JP4666876B2 - Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP4666876B2
JP4666876B2 JP2002221238A JP2002221238A JP4666876B2 JP 4666876 B2 JP4666876 B2 JP 4666876B2 JP 2002221238 A JP2002221238 A JP 2002221238A JP 2002221238 A JP2002221238 A JP 2002221238A JP 4666876 B2 JP4666876 B2 JP 4666876B2
Authority
JP
Japan
Prior art keywords
graphite
composite
negative electrode
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002221238A
Other languages
Japanese (ja)
Other versions
JP2003173778A (en
Inventor
邦彦 江口
勝博 長山
仁美 羽多野
則夫 佐藤
淳一 北川
一晃 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2002221238A priority Critical patent/JP4666876B2/en
Priority to PCT/JP2003/003215 priority patent/WO2004011370A1/en
Priority to TW092106053A priority patent/TW587350B/en
Publication of JP2003173778A publication Critical patent/JP2003173778A/en
Application granted granted Critical
Publication of JP4666876B2 publication Critical patent/JP4666876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複合黒鉛質材料およびその製造方法、ならびにその複合黒鉛質材料を用いたリチウムイオン二次電池用負極材料およびさらにそれを用いた、初期充放電効率および放電容量が高いリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、電子機器の小型化あるいは高性能化に伴い、電池の高エネルギー密度化に対する要望はますます高まっている。この状況のなか、負極材としてリチウムを利用したリチウム二次電池はエネルギー密度が高く、高電圧化が可能であるという利点を有することから注目されている。
【0003】
このリチウム二次電池では、リチウム金属をそのまま負極として用いるので、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなることが知られている。また、デンドライト状に析出したリチウムがセパレータを貫通して、正極に達し短絡する可能性もある。
【0004】
このため正・負極用各材料を、それぞれリチウムイオンの担持体として機能する、酸化還元電位の異なる二種類の層間化合物で構成し、充放電過程における非水溶媒の出入を層間で行うようにするリチウムイオン二次電池が検討されている。
この負極材料として、リチウムイオンを吸蔵・放出する能力を有し、リチウム金属の析出を防止し得る炭素材料を用いることが提案されている。炭素材料については黒鉛結晶性構造または乱層構造などの多種多様な構造、組織、形態のものが知られており、その構造等の相違により充放電時の作動電圧を初めとする電極性能が大きく異なる。その中でも、特に充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛が有望視されている(特公昭62−23433号公報等)。
【0005】
黒鉛材料は、結晶性黒鉛構造が発達するほど、リチウムとの層間化合物を安定して形成しやすく、多量のリチウムが炭素網面の層間に挿入されるので、高い放電容量が得られることが報告されている(電気化学および工業物理化学、61(2),1383(1993)など) 。リチウムの挿入量により種々の層構造を形成し、それらが共存する領域では平坦でかつリチウム金属に近い高い電位を示す(J.Electrochem.Soc.,Vol.140,9,2490(1993)など) 。したがって、組電池にした場合には、高出力を得ることが可能となり、一般的に炭素負極材料の理論容量(限界値)は、最終的に黒鉛とリチウムとの理想的な黒鉛層間化合物LiC6が形成された場合の放電容量372mAh/g とされている。
【0006】
一方、黒鉛を負極材料としたリチウムイオン二次電池は、黒鉛の結晶性が高くなるに伴い、初回の充電時に黒鉛表面で電解液の分解などの電池反応に関与しない副反応が起こりやすく、その後の充電−放電過程で電気量として取り出すことができない不可逆容量(=初回の充電容量−初回の放電容量)の増加が著しく、初回の放電時に数十から数百mAh/g レベルの放電容量ロスを示すという問題がある(J.Electrochem.Soc.,Vol.117 222(1970)など) 。
【0007】
上記電解液の分解などの副反応は、分解生成物が黒鉛(炭素)表面に堆積・成長し、電子が黒鉛表面から溶媒などに直接移動できない程度の厚さとなるまで継続する。また、溶媒分子とリチウムイオンとがコインターカレートして黒鉛表面層が剥げ落ち、新たに露出した黒鉛表面が電解液と反応することにより不可逆容量が大きくなって初期充放電効率が低下することも報告されている(J.Electrochem.Soc.,Vol.137, 2009(1990)) 。
【0008】
このような不可逆容量の増加(低い初期充放電効率)は、二次電池中への正極材の追加により補償することができるが、余分な正極材の添加は、エネルギー密度の減少という新たな問題を生じるため、避けることが望ましい。
【0009】
上記のように黒鉛を負極炭素材料として用いたリチウムイオン二次電池では、高い放電容量と低い不可逆容量とは相反する要求であるが、これを解決するものとして、高結晶性黒鉛材料(核)の表面を低結晶性材料で被覆して多層構造とする方法も提案されている。大別すれば、
(1)核となる高結晶性黒鉛材料の表面を、プロパン、ベンゼンなどの有機化合物の熱分解ガスを用いて低結晶性炭素で被覆するもの(特開平4−368778号公報、特開平5−275076号公報)、
【0010】
(2)核となる高結晶性黒鉛材料に、ピッチなどの炭素材料を液相で被覆あるいは含浸した後、1000℃程度の温度で焼成して表層に炭素質物を形成するもの(特開平5−121066号公報、特開平5−217604号公報、特開平6−84516号公報、特開平11−54123号公報、特開2000−229924号公報)、
(3)黒鉛結晶性材料あるいは生コークスなどの黒鉛前駆体を、酸化性雰囲気中気相または液相で300℃程度で酸化処理するもの(特開平10−326611号公報、特開平10−218615号公報)、
(4)さらに(1)〜(3)を組み合わせたもの(特開平10−214615号公報、特開平10−284080号公報)などである。
【0011】
しかしながら、上記(1)、(4)の方法は、工業的生産の観点からは製造工程が煩雑でコストが高いという問題があり、また被覆厚みのコントロールが困難なため安定して高い電極性能や粉体性能を発揮させることができないという問題がある。
また、上記(2)の方法は、1000℃程度で焼成した際に被覆黒鉛が強固に接着し、解砕時に被膜が剥離するなどして、表層の均質性や厚みのコントロールが困難なため安定して高い電極性能や粉体性能を発揮させることができないという問題がある。
【0012】
上記(3)の方法においては、高い初期充放電効率を得るためには、高度に酸化する必要があるが、これによって表層のみならず、結晶性黒鉛材料の内部(核)の結晶性をも低下させてしまい、放電容量の低下を引き起こす問題がある。
【0013】
また、いずれの方法も近年の高容量化の要求に対しては放電容量が不足する。ここで、電池の放電容量は負極を構成する活物質(黒鉛)層の容積当りの放電容量に大きく依存する。したがって、電池としての放電容量を高めるためには、活物質の単位重量当りの放電容量(mAh/g)を高め、かつ活物質を高密度に充填する必要がある。高密度で負極を形成した場合に上記の被覆黒鉛粒子の場合は被膜が剥がれたりして、電解液と反応性の高い黒鉛表面が露出し、不可逆容量の増大を招くおそれがある。
【0014】
【発明が解決しようとする課題】
本発明は、上記のような状況に鑑み、リチウムイオン二次電池用負極材料として用いたときに、高い放電容量および高い初期充放電効率(不可逆容量が小さい)がともに得られる複合黒鉛質材料、およびその複合黒鉛質材料を、黒鉛化時の融着などを抑制しつつ生産性良く製造する方法、ならびにその複合黒鉛質材料を用いるリチウムイオン二次電池用負極、およびリチウムイオン二次電池を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明者は、高結晶性黒鉛質芯材を含む黒鉛前駆体に、剪断力と圧縮力を同時に付加し得るメカノケミカル処理を施した後、黒鉛化することにより、非酸化性雰囲気で行われる黒鉛化(高温加熱)時の材料同士の融着を抑制し、かつ、高結晶性黒鉛からなる黒鉛質芯材の表面を、該芯材に比べて相対的に低結晶性の黒鉛質被覆材で被包するとともに、最外表面に低結晶性の表層を有し、該低結晶性の表層が芯材から剥離することがない複合黒鉛質材料を、効率良く製造する方法が得られることを見出した。
【0016】
また、前記方法を適用して得られる複合黒鉛質材料は、リチウムイオン二次電池用負極材料として用いたときに、さらに高い放電容量を発現することができ、天然黒鉛をそのまま使用した場合の不可逆容量増大の問題をも解決できることを見出し、本発明を完成するに至った。
【0017】
さらに、高結晶性黒鉛質芯材として複数の鱗片状黒鉛を球状に造粒したものを含む複合黒鉛質材料は、複数の高結晶性の黒鉛質粒子がランダムな方向に配列された構造を有するため、高密度で負極を形成した場合の不可逆容量増大や、ハイレート特性、サイクル特性低下の問題をも解決できることを見出し、本発明を完成するに至った。
【0018】
すなわち、本発明は、黒鉛質芯材(A)と、該黒鉛質芯材(A)を被包する黒鉛質被覆材(B)とからなる複層粒子および/または該複層粒子が集合して形成される複合粒子からなり、該複層粒子および該複合粒子は外側表面に黒鉛質表層(C)を有し、(A)>(B)>(C)の順に結晶性が低い複合黒鉛質材料であって、複合黒鉛質材料の炭素網面層の面間隔(d002)が0.3365nm以下、結晶子のC軸方向の大きさ(Lc)が40nm以上であり、ラマンスペクトルの1360cm-1のピーク強度(I1360)と1580cm-1のピーク強度(I1580)の強度比(I1360/I1580)が0.05以上0.30未満であることを特徴とするリチウム二次電池負極用の複合黒鉛質材料を提供する。
【0019】
前記黒鉛質芯材(A)が、鱗片状黒鉛からなる球状または楕円体状の造粒物であることが好ましい。
【0020】
さらに、前記黒鉛質芯材(A)が、炭素網面層の面間隔(d002 )が、0.3358nm以下のものであると、好ましい。
【0022】
また、本発明は、前記複合黒鉛質材料を製造する方法として、黒鉛前駆体の原料と、該黒鉛前駆体よりも結晶性の高い黒鉛質芯材を混合し、加熱して揮発分量を2.0質量%以上、20質量%未満に調整し、メカノケミカル処理を施した後、黒鉛化する工程を有する、複合黒鉛質材料の製造方法を提供する。
【0023】
さらに、本発明は、前記複合黒鉛質材料からなるリチウムイオン二次電池用負極材料、およびそのリチウムイオン二次電池用負極材料を用いるリチウムイオン二次電池を提供する。
【0024】
【発明の実施の形態】
以下、本発明の複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池について詳細に説明する。
本発明の複合黒鉛質材料は、黒鉛質芯材(A)と、該黒鉛質芯材(A)を被包する黒鉛質被覆材(B)とからなる複層粒子および/または該複層粒子が集合して形成される複合粒子からなり、該複層粒子および複合粒子は外側表面に黒鉛質表層(C)を有するものである。
【0025】
本発明において、複層粒子は下記の(D−1)、(D−2)に示す形態のうち、いずれか1種であり、複合粒子は、下記の3つの形態((1)、(2)、(3))のうち、いずれか1種または2種以上の組合せからなるものである。
(1)1個単独の黒鉛質芯材(A)が黒鉛質被覆材(B)で被包されてなる形態の複層粒子(D−1)が複数集合して形成された複合粒子
(2)2個以上の黒鉛質芯材(A)が黒鉛質被覆材(B)で被覆された形態の複層粒子(D−2)が集合して形成された複合粒子
(3)前記複層粒子(D−1)と(D−2)とが集合して形成された複合粒子
【0026】
本発明において、黒鉛質芯材(A)は、黒鉛質被覆材(B)よりも高結晶性である。黒鉛質芯材(A)としては、タール、ピッチを原料としたメソフェーズ焼成炭素(バルクメソフェーズ)、メソフェーズ小球体、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)などを黒鉛化したもの、人造黒鉛、天然黒鉛、膨張黒鉛、黒鉛炭素繊維、黒鉛化カーボンブラック等が挙げられ、特に、高い放電容量を併せ持つ複合黒鉛質材料を得る観点から、天然黒鉛が好ましい。黒鉛質芯材(A)の形状は、球状、楕円体状、鱗片状、塊状、板状、繊維状、粒状等の各種の形状を有するものが挙げられ、塊状の黒鉛を加工して形成してもよい。黒鉛質芯材(A)は、その平均粒子径は1〜100μm、好ましくは2〜30μmである。
【0027】
特に、黒鉛質芯材(A)としては、複数の鱗片状の黒鉛を、複合粒子内の空隙率が50体積%以下、好ましくは30体積%以下にまで緻密に造粒されたものが好ましい。複合粒子内の空隙率が50体積%を超える場合には、含有させるための黒鉛前駆体原料または黒鉛前駆体の必要量が多くなって充分な放電容量が得られなくなったり、被覆後に粒子内に空隙が残存することにより高密度で負極を作製した場合に複合粒子が破壊されることがある。
【0028】
黒鉛質芯材(A)は黒鉛質被覆材(B)により1個または複数個被包させれば充分であるが、好ましくは黒鉛質被覆材(B)100質量部に対し50〜10000質量部、さらに好ましくは100〜2000質量部の割合とする。
【0029】
また、黒鉛質被覆材(B)は、黒鉛質芯材(A)を被包して複層粒子を形成するものであるが、複層粒子が集合してなる複合粒子の内部を充填または空隙を形成して複層粒子の間を結合させるとともに、複合粒子の外側の全部または部分的に被覆するものであってもよい。
さらに、複数の黒鉛質芯材(A)が集合してなる空隙を有する造粒粒子の内部に、黒鉛質被覆材(B)を充填または空隙を形成して黒鉛質芯材(A)の間を結合させるとともに、該造粒粒子の外側の全部または部分的に被覆するものであってもよい。
【0030】
さらに、本発明の黒鉛質材料において、複層粒子および複合粒子は外側表面に黒鉛質表層(C)を有する。この黒鉛質表層(C)は、前記黒鉛質被覆材(B)の黒鉛化処理前(黒鉛前駆体)にメカノケミカル処理(圧縮力、剪断力を付与)することにより、結晶性が低下されたものでもよいし、あるいは融着した黒鉛質被覆材(B)の黒鉛前駆体を解砕する際に解砕とメカノケミカル処理を同時に(連続的に)行って得たものでもよい。この場合、黒鉛質表層(C)は、相対的に黒鉛質被覆材(B)よりも結晶性が低いとはいえ、黒鉛質被覆材(B)と一体化された薄層を形成する。黒鉛質表層(C)の厚みを明確に規定することはできないが、0.01〜5μm程度の厚みが好ましいと推定される。
【0031】
本発明において、前記黒鉛質芯材(A)、黒鉛質被覆材(B)および黒鉛質表層(C)は、結晶性が(A)>(B)>(C)の順に低いことが重要である。これにより、黒鉛質芯材(A)に由来する高い放電容量を維持しつつ、黒鉛質表層(C)が有する低い不可逆容量の特徴を両立することができ、かつ緻密に含有された黒鉛質被覆材(B)の作用によって高密度で負極を形成した場合にも上記の優れた電池特性が発現されるのである。
【0032】
本発明において、複合黒鉛質材料の表面(黒鉛質表層(C))の結晶性は、アルゴンレーザーを用いたラマンスペクトルによって評価される。すなわち、黒鉛構造に基づく9種の格子振動のうち、網面内格子振動に相当するE2g型振動に対応した1580cm-1近傍のラマンスペクトルと、主に表層での結晶欠陥、積層不整などの結晶構造の乱れを反映した1360cm-1近傍のラマンスペクトルを、514.5nmの波長を持つアルゴンレーザーを用いたラマン分光分析器(日本分光(株)製、NR1100)により測定する。それぞれのラマンスペクトルのピーク強度からその強度比(R=I1360/I1580)を算出し、強度比が大きいものほど表面の結晶性が低いと評価する。強度比Rは、不可逆容量を小さくする観点から、R≧0.05である。R<0.05の場合には不可逆容量が大きく、 十分な電池特性が得られない。これは表層の結晶化が進みすぎて複合黒鉛質材料表面での電解液の分解反応が進行しやすくなるためと考えられる。また、Rは放電容量の低下を最小に抑える観点からR<0.30である。R≧0.30の場合には結晶性が過度に低下したり、黒鉛質表層(C)の厚みが増大することにより放電容量の低下を生じることがある。
【0033】
一方、複合黒鉛質材料の平均的な結晶性は、X線広角回折法における炭素網面層の面間隔(d002 )および結晶子のC軸方向の大きさ(Lc)から判定することができる。すなわち、CuKα線をX線源、高純度シリコンを標準物質に使用して、黒鉛質材料に対し(002)回折ピークを測定し、そのピーク位置およびその半値幅より、それぞれd002 、Lcを算出する。算出方法は学振法に従うものであり、具体的な方法は「炭素繊維」(近代編集社、昭和61年3月発行)733〜742頁などに記載されている。
【0034】
本発明において、黒鉛構造の発達度合いの指標となるX線回折法によるd002 およびLcは、高い放電容量を発現させる複合黒鉛質材料が得られる点から、d002 ≦0.3365nm、Lc≧40nmであり、d002 ≦0.3362nm、Lc≧50nmであるのが特に好ましい。d002 >0.3365nm、Lc<40nmの場合には、黒鉛構造の発達の程度が低いため、複合黒鉛質材料をリチウムイオン二次電池の負極材料として用いたとき、リチウムのドープ量が小さく、高い放電容量を得ることができない場合がある。さらに、前記黒鉛質芯材(A)は、炭素網面層の面間隔(d002 )が、0.3358nm以下のものであると、好ましい。
【0035】
本発明の複合黒鉛質材料は、用途、電極の設計厚み、電池特性の調整等に応じて、その平均粒子径が適宜選択されるが、本発明の複合黒鉛質材料をリチウムイオン二次電池用負極材料として使用する場合には、その平均粒子径が5〜100μmであることが好ましく、特に5〜30μmが好ましい。
【0036】
本発明の複合黒鉛質材料は、黒鉛質芯材(A)として天然黒鉛に代表される鱗片状の黒鉛粒子の造粒物を用いた場合には、球状に近い形状をなすことができる。球状あるいは楕円体状の形状は、リチウムイオン二次電池負極用材料として、ハイレート特性やサイクル特性の向上に寄与するので好ましい。本発明の複合黒鉛質材料の平均アスペクト比は3以下が好ましく、特に2以下が好ましい。
【0037】
また、この場合、複合黒鉛質材料が、緻密な粒子で形成され、高い嵩密度を発現することができる。嵩密度が高いと負極を高密度で製造する際の黒鉛質材料の破壊などの問題を軽減することができ有利である。嵩密度は0.5g/cm3 以上であることが好ましく、特に0.7g/cm3 以上が好ましい。さらに好ましくは1.0g/cm3 以上である。
【0038】
本発明の複合黒鉛質材料の比表面積はリチウムイオン二次電池の特性や、負極合剤ペーストの性状などに合わせ、任意に設計することが可能である。ただし、BET比表面積で20m2 /gを超えるとリチウムイオン二次電池の安全性の低下を生じることがある。一般にBET比表面積で0.3〜5m2 /gであることが好ましく、特に3m2 /g以下が好ましい。さらに好ましくは1m2 /g以下である。
【0039】
本発明において、複合黒鉛質材料の製造は、前記形態を有する複合黒鉛質材料を製造できる方法であれば、いずれの方法を用いてもよく、特に制限されないが、特に、本発明では、黒鉛質芯材(A)を含む黒鉛前駆体をメカノケミカル処理した後、黒鉛化する方法(以下、「本発明の方法」という)を提供する。この方法によって、黒鉛質芯材(A)>黒鉛質被覆材(B)>黒鉛質表層(C)の順に低い結晶性を容易に得ることができる。また黒鉛質被覆材(B)と黒鉛質表層(C)の間に界面が存在しない、一体化された複合体を得ることができる。
【0040】
本発明の方法において用いられる黒鉛前駆体は、軟化点(メトラー法)が約360℃以上の固体であり、ある程度黒鉛構造が成長しているものである。黒鉛構造の成長度合いを表す指標としては、黒鉛前駆体が含有する揮発分量が挙げられる。黒鉛前駆体の揮発分量は2.0質量%以上20質量%未満、好ましくは4〜15質量%である。ここで、揮発分量は、JIS K2425の固定炭素法に準拠して下記の方法にしたがって測定される。
【0041】
揮発分量の測定方法:試料(黒鉛前駆体)1gを坩堝に量り取り、蓋をしないで430℃の電気炉で30分間加熱する。その後、二重坩堝とし、800℃の電気炉で30分間加熱して揮発分を除き、減量率を揮発分とする。
【0042】
黒鉛構造の成長度合いを表す指標としてキノリン不溶分(QI)を目安とすることもできる。QIが100質量%に近づくほど黒鉛構造が成長していることを意味する。
【0043】
ここで、QIは、JIS K2425に準拠して、以下のような濾過法により測定される。
QI測定法:粉末材料(黒鉛前駆体)をキノリンに溶解させ、75℃で30分間加熱した後、濾過器を用いて熱いうちに吸引濾過する。残分をキノリン、アセトンの順にそれぞれ濾液が無色になるまで洗浄した後、乾燥して質量を量り、キノリン不溶分を算出する。なお濾過助剤として珪藻土を用いる。濾過器はJISR3503に規定する壺型濾過器1G4を用いる。
【0044】
揮発分量が多い、あるいはQIが低い黒鉛前駆体は、黒鉛化条件下に溶融性を示す。したがって、このような黒鉛前駆体をそのまま黒鉛化処理した場合には、通常は形状が変化したり、材料同士の融着を起こす。特に、揮発分量が20質量%以上では、メカノケミカル処理を施しても、その後の熱処理によって黒鉛前駆体が再溶融し、表層のみの結晶構造を乱すことが困難となる。このような理由から、本発明に用いられる黒鉛前駆体は、揮発分量が20質量%未満、QIが50質量%超であるのが好ましい。
【0045】
一方、揮発分量が少ない、あるいはQIが高い黒鉛前駆体は、上記のような溶融性を示さなくなる(不融化する)が、揮発分量が2.0質量%未満では、メカノケミカル処理によって表層の結晶構造を乱すことが困難となり、低結晶性表面の形成が不確実になる。したがって、本発明では、揮発分量が2.0質量%以上20質量%未満の黒鉛前駆体が好ましく用いられ、さらに好ましくは4〜15質量%の黒鉛前駆体が用いられる。QIによるときは、50質量%超100質量%未満の黒鉛前駆体が好ましく用いられ、さらに好ましくは80〜99.5質量%の黒鉛前駆体が用いられる。
【0046】
黒鉛前駆体は、上記のような揮発分を含有する固体状黒鉛材料であれば特に限定されないが、好ましくはタール、ピッチなどの石油系または石炭系重質油のうちの少なくとも1つを出発原料とし、芳香環の重縮合反応を経て製造される黒鉛前駆体、例えば、メソフェーズ(バルクメソフェーズなど)を用いることができる。タールおよび/またはピッチを加熱すると、タールやピッチ中の芳香族成分が縮合やスタッキングして、メソフェーズカーボン小球体と称される球状物が生成する。さらに加熱を続けると、メソフェーズカーボン小球体同士が合体して全域がメソフェーズとなったバルクメソフェーズが生成する。
【0047】
熱処理は、減圧、常圧、加圧のいずれで行ってもよく、通常は300〜1200℃、好ましくは350〜600℃の温度範囲で行われる。雰囲気は非酸化性であることが望ましいが、若干の酸化性雰囲気の下で熱処理することもできる。なお、熱処理は複数回行ってもよい。熱処理時間は特に限定されないが、0.5〜100時間程度である。
なお、重縮合反応前のピッチの揮発分量は20〜40質量%程度、QIは0〜20質量%程度である。
【0048】
本発明の方法において、一個あるいは複数個の黒鉛質芯材(A)となる粒子を、黒鉛前駆体の中に介在させればよい。一例として、溶融状態にある黒鉛前駆体と黒鉛質芯材とを加熱下で剪断力を掛けて混練し、互いに密着した混合黒鉛前駆体を得、これを粉砕して、所定の形状に調整する方法が挙げられる。
【0049】
あるいは天然黒鉛などの黒鉛質芯材(A)に、溶融状態にある黒鉛前駆体を少量加え、造粒して所望の粒子形状に調整してもよい。黒鉛前駆体の溶液と黒鉛を混合し、加熱、減圧、スプレードライなどの方法を単独または組み合わせて、溶媒を除去してもよい。また、黒鉛前駆体の原料(例えば、石炭ピッチ)と黒鉛質芯材(A)を混練、造粒後、加熱して、芳香環の重縮合反応をさせ黒鉛前駆体としてもよい。ピッチなどの黒鉛前駆体原料を用いる場合は、黒鉛前駆体原料を溶媒に溶解後、黒鉛質芯材(A)と混合した後、加熱、減圧、スプレードライなどの方法を単独または組み合わせて、溶媒を除去してもよい。
【0050】
本発明の複合黒鉛質材料は、前記のとおり、球状もしくは楕円体状のものが好ましい。これらの形状を与える黒鉛質芯材(A)としては、球状もしくは楕円体状のものが好ましく、塊状の黒鉛を加工して形成してもよいが、複数の鱗片状の黒鉛を造粒して形成したものが、より好ましい。造粒方法としては、複数の鱗片状の黒鉛に乾式、湿式で機械的外力を付与する方法が挙げられる。機械的外力を付与するための装置としては、カウンタジェットミル(ホソカワミクロン(株)製)、カレントジェット(日清エンジニアリング(株)製)などの粉砕機、SARARA(川崎重工(株)製)、GRANUREX(フロイント産業(株)製)、アグロマスター(ホソカワミクロン(株)製)、ニューグラマシン((株)セイシン企業製)などの造粒機、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株)製)などのせん断圧縮加工機を使用することができる。
【0051】
造粒に際しては、バインダー成分を使用しても構わない。
バインダー成分として上記の黒鉛前駆体あるいは黒鉛前駆体原料を用いることができる。バインダー成分は黒鉛化時に消失するものであってもよい。また黒鉛化によって黒鉛構造を形成しないものであっても本発明の効果を損なわない範囲において使用することができる。
【0052】
また、黒鉛前駆体原料としてタールおよび/またはピッチなどの石油系および/または石炭系重質油を用いた場合は、さらに、親水性微粒子を含有することが好ましい。親水性微粒子の配合によって、後述する解砕工程が容易になり、被膜の剥離を抑制し、初期充放電効率のさらなる向上に寄与することが可能となる。
【0053】
親水性微粒子は親油性であるタール/ピッチおよびこれらを加熱して生成するメソフェーズ等に対する密着性が低いものが好ましい。密着性を有する場合には、解砕性の改良効果が小さいものとなる。
【0054】
親水性微粒子は焼成工程や熱処理工程(黒鉛化)の際に、炭素と反応するものであってもよく、また最終的に得られる黒鉛質粒子の中に残存するものであってもよいが、親水性微粒子およびその反応生成物が最終的に気化、分解し、黒鉛質粒子中に残存しないことが望ましい。
【0055】
親水性微粒子は小さいものほど少ない配合量で本発明の効果を発現できる。親水性微粒子の好ましい平均直径は1μm以下である。1μmよりも大きい場合には、大量の親水性微粒子を添加する必要があり、最終的に得られる黒鉛質粒子の電池特性の低下を招くことがある。
【0056】
親水性微粒子の配合量は、得られる複合黒鉛質材料の黒鉛質被覆材(B)に対して0.01〜10質量%の範囲、特に0.05〜3質量%であるのが好ましい。0.01質量%未満の場合には、解砕性の改良効果が小さいものとなり、10質量%を超える場合には、最終的に得られる複合黒鉛質材料の電池特性の低下を招くことがある。
【0057】
上記の好適条件を満足する親水性微粒子としては、気相無水シリカ、気相アルミナ、気相チタニアなどの気相法によって得られる金属酸化物、酸化処理したカーボンブラックなどの炭素質粒子、鉄黒、黄鉛、亜鉛黄、黄色酸化鉄、黄土、チタン黄、べんがら、鉛丹、亜鉛華、鉛白、硫酸鉛、リトポン、チタニア、酸化アンチモン、アルミナホワイト、グロスホワイト、サチン白、石膏などの顔料、カオリンクレー、ロウ石クレー、焼成クレー、含水珪酸アルミニウム合成品などの珪酸アルミニウム類、白亜、チョークなどの炭酸カルシウム類、ドロマイト粉末などのカルシウム・マグネシウム炭酸塩類、マグネサイト粉末、塩基性炭酸マグネシウムなどの炭酸マグネシウム類、ワラストナイト、含水珪酸カルシウム合成品などの珪酸カルシウム類、タルク、マイカなどの珪酸マグネシウム類、石英粉末、微粉珪酸、珪藻土、シリカ粉などの珪酸類、樹脂ビーズなどが例示される。
【0058】
本発明において、親水性微粒子として、前記のものを1種単独で、あるいはこれらの複数種を混合して用いることもできる。なかでも、黒鉛前駆体原料や黒鉛前駆体などと反応しない、気相法によって得られる無水シリカ、チタニア、アルミナなどが特に好適である。
【0059】
親水性微粒子を黒鉛前駆体原料に混合する方法は特に限定されないが、あらかじめ親水性微粒子を溶媒中に分散させ、溶融状態のタールおよび/またはピッチに該分散液を注入し、攪拌する方法が例示される。溶媒として、ベンゼン、トルエン、キノリン、タール中油、タール重油などを用いることができる。
【0060】
また、黒鉛質芯材(A)を含む黒鉛前駆体はその形状は特に限定されず、粒状、鱗片状、球状、針状、繊維状などで例示されるいずれでもよいが、球状もしくは楕円体状が好ましい。粉砕、分級などにより、所定の粒子形状に調整する際には、公知の各種方法を採用することができる。粉砕方式としては、例えば、ローラー式、衝撃式、摩擦式、圧縮式、石臼式、動体衝突式、渦流(気流)式、剪断式、振動式などの各種市販粉砕機を使用することができる。
【0061】
本発明の方法では、黒鉛化時に、溶融変形あるいは固体同士の融着などを生じないので、原料の固体状黒鉛前駆体の形状のままで複合黒鉛質材料が得られる。このため、黒鉛質芯材(A)を含む黒鉛前駆体を所望する製品の形状で供すれば、黒鉛化後に所望形状に粉砕や成形する必要がなく工程が簡素化される。さらにはこれによって低結晶化した表面をそのまま保持処理できるので、本発明の効果をよりよく奏することができる。例えば、本発明の複合黒鉛質材料をリチウムイオン二次電池用負極材料として使用する際には、黒鉛質芯材(A)を含む黒鉛前駆体を球状、楕円体状あるいは粒状で供することが好ましい。この場合の好適な平均粒子径は5〜50μm、より好ましくは10〜30μmである。
なお、黒鉛質芯材(A)を含む黒鉛前駆体は必ずしも均一なものでなくてもよく、中心部と表面部の揮発分量が異なっていてもよい。
【0062】
<メカノケミカル処理>
本発明において、メカノケミカル処理とは、黒鉛質芯材(A)と黒鉛前駆体に圧縮力と剪断力を同時に加える処理を言う。メカノケミカル処理により、高結晶性黒鉛からなる黒鉛質芯材(A)を被包する黒鉛前駆体の表面に、該黒鉛前駆体に対して相対的に低結晶性な黒鉛質表層(C)を有する多層構造の複合黒鉛質材料を得ることができる。剪断力や圧縮力は通常一般の攪拌により得られる力より大きいが、これら機械的外力は、黒鉛前駆体の表面に加えられることが好ましく、黒鉛質芯材(A)の粒子骨格を実質的に破壊しないことが好ましい。黒鉛質芯材(A)の粒子骨格が過度に破壊されると、初期充放電効率の低下などが生じる傾向がある。具体的には、メカノケミカル処理の付加による複合黒鉛質材料の平均粒子径の低下率を20%以下に抑えることが好ましい。
【0063】
メカノケミカル処理は、複合黒鉛質材料の表面に介在する黒鉛前駆体に圧縮力と剪断力とを同時に掛けることができる装置であればよく、構造、種類は特に限定されない。例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株)製)などを使用することができる。
【0064】
上記の装置の中でも回転速度差を利用して剪断力および圧縮力を同時に付加する装置が好ましく、例えば、図2(a)および(b)に模式的機構を示すホソカワミクロン(株)製メカノフュージョンシステムが好ましい。すなわち、図2(b)に示すように、回転ドラム11と、該回転ドラム11と回転速度の異なる内部部材(インナーピース)12と、黒鉛前駆体13の循環機構14と排出機構15を有する装置を用いて行うことができる。この装置において、図2(a)に示すように、回転ドラム11と内部部材12との間に供給された黒鉛前駆体13に遠心力を付加しながら、内部部材12により回転ドラム11との速度差に起因する圧縮力と剪断力とを同時に繰り返し付加することによりメカノケミカル処理することができる。
【0065】
また、例えば、図3に模式的機構を示す(株)奈良機械製作所製ハイブリダイゼーションシステムを用いることもできる。すなわち、固定ドラム21、高速回転するローター22、黒鉛前駆体23の循環機構24と排出機構25、ブレード26、ステーター27およびジャケット28を有する装置を用い、黒鉛前駆体23を、固定ドラム21とローター22の間に供給し、固定ドラム21とローター22との速度差に起因する圧縮力と剪断力とを黒鉛前駆体23に付加する装置を用いてメカノケミカル処理をしてもよい。
【0066】
メカノケミカル処理の条件は、使用する装置によっても異なり一概には言えないが、処理による複合黒鉛質材料の平均粒子径の低下率を20%以下に抑えるように設定するのが好ましい。例えば、回転ドラムと内部部材を備えた装置(図2)を用いる場合には、回転ドラムと内部部材との周速度差:5〜50m/s、両者間の距離1〜100mm、処理時間5〜60分の条件下で行うことが好ましい。
また固定ドラム−高速回転ローターを備える装置(図3)の場合には、固定ドラムとローターとの周速度差10〜100m/s、処理時間30秒〜5分の条件下で行うことが好ましい。
【0067】
また、メカノケミカル処理の処理前、処理の途中、処理後のいずれかにおいて、本発明の効果を損なわない範囲において、公知の導電性材料、イオン伝導性材料、界面活性剤、金属化合物、結合剤などの各種添加剤を併用することもできる。
【0068】
<高温加熱(黒鉛化)>
メカノケミカル処理を施した複合黒鉛質材料は、所定の形状に調整された後、坩堝などの容器を用いて、非酸化性雰囲気下で高温加熱され、黒鉛化される。加熱温度は、特に制限されるものではないが、黒鉛化度を上げる観点から高いほど好ましい。具体的には、1300℃超が好ましく、より好ましくは1500℃以上である。上限は、装置の耐熱性や黒鉛の昇華を防ぐ観点から3200℃程度であり、好ましくは2800〜3000℃である。このような高温に0.5〜50h、好ましくは2〜20h加熱することにより、リチウムイオン二次電池負極用材料などとして好適に用いることができる、層状構造が十分発達した高度の黒鉛化度を有する黒鉛質材料を得ることができる。
【0069】
本発明の複合黒鉛質材料の製造方法により、X線広角回折法におけるd002 およびLcを変化させることなく、ラマン分光法におけるR値を大きくすることが可能になった。得られた複合黒鉛質材料は、高結晶性の核と、相対的に低結晶性の表面(黒鉛質表層(C))を有し、該表面は、高結晶性の核と密着、一体化しており表面剥離が極めて起きにくく、また複合黒鉛質材料の表面が相対的に低結晶性で乱れた構造であるため、高い充放電容量が得られ、かつ初期充放電サイクルにおける不可逆容量が小さい(初期充放電効率が高い)のである。すなわち、複合黒鉛質材料の表面部分が乱れた構造であるため、高い放電容量を保持したまま不可逆容量を小さくすることができるので、リチウムイオン二次電池の負極材料として極めて有用である。
【0070】
本発明の複合黒鉛質材料のR値は、従来技術のR値に比べると小さい値を示すが、優れた不可逆容量低減効果を有する。黒鉛質被覆材(B)、黒鉛質表層(C)の結晶性を大きく低下させることなく、不可逆容量の低減を達成したものであり、それゆえに高い放電容量を保持することができる。
【0071】
本発明の複合黒鉛質材料は、その特徴を活かして負極以外の用途、例えば、燃料電池セパレータ用の導電材や耐火物黒鉛などにも転用することができるが、特に上記したリチウムイオン二次電池の負極材料として好適である。
以下、本発明の複合黒鉛質材料を負極材料として用いたリチウムイオン二次電池負極、さらにはリチウムイオン二次電池について説明する。
【0072】
<リチウムイオン二次電池>
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正・負極はそれぞれリチウムイオンの担持体からなり、充放電過程における非水溶媒の出入は層間で行われ、本質的に、充電時にはリチウムイオンが負極中にドープされ、放電時には負極から脱ドープする電池機構を有する。
本発明のリチウムイオン二次電池は、負極材料として本発明の複合黒鉛質材料を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
【0073】
<負極>
本発明の複合黒鉛質材料からなる負極の製造は、通常の成形方法に準じて行うことができるが、複合黒鉛質材料の性能を充分に引き出し、かつ粉末に対する賦型性が高く、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。
【0074】
負極製造時には、複合黒鉛質材料に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いるのが望ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンラバー、さらにはカルボキシメチルセルロースなどが用いられる。
これらを併用することもできる。
結合剤は、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。
【0075】
負極合剤層は、具体的には、分級等によって適当な粒径に調整した複合黒鉛質材料を、結合剤と混合することによって負極合剤を調製し、この負極合剤を、通常、集電体の片面もしくは両面に塗布することで形成することができる。
この際、通常の溶媒を用いることができ、負極合剤を溶媒中に分散させてペースト状とした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着された負極を得ることができる。ペーストは、翼式ホモミキサーにて300〜3000rpm程度で攪拌することにより調製することができる。
【0076】
また、例えば、本発明の複合黒鉛質材料と、ポリテトラフルオロエチレン等のフッ素系樹脂粉末を、イソプロピルアルコール等の溶媒中で混合、混練した後、塗布して負極合剤層を形成することもできる。
さらに、本発明の複合黒鉛質材料と、ポリフッ化ビニリデン等のフッ素系樹脂粉末あるいはカルボキシメチルセルロース等の水溶性粘結剤を、N−メチルピロリドン、ジメチルホルムアミドあるいは水、アルコール等の溶媒と混合してスラリーとした後、塗布して負極合剤層を形成することもできる。
【0077】
本発明の複合黒鉛質材料と結合剤の混合物からなる負極合剤を集電体に塗布する際の塗布厚は10〜300μmとするのが適当である。
【0078】
また、負極合剤層を、複合黒鉛質材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末とを乾式混合し、金型内でホットプレス成形して形成することもできる。
【0079】
負極合剤層を形成した後、プレス加圧等の圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。
【0080】
本発明のリチウムイオン二次電池において、負極に用いる集電体の形状としては、特に限定されないが、箔状、あるいはメッシュ、エキスパンドメタル等の網状のもの等が用いられる。集電材としては、例えば、銅、ステンレス、ニッケル等を挙げることができる。集電体の厚みは、箔状の場合、5〜20μm程度が好適である。
【0081】
<正極>
正極の材料(正極活物質)としては、充分量のリチウムをドープ/脱ドープし得るものを選択するのが好ましい。そのような正極活物質としては、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物(V2 5 、V6 13、V2 4 、V3 8 など)およびそれらのリチウム含有化合物、一般式:Mx Mo6 8-Y (式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは遷移金属などの金属を表す)で表されるシェブレル相化合物、活性炭、活性炭素繊維などを用いることができる。
【0082】
上記リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。リチウム含有遷移金属酸化物は、具体的には、式:LiM(1)1-P M(2)P 2 (式中Pは0≦P≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる。)あるいは式:LiM(1)2-Q M(2)Q 4 (式中Qは0≦Q≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる。)で表される化合物である。
【0083】
上記式において、Mで表される遷移金属元素としては、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどが挙げられ、好ましくはCo、Fe、Mn、Ti、Cr、V、Alである。
【0084】
リチウム含有遷移金属酸化物の具体例としては、LiCoO2 、式:LiP NiQ 1-Q 2 (MはNiを除く上記遷移金属元素、好ましくはCo、Fe、Mn、Ti、Cr、V、Alから選ばれる少なくとも一種、0.05≦P、0.5≦Q≦1.0である。)で示されるリチウム複合酸化物、LiNiO2 、LiMnO2 、LiMn2 4 などが挙げられる。
【0085】
上記のリチウム含有遷移金属酸化物は、例えば、Li、遷移金属の酸化物または塩類を出発原料とし、これら出発原料を組成に応じて混合し、酸素雰囲気下600℃〜1000℃の温度範囲で焼成することにより得ることができる。なお、出発原料は酸化物または塩類に限定されず、水酸化物等からも合成可能である。
本発明では、正極活性物質は、上記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に、炭酸リチウム等の炭素塩を添加することもできる。
【0086】
このような正極材料によって正極を形成するには、例えば、正極材料と結合剤および電極に導電性を付与するための導電剤よりなる正極合剤を集電体の両面に塗布することで正極合剤層を形成する。結合剤としては、負極の製造について例示したものがいずれも使用可能である。導電剤としては、例えば、炭素材料、黒鉛やカーボンブラックが用いられる。
【0087】
集電体の形状は特に限定されず、箔状、あるいはメッシュ、エキスパンドメタル等の網状等のものが用いられる。例えば、集電体としては、アルミニウム箔、ステンレス箔、ニッケル箔等を挙げることができる。その厚さとしては、10〜40μmのものが好適である。
【0088】
また正極の場合も負極と同様に、正極合剤を溶剤中に分散させることでペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥することによって正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行っても構わない。これにより正極合剤層が均一且つ強固に集電体に接着される。
【0089】
本発明において、以上のような負極および正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
【0090】
<電解質>
本発明のリチウムイオン二次電池に用いられる電解質は、通常の非水電解液に使用されている電解質塩を用いることができる。例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 4 、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF2 OSO2 2 、LiN(HCF2 CF2 CH2 OSO2 2 、LiN((CF3 2 CHOSO2 2 、LiB[C6 3 (CF3 2 4 、LiAlCl4 、LiSiF6 などのリチウム塩などを用いることができる。特に、LiPF6 、LiBF4 が酸化安定性の点から好ましく用いられる。
非水電解液中の電解質塩濃度は、0.1〜5mol/L が好ましく、0.5〜3.0mol/L がより好ましい。
【0091】
上記非水電解質は、液系の非水電解液としてもよいし、固体電解質あるいはゲル電解質等、高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン電池として構成され、後者の場合、非水電解質電池は、高分子固体電解質電池、高分子ゲル電解質電池等の高分子電解質電池として構成される。
【0092】
液系の非水電解質液とする場合には、溶媒として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチルー2−オキサゾリドン、エチレングリコール、ジメチルサルファイト等の非プロトン性有機溶媒を用いることができる。
【0093】
非水電解質を高分子固体電解質、高分子ゲル電解質等の高分子電解質とする場合には、可塑剤(非水電解液)でゲル化されたマトリクス高分子を含む。このマトリクス高分子としては、ポリエチレンオキサイドやその架橋体等のエーテル系高分子、ポリメタクリレート系、ポリアクリレート系、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体等のフッ素系高分子等を単独、もしくは混合して用いることができる。
これらの中で、酸化還元安定性の観点等から、ポリビニリデンフルオライドやビニリデンフルオライドーヘキサフルオロプロピレン共重合体等のフッ素系高分子を用いることが望ましい。
【0094】
これらの高分子固体電解質、高分子ゲル電解質に含有される可塑剤を構成する電解質塩や非水溶媒としては、前述のものがいずれも使用可能である。ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は、0.1〜5mol/L が好ましく、0.5〜2.0mol/L がより好ましい。
【0095】
このような固体電解質の製造方法としては特に制限はないが、例えば、マトリックスを形成する高分子化合物、リチウム塩および溶媒を混合し、加熱して溶融する方法、適当な有機溶剤に高分子化合物、リチウム塩および溶媒を溶解させた後、有機溶剤を蒸発させる方法、並びに高分子電解質の原料となる重合性モノマー、リチウム塩および溶媒を混合し、その混合物に紫外線、電子線または分子線などを照射して重合させ高分子電解質を製造する方法等が挙げられる。
【0096】
また、前記固体電解質中の溶媒の割合は、10〜90質量%が好ましく、さらに好ましくは、30〜80質量%である。10〜90質量%であると、導電率が高く、かつ機械的強度が高い固体電解質の成膜が容易である。
【0097】
本発明のリチウムイオン二次電池は、セパレーターを有していてもよい。
セパレーターは、特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられる。特に合成樹脂製微多孔膜が好適に用いられるが、その中でもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
【0098】
本発明のリチウムイオン二次電池においては、初期充放電効率が改善したことから、ゲル電解質を用いることが可能である。
ゲル電解質二次電池は、黒鉛質材料を含有する負極と、正極およびゲル電解質を、例えば、負極、ゲル電解質、正極の順で積層し、電池外装材内に収容することで構成される。なお、これに加えてさらに負極と正極の外側にゲル電解質を配するようにしてもよい。このような黒鉛質材料を負極に用いるゲル電解質二次電池では、ゲル電解質にプロピレンカーボネートが含有され、また黒鉛質材料粉末としてインピーダンスを十分に低くできる程度に小粒径のものを用いた場合でも、不可逆容量が小さく抑えられる。したがって、大きな放電容量が得られるとともに高い初期充放電効率が得られる。
【0099】
さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、円筒型、角型、コイン型、ボタン型等の中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電等の異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが望ましい。高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
【0100】
【実施例】
次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、得られた複合黒鉛質材料を用いて、下記の方法にしたがって、図1に示す構造の評価用のボタン型二次電池を作製して、充放電試験を行い、電池特性を評価した。
【0101】
<負極合剤ペーストの調製>
複合黒鉛質材料90質量%に対して、結合剤としてポリフッ化ビニリデンを10質量%の割合で、N−メチルピロリドンを溶剤に用いて混合し、ホモミキサーを用いて2000rpm で30分間攪拌し、有機溶剤系負極合剤ペーストを調製した。
【0102】
<作用電極(負極)の製造>
上記の負極合剤ペーストを銅箔(集電材)上に均一な厚さで塗布し、さらに真空中で90℃に加熱して溶剤を揮発させて乾燥した。次に、この銅箔上に塗布された負極合剤をローラープレスによって加圧し、さらに銅箔と一緒に直径15.5mmの円形状に打ち抜くことで、銅箔からなる集電体7bに密着した負極合剤層からなる作用電極(負極)2を製造した。
【0103】
<対極の製造>
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円柱上に打ち抜いて、ニッケルネットからなる集電体(7a)と、該集電体に密着したリチウム金属箔からなる対極4(正極)を製造した。
【0104】
<電解質>
プロピレンカーボネート10 ol%、エチレンカーボネート50 ol%およびジエチルカーボネート40 ol%の割合の混合溶媒に、LiClO4を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。
得られた非水電解液をポリプロピレン多孔質体に含浸させ、電解質液が含浸されたセパレータ5を製造した。
【0105】
<評価用電池の製造>
評価用電池として、図1に示すとおり、外装カップ1と外装缶3とは、その周縁部において絶縁ガスケット6を介してかしめられた密閉構造を有し、その内部に、外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円盤状の対極4、電解質溶液が含浸されたセパレータ5、負極合剤からなる円盤状の作用電極(負極)2および銅箔からなる集電体7bが積層された構造を有するボタン型二次電池を製造した。
【0106】
評価用電池は、電解質溶液を含浸させたセパレータ5を、集電体7bに密着した作用電極2と、集電体7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、外装カップ1と外装缶3との周縁部を絶縁ガスケット6を介してかしめ密閉して製造した。
この評価用電池は、実電池において負極用活物質として使用可能な黒鉛質材料を含有する作用電極(負極)2と、リチウム金属箔からなる対極4とから構成される電池である。
【0107】
以上のようにして製造された評価用電池について、25℃の温度で下記の充放電試験を行った。
<充放電試験>
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切り替え、さらに電流値が20μA になるまで充電を続けた後、120分間休止した。
次に0.9mAの電流値で、回路電圧が2.5V に達するまで定電流放電を行った。この第1サイクルにおける通電量から充電容量と放電容量を求め、次式から初期充放電効率を計算した。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)×100
なおこの試験では、リチウムイオンを複合黒鉛質材料中にドープする過程を充電、複合黒鉛質材料から脱ドープする過程を放電とした。
【0108】
測定された複合黒鉛質材料粉末1g当たりの放電容量(mAh/g)と初期充放電効率(%)の値(電池特性)を表1に示す。
表1に示されるように、作用電極(実電池の負極に相当)に本発明の複合黒鉛質材料を用いたリチウムイオン二次電池は高い放電容量を示し、かつ高い初期充放電効率(すなわち小さな不可逆容量)を有する。
【0109】
次いで、第2サイクルとして、第1サイクルと同様にして充電した後、18mAの電流値で、回路電圧が2.5Vに達するまで定電流放電を行った。このとき第1サイクルにおける放電容量と第2サイクルにおける放電容量から、次式に従ってハイレート特性(急速放電効率)を評価した。
急速放電効率(%)=(第2サイクルの放電容量/第1サイクルの放電容量)×100
【0110】
また、これらの評価試験とは別に第1サイクルと同一の条件で10回充放電を繰り返し、次式に従ってサイクル特性を評価した。
サイクル特性(%)=(第10サイクルの放電容量/第1サイクルの放電容量)×100
【0111】
これらの試験を負極の電極密度が1.6g/cm3 の場合と1.8g/cm3 の場合のそれぞれの評価用電池について行った。
【0112】
(実施例1)
<複合黒鉛質材料の調製>
揮発分を約40質量%含有するコールタールピッチ(川崎製鉄(株)製、PK−QL)80質量部に対して、天然黒鉛(マダカスカル産、平均粒子径5μm)50質量部の割合で、加熱ニーダーを用いて、コールタールピッチの溶融下に混練した。
【0113】
得られた複合体を粗粉砕した後、非酸化性雰囲気中で熱処理し、コールタールピッチ分を重縮合反応させ、下記特性を有する黒鉛含有黒鉛前駆体を得た。
揮発分量: 4.2質量%
QI(キノリン不溶分量): 96質量%
軟化点(メトラー法): 445℃
なお、得られた黒鉛含有黒鉛前駆体には、コールタールピッチの熱処理品が50質量部、天然黒鉛が50質量部の割合で含まれていた。
【0114】
この黒鉛前駆体を渦流式粉砕機を用いて粉砕し、平均粒子径20μmの塊状粒子に調製した。この塊状粒子を図2(a)および(b)に構造を示すメカノケミカル処理装置(ホソカワミクロン(株)製、メカノフュージョンシステム)内に投入し、メカノケミカル処理を行った。このとき、回転ドラムの周速度20m/s 、処理時間10分間、回転ドラムと内部部材の距離5mmの条件下で、圧縮力、剪断力を繰り返し付加した。メカノケミカル処理後の黒鉛含有黒鉛前駆体の平均粒子径は19μmであった。
【0115】
ついで、メカノケミカル処理した黒鉛含有黒鉛前駆体を黒鉛坩堝に充填し、坩堝の周囲にコークスブリーズを充填して3000℃で5時間加熱して黒鉛化して複合黒鉛質材料を得た。得られた複合黒鉛質材料に融着や変形は認められず、粒子形状が保持されていた。次に、得られた複合黒鉛質材料を用いて評価用電池を製造し、電池特性を評価した。黒鉛化度ならびに測定された複合黒鉛質粒子1g当たりの放電容量(mAh/g)、初期充放電効率(%)、急速放電効率(%)、およびサイクル特性(%)の値を表1に示す。
【0116】
表1に示されるように、実施例1で得られた複合黒鉛質材料(本発明例)は、比較例1よりも高い放電容量を示し、かつ初期充放電効率も著しく高い(不可逆容量が小さい)。また、黒鉛の表面が選択的に低結晶化されているのがわかる。
【0117】
(実施例2)
<黒鉛造粒物の調製>
平均粒子径30μmおよび揮発分0.7%の燐片状の高結晶性天然黒鉛粒子(中国産)を、図3に示すメカノケミカル処理装置((株)奈良機械製作所製、ハイブリダイゼーションシステム)を用いて、せん断圧縮加工処理を施した。すなわち、ローターの周速度60m/sで処理時間3分の条件で処理することにより、該装置内に投入された天然黒鉛粒子に、主として衝撃力、圧縮力、せん断力などの機械的外力を繰り返し付加した。その結果、天然黒鉛粒子が造粒し、緻密な球状〜楕円体状の黒鉛造粒物が形成された。得られた黒鉛造粒物は、平均粒子径が20μm、アスペクト比が1.8、X線広角回折法による結晶性がd002 =0.3355nm、Lc=86nmであった。
【0118】
また、得られた黒鉛質粒子の断面を研磨し、走査型電子顕微鏡を用いて粒子内の空隙率(面積率)を測定したところ、約15体積%であった。
【0119】
<複合黒鉛前駆体の製造>
揮発分を約40質量%含有するコールタールピッチ(川崎製鉄(株)製、PK−QL)42質量部にタール中油58質量部の割合で混合し、コールタールピッチ溶液を100質量部準備した。
攪拌機内に該コールタールピッチ溶液100質量部と黒鉛造粒物100質量部の割合で投入し、150℃で30分、機内圧力50mmHgで浸漬、攪拌するとともに、溶媒であるタール中油を除去した。
【0120】
得られた被覆黒鉛を鋼鉄製容器に充填した。揮発ガスの燃焼処理装置を具備した焼成炉において、不活性ガス流通下に前記混合物を450℃で20時間焼成した。焼成品は黒鉛前駆体がわずかに融着した状態であった。
【0121】
また、比較用にコールタールピッチ溶液を単独で同時に焼成処理したところ、焼成前100質量部に対し、焼成後に25質量部であったことから、黒鉛前駆体の量は、黒鉛前駆体:黒鉛造粒物=20:80と計算された。焼成品の揮発分量は1.8質量%であり、前駆体部分は約6.2(0.7×0.8+x×0.2=1.8)質量%と計算される。これに対し、比較用のコールタールピッチ溶液の単独焼成品の揮発分量は6.0質量%であり、概ね比率の計算値が正しいことが支持された。
【0122】
焼成品を衝撃式粉砕機で解砕した。解砕して得られた黒鉛前駆体は、平均粒子径が22μm、アスペクト比が1.7であった。
【0123】
<メカノケミカル処理>
次いで、黒鉛前駆体を図3(a)(b)に示すメカノケミカル処理装置(ホソカワミクロン(株)製、メカノフュージョンシステム)内に投入し、メカノケミカル処理を行った。すなわち、回転ドラムの周速度20m/s、処理時間30分間、回転ドラムと内部部材の距離5mmの条件下で、圧縮力、せん断力を繰り返し付加した。メカノケミカル処理後の黒鉛前駆体の平均粒子径は22μm、アスペクト比は1.7であった。
【0124】
<複合黒鉛質材料の製造>
次いで、メカノケミカル処理した黒鉛前駆体を黒鉛るつぼに充填し、るつぼの周囲にコークスブリーズを充填して3000℃で5時間加熱して黒鉛化し、複合黒鉛質材料を得た。得られた複合黒鉛質材料に融着や変形は認められず、粒子形状が保持されていた。得られた複合黒鉛質材料の平均粒子径は22μm、アスペクト比は1.7、比表面積は0.5m2 /g、嵩密度は1.02g/cm3 であった。X線広角回折法による結晶性はd002 =0.3357nm、Lc=88nm、ラマン分光法によるR値は0.08であった。図4に、製造した複合黒鉛質材料の走査型電子顕微鏡写真を示す。
この複合黒鉛質材料を用いて評価用電池の作用電極(負極)を製造し、電池特性を評価した。結果を表1に示す。
【0125】
(実施例3〜5)
実施例2で用いたコールタールピッチ溶液100質量部の中に、予め気相無水シリカ微粉(「AEROSIL300」,日本アエロジル(株)製、平均粒子径7nm)を0.5質量部添加して黒鉛前駆体の揮発分量を変化させて用いた以外は、実施例1と同様にして複合黒鉛質材料を製造した。焼成後の解砕工程において、粉砕機の負荷が軽減し、解砕が容易であった。得られた複合黒鉛質材料について各種評価を行い、結晶性および電池特性の結果を表1に示す。
【0126】
表1に示されるように、実施例2〜5の複合黒鉛質材料を用いた評価用電池は、黒鉛の理論容量(372mAh/g)に近い高い放電容量を示し、かつ高い初期充放電効率(すなわち小さな不可逆容量)を有する。特に黒鉛前駆体の中に気相無水シリカ微粉を添加した実施例3〜5の初期充放電効率が高い。融着した黒鉛前駆体の解砕が容易となり黒鉛前駆体被膜の剥離が抑えられた効果と考えられる。さらに、急速放電効率やサイクル特性にも優れる。特に、電極密度を高く設定した場合においても、優れた急速放電効率とサイクル特性を有する。
【0127】
(比較例1)
実施例1において、天然黒鉛を用いず、かつ、メカノケミカル処理を施さなかった以外は実施例1と同様にして黒鉛質材料を製造した。
黒鉛化後の黒鉛質材料は融着し、粉砕形状を保持できなかった。そこで、融着した黒鉛質材料を再度、同様に粉砕して平均粒子径19μmに調整し、さらにそれを用いて評価用電池を作製した。黒鉛化度および電池特性を評価した結果を表1に示す。
【0128】
表1に示されるように、メカノケミカル処理を施さないで製造された黒鉛質材料の例である比較例1では、初期充放電効率が著しく小さい(不可逆容量が著しく大きい)。なお、実施例1は比較例1に比べ、R値が大きく、黒鉛質材料の表面が選択的に低結晶化されているのがわかる。
【0129】
(比較例2)
実施例1と同じ黒鉛前駆体の粉砕品に、メカノケミカル処理を施さなかった以外は実施例1と同様にして黒鉛質材料を製造し、評価用電池を製造した。
黒鉛化後の黒鉛質材料はわずかに融着し、粉砕形状を保持できなかった。そこで、融着した黒鉛質材料を再度、同様に粉砕して平均粒子径19μmに調整し、それを用いて評価用電池を作製した。黒鉛化度および電池特性を評価した結果を表1に示す。
【0130】
表1に示されるように、本発明の特徴であるメカノケミカル処理を施さない比較例2では、黒鉛表面が低結晶化されておらず、初期充放電効率が著しく小さい(不可逆容量が著しく大きい)。
【0131】
(比較例3)
実施例1において、メカノケミカル処理を施した黒鉛前駆体を、3000℃ではなく、1300℃で、5時間加熱し、非黒鉛質中に天然黒鉛が内包されている非黒鉛質材料を製造した。得られた材料には融着が認められず、粉砕形状が保持されていた。これを用いて、実施例1と同様にして、評価用電池を作製した。黒鉛化度および電池特性を評価した結果を表1に示す。
【0132】
表1に示されるように、黒鉛化処理を施さない比較例3の場合には、材料の結晶性が低く、放電容量が著しく低い。
【0133】
(比較例4)
実質的に揮発分を含まない天然黒鉛(マダガスカル産、平均粒子径10μm、平均厚さ2μm)を、実施例1と同様にメカノケミカル処理した。メカノケミカル処理後の黒鉛に、融着や変形は認められず、粒子形状が保持されていた。その平均粒子径は9μm、平均厚さ2μmであった。ついで、この天然黒鉛を用いて、実施例1と同様に評価用電池を作製し、電池特性を評価した。黒鉛化度および電池特性を表1に示す。
表1に示されるように、黒鉛質被覆材を有しない比較例4の場合には、メカノケミカル処理を施しても初期充放電効率が小さい(不可逆容量が大きい)。また、急速放電効率やサイクル特性も劣る。電極密度を高めると黒鉛粒子が配向し、さらにこれらの特性が低下する。
【0134】
(比較例5)
実質的に揮発分を含まない天然黒鉛(マダガスカル産、平均粒子径10μm、平均厚さ2μm)を用いて、実施例1と同様に評価用電池を作製し、電池特性を評価した。黒鉛化度および電池特性を表1に示す。
表1に示されるように、天然黒鉛を単独で用いた比較例5の場合には、放電容量は高いものの、初期充放電効率、急速放電効率、サイクル特性が低い。電極密度を高めると、これらの特性の低下が顕著である。
【0135】
(比較例6)
実施例2と同じ黒鉛前駆体の粉砕品に、メカノケミカル処理を施さなかった以外は、実施例2と同様にして黒鉛質材料を製造した。黒鉛化度および電池特性を評価した結果を表1に示す。
表1に示されるように、メカノケミカル処理を施さないで製造された黒鉛質材料の例である比較例6では、初期充放電効率が小さい(不可逆容量が大きい)。なお、実施例2は、比較例6に比べR値が大きく、黒鉛質材料の表面が選択的に低結晶化されているのがわかる。
【0136】
【表1】

Figure 0004666876
【0137】
【表2】
Figure 0004666876
【0138】
【発明の効果】
本発明の複合黒鉛質材料は、リチウムイオン二次電池用負極材料として用いたときに、高い放電容量および高い初期充放電効率(不可逆容量が小さい)を得ることができる。
また、本発明の方法によれば、前記複合黒鉛質材料を、黒鉛化時の融着などを抑制しつつ生産性良く製造することができる。
さらに、本発明の複合黒鉛質材料を用いるリチウムイオン二次電池用負極材、およびリチウムイオン二次電池は、高い放電容量を維持したまま、不可逆容量を低減することが可能であり、さらに、初期充放電効率を大幅に改善することができる。
【図面の簡単な説明】
【図1】 本発明の実施例および比較例で用いた評価用電池の構造を説明する模式断面図である。
【図2】 (a)は本発明で用いるメカノケミカル処理装置の作用機構を説明する図であり、(b)は該装置の構成を示す概略図である。
【図3】 本発明で用いる他のメカノケミカル処理装置の概略図である。
【図4】 実施例2によって製造された複合黒鉛質材料の走査型電子顕微鏡写真である。
【符号の説明】
1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a,7b 集電体
11 回転ドラム
12 内部部材(インナーピース)
13 黒鉛前駆体
14 循環機構
15 排出機構
21 固定ドラム
22 ローター
23 黒鉛前駆体
24 循環機構
25 排出機構
26 ブレード
27 ステーター
28 ジャケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite graphite material and a production method thereof, a negative electrode material for a lithium ion secondary battery using the composite graphite material, and a lithium ion secondary using the same and having high initial charge / discharge efficiency and high discharge capacity. It relates to batteries.
[0002]
[Prior art]
In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for higher energy density of batteries. In this situation, a lithium secondary battery using lithium as a negative electrode material has attracted attention because it has advantages of high energy density and high voltage.
[0003]
In this lithium secondary battery, since lithium metal is used as it is as a negative electrode, it is known that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. Moreover, there is a possibility that lithium deposited in a dendrite shape penetrates the separator, reaches the positive electrode, and is short-circuited.
[0004]
For this reason, each material for positive and negative electrodes is composed of two kinds of intercalation compounds having different oxidation-reduction potentials, each functioning as a lithium ion support, and the nonaqueous solvent is brought in and out between the layers in the charge / discharge process. Lithium ion secondary batteries are being studied.
As this negative electrode material, it has been proposed to use a carbon material that has the ability to occlude and release lithium ions and can prevent the precipitation of lithium metal. A wide variety of structures, structures, and forms such as graphite crystalline structure or turbulent layer structure are known for carbon materials, and the electrode performance such as operating voltage during charging / discharging is large due to the difference in structure. Different. Among them, graphite that is particularly excellent in charge / discharge characteristics and exhibits high discharge capacity and potential flatness is promising (Japanese Patent Publication No. Sho 62-23433).
[0005]
It has been reported that the more the crystalline graphite structure is developed, the more stable the intercalation compound with lithium, and the higher the discharge capacity is obtained because a large amount of lithium is inserted between the carbon network planes. (Electrochemistry and industrial physical chemistry, 61 (2), 1383 (1993), etc.). Various layer structures are formed depending on the amount of lithium inserted, and in the region where they coexist, they are flat and have a high potential close to lithium metal (J. Electrochem. Soc., Vol. 140, 9, 2490 (1993), etc.) . Therefore, when an assembled battery is used, it is possible to obtain a high output. Generally, the theoretical capacity (limit value) of a carbon anode material is an ideal graphite intercalation compound LiC between graphite and lithium. 6 In this case, the discharge capacity is 372 mAh / g.
[0006]
On the other hand, in the lithium ion secondary battery using graphite as a negative electrode material, as the crystallinity of graphite increases, side reactions that do not participate in the battery reaction such as decomposition of the electrolytic solution on the graphite surface easily occur during the first charge. The irreversible capacity (= initial charge capacity-initial discharge capacity) that cannot be taken out as the amount of electricity during the charge-discharge process is markedly increased, resulting in a discharge capacity loss of tens to hundreds of mAh / g level during the initial discharge. (J. Electrochem. Soc., Vol. 117 222 (1970), etc.).
[0007]
The side reaction such as the decomposition of the electrolytic solution continues until the decomposition product is deposited and grows on the graphite (carbon) surface, and the electron has a thickness such that it cannot move directly from the graphite surface to a solvent or the like. Also, solvent molecules and lithium ions co-intercalate and the graphite surface layer peels off, and the newly exposed graphite surface reacts with the electrolyte to increase the irreversible capacity and reduce the initial charge / discharge efficiency. Has also been reported (J. Electrochem. Soc., Vol. 137, 2009 (1990)).
[0008]
Such an increase in irreversible capacity (low initial charge / discharge efficiency) can be compensated for by adding a positive electrode material to the secondary battery, but the addition of excess positive electrode material is a new problem of reduced energy density. It is desirable to avoid it.
[0009]
As described above, in a lithium ion secondary battery using graphite as a negative electrode carbon material, a high discharge capacity and a low irreversible capacity are contradictory requirements, but as a solution to this, a highly crystalline graphite material (nucleus) A method has also been proposed in which the surface of the substrate is coated with a low crystalline material to form a multilayer structure. Broadly speaking,
(1) The surface of a highly crystalline graphite material serving as a nucleus is coated with low crystalline carbon using a pyrolysis gas of an organic compound such as propane or benzene (Japanese Patent Laid-Open Nos. 4-368778 and 5) 275076),
[0010]
(2) A highly crystalline graphite material as a core is coated or impregnated with a carbon material such as pitch in a liquid phase, and then fired at a temperature of about 1000 ° C. to form a carbonaceous material on the surface layer (Japanese Patent Laid-Open No. Hei 5- No. 121066, JP-A-5-217604, JP-A-6-84516, JP-A-11-54123, JP-A 2000-229924),
(3) A graphite precursor such as a graphite crystalline material or raw coke is oxidized at about 300 ° C. in a gas phase or a liquid phase in an oxidizing atmosphere (Japanese Patent Laid-Open Nos. 10-326611 and 10-218615). Gazette),
(4) A combination of (1) to (3) (Japanese Patent Laid-Open Nos. 10-214615 and 10-284080).
[0011]
However, the methods (1) and (4) have a problem that the production process is complicated and expensive from the viewpoint of industrial production, and the control of the coating thickness is difficult, so that stable and high electrode performance is achieved. There is a problem that the powder performance cannot be exhibited.
In addition, the method (2) described above is stable because the coated graphite adheres firmly when fired at about 1000 ° C. and the coating peels off during crushing, making it difficult to control the homogeneity and thickness of the surface layer. Thus, there is a problem that high electrode performance and powder performance cannot be exhibited.
[0012]
In the above method (3), it is necessary to highly oxidize in order to obtain a high initial charge / discharge efficiency. There is a problem in that the discharge capacity is reduced.
[0013]
In addition, both methods have insufficient discharge capacity in response to the recent demand for higher capacity. Here, the discharge capacity of the battery greatly depends on the discharge capacity per volume of the active material (graphite) layer constituting the negative electrode. Therefore, in order to increase the discharge capacity as a battery, it is necessary to increase the discharge capacity (mAh / g) per unit weight of the active material and to fill the active material with high density. When the negative electrode is formed at a high density, in the case of the above-mentioned coated graphite particles, the coating may be peeled off, exposing the graphite surface highly reactive with the electrolyte solution, which may increase the irreversible capacity.
[0014]
[Problems to be solved by the invention]
In view of the situation as described above, the present invention provides a composite graphite material that can provide both a high discharge capacity and a high initial charge / discharge efficiency (small irreversible capacity) when used as a negative electrode material for a lithium ion secondary battery. And a method for producing the composite graphite material with high productivity while suppressing fusion during graphitization, a negative electrode for a lithium ion secondary battery using the composite graphite material, and a lithium ion secondary battery The purpose is to do.
[0015]
[Means for Solving the Problems]
The present inventor performs a mechanochemical treatment capable of simultaneously applying a shearing force and a compressive force to a graphite precursor including a highly crystalline graphite core material, and then graphitizing the precursor, thereby performing in a non-oxidizing atmosphere. Suppresses the fusion of materials during graphitization (high temperature heating), and the surface of the graphite core material made of highly crystalline graphite has a relatively low crystallinity compared to the core material. And a method for efficiently producing a composite graphite material that has a low crystalline surface layer on the outermost surface and the low crystalline surface layer does not peel from the core material. I found it.
[0016]
Further, the composite graphite material obtained by applying the above method can exhibit a higher discharge capacity when used as a negative electrode material for a lithium ion secondary battery, and is irreversible when natural graphite is used as it is. The present inventors have found that the problem of capacity increase can be solved, and have completed the present invention.
[0017]
Further, the composite graphite material including a plurality of scaly graphite particles formed into a spherical shape as a highly crystalline graphite core material has a structure in which a plurality of highly crystalline graphite particles are arranged in a random direction. Therefore, the present inventors have found that the problems of increase in irreversible capacity, high rate characteristics, and deterioration in cycle characteristics when a negative electrode is formed at a high density can be solved, and the present invention has been completed.
[0018]
That is, the present invention relates to multilayer particles composed of a graphite core material (A) and a graphite coating material (B) encapsulating the graphite core material (A) and / or the multilayer particles aggregated. The composite particles and the composite particles have a graphite surface layer (C) on the outer surface, and the crystallinity decreases in the order of (A)>(B)> (C). A composite graphite material, The Composite graphite material The spacing between the carbon mesh plane layers (d 002 ) Is 0.3365 nm or less, the size (Lc) of the crystallite in the C-axis direction is 40 nm or more, and 1360 cm of the Raman spectrum. -1 Peak intensity (I 1360 ) And 1580cm -1 Peak intensity (I 1580 ) Intensity ratio (I 1360 / I 1580 ) Is 0.05 or more and less than 0.30 For lithium secondary battery negative electrode A composite graphite material is provided.
[0019]
The graphite core material (A) is composed of scaly graphite. Spherical or ellipsoidal granules It is preferable that
[0020]
Further, the graphite core material (A) has a surface spacing (d 002 ) Is preferably 0.3358 nm or less.
[0022]
The present invention also provides a graphite precursor as a method for producing the composite graphite material. Raw material And a graphite core material having higher crystallinity than the graphite precursor, Heat to adjust the volatile content to 2.0 mass% or more and less than 20 mass%, After the mechanochemical treatment, it has a step of graphitization, composite A method for producing a graphite material is provided.
[0023]
Furthermore, the present invention provides a negative electrode material for a lithium ion secondary battery comprising the composite graphite material, and a lithium ion secondary battery using the negative electrode material for the lithium ion secondary battery.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the composite graphite material of the present invention, a method for producing the same, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery will be described in detail.
The composite graphite material of the present invention is a multilayer particle comprising a graphite core material (A) and a graphite coating material (B) encapsulating the graphite core material (A) and / or the multilayer particle. Are formed of aggregated particles, and the multilayer particles and the composite particles have a graphite surface layer (C) on the outer surface.
[0025]
In the present invention, the multilayer particle is any one of the forms shown in the following (D-1) and (D-2), and the composite particle has the following three forms ((1), (2 ), (3)), or any combination of two or more.
(1) Composite particles formed by assembling a plurality of multilayer particles (D-1) in a form in which a single graphite core material (A) is encapsulated with a graphite coating material (B)
(2) Composite particles formed by assembling multilayer particles (D-2) in a form in which two or more graphite core materials (A) are coated with a graphite coating material (B)
(3) Composite particles formed by assembling the multilayer particles (D-1) and (D-2)
[0026]
In the present invention, the graphite core material (A) is more crystalline than the graphite coating material (B). Graphite core material (A) includes tar, pitch mesophase calcined carbon (bulk mesophase), mesophase spherules, coke (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.), etc. Graphitized, artificial graphite, natural graphite, expanded graphite, graphitic carbon fiber, graphitized carbon black and the like can be mentioned, and natural graphite is particularly preferable from the viewpoint of obtaining a composite graphitic material having a high discharge capacity. Examples of the shape of the graphite core material (A) include those having various shapes such as a spherical shape, an ellipsoid shape, a scale shape, a lump shape, a plate shape, a fiber shape, and a granular shape, and are formed by processing lump graphite. May be. The average particle diameter of the graphite core material (A) is 1 to 100 μm, preferably 2 to 30 μm.
[0027]
In particular, the graphite core material (A) is preferably one in which a plurality of scaly graphites are finely granulated to a porosity of 50% by volume or less, preferably 30% by volume or less, in the composite particles. When the porosity in the composite particle exceeds 50% by volume, the required amount of the graphite precursor raw material or the graphite precursor for inclusion is increased, so that a sufficient discharge capacity cannot be obtained, The composite particles may be destroyed when the negative electrode is produced at a high density due to the remaining voids.
[0028]
One or more graphite core materials (A) may be encapsulated by the graphite coating material (B), but preferably 50 to 10,000 parts by mass with respect to 100 parts by mass of the graphite coating material (B). More preferably, the ratio is 100 to 2000 parts by mass.
[0029]
The graphite coating material (B) encapsulates the graphite core material (A) to form multilayer particles. The interior of the composite particles formed by the assembly of multilayer particles is filled or voided. May be formed so as to bond between the multilayer particles and to coat all or part of the outside of the composite particles.
Furthermore, the inside of the granulated particles having voids formed by aggregating a plurality of graphite core materials (A) is filled with a graphite coating material (B) or formed into voids to form a space between the graphite core materials (A). In addition, the outer and outer sides of the granulated particles may be covered.
[0030]
Furthermore, in the graphite material of the present invention, the multilayer particles and the composite particles have a graphite surface layer (C) on the outer surface. This graphite surface layer (C) was crystallized by being subjected to mechanochemical treatment (giving compressive force and shearing force) before graphitization treatment (graphite precursor) of the graphite coating material (B). Or may be obtained by simultaneously (continuously) crushing and mechanochemical treatment when crushing the graphite precursor of the fused graphite coating material (B). In this case, the graphite surface layer (C) forms a thin layer integrated with the graphite coating material (B), although the crystallinity is relatively lower than that of the graphite coating material (B). Although the thickness of the graphite surface layer (C) cannot be clearly defined, it is estimated that a thickness of about 0.01 to 5 μm is preferable.
[0031]
In the present invention, it is important that the graphite core material (A), the graphite coating material (B), and the graphite surface layer (C) have low crystallinity in the order of (A)>(B)> (C). is there. Thereby, while maintaining a high discharge capacity derived from the graphite core material (A), the graphite surface layer (C) can have both the characteristics of low irreversible capacity and is densely contained. Even when the negative electrode is formed at a high density by the action of the material (B), the above excellent battery characteristics are exhibited.
[0032]
In the present invention, the crystallinity of the surface of the composite graphite material (graphite surface layer (C)) is evaluated by a Raman spectrum using an argon laser. That is, among the nine types of lattice vibration based on the graphite structure, 1580 cm corresponding to the E2g type vibration corresponding to the in-plane lattice vibration. -1 1360 cm reflecting the nearby Raman spectrum and disorder of the crystal structure, mainly crystal defects in the surface layer, stacking irregularities, etc. -1 A nearby Raman spectrum is measured by a Raman spectroscopic analyzer (NR1100, manufactured by JASCO Corporation) using an argon laser having a wavelength of 514.5 nm. From the peak intensity of each Raman spectrum, the intensity ratio (R = I 1360 / I 1580 ) And the higher the intensity ratio, the lower the surface crystallinity. The intensity ratio R is R ≧ 0.05 from the viewpoint of reducing the irreversible capacity. Is . When R <0.05, the irreversible capacity is large, and sufficient battery characteristics cannot be obtained. This is presumably because crystallization of the surface layer proceeds so much that the decomposition reaction of the electrolytic solution on the surface of the composite graphite material easily proceeds. R is R <0.30 from the viewpoint of minimizing the decrease in discharge capacity. Is . When R ≧ 0.30, the crystallinity may decrease excessively, or the thickness of the graphite surface layer (C) may increase, resulting in a decrease in discharge capacity.
[0033]
On the other hand, the average crystallinity of the composite graphite material is determined by the interplanar spacing of the carbon network layer (d 002 ) And the size (Lc) of the crystallite in the C-axis direction. That is, using a CuKα ray as an X-ray source and high-purity silicon as a standard substance, a (002) diffraction peak was measured for a graphite material. 002 , Lc is calculated. The calculation method is in accordance with the Gakushin Law, and a specific method is described in “Carbon Fiber” (Modern Editorial Company, published in March 1986), pages 733-742.
[0034]
In the present invention, d by the X-ray diffraction method which is an index of the degree of development of the graphite structure. 002 And Lc are d from the point that a composite graphite material exhibiting a high discharge capacity is obtained. 002 ≦ 0.3365 nm, Lc ≧ 40 nm And , D 002 It is particularly preferable that ≦ 0.3362 nm and Lc ≧ 50 nm. d 002 When> 0.3365 nm and Lc <40 nm, since the degree of development of the graphite structure is low, when the composite graphite material is used as the negative electrode material of a lithium ion secondary battery, the lithium doping amount is small and the discharge is high. You may not be able to gain capacity. Further, the graphite core material (A) has a surface spacing (d 002 ) Is preferably 0.3358 nm or less.
[0035]
The average particle diameter of the composite graphite material of the present invention is appropriately selected according to the application, the design thickness of the electrode, the adjustment of the battery characteristics, etc. The composite graphite material of the present invention is used for a lithium ion secondary battery. When used as a negative electrode material, the average particle diameter is preferably 5 to 100 μm, particularly preferably 5 to 30 μm.
[0036]
The composite graphite material of the present invention can have a nearly spherical shape when a granulated product of scaly graphite particles typified by natural graphite is used as the graphite core material (A). A spherical or ellipsoidal shape is preferable as a material for a negative electrode of a lithium ion secondary battery because it contributes to improvement of high rate characteristics and cycle characteristics. The average aspect ratio of the composite graphite material of the present invention is preferably 3 or less, and particularly preferably 2 or less.
[0037]
In this case, the composite graphite material is formed of dense particles, and can exhibit a high bulk density. A high bulk density is advantageous because it can reduce problems such as destruction of the graphite material when the negative electrode is produced at a high density. Bulk density is 0.5g / cm Three It is preferable that it is above, especially 0.7 g / cm Three The above is preferable. More preferably 1.0 g / cm Three That's it.
[0038]
The specific surface area of the composite graphite material of the present invention can be arbitrarily designed according to the characteristics of the lithium ion secondary battery, the properties of the negative electrode mixture paste, and the like. However, BET specific surface area is 20m 2 If it exceeds / g, the safety of the lithium ion secondary battery may be lowered. Generally 0.3-5m in BET specific surface area 2 / G, particularly 3 m 2 / G or less is preferable. More preferably 1m 2 / G or less.
[0039]
In the present invention, the production of the composite graphite material may be any method as long as it is a method capable of producing the composite graphite material having the above-mentioned form, and is not particularly limited. Provided is a method for graphitizing a graphite precursor containing a core material (A) after mechanochemical treatment (hereinafter referred to as “method of the present invention”). By this method, low crystallinity can be easily obtained in the order of graphite core material (A)> graphite coating material (B)> graphite surface layer (C). Further, an integrated composite having no interface between the graphite coating material (B) and the graphite surface layer (C) can be obtained.
[0040]
The graphite precursor used in the method of the present invention is a solid having a softening point (Mettler method) of about 360 ° C. or higher and has a graphite structure grown to some extent. Examples of the index representing the degree of growth of the graphite structure include the amount of volatile components contained in the graphite precursor. The amount of volatile components of the graphite precursor is 2.0% by mass or more and less than 20% by mass, preferably 4 to 15% by mass. Here, the amount of volatile matter is measured according to the following method based on the fixed carbon method of JIS K2425.
[0041]
Method for measuring volatile content: 1 g of a sample (graphite precursor) is weighed into a crucible and heated in an electric furnace at 430 ° C. for 30 minutes without a lid. Then, it is set as a double crucible, it heats for 30 minutes with an 800 degreeC electric furnace, a volatile matter is removed, and a weight loss rate is made into a volatile matter.
[0042]
The quinoline insoluble matter (QI) can also be used as a standard as an index indicating the degree of growth of the graphite structure. It means that the graphite structure is growing as the QI approaches 100% by mass.
[0043]
Here, QI is measured by the following filtration method based on JIS K2425.
QI measurement method: Powder material (graphite precursor) is dissolved in quinoline, heated at 75 ° C. for 30 minutes, and then suction filtered while hot using a filter. The residue is washed in the order of quinoline and acetone until the filtrate becomes colorless, then dried and weighed to calculate the quinoline insoluble matter. Diatomaceous earth is used as a filter aid. As the filter, a vertical filter 1G4 defined in JIS R3503 is used.
[0044]
A graphite precursor having a large amount of volatile matter or a low QI exhibits meltability under graphitization conditions. Therefore, when such a graphite precursor is graphitized as it is, the shape usually changes or the materials are fused. In particular, when the volatile content is 20% by mass or more, even if the mechanochemical treatment is performed, the graphite precursor is remelted by the subsequent heat treatment, and it becomes difficult to disturb the crystal structure of only the surface layer. For these reasons, the graphite precursor used in the present invention preferably has a volatile content of less than 20% by mass and a QI of more than 50% by mass.
[0045]
On the other hand, a graphite precursor having a low volatile content or a high QI does not exhibit the above-described meltability (is infusibilized). However, if the volatile content is less than 2.0% by mass, the crystal of the surface layer is obtained by mechanochemical treatment. It becomes difficult to disturb the structure and the formation of a low crystalline surface becomes uncertain. Therefore, in the present invention, a graphite precursor having a volatile content of 2.0% by mass or more and less than 20% by mass is preferably used, and more preferably 4 to 15% by mass of a graphite precursor. When using QI, a graphite precursor of more than 50% by mass and less than 100% by mass is preferably used, and more preferably 80 to 99.5% by mass of graphite precursor.
[0046]
The graphite precursor is not particularly limited as long as it is a solid graphite material containing volatile components as described above. Preferably, at least one of petroleum-based or coal-based heavy oil such as tar and pitch is used as a starting material. And a graphite precursor produced through a polycondensation reaction of aromatic rings, for example, mesophase (bulk mesophase and the like) can be used. When tar and / or pitch is heated, aromatic components in the tar and pitch are condensed or stacked, and spherical materials called mesophase carbon microspheres are generated. When the heating is further continued, the mesophase carbon spherules coalesce to generate a bulk mesophase in which the entire region becomes a mesophase.
[0047]
The heat treatment may be performed under reduced pressure, normal pressure, or increased pressure, and is usually performed in a temperature range of 300 to 1200 ° C, preferably 350 to 600 ° C. Although the atmosphere is preferably non-oxidizing, it can be heat-treated under some oxidizing atmosphere. Note that the heat treatment may be performed a plurality of times. The heat treatment time is not particularly limited, but is about 0.5 to 100 hours.
In addition, the volatile matter amount of the pitch before polycondensation reaction is about 20-40 mass%, and QI is about 0-20 mass%.
[0048]
In the method of the present invention, one or a plurality of particles serving as the graphite core material (A) may be interposed in the graphite precursor. As an example, a graphite precursor in a molten state and a graphite core material are kneaded by applying a shearing force under heating to obtain a mixed graphite precursor closely adhered to each other, and this is pulverized and adjusted to a predetermined shape A method is mentioned.
[0049]
Alternatively, a small amount of a graphite precursor in a molten state may be added to a graphite core material (A) such as natural graphite and granulated to adjust to a desired particle shape. The solution of the graphite precursor and graphite may be mixed, and the solvent may be removed by a single method or a combination of methods such as heating, decompression, and spray drying. Alternatively, a graphite precursor material (for example, coal pitch) and a graphite core material (A) may be kneaded and granulated, and then heated to cause a polycondensation reaction of an aromatic ring to obtain a graphite precursor. When using a graphite precursor raw material such as pitch, the graphite precursor raw material is dissolved in a solvent, mixed with the graphite core (A), and then a method such as heating, decompression, spray drying or the like is used alone or in combination. May be removed.
[0050]
As described above, the composite graphite material of the present invention is preferably spherical or ellipsoidal. The graphite core material (A) giving these shapes is preferably spherical or ellipsoidal and may be formed by processing massive graphite, but by granulating a plurality of scaly graphites. What was formed is more preferable. Examples of the granulation method include a method in which a mechanical external force is imparted to a plurality of scaly graphites in a dry or wet manner. As a device for applying a mechanical external force, a pulverizer such as a counter jet mill (manufactured by Hosokawa Micron Corporation), a current jet (manufactured by Nissin Engineering Co., Ltd.), SARARA (manufactured by Kawasaki Heavy Industries, Ltd.), GRANUREX (Freund Sangyo Co., Ltd.), Agromaster (Hosokawa Micron Co., Ltd.), Newgra Machine (Seisin Enterprise Co., Ltd.) and other granulators, pressure kneaders, kneaders such as two rolls, rotating ball mill, Shear compression processing machines such as a hybridization system (manufactured by Nara Machinery Co., Ltd.), mechanomicros (manufactured by Nara Machinery Co., Ltd.), and mechanofusion system (manufactured by Hosokawa Micron Corporation) can be used.
[0051]
In granulation, a binder component may be used.
As the binder component, the above graphite precursor or graphite precursor raw material can be used. The binder component may disappear during graphitization. Moreover, even if it does not form a graphite structure by graphitization, it can be used as long as the effects of the present invention are not impaired.
[0052]
Further, when petroleum-based and / or coal-based heavy oil such as tar and / or pitch is used as the graphite precursor raw material, it is preferable to further contain hydrophilic fine particles. The blending of the hydrophilic fine particles facilitates the crushing step to be described later, suppresses the peeling of the film, and contributes to further improvement of the initial charge / discharge efficiency.
[0053]
The hydrophilic fine particles are preferably those having low adhesion to lipophilic tar / pitch and mesophase produced by heating them. When it has adhesiveness, the improvement effect of crushability becomes small.
[0054]
The hydrophilic fine particles may react with carbon during the firing step or heat treatment step (graphitization), or may remain in the finally obtained graphitic particles. It is desirable that the hydrophilic fine particles and their reaction products are finally vaporized and decomposed and do not remain in the graphite particles.
[0055]
The smaller the hydrophilic fine particles, the smaller the blending amount, and the better the effects of the present invention. A preferred average diameter of the hydrophilic fine particles is 1 μm or less. If it is larger than 1 μm, it is necessary to add a large amount of hydrophilic fine particles, which may lead to deterioration of battery characteristics of the finally obtained graphite particles.
[0056]
The blending amount of the hydrophilic fine particles is preferably in the range of 0.01 to 10% by mass, particularly 0.05 to 3% by mass with respect to the graphite coating material (B) of the obtained composite graphite material. When the content is less than 0.01% by mass, the effect of improving the pulverization is small, and when the content exceeds 10% by mass, the battery characteristics of the composite graphite material finally obtained may be deteriorated. .
[0057]
Examples of the hydrophilic fine particles that satisfy the above preferred conditions include metal oxides obtained by vapor phase methods such as vapor-phase anhydrous silica, vapor-phase alumina, and vapor-phase titania, carbonaceous particles such as oxidized carbon black, and iron black. , Yellow lead, zinc yellow, yellow iron oxide, ocher, titanium yellow, red pepper, red lead, zinc white, lead white, lead sulfate, lithopone, titania, antimony oxide, alumina white, gloss white, satin white, plaster and other pigments , Kaolin clay, wax stone clay, calcined clay, aluminum silicates such as hydrous aluminum silicate composites, calcium carbonates such as chalk and chalk, calcium and magnesium carbonates such as dolomite powder, magnesite powder, basic magnesium carbonate, etc. Silicates such as magnesium carbonates, wollastonite, hydrous calcium silicate composites S, talc, magnesium silicate such as mica, quartz powder, fine powder silicic acid, diatomaceous earth, silicates such as silica powder, such as resin beads and the like.
[0058]
In the present invention, as the hydrophilic fine particles, the above-mentioned ones can be used singly or as a mixture of plural kinds thereof. Among these, anhydrous silica, titania, alumina and the like obtained by a vapor phase method that do not react with the graphite precursor raw material, the graphite precursor, and the like are particularly suitable.
[0059]
The method for mixing the hydrophilic fine particles with the graphite precursor raw material is not particularly limited, but examples include a method in which the hydrophilic fine particles are previously dispersed in a solvent, the dispersion is injected into a molten tar and / or pitch, and stirred. Is done. As the solvent, benzene, toluene, quinoline, tar middle oil, tar heavy oil, or the like can be used.
[0060]
Further, the shape of the graphite precursor containing the graphite core material (A) is not particularly limited, and may be any of granular, scaly, spherical, acicular, fibrous, etc., but spherical or elliptical Is preferred. When adjusting to a predetermined particle shape by pulverization, classification, or the like, various known methods can be employed. As the pulverization method, for example, various commercially available pulverizers such as a roller type, an impact type, a friction type, a compression type, a stone mill type, a moving object collision type, a vortex (airflow) type, a shearing type, and a vibration type can be used.
[0061]
In the method of the present invention, no melt deformation or fusion between solids occurs at the time of graphitization, so that a composite graphite material can be obtained in the form of the raw solid graphite precursor. For this reason, if the graphite precursor containing the graphite core material (A) is provided in a desired product shape, it is not necessary to pulverize or form the graphite precursor into a desired shape after graphitization, thereby simplifying the process. Furthermore, since the surface crystallized low by this can be retained as it is, the effects of the present invention can be better achieved. For example, when the composite graphite material of the present invention is used as a negative electrode material for a lithium ion secondary battery, the graphite precursor containing the graphite core material (A) is preferably provided in a spherical shape, an ellipsoid shape, or a granular shape. . The suitable average particle diameter in this case is 5-50 micrometers, More preferably, it is 10-30 micrometers.
In addition, the graphite precursor containing a graphite core material (A) does not necessarily need to be uniform, and the amount of volatile components in the center portion and the surface portion may be different.
[0062]
<Mechanochemical treatment>
In the present invention, the mechanochemical treatment refers to a treatment in which a compressive force and a shear force are simultaneously applied to the graphite core material (A) and the graphite precursor. By mechanochemical treatment, a graphite surface layer (C) having a relatively low crystallinity relative to the graphite precursor is formed on the surface of the graphite precursor encapsulating the graphite core material (A) made of highly crystalline graphite. A composite graphite material having a multilayer structure can be obtained. Although the shearing force and compressive force are usually larger than those obtained by general stirring, these mechanical external forces are preferably applied to the surface of the graphite precursor, and the particle skeleton of the graphite core material (A) is substantially reduced. It is preferable not to destroy. When the particle skeleton of the graphite core material (A) is excessively broken, the initial charge / discharge efficiency tends to decrease. Specifically, it is preferable to suppress the reduction rate of the average particle diameter of the composite graphite material due to the addition of the mechanochemical treatment to 20% or less.
[0063]
The mechanochemical treatment is not particularly limited as long as it is an apparatus capable of simultaneously applying a compressive force and a shearing force to the graphite precursor interposed on the surface of the composite graphite material. For example, a kneader such as a pressure kneader, two rolls, rotating ball mill, hybridization system (manufactured by Nara Machinery Co., Ltd.), mechanomicros (manufactured by Nara Machinery Co., Ltd.), mechanofusion system (Hosokawa Micron Co., Ltd.) ))) Can be used.
[0064]
Among the above devices, a device that simultaneously applies a shearing force and a compressive force using a difference in rotational speed is preferable. For example, a mechano-fusion system manufactured by Hosokawa Micron Corporation showing a schematic mechanism in FIGS. 2 (a) and (b). Is preferred. That is, as shown in FIG. 2B, an apparatus having a rotating drum 11, an internal member (inner piece) 12 having a rotational speed different from that of the rotating drum 11, a circulation mechanism 14 and a discharge mechanism 15 for the graphite precursor 13. Can be used. In this apparatus, as shown in FIG. 2A, while the centrifugal force is applied to the graphite precursor 13 supplied between the rotary drum 11 and the internal member 12, the speed with the rotary drum 11 by the internal member 12 is increased. A mechanochemical treatment can be performed by repeatedly applying a compressive force and a shearing force due to the difference simultaneously.
[0065]
Further, for example, a hybridization system manufactured by Nara Machinery Co., Ltd., whose schematic mechanism is shown in FIG. 3, can be used. That is, a fixed drum 21, a rotor 22 that rotates at high speed, a circulation mechanism 24 and a discharge mechanism 25 for the graphite precursor 23, a blade 26, a stator 27, and a jacket 28 are used. The mechanochemical treatment may be performed using an apparatus that supplies the compression force and the shearing force due to the speed difference between the stationary drum 21 and the rotor 22 to the graphite precursor 23.
[0066]
The conditions of the mechanochemical treatment differ depending on the apparatus to be used and cannot be said unconditionally. However, it is preferable to set the reduction rate of the average particle diameter of the composite graphite material by the treatment to 20% or less. For example, when using an apparatus (FIG. 2) provided with a rotating drum and an internal member, a peripheral speed difference between the rotating drum and the internal member: 5 to 50 m / s, a distance between them of 1 to 100 mm, a processing time of 5 It is preferable to carry out under the condition of 60 minutes.
In the case of an apparatus (FIG. 3) having a fixed drum-high speed rotating rotor, it is preferable to carry out under conditions of a peripheral speed difference of 10 to 100 m / s between the fixed drum and the rotor and a processing time of 30 seconds to 5 minutes.
[0067]
In addition, a known conductive material, ion conductive material, surfactant, metal compound, binder in a range not impairing the effects of the present invention before, during or after the mechanochemical treatment. Various additives such as can also be used in combination.
[0068]
<High temperature heating (graphitization)>
The composite graphite material subjected to the mechanochemical treatment is adjusted to a predetermined shape, and then heated at high temperature in a non-oxidizing atmosphere using a container such as a crucible to be graphitized. The heating temperature is not particularly limited, but is preferably as high as possible from the viewpoint of increasing the degree of graphitization. Specifically, it is preferably higher than 1300 ° C, more preferably 1500 ° C or higher. The upper limit is about 3200 ° C., preferably 2800 to 3000 ° C., from the viewpoint of heat resistance of the apparatus and prevention of graphite sublimation. By heating to such a high temperature for 0.5 to 50 hours, preferably 2 to 20 hours, a high degree of graphitization with a sufficiently developed layered structure that can be suitably used as a negative electrode material for lithium ion secondary batteries, etc. The graphite material which has can be obtained.
[0069]
By the method for producing a composite graphite material of the present invention, d in the X-ray wide angle diffraction method 002 It is possible to increase the R value in Raman spectroscopy without changing Lc and Lc. The obtained composite graphite material has a highly crystalline nucleus and a relatively low crystalline surface (graphite surface layer (C)), and the surface is in close contact with and integrated with the highly crystalline nucleus. The surface of the composite graphite material has a relatively low crystallinity and disordered structure, so that a high charge / discharge capacity is obtained and the irreversible capacity in the initial charge / discharge cycle is small ( The initial charge / discharge efficiency is high). That is, since the surface portion of the composite graphite material has a disordered structure, the irreversible capacity can be reduced while maintaining a high discharge capacity, which is extremely useful as a negative electrode material for a lithium ion secondary battery.
[0070]
The R value of the composite graphite material of the present invention is smaller than the R value of the prior art, but has an excellent irreversible capacity reduction effect. A reduction in irreversible capacity is achieved without greatly reducing the crystallinity of the graphite coating material (B) and the graphite surface layer (C), and therefore a high discharge capacity can be maintained.
[0071]
The composite graphite material of the present invention can be used for applications other than the negative electrode, for example, a conductive material for a fuel cell separator or a refractory graphite, taking advantage of its characteristics. It is suitable as a negative electrode material.
Hereinafter, a lithium ion secondary battery negative electrode using the composite graphite material of the present invention as a negative electrode material, and further a lithium ion secondary battery will be described.
[0072]
<Lithium ion secondary battery>
Lithium ion secondary batteries usually have a negative electrode, a positive electrode, and a non-aqueous electrolyte as the main battery components. The positive and negative electrodes are each composed of a lithium ion carrier, and the non-aqueous solvent enters and exits between the layers during the charge / discharge process. In essence, the battery has a battery mechanism in which lithium ions are doped into the negative electrode during charging and dedope from the negative electrode during discharging.
The lithium ion secondary battery of the present invention is not particularly limited except that the composite graphite material of the present invention is used as the negative electrode material, and other battery components conform to the elements of a general lithium ion secondary battery.
[0073]
<Negative electrode>
The production of the negative electrode comprising the composite graphite material of the present invention can be carried out in accordance with a normal molding method, but sufficiently draws out the performance of the composite graphite material and has high formability to powder, There is no limitation as long as it is a method capable of obtaining an electrochemically stable negative electrode.
[0074]
At the time of manufacturing the negative electrode, a negative electrode mixture obtained by adding a binder to the composite graphite material can be used. As the binder, it is desirable to use a material having chemical stability and electrochemical stability with respect to the electrolyte. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene. Butadiene rubber and carboxymethyl cellulose are used.
These can also be used together.
In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.
[0075]
Specifically, the negative electrode mixture layer is prepared by mixing a composite graphite material adjusted to an appropriate particle size by classification or the like with a binder, and this negative electrode mixture is usually collected. It can be formed by applying to one or both sides of the electric body.
In this case, a normal solvent can be used. If the negative electrode mixture is dispersed in a solvent to form a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly formed. A negative electrode adhered to the substrate can be obtained. The paste can be prepared by stirring at about 300 to 3000 rpm with a wing homomixer.
[0076]
Further, for example, the composite graphite material of the present invention and a fluorine resin powder such as polytetrafluoroethylene may be mixed and kneaded in a solvent such as isopropyl alcohol, and then applied to form a negative electrode mixture layer. it can.
Furthermore, the composite graphite material of the present invention and a fluorine resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose are mixed with a solvent such as N-methylpyrrolidone, dimethylformamide, water, alcohol or the like. After forming the slurry, it can be applied to form a negative electrode mixture layer.
[0077]
The coating thickness when the negative electrode mixture comprising the mixture of the composite graphite material of the present invention and the binder is applied to the current collector is suitably 10 to 300 μm.
[0078]
The negative electrode mixture layer can also be formed by dry-mixing a composite graphite material and a resin powder such as polyethylene or polyvinyl alcohol and hot pressing in a mold.
[0079]
After the negative electrode mixture layer is formed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased by pressure bonding such as pressurization.
[0080]
In the lithium ion secondary battery of the present invention, the shape of the current collector used for the negative electrode is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. Examples of the current collector include copper, stainless steel, and nickel. In the case of a foil shape, the thickness of the current collector is preferably about 5 to 20 μm.
[0081]
<Positive electrode>
As a material for the positive electrode (positive electrode active material), it is preferable to select a material capable of doping / dedoping a sufficient amount of lithium. Examples of such positive electrode active materials include lithium-containing transition metal oxides, transition metal chalcogenides, and vanadium oxides (V 2 O Five , V 6 O 13 , V 2 O Four , V Three O 8 And their lithium-containing compounds, general formula: M x Mo 6 S 8-Y (Wherein X is a numerical value in a range of 0 ≦ X ≦ 4, Y is a numerical value in a range of 0 ≦ Y ≦ 1, M represents a metal such as a transition metal), a chevrel phase compound represented by Can be used.
[0082]
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The lithium-containing transition metal oxide is specifically represented by the formula: LiM (1) 1-P M (2) P O 2 (Wherein P is a numerical value in the range of 0 ≦ P ≦ 1, and M (1) and M (2) are composed of at least one transition metal element) or formula: LiM (1) 2-Q M (2) Q O Four (Wherein Q is a numerical value in the range of 0 ≦ Q ≦ 1, and M (1) and M (2) are composed of at least one transition metal element).
[0083]
In the above formula, examples of the transition metal element represented by M include Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, and Sn, and preferably Co, Fe, Mn, and Ti. , Cr, V, Al.
[0084]
Specific examples of lithium-containing transition metal oxides include LiCoO 2 , Formula: Li P Ni Q M 1-Q O 2 (M is the above transition metal element excluding Ni, preferably at least one selected from Co, Fe, Mn, Ti, Cr, V, and Al, 0.05 ≦ P, 0.5 ≦ Q ≦ 1.0. Lithium composite oxide, LiNiO 2 LiMnO 2 , LiMn 2 O Four Etc.
[0085]
The above lithium-containing transition metal oxide is, for example, Li, an oxide or salt of a transition metal as a starting material, these starting materials are mixed according to the composition, and fired in an oxygen atmosphere at a temperature range of 600 ° C to 1000 ° C. Can be obtained. Note that the starting materials are not limited to oxides or salts, and can be synthesized from hydroxides or the like.
In the present invention, the positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode.
[0086]
In order to form a positive electrode with such a positive electrode material, for example, a positive electrode mixture comprising a positive electrode material, a binder, and a conductive agent for imparting conductivity to the electrode is applied to both sides of the current collector. An agent layer is formed. As the binder, any of those exemplified for the production of the negative electrode can be used. As the conductive agent, for example, a carbon material, graphite, or carbon black is used.
[0087]
The shape of the current collector is not particularly limited, and a foil shape or a net shape such as a mesh or expanded metal is used. For example, examples of the current collector include aluminum foil, stainless steel foil, and nickel foil. The thickness is preferably 10 to 40 μm.
[0088]
In the case of the positive electrode, as in the case of the negative electrode, the positive electrode mixture is dispersed in a solvent to form a paste, and the paste-like positive electrode mixture is applied to a current collector and dried to form a positive electrode mixture layer. Alternatively, after the positive electrode mixture layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
[0089]
In the present invention, when forming the negative electrode and the positive electrode as described above, conventionally known various additives such as a conductive agent and a binder can be appropriately used.
[0090]
<Electrolyte>
As the electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in a normal nonaqueous electrolytic solution can be used. For example, LiPF 6 , LiBF Four , LiAsF 6 LiClO Four , LiB (C 6 H Five ) Four , LiCl, LiBr, LiCF Three SO Three , LiCH Three SO Three , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiN (CF Three CH 2 OSO 2 ) 2 , LiN (CF Three CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF Three ) 2 CHOSO 2 ) 2 , LiB [C 6 H Three (CF Three ) 2 ] Four LiAlCl Four , LiSiF 6 Lithium salt etc. can be used. In particular, LiPF 6 , LiBF Four Is preferably used from the viewpoint of oxidation stability.
The electrolyte salt concentration in the nonaqueous electrolytic solution is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3.0 mol / L.
[0091]
The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery or a polymer gel electrolyte battery.
[0092]
In the case of a liquid nonaqueous electrolyte solution, the solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, trimethyl borate, tetramethyl silicate, Nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2 Oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.
[0093]
When the nonaqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, a matrix polymer gelled with a plasticizer (nonaqueous electrolyte) is included. Examples of the matrix polymer include ether-based polymers such as polyethylene oxide and cross-linked products thereof, fluorine-based polymers such as polymethacrylate-based, polyacrylate-based, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. Can be used alone or in combination.
Among these, it is desirable to use a fluorine-based polymer such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer from the viewpoint of redox stability.
[0094]
As the electrolyte salt and the non-aqueous solvent constituting the plasticizer contained in these polymer solid electrolyte and polymer gel electrolyte, any of those described above can be used. In the case of a gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 2.0 mol / L.
[0095]
The method for producing such a solid electrolyte is not particularly limited. For example, a polymer compound that forms a matrix, a method of mixing a lithium salt and a solvent, and melting by heating, a polymer compound in a suitable organic solvent, A method of evaporating an organic solvent after dissolving a lithium salt and a solvent, and a mixture of a polymerizable monomer, a lithium salt, and a solvent that are raw materials for a polymer electrolyte, and irradiating the mixture with ultraviolet rays, electron beams, molecular beams And a method for producing a polymer electrolyte by polymerization.
[0096]
Moreover, 10 to 90 mass% is preferable, and, as for the ratio of the solvent in the said solid electrolyte, More preferably, it is 30 to 80 mass%. When it is 10 to 90% by mass, it is easy to form a solid electrolyte with high electrical conductivity and high mechanical strength.
[0097]
The lithium ion secondary battery of the present invention may have a separator.
Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. In particular, a synthetic resin microporous membrane is preferably used. Among these, a polyolefin microporous membrane is preferable in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
[0098]
In the lithium ion secondary battery of the present invention, the gel electrolyte can be used because the initial charge / discharge efficiency has been improved.
The gel electrolyte secondary battery is configured by laminating a negative electrode containing a graphite material, a positive electrode, and a gel electrolyte in the order of, for example, a negative electrode, a gel electrolyte, and a positive electrode, and accommodating them in a battery exterior material. In addition to this, a gel electrolyte may be further disposed outside the negative electrode and the positive electrode. In the gel electrolyte secondary battery using such a graphite material for the negative electrode, even when propylene carbonate is contained in the gel electrolyte and the graphite material powder has a particle size small enough to reduce the impedance sufficiently The irreversible capacity can be kept small. Therefore, a large discharge capacity is obtained and a high initial charge / discharge efficiency is obtained.
[0099]
Furthermore, the structure of the lithium ion secondary battery of the present invention is arbitrary, and the shape and form thereof are not particularly limited, and can be arbitrarily selected from a cylindrical shape, a square shape, a coin shape, a button shape, and the like. Can do. In order to obtain a sealed non-aqueous electrolyte battery with higher safety, it is desirable to have a means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure enclosed in a laminate film can also be used.
[0100]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In the following examples and comparative examples, a button-type secondary battery for evaluation of the structure shown in FIG. 1 was prepared according to the following method using the obtained composite graphite material, and a charge / discharge test was performed. The battery characteristics were evaluated.
[0101]
<Preparation of negative electrode mixture paste>
Polyvinylidene fluoride as a binder is mixed at a ratio of 10% by mass with 90% by mass of the composite graphite material using N-methylpyrrolidone as a solvent, and stirred for 30 minutes at 2000 rpm using a homomixer. A solvent-based negative electrode mixture paste was prepared.
[0102]
<Manufacture of working electrode (negative electrode)>
The negative electrode mixture paste was applied on a copper foil (current collector) with a uniform thickness, and further heated to 90 ° C. in a vacuum to volatilize the solvent and dried. Next, the negative electrode mixture applied on the copper foil was pressed by a roller press and punched into a circular shape with a diameter of 15.5 mm together with the copper foil, thereby closely contacting the current collector 7b made of copper foil. A working electrode (negative electrode) 2 comprising a negative electrode mixture layer was produced.
[0103]
<Manufacture of counter electrode>
A lithium metal foil is pressed against a nickel net and punched out on a 15.5 mm diameter cylinder, and a current collector (7a) made of nickel net and a counter electrode 4 (positive electrode) made of a lithium metal foil in close contact with the current collector Manufactured.
[0104]
<Electrolyte>
LiClO was added to a mixed solvent of 10 ol% propylene carbonate, 50 ol% ethylene carbonate and 40 ol% diethyl carbonate. Four 1 mol / dm Three A non-aqueous electrolyte was prepared by dissolving at a concentration of
The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body to produce a separator 5 impregnated with the electrolytic solution.
[0105]
<Manufacture of evaluation batteries>
As an evaluation battery, as shown in FIG. 1, the outer cup 1 and the outer can 3 have a sealed structure that is caulked with an insulating gasket 6 at the peripheral edge thereof, and the inner side of the outer can 3 In order, a current collector 7a made of nickel net, a disk-shaped counter electrode 4 made of lithium foil, a separator 5 impregnated with an electrolyte solution, a disk-shaped working electrode (negative electrode) 2 made of a negative electrode mixture and a copper foil. A button-type secondary battery having a structure in which the electric body 7b was laminated was manufactured.
[0106]
In the evaluation battery, the separator 5 impregnated with the electrolyte solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the working electrode 2 was attached. In the exterior cup 1, the counter electrode 4 is accommodated in the exterior can 3, the exterior cup 1 and the exterior can 3 are combined, and the periphery of the exterior cup 1 and the exterior can 3 is caulked and sealed with an insulating gasket 6. Manufactured.
This evaluation battery is a battery composed of a working electrode (negative electrode) 2 containing a graphite material that can be used as a negative electrode active material in a real battery, and a counter electrode 4 made of a lithium metal foil.
[0107]
The following charge / discharge test was performed on the evaluation battery manufactured as described above at a temperature of 25 ° C.
<Charge / discharge test>
Constant current charging is performed until the circuit voltage reaches 0 mV at a current value of 0.9 mA, switching to constant voltage charging when the circuit voltage reaches 0 mV, and further charging is continued until the current value reaches 20 μA. Paused for a minute.
Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 2.5V. The charge capacity and discharge capacity were obtained from the energization amount in the first cycle, and the initial charge / discharge efficiency was calculated from the following equation.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100
In this test, the process of doping lithium ions into the composite graphite material was charged, and the process of dedoping from the composite graphite material was discharge.
[0108]
Table 1 shows the measured discharge capacity (mAh / g) and initial charge / discharge efficiency (%) value (battery characteristics) per 1 g of composite graphite material powder.
As shown in Table 1, the lithium ion secondary battery using the composite graphite material of the present invention for the working electrode (corresponding to the negative electrode of the actual battery) exhibits a high discharge capacity and has a high initial charge / discharge efficiency (that is, small Irreversible capacity).
[0109]
Next, as the second cycle, after charging in the same manner as in the first cycle, constant current discharge was performed at a current value of 18 mA until the circuit voltage reached 2.5V. At this time, high rate characteristics (rapid discharge efficiency) were evaluated from the discharge capacity in the first cycle and the discharge capacity in the second cycle according to the following equation.
Rapid discharge efficiency (%) = (second cycle discharge capacity / first cycle discharge capacity) × 100
[0110]
In addition to these evaluation tests, charging and discharging were repeated 10 times under the same conditions as in the first cycle, and the cycle characteristics were evaluated according to the following formula.
Cycle characteristics (%) = (discharge capacity of 10th cycle / discharge capacity of 1st cycle) × 100
[0111]
In these tests, the electrode density of the negative electrode was 1.6 g / cm. Three And 1.8g / cm Three In each case, the evaluation batteries were used.
[0112]
Example 1
<Preparation of composite graphite material>
Heated at a ratio of 50 parts by mass of natural graphite (produced by Madagascar, average particle size 5 μm) with respect to 80 parts by mass of coal tar pitch (PK-QL, manufactured by Kawasaki Steel Corporation) containing about 40% by mass of volatile matter. Using a kneader, the mixture was kneaded while the coal tar pitch was melted.
[0113]
The obtained composite was coarsely pulverized and then heat-treated in a non-oxidizing atmosphere to cause polycondensation reaction of the coal tar pitch to obtain a graphite-containing graphite precursor having the following characteristics.
Volatile content: 4.2% by mass
QI (quinoline insoluble content): 96% by mass
Softening point (Mettler method): 445 ° C
The obtained graphite-containing graphite precursor contained 50 parts by mass of heat-treated coal tar pitch and 50 parts by mass of natural graphite.
[0114]
This graphite precursor was pulverized using a vortex pulverizer to prepare massive particles having an average particle diameter of 20 μm. The massive particles were put into a mechanochemical processing apparatus (manufactured by Hosokawa Micron Co., Ltd., mechanofusion system) whose structure is shown in FIGS. 2 (a) and (b), and mechanochemical processing was performed. At this time, compressive force and shearing force were repeatedly applied under conditions of a peripheral speed of the rotating drum of 20 m / s and a processing time of 10 minutes, and a distance of 5 mm between the rotating drum and the internal member. The average particle size of the graphite-containing graphite precursor after the mechanochemical treatment was 19 μm.
[0115]
Next, the mechanochemically treated graphite-containing graphite precursor was filled in a graphite crucible, and the surroundings of the crucible were filled with coke breeze and heated at 3000 ° C. for 5 hours to graphitize to obtain a composite graphite material. The obtained composite graphite material was not fused or deformed, and the particle shape was maintained. Next, an evaluation battery was manufactured using the obtained composite graphite material, and battery characteristics were evaluated. Table 1 shows the graphitization degree and the measured discharge capacity (mAh / g), initial charge / discharge efficiency (%), rapid discharge efficiency (%), and cycle characteristics (%) per 1 g of composite graphite particles. .
[0116]
As shown in Table 1, the composite graphite material (Example of the present invention) obtained in Example 1 shows a discharge capacity higher than that of Comparative Example 1, and also has an extremely high initial charge / discharge efficiency (small irreversible capacity). ). It can also be seen that the surface of the graphite is selectively crystallized.
[0117]
(Example 2)
<Preparation of graphite granules>
A mechanochemical treatment apparatus (manufactured by Nara Machinery Co., Ltd., hybridization system) shown in FIG. 3 is used to produce scaly highly crystalline natural graphite particles (made in China) with an average particle size of 30 μm and a volatile content of 0.7% It used and gave the shear compression processing. That is, by processing at a rotor peripheral speed of 60 m / s under a condition of a processing time of 3 minutes, mechanical external forces such as impact force, compressive force, and shear force are repeatedly applied to natural graphite particles introduced into the apparatus. Added. As a result, natural graphite particles were granulated to form dense spherical to ellipsoidal graphite granules. The obtained graphite granulated product has an average particle diameter of 20 μm, an aspect ratio of 1.8, and a crystallinity by d-ray wide-angle diffractometry of d. 002 = 0.3355 nm, Lc = 86 nm.
[0118]
Moreover, when the cross section of the obtained graphite particle was grind | polished and the porosity (area ratio) in particle | grains was measured using the scanning electron microscope, it was about 15 volume%.
[0119]
<Production of composite graphite precursor>
100 parts by mass of a coal tar pitch solution was prepared by mixing 42 parts by mass of coal tar pitch (PK-QL, produced by Kawasaki Steel Co., Ltd.) containing about 40% by mass of volatile matter at a ratio of 58 parts by mass of oil in tar.
In a stirrer, 100 parts by mass of the coal tar pitch solution and 100 parts by mass of the graphite granulated product were added, and immersed and stirred at 150 ° C. for 30 minutes at an in-machine pressure of 50 mmHg, and the tar oil as a solvent was removed.
[0120]
The obtained coated graphite was filled into a steel container. In a firing furnace equipped with a volatile gas combustion treatment device, the mixture was fired at 450 ° C. for 20 hours under an inert gas flow. The fired product had a slightly fused graphite precursor.
[0121]
For comparison, the coal tar pitch solution was calcined alone at the same time. As a result, it was 25 parts by mass after calcining with respect to 100 parts by mass before calcining. It was calculated that granule = 20: 80. The volatile content of the fired product is 1.8% by mass, and the precursor part is calculated to be about 6.2 (0.7 × 0.8 + x × 0.2 = 1.8)% by mass. On the other hand, the volatile matter amount of the single fired product of the comparative coal tar pitch solution was 6.0% by mass, and it was supported that the calculated value of the ratio was almost correct.
[0122]
The fired product was crushed with an impact pulverizer. The graphite precursor obtained by pulverization had an average particle diameter of 22 μm and an aspect ratio of 1.7.
[0123]
<Mechanochemical treatment>
Subsequently, the graphite precursor was put into a mechanochemical processing apparatus (manufactured by Hosokawa Micron Co., Ltd., mechanofusion system) shown in FIGS. 3A and 3B and subjected to mechanochemical treatment. That is, compressive force and shear force were repeatedly applied under the conditions of a peripheral speed of the rotating drum of 20 m / s, a processing time of 30 minutes, and a distance of 5 mm between the rotating drum and the internal member. The average particle diameter of the graphite precursor after the mechanochemical treatment was 22 μm, and the aspect ratio was 1.7.
[0124]
<Manufacture of composite graphite material>
Next, the graphite precursor subjected to mechanochemical treatment was filled into a graphite crucible, coke breeze was filled around the crucible and heated at 3000 ° C. for 5 hours for graphitization to obtain a composite graphite material. The obtained composite graphite material was not fused or deformed, and the particle shape was maintained. The obtained composite graphite material has an average particle diameter of 22 μm, an aspect ratio of 1.7, and a specific surface area of 0.5 m. 2 / G, bulk density is 1.02 g / cm Three Met. The crystallinity by the X-ray wide angle diffraction method is d 002 = 0.3357 nm, Lc = 88 nm, R value by Raman spectroscopy was 0.08. FIG. 4 shows a scanning electron micrograph of the produced composite graphite material.
Using this composite graphite material, a working electrode (negative electrode) for an evaluation battery was manufactured, and battery characteristics were evaluated. The results are shown in Table 1.
[0125]
(Examples 3 to 5)
In 100 parts by mass of the coal tar pitch solution used in Example 2, 0.5 parts by mass of vapor-phase anhydrous silica fine powder (“AEROSIL 300”, Nippon Aerosil Co., Ltd., average particle diameter 7 nm) was added in advance. A composite graphite material was produced in the same manner as in Example 1 except that the volatile content of the precursor was changed. In the crushing step after firing, the load on the pulverizer was reduced, and crushing was easy. Various evaluations were performed on the obtained composite graphite material, and the results of crystallinity and battery characteristics are shown in Table 1.
[0126]
As shown in Table 1, the evaluation batteries using the composite graphite materials of Examples 2 to 5 show a high discharge capacity close to the theoretical capacity (372 mAh / g) of graphite, and have a high initial charge / discharge efficiency ( That is, it has a small irreversible capacity). In particular, the initial charge and discharge efficiencies of Examples 3 to 5 in which vapor-phase anhydrous silica fine powder is added to the graphite precursor are high. It is considered that the fused graphite precursor can be easily crushed and peeling of the graphite precursor film is suppressed. Furthermore, it has excellent rapid discharge efficiency and cycle characteristics. In particular, even when the electrode density is set high, it has excellent rapid discharge efficiency and cycle characteristics.
[0127]
(Comparative Example 1)
In Example 1, natural graphite was not used, and A graphite material was produced in the same manner as in Example 1 except that the mechanochemical treatment was not performed.
The graphitized material after graphitization was fused, and the pulverized shape could not be maintained. Therefore, the fused graphite material was again pulverized in the same manner to adjust the average particle diameter to 19 μm, and an evaluation battery was produced using the crushed graphite material. Table 1 shows the results of evaluating the degree of graphitization and battery characteristics.
[0128]
As shown in Table 1, in Comparative Example 1, which is an example of a graphite material manufactured without mechanochemical treatment, the initial charge / discharge efficiency is remarkably small (the irreversible capacity is remarkably large). In addition, compared with the comparative example 1, Example 1 has a large R value, and it turns out that the surface of a graphite material is selectively low-crystallized.
[0129]
(Comparative Example 2)
A graphite material was produced in the same manner as in Example 1 except that the same graphite precursor pulverized product as in Example 1 was not subjected to mechanochemical treatment, and an evaluation battery was produced.
The graphitized material after graphitization was slightly fused, and the pulverized shape could not be maintained. Therefore, the fused graphite material was again pulverized in the same manner to adjust to an average particle diameter of 19 μm, and an evaluation battery was produced using it. Table 1 shows the results of evaluating the degree of graphitization and battery characteristics.
[0130]
As shown in Table 1, in Comparative Example 2 where the mechanochemical treatment, which is a feature of the present invention, is not performed, the graphite surface is not low crystallized and the initial charge / discharge efficiency is extremely small (the irreversible capacity is remarkably large) .
[0131]
(Comparative Example 3)
In Example 1, the graphite precursor subjected to the mechanochemical treatment was heated not at 3000 ° C. but at 1300 ° C. for 5 hours to produce a non-graphitic material in which natural graphite was included in the non-graphite. The obtained material was not fused, and the pulverized shape was maintained. Using this, an evaluation battery was produced in the same manner as in Example 1. Table 1 shows the results of evaluating the degree of graphitization and battery characteristics.
[0132]
As shown in Table 1, in the case of Comparative Example 3 where no graphitization treatment is performed, the crystallinity of the material is low and the discharge capacity is remarkably low.
[0133]
(Comparative Example 4)
Natural graphite (Madagascar, average particle size 10 μm, average thickness 2 μm) substantially free of volatiles was mechanochemically treated in the same manner as in Example 1. The graphite after the mechanochemical treatment was not fused or deformed, and the particle shape was maintained. The average particle diameter was 9 μm, and the average thickness was 2 μm. Next, using this natural graphite, an evaluation battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. Table 1 shows the degree of graphitization and battery characteristics.
As shown in Table 1, in the case of Comparative Example 4 having no graphite coating material, the initial charge / discharge efficiency is small (the irreversible capacity is large) even when the mechanochemical treatment is performed. Also, rapid discharge efficiency and cycle characteristics are inferior. When the electrode density is increased, the graphite particles are oriented, and these characteristics are further reduced.
[0134]
(Comparative Example 5)
A battery for evaluation was produced in the same manner as in Example 1 using natural graphite substantially free from volatile matter (produced by Madagascar, average particle diameter 10 μm, average thickness 2 μm), and battery characteristics were evaluated. Table 1 shows the degree of graphitization and battery characteristics.
As shown in Table 1, in the case of Comparative Example 5 using natural graphite alone, although the discharge capacity is high, the initial charge / discharge efficiency, the rapid discharge efficiency, and the cycle characteristics are low. When the electrode density is increased, the deterioration of these characteristics is remarkable.
[0135]
(Comparative Example 6)
A graphite material was produced in the same manner as in Example 2 except that the same pulverized graphite precursor as in Example 2 was not subjected to mechanochemical treatment. Table 1 shows the results of evaluating the degree of graphitization and battery characteristics.
As shown in Table 1, in Comparative Example 6, which is an example of a graphite material manufactured without mechanochemical treatment, the initial charge / discharge efficiency is small (the irreversible capacity is large). In addition, Example 2 has a larger R value than Comparative Example 6, and it can be seen that the surface of the graphite material is selectively low crystallized.
[0136]
[Table 1]
Figure 0004666876
[0137]
[Table 2]
Figure 0004666876
[0138]
【The invention's effect】
When the composite graphite material of the present invention is used as a negative electrode material for a lithium ion secondary battery, a high discharge capacity and a high initial charge / discharge efficiency (small irreversible capacity) can be obtained.
Further, according to the method of the present invention, the composite graphite material can be produced with high productivity while suppressing fusion during graphitization.
Furthermore, the negative electrode material for a lithium ion secondary battery using the composite graphite material of the present invention and the lithium ion secondary battery can reduce the irreversible capacity while maintaining a high discharge capacity. Charge / discharge efficiency can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating the structure of an evaluation battery used in Examples and Comparative Examples of the present invention.
FIG. 2 (a) is a diagram for explaining an operation mechanism of a mechanochemical processing apparatus used in the present invention, and FIG. 2 (b) is a schematic diagram showing a configuration of the apparatus.
FIG. 3 is a schematic view of another mechanochemical processing apparatus used in the present invention.
4 is a scanning electron micrograph of the composite graphite material produced in Example 2. FIG.
[Explanation of symbols]
1 exterior cup
2 Working electrode
3 Exterior can
4 counter electrode
5 Separator
6 Insulation gasket
7a, 7b Current collector
11 Rotating drum
12 Internal members (inner pieces)
13 Graphite precursor
14 Circulation mechanism
15 Discharge mechanism
21 Fixed drum
22 Rotor
23 Graphite precursor
24 Circulation mechanism
25 Discharge mechanism
26 blade
27 Stator
28 jacket

Claims (7)

黒鉛質芯材(A)と、該黒鉛質芯材(A)を被包する黒鉛質被覆材(B)とからなる複層粒子および/または該複層粒子が集合して形成される複合粒子からなり、該複層粒子および該複合粒子は外側表面に黒鉛質表層(C)を有し、(A)>(B)>(C)の順に結晶性が低い複合黒鉛質材料であって、
複合黒鉛質材料の炭素網面層の面間隔(d002)が0.3365nm以下、結晶子のC軸方向の大きさ(Lc)が40nm以上であり、ラマンスペクトルの1360cm-1のピーク強度(I1360)と1580cm-1のピーク強度(I1580)の強度比(I1360/I1580)が0.05以上0.30未満であることを特徴とするリチウム二次電池負極用の複合黒鉛質材料。
Multilayer particles comprising a graphite core material (A) and a graphite coating material (B) encapsulating the graphite core material (A) and / or composite particles formed by aggregation of the multilayer particles from it, said plurality layer particles and the composite particles have a graphite surface layer (C) on the outer surface, a (a)>(B)> composite graphite material crystallinity have low in the order of (C) ,
The interplanar spacing (d 002 ) of the carbon network layer of the composite graphite material is 0.3365 nm or less, the C-axis size (Lc) of the crystallite is 40 nm or more, and the peak intensity of 1360 cm −1 of the Raman spectrum. A composite graphite for a negative electrode of a lithium secondary battery, wherein an intensity ratio (I 1360 / I 1580 ) of (I 1360 ) to a peak intensity (I 1580 ) of 1580 cm −1 is 0.05 or more and less than 0.30 Quality material.
前記黒鉛質芯材(A)が、鱗片状黒鉛からなる球状または楕円体状の造粒物である請求項1に記載の複合黒鉛質材料。  The composite graphite material according to claim 1, wherein the graphite core material (A) is a spherical or ellipsoidal granulated product made of scale-like graphite. 前記黒鉛質芯材(A)が、炭素網面層の面間隔(d002)が0.3358nm以下のものである請求項1または2に記載の複合黒鉛質材料。3. The composite graphite material according to claim 1, wherein the graphite core material (A) has a carbon network layer surface spacing (d 002 ) of 0.3358 nm or less. 請求項1〜3のいずれかに記載の複合黒鉛質材料の製造方法であって、黒鉛前駆体の原料と、該黒鉛前駆体よりも結晶性の高い黒鉛質芯材を混合し、加熱して揮発分量を2.0質量%以上、20質量%未満に調整し、メカノケミカル処理を施した後、黒鉛化する工程を有する、複合黒鉛質材料の製造方法。  It is a manufacturing method of the composite graphite material in any one of Claims 1-3, Comprising: The raw material of a graphite precursor and the graphite core material whose crystallinity is higher than this graphite precursor are mixed, and it heats. A method for producing a composite graphitic material, comprising a step of graphitizing after adjusting a volatile content to 2.0 mass% or more and less than 20 mass%, performing a mechanochemical treatment. 前記黒鉛前駆体の原料が石油系および/または石炭系重質油であり、該黒鉛前駆体の原料に、平均直径が1μm以下の親水性微粒子を添加することを特徴とする請求項4に記載の複合黒鉛質材料の製造方法。 A raw petroleum and / or coal-based heavy oil of the graphite precursor, according to claim 4, the raw material of the graphite precursor, the average diameter is characterized by adding the following hydrophilic fine particles 1μm A method for producing a composite graphite material. 請求項1〜3のいずれかに記載の複合黒鉛質材料からなるリチウムイオン二次電池用負極材料。  The negative electrode material for lithium ion secondary batteries which consists of the composite graphite material in any one of Claims 1-3. 請求項6に記載のリチウムイオン二次電池用負極材料を負極材料として用いたリチウムイオン二次電池。  A lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery according to claim 6 as a negative electrode material.
JP2002221238A 2001-09-26 2002-07-30 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP4666876B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002221238A JP4666876B2 (en) 2001-09-26 2002-07-30 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
PCT/JP2003/003215 WO2004011370A1 (en) 2002-07-30 2003-03-18 Composite graphite material and its production method, negative plate material using same, negative plate, and lithium ion secondary cell
TW092106053A TW587350B (en) 2002-07-30 2003-03-19 Composite graphite material and production method thereof, negative electrode material using the material, negative electrode and lithium ion rechargeable battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-293912 2001-09-26
JP2001293912 2001-09-26
JP2002221238A JP4666876B2 (en) 2001-09-26 2002-07-30 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003173778A JP2003173778A (en) 2003-06-20
JP4666876B2 true JP4666876B2 (en) 2011-04-06

Family

ID=31184849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221238A Expired - Fee Related JP4666876B2 (en) 2001-09-26 2002-07-30 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP4666876B2 (en)
TW (1) TW587350B (en)
WO (1) WO2004011370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265040A1 (en) 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364651A1 (en) 2001-12-07 2003-06-07 Hydro-Quebec Carbon-carbon composite as negative electrode for li-ion batteries
JP3791797B2 (en) 2003-08-21 2006-06-28 ソニー株式会社 battery
US20070092428A1 (en) * 2003-10-31 2007-04-26 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
KR20080040049A (en) 2004-01-05 2008-05-07 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium battery and lithium battery
JP5081375B2 (en) * 2004-02-12 2012-11-28 三菱化学株式会社 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4624722B2 (en) * 2004-05-21 2011-02-02 日立化成工業株式会社 Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery using the same, and lithium secondary battery
EP1775785B1 (en) * 2004-06-30 2013-08-21 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP4684581B2 (en) * 2004-07-06 2011-05-18 日本コークス工業株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR100738054B1 (en) * 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
TW200746523A (en) * 2006-01-30 2007-12-16 Tokai Carbon Kk Negative electrode material for lithium ion secondary battery and process for producing the same
JP2009187924A (en) * 2008-01-11 2009-08-20 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
JP5150010B1 (en) * 2010-07-02 2013-02-20 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Method for producing lithium ion battery negative electrode material
KR102020753B1 (en) * 2010-10-29 2019-09-11 미쯔비시 케미컬 주식회사 Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
CN102655128A (en) * 2011-03-03 2012-09-05 硕恩科技股份有限公司 Porous graphite radiator and preparation method of porous graphite
CN102299307B (en) * 2011-09-03 2014-01-01 深圳市贝特瑞新能源材料股份有限公司 Electrode anode material and preparation method thereof
JP6087648B2 (en) * 2012-05-14 2017-03-01 Jfeケミカル株式会社 Composite graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101327511B1 (en) 2012-05-31 2013-11-08 경희대학교 산학협력단 Electrode using natural substance including calcium carbonate, and method for producing the same
JP6097641B2 (en) * 2012-06-13 2017-03-15 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6073648B2 (en) * 2012-11-07 2017-02-01 イビデン株式会社 Graphite material manufacturing method and carbon-based raw material crusher
CN103066291A (en) * 2012-12-27 2013-04-24 中国平煤神马集团开封炭素有限公司 Method for preparing lithium battery anode material by internal thermal lengthwise graphitization furnace
CN104103807A (en) * 2013-04-12 2014-10-15 华为技术有限公司 Silicon-carbon composite anode material, preparation method thereof and lithium ion battery
CN103311514B (en) * 2013-06-05 2015-12-09 深圳市斯诺实业发展有限公司 A kind of preparation method of modification lithium-ion battery graphite cathode material
JP6596959B2 (en) * 2015-06-17 2019-10-30 三菱ケミカル株式会社 Method for producing composite particles for non-aqueous secondary battery
JP6240586B2 (en) 2014-10-28 2017-11-29 Jfeケミカル株式会社 Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
CN104779373A (en) * 2015-04-24 2015-07-15 深圳市斯诺实业发展有限公司 Method for using graphite fine powder as negative pole material through doping treatment
JP6775974B2 (en) * 2016-03-17 2020-10-28 株式会社東芝 Electrode active material for non-aqueous electrolyte batteries, electrodes for non-aqueous electrolyte batteries, non-aqueous electrolyte batteries and battery packs
CN108630940B (en) * 2017-03-24 2021-07-13 宁波杉杉新材料科技有限公司 Preparation method of high-capacity natural graphite negative electrode material
CN107706387B (en) * 2017-10-09 2021-11-05 贝特瑞新材料集团股份有限公司 Composite negative electrode material, preparation method thereof and lithium ion battery
KR102519441B1 (en) * 2017-12-22 2023-04-07 삼성에스디아이 주식회사 Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode
CN112996749A (en) * 2019-09-17 2021-06-18 杰富意化学株式会社 Method for producing graphite material
WO2021166359A1 (en) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
CN112670464B (en) * 2020-04-21 2022-02-18 宁波杉杉新材料科技有限公司 Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material
CN112201377B (en) * 2020-09-29 2022-07-19 内蒙古金彩矿业有限公司 Shaping system and shaping method of natural graphite powder for high-temperature gas-cooled reactor nuclear fuel element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264614A (en) * 1999-03-23 2000-09-26 Sharp Corp Production of graphite particle coated with carbon and non-aqueous secondary battery
JP2000340232A (en) * 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp Carbon material for electrode and nonaqueous secondary battery using the same
JP2001185147A (en) * 1999-12-27 2001-07-06 Asahi Kasei Corp Secondary battery using nonaqueous electrolytic solution
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002087807A (en) * 2000-09-11 2002-03-27 Hitachi Maxell Ltd Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2002141062A (en) * 2000-11-02 2002-05-17 Mitsui Mining Co Ltd Graphite/carbon complex material for lithium secondary battery anode, its manufacturing method and lithium secondary battery
JP2002175807A (en) * 2000-12-08 2002-06-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
WO2003034518A1 (en) * 2001-10-10 2003-04-24 Ngk Insulators, Ltd. Lithium secondary cell and method for manufacturing negative plate active material used therefor
JP2003151533A (en) * 2001-11-08 2003-05-23 Denso Corp Electrode, its manufacturing method and battery
JP2003168429A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113057B2 (en) * 1992-04-30 2000-11-27 三菱化学株式会社 Manufacturing method of electrode material
JP2976299B2 (en) * 1995-11-14 1999-11-10 大阪瓦斯株式会社 Anode material for lithium secondary battery
CA2238286C (en) * 1995-11-14 2004-02-17 Osaka Gas Company Limited Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3873325B2 (en) * 1996-07-25 2007-01-24 大阪瓦斯株式会社 Carbon material for lithium secondary battery negative electrode and method for producing the same
JP3541913B2 (en) * 1996-11-27 2004-07-14 株式会社デンソー Non-aqueous electrolyte secondary battery
JP3054379B2 (en) * 1997-04-18 2000-06-19 日本カーボン株式会社 Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
JP2002003708A (en) * 2000-06-26 2002-01-09 Mitsubishi Chemicals Corp Polyester resin material for molding and injection-blow- molded product comprising the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340232A (en) * 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp Carbon material for electrode and nonaqueous secondary battery using the same
JP2000264614A (en) * 1999-03-23 2000-09-26 Sharp Corp Production of graphite particle coated with carbon and non-aqueous secondary battery
JP2001185147A (en) * 1999-12-27 2001-07-06 Asahi Kasei Corp Secondary battery using nonaqueous electrolytic solution
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002087807A (en) * 2000-09-11 2002-03-27 Hitachi Maxell Ltd Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2002141062A (en) * 2000-11-02 2002-05-17 Mitsui Mining Co Ltd Graphite/carbon complex material for lithium secondary battery anode, its manufacturing method and lithium secondary battery
JP2002175807A (en) * 2000-12-08 2002-06-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
WO2003034518A1 (en) * 2001-10-10 2003-04-24 Ngk Insulators, Ltd. Lithium secondary cell and method for manufacturing negative plate active material used therefor
JP2003151533A (en) * 2001-11-08 2003-05-23 Denso Corp Electrode, its manufacturing method and battery
JP2003168429A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265040A1 (en) 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
TW587350B (en) 2004-05-11
JP2003173778A (en) 2003-06-20
WO2004011370A1 (en) 2004-02-05
TW200402162A (en) 2004-02-01

Similar Documents

Publication Publication Date Title
JP4666876B2 (en) Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR100575971B1 (en) Mesophase spherular graphitized substance, anode material, anode, and lithium ion secondary battery using same
JP4104561B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP4354723B2 (en) Method for producing graphite particles
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4495531B2 (en) Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4421750B2 (en) Carbon material manufacturing method and lithium ion secondary battery
JP4335596B2 (en) Method for producing polycrystalline mesocarbon microsphere graphitized product
JP2002110158A (en) Carbon material for lithium ion secondary battery negative pole and ite manufacturing method
JP2003119013A (en) Method of producing granular bulk mesophase and granular graphite particle, and lithium ion secondary battery
JP2019160791A (en) Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees