JP2001143691A - Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell - Google Patents

Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell

Info

Publication number
JP2001143691A
JP2001143691A JP32225299A JP32225299A JP2001143691A JP 2001143691 A JP2001143691 A JP 2001143691A JP 32225299 A JP32225299 A JP 32225299A JP 32225299 A JP32225299 A JP 32225299A JP 2001143691 A JP2001143691 A JP 2001143691A
Authority
JP
Japan
Prior art keywords
lithium secondary
graphite
negative electrode
secondary cell
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32225299A
Other languages
Japanese (ja)
Inventor
Chinnasamy Natarajan
ナタラジャン・チンナサミィ
Hiroyuki Fujimoto
宏之 藤本
Katsuhisa Tokumitsu
勝久 徳満
Akihiro Mabuchi
昭弘 馬淵
Takanori Kakazu
隆敬 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP32225299A priority Critical patent/JP2001143691A/en
Publication of JP2001143691A publication Critical patent/JP2001143691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material with a charging-discharging efficiency exceeding 90% as a carbon material for a negative electrode of a lithium secondary cell, a negative electrode for the lithium secondary cell using the carbon material, and a negative electrode for lithium secondary cell using the negative electrode. SOLUTION: The method for manufacturing a graphite material with coated surface comprises chemical vapor deposition of a raw material as a pyrolytic carbon source on a graphite material element to form a pyrolytic carbon coating layer and thereafter heat-treating of the coating layer at a temperature higher than the chemical vapor deposition temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、黒鉛材料に関し、
より詳しくは高い充放電効率を示すリチウム二次電池の
負極用炭素材料として有用な黒鉛材料、その製造方法、
リチウム二次電池用負極材料およびリチウム二次電池に
関する。
The present invention relates to a graphite material,
More specifically, a graphite material useful as a carbon material for a negative electrode of a lithium secondary battery exhibiting high charge / discharge efficiency, a method for producing the same,
The present invention relates to a negative electrode material for a lithium secondary battery and a lithium secondary battery.

【従来の技術とその問題点】負極活物質としてリチウム
を用い、正極活物質として金属カルコゲン化物、金属酸
化物などを用い、電解液として非プロトン性有機溶媒に
種々の塩を溶解させた溶液を用いる、いわゆる「リチウ
ム二次電池」は、高エネルギー密度型二次電池の一種と
して注目されており、盛んに研究が行われている。従来
のリチウム二次電池においては、負極活物質であるリチ
ウムは、箔状などの単体形態で用いられることが多かっ
た。しかしながら、この様な電池は、充放電を繰り返す
うちに、樹枝状リチウムが析出して、両極が短絡するの
で、充放電のサイクル寿命が短いという欠点を有する。
そこで、アルミニウム(あるいは鉛)、カドミウムおよび
インジウムを含む可融性合金(Al-Cd-In-Li系合金あるい
はPb-Cd-In-Li系合金)を用い、充電時にリチウムを合金
として析出させ、放電時には合金からリチウムを溶解さ
せる技術によるリチウム二次電池が提案されている(米
国特許第4,002,492号(1977)参照)。しかしながら、こ
の様な電池においては、樹枝状リチウムの析出は抑止で
きるが、電極としての加工性が低下するという新たな問
題点が生じる。近年、新しい材料を使用して、従来技術
における問題点を解決しようとする試みがなされてい
る。その様な試みの一つとして、リチウムを各種の炭素
材料に担持させる研究が盛んに行われている。リチウム
二次電池用負極として、黒鉛にリチウムを担持させた炭
素材料を用いる場合には、電池の充電時にリチウムが黒
鉛の層間に挿入(インターカレーション)され、放電時
に黒鉛層間よりリチウムが放出(デインターカレーショ
ン)される。一般にLiC6という組成から求められる理論
的な容量は、372Ah/kg(炭素ベース)である。しかしな
がら、黒鉛表面に水分が吸着されていたり、あるいは構
造欠陥が存在したりすると、充電時にリチウムがこの様
なサイトで消費されて、インターカレーション反応以外
の副反応が生じることになり、充放電効率の低下が起こ
る。より具体的には、初回の充電時に電解液の分解反応
が生じて、表面被膜が生成される。理想的には、充放電
時にこうした副反応が生ずることなく、充放電効率が10
0%となることが望ましいが、一般的な黒鉛材料では充
放電効率は、90%以下となるものが多い。また、黒鉛を
負極材料として用いた場合には、材料自体の結晶性が高
いために、高い電流密度での充放電特性があまり良くな
いという問題点もある。
2. Description of the Related Art Lithium is used as a negative electrode active material, metal chalcogenides and metal oxides are used as a positive electrode active material, and a solution in which various salts are dissolved in an aprotic organic solvent is used as an electrolyte. The so-called “lithium secondary battery” to be used has attracted attention as a kind of high energy density secondary battery, and has been actively studied. In a conventional lithium secondary battery, lithium, which is a negative electrode active material, is often used in a simple form such as a foil shape. However, such a battery has a drawback that the cycle life of charge and discharge is short because dendritic lithium is precipitated during repeated charge and discharge and both electrodes are short-circuited.
Therefore, aluminum (or lead), using a fusible alloy containing cadmium and indium (Al-Cd-In-Li-based alloy or Pb-Cd-In-Li-based alloy), lithium is precipitated as an alloy during charging, A lithium secondary battery based on a technique of dissolving lithium from an alloy during discharging has been proposed (see US Pat. No. 4,002,492 (1977)). However, in such a battery, although precipitation of dendritic lithium can be suppressed, there is a new problem that workability as an electrode is reduced. In recent years, attempts have been made to solve the problems in the prior art using new materials. As one of such attempts, research on supporting lithium on various carbon materials has been actively conducted. When a carbon material having graphite supported on lithium is used as a negative electrode for a lithium secondary battery, lithium is inserted (intercalated) between graphite layers when the battery is charged, and lithium is released from the graphite layer during discharge ( Deintercalation). In general, the theoretical capacity required from the composition LiC 6 is 372 Ah / kg (carbon basis). However, if moisture is adsorbed on the graphite surface or if there is a structural defect, lithium is consumed at such sites during charging, and a side reaction other than the intercalation reaction occurs, resulting in charge and discharge. A decrease in efficiency occurs. More specifically, a decomposition reaction of the electrolytic solution occurs at the time of the first charging, and a surface film is generated. Ideally, these side reactions do not occur during charging and discharging, and the charging and discharging efficiency is 10%.
Although it is desirable to be 0%, the charge and discharge efficiency of general graphite materials is often 90% or less. Further, when graphite is used as the negative electrode material, there is also a problem that the charge / discharge characteristics at a high current density are not so good because the material itself has high crystallinity.

【発明が解決しようとする課題】従って、本発明は、リ
チウム二次電池の負極用炭素材料として、充放電効率が
90%を超える炭素材料、この炭素材料を用いたリチウム
二次電池用負極およびこの負極を用いたリチウム二次電
池用負極を提供することを主な目的とする。
Accordingly, the present invention provides a carbon material for a negative electrode of a lithium secondary battery which has a high charge / discharge efficiency.
It is a main object to provide a carbon material exceeding 90%, a negative electrode for a lithium secondary battery using the carbon material, and a negative electrode for a lithium secondary battery using the negative electrode.

【課題を解決するための手段】本発明者は、リチウム二
次電池の負極用材料における従来技術の問題点に鑑み
て、研究を重ねた結果、黒鉛系炭素材料の表面を熱分解
炭素で被覆した後、被覆処理時の温度よりも高い温度で
熱処理する場合には、炭素材料の比表面積を減少させ
て、副反応を抑制するとともに、90%以上の充放電効率
を達成し得ることを見出した。また、この様な手法によ
り、高い充放電電流密度における特性を改善できること
をも見出した。即ち、本発明は、以下に示す黒鉛系炭素
材料、その製造方法、リチウム二次電池用負極材料およ
びリチウム二次電池を提供するものである。 1.表面が被覆された黒鉛系炭素材料の製造方法におい
て、熱分解炭素源となる原料を黒鉛材料素材に化学蒸着
させて、熱分解炭素被覆層を生成させた後、蒸着温度よ
りも高い温度で熱処理することを特徴とする黒鉛系炭素
材料の製造方法。 2.熱分解炭素源が、エチレン、プロピレン、トルエ
ン、ベンゼンおよびメタンからなる群から選ばれた少な
くとも1種である上記項1に記載の黒鉛系炭素材料の製
造方法。 3.表面が熱分解炭素によって被覆されている黒鉛系炭
素材料からなるリチウム二次電池用負極材料。 4.表面が熱分解炭素によって被覆されている黒鉛系炭
素材料からなる負極材料を用いたリチウム二次電池。
Means for Solving the Problems The present inventor has conducted various studies in view of the problems of the prior art in the negative electrode material of a lithium secondary battery, and as a result, coated the surface of a graphite-based carbon material with pyrolytic carbon. After that, when heat treatment is performed at a temperature higher than the temperature at the time of the coating treatment, it is found that the specific surface area of the carbon material is reduced, side reactions are suppressed, and a charge / discharge efficiency of 90% or more can be achieved. Was. It has also been found that such a technique can improve characteristics at a high charge / discharge current density. That is, the present invention provides a graphite-based carbon material, a method for producing the same, a negative electrode material for a lithium secondary battery, and a lithium secondary battery described below. 1. In the method of producing a graphite-based carbon material with a coated surface, a raw material to be a pyrolytic carbon source is chemically vapor-deposited on the graphite material to form a pyrolytic carbon coating layer, and then heat-treated at a temperature higher than the deposition temperature. A method for producing a graphite-based carbon material. 2. Item 1. The method for producing a graphite-based carbon material according to Item 1, wherein the pyrolytic carbon source is at least one selected from the group consisting of ethylene, propylene, toluene, benzene, and methane. 3. A negative electrode material for a lithium secondary battery comprising a graphite-based carbon material whose surface is coated with pyrolytic carbon. 4. A lithium secondary battery using a negative electrode material made of a graphite-based carbon material whose surface is coated with pyrolytic carbon.

【発明の実施の形態】本発明において用いる黒鉛系炭素
粒子素材は、特別に限定されるものではなく、天然黒
鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビー
ズ、黒鉛化されたピッチ系炭素繊維などが例示される。
その平均粒径は、0.1〜100μm程度である。なお、本明
細書において、炭素粒子素材および生成物のいずれの場
合にも、平均粒径とは、乾式レーザー回折測定法によっ
て得られた体積粒度分布における中心粒径を意味する。
また、比表面積は、BET法により測定した数値を示す。
本発明においては、熱分解して炭素を生成するガス状炭
化水素雰囲気下に、700〜1300℃程度の温度で上記の様
な黒鉛系炭素粒子を処理することにより、粒子表面に炭
素を化学的に蒸着させ、熱分解させた後、該粒子を不活
性雰囲気下で化学蒸着温度よりも高い温度で熱処理す
る。その結果、比表面積が低下した被覆黒鉛系炭素材料
が得られる。黒鉛系炭素粒子素材に対する化学蒸着/熱
分解反応は、通常700〜1300℃程度、より好ましくは800
〜1000℃程度で行う。化学蒸着/熱分解温度が高すぎる
場合には、析出する炭素が繊維状になったり、すす状に
なったりするために、炭素粒子表面を十分に被覆するこ
とができず、高い充放電効率が得られない。これに対
し、温度が低すぎる場合には、ガス状炭化水素の熱分解
反応が十分に進行しないので、やはり表面が均一に被覆
されない。化学蒸着反応に使用する炭化水素としては、
エチレン、プロピレン、メタン、トルエン、ベンゼンな
どがあげられる。化学蒸着/熱分解温度でガス状を呈す
るこれらの炭化水素は、濃度100%でも使用できるが、
反応をコントロールするためには、アルゴン、窒素、ヘ
リウムなどの不活性ガスにより、濃度0.01〜80%程度、
より好ましくは1〜60%程度に希釈して使用することが
望ましい。ガス状炭化水素の濃度が低すぎる場合には、
反応が十分に進行しない。これらの炭化水素は、単独で
使用しても良く、あるいは2種以上を混合して使用して
も良い。上記の化学蒸着/熱分解反応後に引き続いて行
う被覆炭素粒子の熱処理は、化学蒸着温度よりも高くか
つ1500℃以下の温度で行うことが好ましい。1500℃以上
の高い温度で熱処理を行う場合には、被覆粒子の表面状
態が内部の黒鉛粒子の表面と類似することになり、充放
電効率の改善効果が小さくなってしまう。被覆炭素粒子
の熱処理は、アルゴン、窒素、ヘリウムなどの不活性ガ
ス中で行う。熱処理は蒸着/熱分解反応終了後に、被覆
炭素粒子を反応器から取り出すことなく、雰囲気ガスを
不活性ガスに置換し、次いで昇温させる手法を採用して
も良く、あるいは蒸着/熱分解反応終了後、被覆炭素粒
子を室温まで下げ、反応器から取り出した後、別の反応
器内で不活性ガス雰囲気下に熱処理を行っても良い。こ
の様にして得られる本発明による黒鉛系炭素材料(被覆
黒鉛系炭素粒子)は、比表面積が低減化されているの
で、充放電効率が高く、かつ高電流密度における放電容
量が改善される。また、ラマンスペクトルにおける1360
cm-1におけるピーク強度が弱くなるかあるいは消滅す
る。これは、熱処理により、被覆粒子の表面状態が改善
されるためであろうと推測される。かくして得られる本
発明の炭素材料は、リチウム二次電池の負極用材料とし
て有用である。また、本発明による炭素材料を負極材料
とし、公知の正極材料、電解液、多孔質セパレーター、
集電体、ガスケット、封口板、ケースなどと組み合わせ
て、常法により、リチウム二次電池を作成することがで
きる。正極活物質としては、LiNiO2、LiCoO2、LiMn2O4
などを単独であるいは混合して用いることができる。電
解液としては、プロピレンカーボネート、エチレンカー
ボネート、γ-ブチロラクトン、テトラヒドロフラン、2
-メチルテトラヒドロフラン、ジオキソラン、4-メチル
ジオキソラン、スルホラン、1,2-ジメトキシエタン、ジ
メチルスルホキシド、アセトニトリル、N,N-ジメチルホ
ルムアミド、ジエチレングリコール、ジメチルエーテル
などの非プロトン性溶媒などにアニオン生成塩を溶解し
たものが例示される。これらの中では、テトラヒドロフ
ラン、2-メチルテトラヒドロフラン、ジオキソラン、4-
メチルジオキソランなどの強い還元雰囲気でも安定なエ
ーテル系溶媒あるいは前記した溶媒2種類以上の混合溶
媒に、LiPF6、LiClO4、LiBF4、LiAsF6、LiSbF6、LiAl
O4、LiAlCl4、LiCl、LiIなどの溶媒和しにくいアニオン
を生成する塩を溶解させたものを用いることが好まし
い。リチウム二次電池を製造する場合には、上記の負極
材料、正極材料および電解液とともに、常用の多孔質ポ
リプロピレン製不織布をはじめとするポリオレフィン系
の多孔質膜のセパレータ、集電体、ガスケット、封口
板、ケースなどの電池構成要素を使用して、常法に従っ
て、円筒型,角型あるいはボタン型などの任意形態のリ
チウム二次電池を組み立てることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The graphite-based carbon particle material used in the present invention is not particularly limited, and natural graphite, artificial graphite, graphitized mesocarbon microbeads, graphitized pitch-based carbon fiber And the like.
The average particle size is about 0.1 to 100 μm. In addition, in this specification, in both cases of the carbon particle material and the product, the average particle size means a central particle size in a volume particle size distribution obtained by a dry laser diffraction measurement method.
The specific surface area indicates a value measured by the BET method.
In the present invention, the above-described graphite-based carbon particles are treated at a temperature of about 700 to 1300 ° C. in a gaseous hydrocarbon atmosphere in which carbon is generated by thermal decomposition, thereby chemically forming carbon on the particle surface. After thermal decomposition, the particles are heat treated in an inert atmosphere at a temperature higher than the chemical vapor deposition temperature. As a result, a coated graphite-based carbon material having a reduced specific surface area is obtained. The chemical vapor deposition / pyrolysis reaction on the graphite-based carbon particle material is usually about 700 to 1300 ° C., more preferably 800
Perform at about 1000 ° C. If the chemical vapor deposition / pyrolysis temperature is too high, the deposited carbon will be fibrous or soot-like, and will not be able to sufficiently cover the carbon particle surface, resulting in high charge and discharge efficiency. I can't get it. On the other hand, when the temperature is too low, the thermal decomposition reaction of the gaseous hydrocarbon does not sufficiently proceed, so that the surface is not uniformly coated. Hydrocarbons used in chemical vapor deposition reactions include:
Examples include ethylene, propylene, methane, toluene and benzene. These hydrocarbons that are gaseous at the chemical vapor deposition / pyrolysis temperature can be used at a concentration of 100%,
In order to control the reaction, an inert gas such as argon, nitrogen, helium, etc.
More preferably, it is desirable to use it after diluting it to about 1 to 60%. If the concentration of gaseous hydrocarbons is too low,
The reaction does not proceed sufficiently. These hydrocarbons may be used alone or as a mixture of two or more. The subsequent heat treatment of the coated carbon particles after the chemical vapor deposition / thermal decomposition reaction is preferably performed at a temperature higher than the chemical vapor deposition temperature and 1500 ° C. or less. When heat treatment is performed at a high temperature of 1500 ° C. or more, the surface state of the coated particles becomes similar to the surface of the graphite particles inside, and the effect of improving the charge / discharge efficiency is reduced. The heat treatment of the coated carbon particles is performed in an inert gas such as argon, nitrogen, and helium. For the heat treatment, after the deposition / pyrolysis reaction is completed, a method may be adopted in which the atmosphere gas is replaced with an inert gas and the temperature is raised without removing the coated carbon particles from the reactor, or the deposition / pyrolysis reaction is completed Thereafter, the coated carbon particles may be cooled to room temperature, taken out of the reactor, and then heat-treated in another reactor under an inert gas atmosphere. The graphite-based carbon material (coated graphite-based carbon particles) according to the present invention obtained in this way has a reduced specific surface area, so that the charge / discharge efficiency is high and the discharge capacity at high current density is improved. In addition, 1360 in the Raman spectrum
The peak intensity at cm -1 weakens or disappears. This is presumably because the heat treatment improves the surface state of the coated particles. The carbon material of the present invention thus obtained is useful as a material for a negative electrode of a lithium secondary battery. Further, the carbon material according to the present invention as a negative electrode material, a known positive electrode material, an electrolytic solution, a porous separator,
In combination with a current collector, a gasket, a sealing plate, a case, and the like, a lithium secondary battery can be prepared by a conventional method. LiNiO 2 , LiCoO 2 , LiMn 2 O 4
Etc. can be used alone or in combination. As the electrolyte, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2
-Anion-producing salts dissolved in aprotic solvents such as -methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxyethane, dimethylsulfoxide, acetonitrile, N, N-dimethylformamide, diethylene glycol, dimethyl ether, etc. Is exemplified. Among these, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-
Strong reduction stable ether solvent or the above-mentioned solvent a mixture of two or more solvents in an atmosphere such as methyl dioxolane, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiAl
It is preferable to use a solution in which a salt that generates an anion that is difficult to solvate, such as O 4 , LiAlCl 4 , LiCl, and LiI, is dissolved. In the case of manufacturing a lithium secondary battery, a separator, a current collector, a gasket, and a closure of the above-described negative electrode material, positive electrode material, and electrolytic solution, as well as a polyolefin-based porous film including a conventional porous polypropylene nonwoven fabric. Using a battery component such as a plate or a case, it is possible to assemble a lithium secondary battery of any form such as a cylindrical type, a square type or a button type according to a conventional method.

【発明の効果】本発明によれば、黒鉛系炭素材料粒子表
面を熱分解性炭素により化学蒸着した後、熱処理するこ
とによって、比表面積を低減化した新規な改質炭素材料
が得られる。この炭素材料をリチウムイオン電池の負極
材料として使用する場合には、初回の充放電効率を90%
以上に向上させ、かつ高い電流密度での特性を改善する
という顕著な効果が達成される。
According to the present invention, a novel modified carbon material having a reduced specific surface area can be obtained by subjecting the surface of graphite-based carbon material particles to chemical vapor deposition with pyrolytic carbon and then subjecting to heat treatment. When this carbon material is used as a negative electrode material of a lithium ion battery, the initial charge / discharge efficiency is 90%.
A remarkable effect of improving the above and improving characteristics at a high current density is achieved.

【実施例】以下に実施例を挙げて本発明をさらに詳しく
説明する。 実施例1 *黒鉛の表面処理 炭素粒子素材として、平均粒度23.5μm、比表面積4.35m
2/gの人造黒鉛を用いた。この黒鉛100gを反応器に入
れ、エチレン/アルゴン=5/95(体積比)の混合ガスを流通
しながら、800℃まで昇温した後、同温度で1時間保持
することにより化学蒸着/熱分解反応を行った。その
後、被覆炭素粒子を取り出し、他の反応器内に収容し、
アルゴン雰囲気中1200℃で熱処理を行った。熱処理反応
後の被覆炭素粒子の比表面積は2.5m2/gであった。 実施例2 *黒鉛の表面処理 出発原料として、平均粒度20.29μm、比表面積4.35m2/g
の天然黒鉛を用いるとともに、反応ガスとしてプロピレ
ン/アルゴン=5/95(体積比)の混合ガスを用いる以外は
実施例1と同様の手法により、リチウム二次電池の負極
用炭素材料を調製した。熱処理反応後の被覆炭素粒子の
比表面積は2.3m2/gであった。 比較例1 実施例1において、熱処理工程を省略する以外は同様の
手法により被覆炭素粒子を調製した。実施例1〜2およ
び比較例1により得た被覆黒鉛系炭素粒子を用いて以下
の方法により、電極を調製し、その特性を測定した。 *炭素極(作用極)の作成 表面改質後の黒鉛系炭素粒子92重量部とPVDF(アルドリ
ッチケミカル社製)8重量部とを混合し、液相で均一に
撹拌した後、ペースト状とした。得られたペースト状混
合物をドクターブレードにより用いて銅箔に塗布し、乾
燥し、圧着させることにより、炭素極を作製した後、20
0℃で6時間真空乾燥した。 *試験セルの組立 上記で得られた炭素極を1cm2の大きさに切り出したもの
に対して、対極として充分量のリチウム金属を使用し
た。また、電解液として1mol/lの濃度にLiClO4を溶解
させたエチレンカーボネートとジエチルカーボネートの
混合溶媒(体積比1:1)を用い、セパレータとしてポリ
プロピレン不織布を用いて、リチウム二次電池を作製し
た。 *電極特性の測定 得られたリチウム二次電池の充放電特性を測定した。測
定は、0.2 mA/cm2、0.5mA/cm2および1.0mA/cm2の定電流
充放電下で行った。充電を0Vまで行った後、1.3Vまで
放電させた。放電容量は、カット電圧が1.3Vの時の容
量である。上記の実施例1〜2および比較例1の結果を
まとめて表1に示す。
The present invention will be described in more detail with reference to the following examples. Example 1 * Surface treatment of graphite As a carbon particle material, average particle size 23.5 μm, specific surface area 4.35 m
2 / g artificial graphite was used. 100 g of this graphite was put into a reactor, and while flowing a mixed gas of ethylene / argon = 5/95 (volume ratio), the temperature was raised to 800 ° C, and the temperature was maintained for 1 hour to perform chemical vapor deposition / thermal decomposition The reaction was performed. After that, the coated carbon particles are taken out and stored in another reactor,
The heat treatment was performed at 1200 ° C. in an argon atmosphere. The specific surface area of the coated carbon particles after the heat treatment was 2.5 m 2 / g. Example 2 * Surface treatment of graphite As a starting material, an average particle size of 20.29 μm and a specific surface area of 4.35 m 2 / g
A negative electrode carbon material for a lithium secondary battery was prepared in the same manner as in Example 1, except that natural graphite was used and a mixed gas of propylene / argon = 5/95 (volume ratio) was used as a reaction gas. The specific surface area of the coated carbon particles after the heat treatment reaction was 2.3 m 2 / g. Comparative Example 1 Coated carbon particles were prepared in the same manner as in Example 1, except that the heat treatment step was omitted. Using the coated graphite-based carbon particles obtained in Examples 1 and 2 and Comparative Example 1, an electrode was prepared by the following method, and its characteristics were measured. * Preparation of carbon electrode (working electrode) 92 parts by weight of surface-modified graphite-based carbon particles and 8 parts by weight of PVDF (manufactured by Aldrich Chemical Co., Ltd.) were mixed and uniformly stirred in a liquid phase to form a paste. . The resulting paste-like mixture was applied to a copper foil using a doctor blade, dried, and pressed to form a carbon electrode.
Vacuum dried at 0 ° C. for 6 hours. * Assembly of test cell A sufficient amount of lithium metal was used as a counter electrode with respect to the carbon electrode obtained above cut out into a size of 1 cm 2 . In addition, a lithium secondary battery was manufactured using a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 by volume) in which LiClO 4 was dissolved at a concentration of 1 mol / l as an electrolytic solution and a polypropylene nonwoven fabric as a separator. . * Measurement of electrode characteristics The charge and discharge characteristics of the obtained lithium secondary battery were measured. Measurements, 0.2 mA / cm 2, was carried out under a constant current charge and discharge of 0.5 mA / cm 2 and 1.0 mA / cm 2. After charging to 0V, the battery was discharged to 1.3V. The discharge capacity is the capacity when the cut voltage is 1.3V. Table 1 summarizes the results of Examples 1 and 2 and Comparative Example 1.

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳満 勝久 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 馬淵 昭弘 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 嘉数 隆敬 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 4G046 CA02 EA05 EA06 EB06 EC02 EC05 EC06 4K030 AA09 BA27 BB05 BB11 CA02 CA18 DA09 HA02 LA11 5H003 AA02 AA04 BA00 BA01 BB01 BC01 BC05 5H014 AA01 BB00 BB01 CC01 EE01 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ24 CJ28 DJ12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhisa Tokuma, Inventor 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Akihiro Mabuchi 4-chome, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 1-2-2 Osaka Gas Co., Ltd. (72) Takataka Kazuka, Inventor 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka F-term in Osaka Gas Co., Ltd. 4G046 CA02 EA05 EA06 EB06 EC02 EC05 EC06 4K030 AA09 BA27 BB05 BB11 CA02 CA18 DA09 HA02 LA11 5H003 AA02 AA04 BA00 BA01 BB01 BC01 BC05 5H014 AA01 BB00 BB01 CC01 EE01 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ24 CJ28 DJ12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表面が被覆された黒鉛系炭素材料の製造方
法において、熱分解炭素源となる原料を黒鉛材料素材に
化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸
着温度よりも高い温度で熱処理することを特徴とする黒
鉛系炭素材料の製造方法。
In a method for producing a graphite-based carbon material having a surface coated thereon, a raw material to be a pyrolytic carbon source is chemically vapor-deposited on a graphite material to form a pyrolytic carbon coating layer. A method for producing a graphite-based carbon material, wherein the heat treatment is performed at a high temperature.
【請求項2】熱分解炭素源が、エチレン、プロピレン、
トルエン、ベンゼンおよびメタンからなる群から選ばれ
た少なくとも1種である請求項1に記載の黒鉛系炭素材
料の製造方法。
2. The pyrolytic carbon source is ethylene, propylene,
The method for producing a graphite-based carbon material according to claim 1, wherein the method is at least one selected from the group consisting of toluene, benzene, and methane.
【請求項3】表面が熱分解炭素によって被覆されている
黒鉛系炭素材料からなるリチウム二次電池用負極材料。
3. A negative electrode material for a lithium secondary battery comprising a graphite-based carbon material whose surface is coated with pyrolytic carbon.
【請求項4】表面が熱分解炭素によって被覆されている
黒鉛系炭素材料からなる負極材料を用いたリチウム二次
電池。
4. A lithium secondary battery using a negative electrode material made of a graphite-based carbon material whose surface is coated with pyrolytic carbon.
JP32225299A 1999-11-12 1999-11-12 Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell Pending JP2001143691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32225299A JP2001143691A (en) 1999-11-12 1999-11-12 Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32225299A JP2001143691A (en) 1999-11-12 1999-11-12 Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2001143691A true JP2001143691A (en) 2001-05-25

Family

ID=18141598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32225299A Pending JP2001143691A (en) 1999-11-12 1999-11-12 Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2001143691A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161528A (en) * 2005-12-14 2007-06-28 Toshiba Corp Thermal decomposition treatment system and method of waste material
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2013542559A (en) * 2011-09-03 2013-11-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Negative electrode material and manufacturing method thereof
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
JP2015179634A (en) * 2014-03-19 2015-10-08 旭化成株式会社 Lithium-containing complex oxide, manufacturing method thereof, positive electrode active material including complex oxide, and nonaqueous lithium ion secondary battery
CN105428615A (en) * 2015-11-09 2016-03-23 大连宏光锂业股份有限公司 Production method for modified artificial graphite negative electrode material
EP3096378A1 (en) 2015-05-18 2016-11-23 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery
WO2022166058A1 (en) * 2021-02-02 2022-08-11 广东凯金新能源科技股份有限公司 High-energy-density low-temperature artificial graphite material for fast-charge and preparation method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643035B2 (en) * 1991-06-17 1997-08-20 シャープ株式会社 Carbon negative electrode for non-aqueous secondary battery and method for producing the same
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JPH11204109A (en) * 1998-01-09 1999-07-30 Mitsui Mining Co Ltd Manufacture of negative electrode material for lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643035B2 (en) * 1991-06-17 1997-08-20 シャープ株式会社 Carbon negative electrode for non-aqueous secondary battery and method for producing the same
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JPH11204109A (en) * 1998-01-09 1999-07-30 Mitsui Mining Co Ltd Manufacture of negative electrode material for lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2007161528A (en) * 2005-12-14 2007-06-28 Toshiba Corp Thermal decomposition treatment system and method of waste material
JP2013542559A (en) * 2011-09-03 2013-11-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Negative electrode material and manufacturing method thereof
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
JP2014096268A (en) * 2012-11-09 2014-05-22 Sei Kk Electrode for lithium secondary battery and lithium secondary battery
US9660269B2 (en) 2012-11-09 2017-05-23 Sei Corporation Electrode for lithium secondary battery and lithium secondary battery
JP2015179634A (en) * 2014-03-19 2015-10-08 旭化成株式会社 Lithium-containing complex oxide, manufacturing method thereof, positive electrode active material including complex oxide, and nonaqueous lithium ion secondary battery
EP3096378A1 (en) 2015-05-18 2016-11-23 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery
CN106169604A (en) * 2015-05-18 2016-11-30 汽车能源供应公司 Rechargeable nonaqueous electrolytic battery
CN105428615A (en) * 2015-11-09 2016-03-23 大连宏光锂业股份有限公司 Production method for modified artificial graphite negative electrode material
WO2022166058A1 (en) * 2021-02-02 2022-08-11 广东凯金新能源科技股份有限公司 High-energy-density low-temperature artificial graphite material for fast-charge and preparation method therefor

Similar Documents

Publication Publication Date Title
US20200373570A1 (en) Li4Ti5O12, Li(4-a)ZaTi5O12 OR Li4ZßTi(5-ß)O12, PARTICLES, PROCESSES FOR OBTAINING SAME AND USE AS ELECTROCHEMICAL GENERATORS
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP2840634B1 (en) Anode active material, lithium secondary battery comprising the same, and method of manufacturing anode active material
JP3481063B2 (en) Non-aqueous secondary battery
JPH087885A (en) Lithium secondary battery
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
US5900335A (en) Non-aqueous secondary battery and negative electrode for non-aqueous secondary battery
KR101666874B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2976299B2 (en) Anode material for lithium secondary battery
JP2001185147A (en) Secondary battery using nonaqueous electrolytic solution
KR101605146B1 (en) Cnt-lto complex for lithium secondary battery, and preparing method of the same, and lithium secondary battery including the same
JPH0785888A (en) Lithium secondary battery
KR20160040104A (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4069465B2 (en) Carbonaceous negative electrode material for lithium secondary battery and method for producing the same
US6664008B1 (en) Secondary battery having nonaqueous electrolyte solution
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
KR101256066B1 (en) Electrod and method of manufacturing the same and rechargeable battery including the same
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP2001143691A (en) Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070328