2.26 g / cm 3 ,
The coating layer is a non-graphite carbon material, and the mass of the coating layer occupies 0 to 20% (excluding 0) of the base mass,
The average particle size D 50 of the composite material is 3.0~50.0Myuemu, specific surface area of 1.0~20.0m 2 / g, the powder compressed density of the composite material 1.50~2.15g / Cm 3 ,
The graphite material is at least one selected from the group consisting of natural flake graphite, natural earth graphite, natural block graphite, artificial graphite, carbon fine particles and conductive graphite,
The non-graphite carbon material is soft carbon, organic pyrolytic carbon or vapor growth carbon that is easily graphitized,
The graphitized soft coal is at least one selected from the group consisting of coal pitch, petroleum pitch, coal tar, petroleum industrial heavy oil, and heavy aromatic hydrocarbons having a softening point of 30 to 300 ° C.
The organic material is one or more selected from the group consisting of polyvinyl alcohol , polyvinyl chloride, polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic resin and polyacrylonitrile, which are high molecular polymers , or A negative electrode material characterized by being one or more selected from the group consisting of polythiophene , polyaniline, polyacetylene, polypyrrole, polyacene, polyphenylene , polyphenyleneethylene, and polydiacetylene, which are polymer conductive polymers .
(1)黒鉛系材料に対する酸化及び/または還元処理であり、黒鉛系材料を0.1〜100℃/minの速度で昇温させながら温度が100〜1000℃に達するまで0.05〜10m/hの流量で酸化/還元気体または酸化/還元気体と不活性気体との混合気体を導入し、前記黒鉛系材料は、天然鱗片状黒鉛、天然土状黒鉛、天然塊状黒鉛、人造黒鉛、炭素微粒子及び導電性黒鉛からなる群より選択されるいずれか一種以上であるステップと、(2)100℃以下に降温すると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止するステップと、(3)酸化/還元処理後の黒鉛系材料を黒鉛基体として、黒鉛化しやすい軟炭による固相被覆または有機物熱分解炭素による液相被覆を行い、非黒鉛炭素材料となるように熱分解させることにより負極材が得られ、被覆層の質量は黒鉛基体質量の0〜20%(但し0は含まず)であり、黒鉛化しやすい軟炭は30〜300℃の軟化点の石炭ピッチ、石油ピッチ、コールタール、石油工業重油及び重質芳香族炭化水素からなる群より選択されるいずれか一種以上であり、前記有機物は高分子ポリマーであるポリビニル‐アルコール、ポリ塩化ビニル、ポリエチレン・グリコール、ポリエチレン・オキシド、ポリフッ化ビニリデン、アクリル酸樹脂及びポリアクリロニトリルからなる群より選択されるいずれか一種以上であり、または、高分子導電性ポリマーであるポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリアセン、ポリフェニレン、ポリフェニレンエチレン及びポリジアセチレンからなる群より選択されるいずれか一種以上であるステップと、を含むことを特徴とする負極材の製造方法。 (1) Oxidation and / or reduction treatment for graphite material, 0.05 to 10 m 3 until the temperature reaches 100 to 1000 ° C. while raising the temperature of the graphite material at a rate of 0.1 to 100 ° C./min. Introducing oxidizing / reducing gas or mixed gas of oxidizing / reducing gas and inert gas at a flow rate of / h, the graphite-based material is natural scale-like graphite, natural earth graphite, natural block graphite, artificial graphite, carbon A step that is at least one selected from the group consisting of fine particles and conductive graphite, and (2) introduction of an oxidizing / reducing gas or a mixed gas of an oxidizing / reducing gas and an inert gas when the temperature is lowered to 100 ° C. or lower. And (3) applying a solid phase coating with soft coal that is easily graphitized or a liquid phase coating with organic pyrolytic carbon using the graphite-based material after oxidation / reduction treatment as a graphite substrate, Thus, the negative electrode material is obtained by thermal decomposition, the mass of the coating layer is 0 to 20% (excluding 0) of the mass of the graphite substrate, and the soft coal that is easily graphitized has a softening point of 30 to 300 ° C. Any one or more selected from the group consisting of coal pitch, petroleum pitch, coal tar, petroleum industrial heavy oil and heavy aromatic hydrocarbons, and the organic substance is a polymer polymer such as polyvinyl alcohol , polyvinyl chloride, Polythiophene , polyaniline, polyacetylene, polypyrrole, polyacene , which is one or more selected from the group consisting of polyethylene glycol, polyethylene oxide, polyvinylidene fluoride, acrylic acid resin and polyacrylonitrile, or a polymer conductive polymer , Polyphenylene , polyphenylene ethylene and polydiacetylene And a step that is at least one selected from the group consisting of silicon. 前記負極材は、100℃以下で加熱する方法または真空乾燥方法により負極材の水分含有量を0.1%以下とすることを特徴とする請求項2に記載の負極材の製造方法。   3. The method for producing a negative electrode material according to claim 2, wherein the negative electrode material has a moisture content of 0.1% or less by a method of heating at 100 ° C. or less or a vacuum drying method. 前記負極材が乾燥した後、篩分けを行い、3000〜30000Gsの磁気誘導強度で1〜20回の消磁を行い、処理温度が10〜80℃であり、電磁ハンマーによる打つ頻度が3〜180回/秒であり、そして、篩分けを行うことにより、平均粒度D50が3.0〜50.0μmの負極材を得ることを特徴とする請求項2に記載の負極材の製造方法。 After the negative electrode material is dried, sieving is performed, demagnetization is performed 1 to 20 times at a magnetic induction strength of 3000 to 30000 Gs, a processing temperature is 10 to 80 ° C., and the frequency of hitting with an electromagnetic hammer is 3 to 180 times. a / s, and, by performing the sieving method for manufacturing a negative electrode material according to claim 2 having an average particle size D 50 is equal to or obtaining a negative electrode material of 3.0~50.0Myuemu. 前記黒鉛系材料に対する酸化/還元処理時において、0〜20rpm(但し0は含まず)の回転速度で黒鉛系材料の酸化/還元用の炉胸を回転させることを特徴とする請求項2に記載の負極材の製造方法。   The furnace for oxidation / reduction of a graphite material is rotated at a rotation speed of 0 to 20 rpm (however, 0 is not included) at the time of oxidation / reduction treatment for the graphite material. Manufacturing method of negative electrode material. 前記黒鉛系材料に対する酸化/還元処理時において、温度が100〜1000℃に達する時、0〜6h(但し0は含まず)だけ保温することを特徴とする請求項2に記載の負極材の製造方法。   3. The production of a negative electrode material according to claim 2, wherein during the oxidation / reduction treatment of the graphite-based material, when the temperature reaches 100 to 1000 ° C., the temperature is maintained for 0 to 6 hours (excluding 0). 4. Method. 前記降温時において、炉壁と炉壁内の熱伝導層との間に圧縮空気を導入する方式または炉内において自然降温する方式を採用することを特徴とする請求項2に記載の負極材の製造方法。   3. The negative electrode material according to claim 2, wherein a method of introducing compressed air between the furnace wall and the heat conducting layer in the furnace wall or a method of naturally cooling the temperature in the furnace is adopted at the time of the temperature lowering. Production method. 前記固相被覆に使われる被覆材料は、黒鉛基体質量の1〜20%を占めており、100〜500 r/minの混合速度で、5〜180minの混合被覆を実施するか、または、500〜3000 r/minの融合回転速度で、隙間が0.01〜1.0cmであり、20〜80℃の融合温度で、10〜200minの融合被覆を実施してから、室温まで自然降温させることを特徴とする請求項2に記載の負極材の製造方法。   The coating material used for the solid phase coating accounts for 1 to 20% of the mass of the graphite substrate, and the mixed coating is performed at a mixing speed of 100 to 500 r / min for 5 to 180 min, or 500 to 500 The fusion rotation speed is 3000 r / min, the gap is 0.01 to 1.0 cm, the fusion coating is performed at a fusion temperature of 20 to 80 ° C. for 10 to 200 minutes, and then the temperature is naturally lowered to room temperature. The manufacturing method of the negative electrode material of Claim 2 characterized by the above-mentioned. 前記液相被覆時において、黒鉛基体と黒鉛基体質量の0.1〜20%を占める可溶性有機物とを液相混合し、2000〜8000r/minの速度で10〜120minの混合攪拌を行い、前記液相混合用溶剤は水または有機溶剤であり、溶剤の質量が黒鉛基体質量の0.8〜2.0倍であり、混合温度が10〜90℃であり、80〜300℃の条件で1〜30hの乾燥処理を実施することを特徴とする請求項2に記載の負極材の製造方法。   During the liquid phase coating, the graphite substrate and a soluble organic substance occupying 0.1 to 20% of the mass of the graphite substrate are mixed in a liquid phase, and mixed and stirred at a speed of 2000 to 8000 r / min for 10 to 120 minutes, The phase-mixing solvent is water or an organic solvent, the mass of the solvent is 0.8 to 2.0 times the mass of the graphite substrate, the mixing temperature is 10 to 90 ° C, and 1 to 80 under the conditions of 80 to 300 ° C. The method for producing a negative electrode material according to claim 2, wherein the drying treatment is performed for 30 hours. (1)黒鉛系材料に対する酸化及び/または還元処理であり、黒鉛系材料を0.1〜100℃/minの速度で昇温させながら0.05〜10m/hの流量で酸化/還元気体または酸化/還元気体と不活性気体との混合気体を導入し、温度が100〜1000℃に達すると、0〜6h(但し0は含まず)だけ保温するステップと、
(2)気相被覆であり、0.05〜15m/hの導入量で炭素含有の気体を導入しつつ、0.1〜5hだけ保持した後、炉内を100℃以下まで降温させると、酸化/還元気体または酸化/還元気体と不活性気体との混合気体の導入を停止し、前記炭素含有の気体はメタン、アセチレン、エチレン、CO、天然ガス、液化石油ガス、ベンゼン及びチオフェンからなる群より選択されるいずれか一種以上であるステップと、を含むことを特徴とする負極材の製造方法。
(1) Oxidation and / or reduction treatment for graphite-based material, oxidizing / reducing gas at a flow rate of 0.05 to 10 m 3 / h while raising the temperature of the graphite-based material at a rate of 0.1 to 100 ° C./min Alternatively, when a mixed gas of an oxidizing / reducing gas and an inert gas is introduced and the temperature reaches 100 to 1000 ° C., the temperature is kept for 0 to 6 hours (excluding 0);
(2) It is gas phase coating, and after introducing carbon-containing gas at an introduction amount of 0.05 to 15 m 3 / h and holding for 0.1 to 5 h, the temperature inside the furnace is lowered to 100 ° C. or lower. The introduction of the oxidizing / reducing gas or the mixed gas of the oxidizing / reducing gas and the inert gas is stopped, and the carbon-containing gas is derived from methane, acetylene, ethylene, CO 2 , natural gas, liquefied petroleum gas, benzene and thiophene. And a step of at least one selected from the group consisting of: a method for producing a negative electrode material.
JP2013530531A 2011-09-03 2011-12-02 Negative electrode material and manufacturing method thereof Active JP5509458B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110258926.7A CN102299307B (en) 2011-09-03 2011-09-03 Electrode anode material and preparation method thereof
CN201110258926.7 2011-09-03
PCT/CN2011/002024 WO2013029211A1 (en) 2011-09-03 2011-12-02 Negative electrode material and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2013542559A JP2013542559A (en) 2013-11-21
JP5509458B2 true JP5509458B2 (en) 2014-06-04

Family

ID=45359577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530531A Active JP5509458B2 (en) 2011-09-03 2011-12-02 Negative electrode material and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5509458B2 (en)
KR (1) KR101439068B1 (en)
CN (1) CN102299307B (en)
WO (1) WO2013029211A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978992B (en) * 2012-11-20 2015-10-21 江苏科捷锂电池有限公司 The preparation method of silicon conductive nano-paper electrode material of lithium ion battery
CN103199254B (en) * 2013-04-03 2016-08-10 深圳市贝特瑞新能源材料股份有限公司 A kind of graphite negative material of lithium ion battery and preparation method thereof
CN104362299B (en) * 2014-10-24 2017-09-05 中海油天津化工研究设计院有限公司 A kind of preparation method of artificial plumbago negative pole material
CN106252596B (en) * 2016-08-05 2019-08-13 深圳市贝特瑞新能源材料股份有限公司 Soft carbon composite cathode material of silicon/carbon/graphite, preparation method and lithium ion battery
CN109841832B (en) * 2017-11-29 2021-05-04 宁德时代新能源科技股份有限公司 Positive plate and electrochemical cell
CN107919472B (en) * 2017-12-12 2020-07-14 贝特瑞新材料集团股份有限公司 High-temperature-resistant negative electrode material, preparation method thereof and application thereof in lithium ion battery
JP6497462B1 (en) 2018-03-30 2019-04-10 住友大阪セメント株式会社 Lithium ion battery electrode material and lithium ion battery
CN109052361A (en) * 2018-08-17 2018-12-21 东莞市凯金新能源科技股份有限公司 A kind of preparation method and soft carbon material of low cost soft carbon
CN109671974A (en) * 2018-12-10 2019-04-23 江苏天鹏电源有限公司 A kind of low temperature fast charge long-life high power dynamic lithium battery
CN110380050B (en) * 2019-06-06 2021-05-18 湖南中科星城石墨有限公司 Mixing process for preparing high-tap microcrystalline graphite negative electrode material
CN110482660B (en) * 2019-07-26 2022-02-08 北京工业大学 Preparation method and application of etched graphite felt electrode applied to electro-Fenton system
EP3913708A4 (en) * 2019-12-03 2022-03-30 Contemporary Amperex Technology Co., Limited Composite graphite material, preparation method therefor, secondary battery, and device
CN112670459B (en) * 2019-12-09 2022-11-08 宁波杉杉新材料科技有限公司 Graphite negative electrode material and preparation and application thereof
JP6841362B1 (en) 2020-03-17 2021-03-10 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
CN111933898B (en) * 2020-06-12 2022-06-10 湖州凯金新能源科技有限公司 High-performance graphite negative electrode material for lithium ion battery, and preparation method and application thereof
CN111682177B (en) * 2020-06-18 2023-01-10 贝特瑞新材料集团股份有限公司 Graphite composite material, preparation method and application thereof
CN113851614A (en) * 2020-06-28 2021-12-28 上海昱瓴新能源科技有限公司 Low-temperature quick-charging artificial graphite cathode material, preparation method thereof and low-temperature quick-charging battery
CN111816857B (en) * 2020-07-21 2021-09-24 黄杰 Nano-silicon composite material with core-shell structure and preparation method and application thereof
CN114068885A (en) * 2020-07-30 2022-02-18 湖南中科星城石墨有限公司 Graphite material with porous carbon layer and preparation method and application thereof
CN112875697A (en) * 2021-02-02 2021-06-01 广东凯金新能源科技股份有限公司 High-energy-density low-temperature quick-charging artificial graphite material and preparation method thereof
CN112993379A (en) * 2021-02-04 2021-06-18 重庆市紫建新能源有限公司 High-energy-density quick-charging polymer lithium ion battery and preparation method thereof
CN113097489B (en) * 2021-04-01 2022-02-22 辽宁奥亿达新材料有限公司 Preparation method of carbon cathode of lithium ion battery
CN113233451A (en) * 2021-06-24 2021-08-10 上海杉杉科技有限公司 Modified artificial graphite material, preparation method and application thereof, and lithium ion battery
CN113972363B (en) * 2021-09-28 2023-01-31 惠州锂威新能源科技有限公司 Negative electrode material and preparation method and application thereof
CN114430040A (en) * 2021-12-28 2022-05-03 深圳市翔丰华科技股份有限公司 Preparation method of low-expansion long-cycle graphite negative electrode material for lithium ion battery
CN114464805A (en) * 2022-01-24 2022-05-10 中钢集团鞍山热能研究院有限公司 Preparation method of hard carbon negative electrode material of high-rate lithium ion battery
CN114634178B (en) * 2022-03-15 2023-06-20 上海杉杉科技有限公司 Graphite anode material, preparation method thereof, battery and application
CN114784231A (en) * 2022-05-07 2022-07-22 万向一二三股份公司 Preparation method of graphite cathode of lithium battery
CN115084436A (en) * 2022-07-28 2022-09-20 温州大学碳中和技术创新研究院 Preparation and application of asphalt-based soft carbon negative electrode material for sodium ion battery
CN115117355B (en) * 2022-08-24 2022-11-15 湖南金阳烯碳新材料股份有限公司 Preparation method and application of negative electrode material for secondary battery
CN115784230B (en) * 2023-02-07 2023-05-02 中国农业科学院农业环境与可持续发展研究所 Carbon composite material and preparation method and application thereof
CN116613299B (en) * 2023-07-17 2023-11-24 浙江锂宸新材料科技有限公司 Preparation method of silicon-carbon anode material and product thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305995B2 (en) * 1996-12-26 2002-07-24 日立化成工業株式会社 Graphite particles for lithium secondary battery negative electrode
US6391495B1 (en) * 1998-11-25 2002-05-21 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
JP2001143691A (en) * 1999-11-12 2001-05-25 Osaka Gas Co Ltd Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell
JP2002222650A (en) 2001-01-25 2002-08-09 Hitachi Chem Co Ltd Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
JP2002241117A (en) * 2001-02-13 2002-08-28 Osaka Gas Co Ltd Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP4666876B2 (en) * 2001-09-26 2011-04-06 Jfeケミカル株式会社 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2003168429A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN100350654C (en) * 2005-04-20 2007-11-21 深圳市贝特瑞电子材料有限公司 Cathode material of Li-ion battery and preparation method, battery cathode, battery thereof
CN100338802C (en) * 2005-04-20 2007-09-19 深圳市贝特瑞电子材料有限公司 Cathode material of lithium ion cell and preparation method thereof
CN1909268B (en) * 2006-07-10 2012-03-28 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery negative electrode material containing PC dissolvent electrolytic solution and its preparation method
CN1913200B (en) 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 Silicon carbone compound negative polar material of lithium ion battery and its preparation method
CN101323447B (en) * 2008-07-21 2012-02-22 深圳市贝特瑞新能源材料股份有限公司 Graphite powder of lithium ionic cell cathode and preparation thereof
CN101916846B (en) * 2010-08-19 2012-12-05 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery cathode composite material and preparation method thereof
CN101916847A (en) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 Anode material for lithium ion power battery and preparation method thereof
JP5623198B2 (en) * 2010-09-06 2014-11-12 株式会社Nttファシリティーズ Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
CN102299307A (en) 2011-12-28
JP2013542559A (en) 2013-11-21
KR101439068B1 (en) 2014-09-05
CN102299307B (en) 2014-01-01
KR20130046423A (en) 2013-05-07
WO2013029211A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5509458B2 (en) Negative electrode material and manufacturing method thereof
CN107946576B (en) High-rate graphite negative electrode material, preparation method thereof and lithium ion battery
TWI646051B (en) Nitrogen-doped carbon cerium composite material and manufacturing method thereof
Li et al. High performance porous MnO@ C composite anode materials for lithium-ion batteries
KR20140120861A (en) Graphite negative electrode material for lithium ion batteries and preparing method thereof
Liu et al. Biomass-derived activated carbon for rechargeable lithium-sulfur batteries
JP2015095455A (en) Negative electrode material of on-vehicle energy storage lithium ion battery, and manufacturing method thereof
CN107026262B (en) High-capacity spherical hard carbon negative electrode material coated with graphene on surface
CN104332616A (en) Graphene coated graphite composite lithium ion battery negative material and its preparation method
CN108448080A (en) A kind of graphene coated silicon/metal composite negative pole material and preparation method thereof
CN111063872A (en) Silicon-carbon negative electrode material and preparation method thereof
Lin et al. In-situ pre-lithiated onion-like SiOC/C anode materials based on metallasilsesquioxanes for Li-ion batteries
Zhu et al. Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability
CN111244414A (en) Method for preparing silicon-carbon negative electrode material by magnesiothermic reduction
CN109360962B (en) High-stability silicon-carbon negative electrode material for lithium battery and preparation method thereof
CN105810946A (en) Preparation method of natural graphite cathode material for lithium ion batteries
CN110085823B (en) Nano composite negative electrode material and preparation method and application thereof
Guo et al. Diaper-derived selenium–carbon composites as high-capacity anodes for sodium-ion batteries
Chen et al. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes
CN110797513A (en) Graphite-hard carbon coated material and preparation method thereof
Su et al. Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries
TW202106618A (en) Composite carbon particles, method for manufacturing same and use thereof
CN110970599A (en) Graphene-based composite negative electrode material, preparation method thereof and lithium ion battery
Chen et al. Synthesize of silicon/carbon nanosheets with NaCl template and its application as anode material of lithium-ion batteries
CN114361416A (en) Silicon-based composite material, lithium ion battery and preparation method and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5509458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250