JP2002222650A - Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery - Google Patents

Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery

Info

Publication number
JP2002222650A
JP2002222650A JP2001017141A JP2001017141A JP2002222650A JP 2002222650 A JP2002222650 A JP 2002222650A JP 2001017141 A JP2001017141 A JP 2001017141A JP 2001017141 A JP2001017141 A JP 2001017141A JP 2002222650 A JP2002222650 A JP 2002222650A
Authority
JP
Japan
Prior art keywords
secondary battery
graphite particles
negative electrode
particles
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001017141A
Other languages
Japanese (ja)
Inventor
Koichi Takei
康一 武井
Hidetoshi Honbou
英利 本棒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001017141A priority Critical patent/JP2002222650A/en
Priority to PCT/JP2002/000564 priority patent/WO2002059040A1/en
Priority to CA002435980A priority patent/CA2435980C/en
Priority to CNB028041658A priority patent/CN1315722C/en
Priority to EP02716390.6A priority patent/EP1361194B1/en
Priority to US10/470,076 priority patent/US7829222B2/en
Priority to JP2002559347A priority patent/JP4448279B2/en
Priority to KR1020037009738A priority patent/KR100597065B1/en
Publication of JP2002222650A publication Critical patent/JP2002222650A/en
Priority to US12/938,673 priority patent/US8211571B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode of a non-aqueous electrolytic solution secondary battery and its manufacturing process, the negative electrode of the non-aqueous electrolysis liquid secondary battery which uses the black lead nature particles, and the non-aqueous electrolytic solution secondary battery, which excel in electrode-applying workability and electrode adhesion property, have a rapid electricity-charging/discharging characteristic, have satisfactory cycle characteristics, and have small irreversible capacity. SOLUTION: The manufacturing process of the graphite particles for the negative electrodes of the non-aqueous electrolytic solution secondary batteries, the graphite particles for the negative electrodes of the non-aqueous electrolytic solution secondary batteries manufactured with this manufacturing process, the graphite particles manufactured with the manufacturing process or the negative electrodes of the non-aqueous electrolytic solution secondary batteries using the graphite particles, and the negative electrodes of the non-aqueous electrolysis liquid secondary batteries and the non-aqueous electrolytic solution secondary-batteries having the negative electrodes, are characterized by making the graphite particles pass through a gap between two boards, which are located having the gap and one side or both sides of the board rotate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池負極用黒鉛質粒子及びその製造法、得られる黒鉛質粒
子を用いた非水電解液二次電池及びその負極に関する。
更に詳しくは、ポータブル電子機器、電気自動車、電力
貯蔵用等に用いるのに好適な、急速充放電特性、サイク
ル特性に優れた非水電解液二次電池とそれを得るための
負極、負極用黒鉛質粒子、その製造法に関する。
The present invention relates to graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery, a method for producing the same, a non-aqueous electrolyte secondary battery using the obtained graphite particles, and a negative electrode thereof.
More specifically, a non-aqueous electrolyte secondary battery excellent in rapid charge / discharge characteristics and cycle characteristics suitable for use in portable electronic devices, electric vehicles, power storage, and the like, and a negative electrode and graphite for the negative electrode for obtaining the same. The present invention relates to porous particles and a method for producing the same.

【0002】[0002]

【従来の技術】従来黒鉛質粒子は、例えば天然黒鉛質粒
子、コークスを黒鉛化した人造黒鉛質粒子、有機系高分
子材料、ピッチ等を黒鉛化した人造黒鉛質粒子、これら
を粉砕した黒鉛質粒子などがある。これらの粒子は、有
機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、
この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥さ
せてリチウムイオン二次電池用負極として使用されてい
る。例えば、特公昭62−23433号公報に示される
ように、負極に黒鉛を使用することでリチウムのデンド
ライトによる内部短絡の問題を解消し、サイクル特性の
改良を図っている。
2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by grinding these materials. And particles. These particles are mixed with an organic binder and an organic solvent to form a graphite paste,
This graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium ion secondary battery. For example, as shown in JP-B-62-23433, the problem of internal short circuit due to lithium dendrite is solved by using graphite for the negative electrode, and the cycle characteristics are improved.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛質粒子及びコークスを黒鉛化した人造黒鉛質粒子
は、c軸方向の結晶の層間の結合力が結晶の面方向の結
合に比べて弱いため、粉砕により黒鉛層間の結合が切
れ、アスペクト比の大きい、いわゆる鱗状の黒鉛質粒子
となる。この鱗状の黒鉛質粒子は、アスペクト比が大き
いため、バインダと混練して集電体に塗布して電極を作
製した時に鱗状の黒鉛質粒子が集電体の面方向に配向
し、その結果、黒鉛質粒子へのリチウムの吸蔵・放出の
繰り返しによって発生するc軸方向の歪みにより電極内
部の破壊が生じ、サイクル特性が低下する問題があるば
かりでなく、急速充放電特性が悪くなる傾向がある。
However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke have a weaker bonding force between layers in the c-axis direction than in the plane direction of the crystals. The pulverization breaks the bond between the graphite layers, resulting in so-called scale-like graphite particles having a large aspect ratio. Since the scale-like graphite particles have a large aspect ratio, the scale-like graphite particles are oriented in the surface direction of the current collector when the electrode is produced by kneading with a binder and applying the current collector, and as a result, Distortion in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the graphite particles causes not only the problem of destruction of the inside of the electrode and the deterioration of cycle characteristics, but also the tendency of rapid charge and discharge characteristics to deteriorate. .

【0004】さらに、アスペクト比の大きな鱗状の黒鉛
質粒子は比表面積が大きいため、集電体との密着性が悪
く、多くのバインダが必要となる問題点がある。集電体
との密着性が悪いと集電効果が低下し、放電容量、急速
充放電特性、サイクル特性等が低下する問題がある。ま
た、比表面積が大きな鱗状黒鉛質粒子は、これを用いた
リチウムイオン二次電池の第一回サイクル目の不可逆容
量が大きいという問題がある。さらに、比表面積の大き
な鱗状黒鉛質粒子は、リチウムを吸蔵した状態での熱安
定性が低く、リチウムイオン二次電池用負極材料として
用いた場合、安全性に問題がある。そこで、急速充放電
特性、サイクル特性、第一回サイクル目の不可逆容量を
改善できる黒鉛質粒子が要求されている。
Further, scale-like graphitic particles having a large aspect ratio have a large specific surface area, so that they have poor adhesion to a current collector and require a large amount of binder. If the adhesion to the current collector is poor, there is a problem that the current collecting effect is reduced and the discharge capacity, rapid charge / discharge characteristics, cycle characteristics and the like are reduced. In addition, scale-like graphite particles having a large specific surface area have a problem that the irreversible capacity in the first cycle of a lithium ion secondary battery using the particles is large. Furthermore, the scale-like graphite particles having a large specific surface area have low thermal stability in a state where lithium is stored, and have a problem in safety when used as a negative electrode material for a lithium ion secondary battery. Therefore, there is a need for graphitic particles capable of improving rapid charge / discharge characteristics, cycle characteristics, and irreversible capacity in the first cycle.

【0005】上記の要求を解決するものとして、偏平状
の粒子を複数配向面が非平行となるように集合又は結合
させてなる黒鉛質粒子が提案されている(特開平10-158
005号公報等)。このような黒鉛質粒子は、急速充放電
特性、サイクル特性、第一回サイクル目の不可逆容量に
優れ、リチウムイオン二次電池に好適に使用できるもの
である。しかしながら、当黒鉛質粒子は、その大きな細
孔容積のため電極塗工性、電極密着性等で改善の余地が
あり、また不可逆容量の一層の低減、放電容量の向上が
求められている。
As a solution to the above-mentioned demand, there has been proposed a graphitic particle formed by assembling or bonding flat particles such that a plurality of orientation planes are non-parallel (Japanese Unexamined Patent Publication No. 10-158).
005, etc.). Such graphitic particles are excellent in rapid charge / discharge characteristics, cycle characteristics, and irreversible capacity in the first cycle, and can be suitably used for a lithium ion secondary battery. However, the graphite particles have room for improvement in electrode coating properties and electrode adhesion due to their large pore volume, and further reduction of irreversible capacity and improvement of discharge capacity are required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電極塗工性
及び電極密着性に優れ、急速充放電特性、サイクル特性
が良好で、不可逆容量の小さい、非水電解液二次電池負
極用黒鉛質粒子及びその製造法、この黒鉛質粒子を使用
した非水電解液二次電池負極並びに非水電解液二次電池
を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a graphite for a negative electrode of a non-aqueous electrolyte secondary battery, which is excellent in electrode coating properties and electrode adhesion, has good rapid charge / discharge characteristics and cycle characteristics, and has a small irreversible capacity. And a method for producing the same, a negative electrode of a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the graphite particles.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、次の各項
に記載されるものに関する。 (1) 間隙をもって位置し、一方又は双方が回転する
2枚の板の、前記間隙に黒鉛質粒子を通過させることを
特徴とする非水電解液二次電池負極用黒鉛質粒子の製造
法。 (2) 2枚の板が、互いに逆方向に回転するものであ
る、前記(1)記載の非水電解液二次電池負極用黒鉛質
粒子の製造法。 (3) 2枚の板の間隙の大きさが、通過させる黒鉛質
粒子の平均粒子径の0.5〜20倍である前記(1)又
は(2)記載の非水電解液二次電池負極用黒鉛質粒子の
製造法。
That is, the present invention relates to the invention described in the following items. (1) A method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery, wherein the graphite particles are passed through the gap between two plates, one or both of which rotate with a gap. (2) The method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to the above (1), wherein the two plates rotate in mutually opposite directions. (3) The nonaqueous electrolyte secondary battery negative electrode according to the above (1) or (2), wherein the size of the gap between the two plates is 0.5 to 20 times the average particle size of the graphite particles to be passed. For producing graphite particles for use.

【0008】(4) 通過させる黒鉛質粒子が、塊状の
人造黒鉛である前記(1)、(2)又は(3)記載の非
水電解液二次電池負極用黒鉛質粒子の製造法。 (5) 通過させる黒鉛質粒子が、複数の扁平状の黒鉛
質粒子が互いに非平行に集合或いは結合した構造を有
し、アスペクト比が5以下であり、粒子内に空隙を有す
るものである前記(1)、(2)、(3)又は(4)記
載の非水電解液二次電池負極用黒鉛質粒子の製造法。
(4) The method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to (1), (2) or (3), wherein the graphite particles to be passed are massive artificial graphite. (5) The graphitic particles to be passed have a structure in which a plurality of flat graphite particles are gathered or bonded to each other in a non-parallel manner, have an aspect ratio of 5 or less, and have voids in the particles. (1) The method for producing graphite particles for a negative electrode of a nonaqueous electrolyte secondary battery according to (1), (2), (3) or (4).

【0009】(6) 前記(1)、(2)、(3)、
(4)又は(5)に記載の製造法により製造される非水
電解液二次電池負極用黒鉛質粒子。 (7) 平均粒子径が10〜50μm、真密度が2.2
g/cm3以上、黒鉛の(002)面の面間隔d002が
0.337nm未満、かさ密度が0.8g/cm3以上、比表
面積が3〜6m2/g、水銀圧入法で測定される細孔容積が
0.1〜0.5g/cm 3、ラマンスペクトルの1580cm
-1付近のピーク強度(I1580)に対する1340cm
-1付近のピ−ク強度(I1340)の比(I1340/
I1580)が0.1〜0.4、XPSで測定される表
面酸素濃度が1.0〜3.0atm%である前記(6)記
載の非水電解液二次電池負極用黒鉛質粒子。
(6) The above (1), (2), (3),
Non-water produced by the production method according to (4) or (5)
Graphite particles for negative electrode of electrolyte secondary battery. (7) The average particle diameter is 10 to 50 μm, and the true density is 2.2.
g / cmThreeAs described above, the surface distance d002 of the (002) plane of graphite is
Less than 0.337nm, bulk density 0.8g / cmThreeAbove, ratio table
The area is 3-6mTwo/ g, pore volume measured by mercury intrusion method
0.1-0.5g / cm Three, 1580 cm of Raman spectrum
-11340cm for the peak intensity near (I1580)
-1The ratio of peak intensity (I1340) in the vicinity (I1340 /
I1580) is 0.1 to 0.4, measured by XPS
The above (6), wherein the surface oxygen concentration is 1.0 to 3.0 atm%.
Graphite particles for negative electrode of non-aqueous electrolyte secondary battery described above.

【0010】(8) 前記(1)、(2)、(3)、
(4)若しくは(5)記載の製造法で製造された黒鉛質
粒子又は前記(6)若しくは(7)記載の黒鉛質粒子を
用いてなる非水電解液二次電池負極。 (9) 前記(8)記載の負極を有してなる非水電解液
二次電池。
(8) The above (1), (2), (3),
(4) A non-aqueous electrolyte secondary battery negative electrode comprising the graphite particles produced by the production method according to (5) or the graphite particles according to (6) or (7). (9) A nonaqueous electrolyte secondary battery comprising the negative electrode according to (8).

【0011】[0011]

【発明の実施の形態】本発明の非水電解液二次電池負極
用黒鉛質粒子は、間隙をもって位置し、一方又は双方が
回転する2枚の板の、前記間隙に黒鉛質粒子を通過させ
ることによって製造される。2枚の板中、一方のみが回
転し、他方は固定されていても良い。なかでも、2枚の
板が、互いに逆方向に回転するの間隙を通過させること
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to the present invention are positioned with a gap, and allow the graphite particles to pass through the gap between two plates, one or both of which rotate. Manufactured by Of the two plates, only one may rotate and the other may be fixed. In particular, it is preferable that the two plates pass through a gap rotating in opposite directions.

【0012】本発明の製造法においては、このような構
造を有する装置を使用すればよく、2枚の板の材質は特
に制限されないが、アルミナ、炭化珪素、窒化珪素等の
セラニックスが処理した黒鉛質粒子への不純物汚染が少
ないという点で好ましい。前記装置としては、例えば、
2枚の板として、間隔を自由に調整できる上下2枚のグ
ラインダーによって構成された石臼形式の摩砕装置であ
って、試料が、例えば遠心力によって、上下グラインダ
ーの間隙に送り込まれ、そこで生じる圧縮、剪断、転が
り摩擦などにより摩砕処理される構造を有するものを使
用することが好ましい。
In the manufacturing method of the present invention, an apparatus having such a structure may be used, and the material of the two plates is not particularly limited. This is preferable in that impurity contamination to the graphite particles is small. As the device, for example,
A milling device of the millstone type comprising two upper and lower grinders whose spacing can be freely adjusted as two plates, in which a sample is fed into a gap between the upper and lower grinders by, for example, centrifugal force, and the compression generated there. It is preferable to use one having a structure that is ground by shearing, rolling friction, or the like.

【0013】このような構造を有する装置の市販品とし
ては、(株)グローエンジニアリング製石臼式粉砕機(グ
ローミル)、中央化工機商事(株)製プレマックス、増幸
産業(株)製スーパーマスコロイダー、セレンディピター
等が挙げられる。
Commercially available devices having such a structure include a stone mill type grinder (Glow Mill) manufactured by Glow Engineering Co., Ltd., Premax manufactured by Chuo Kakoki Shoji Co., Ltd., and a supermass colloider manufactured by Masuyuki Sangyo Co., Ltd. , Serendipita and the like.

【0014】本発明の製造法において、2枚の板の間隙
は処理する黒鉛質粒子の平均粒子径の0.5〜20倍の
範囲とすることが好ましい。なお、ここで平均粒子径は
レーザー光散乱法を利用した粒子径分布測定装置(例え
ば、(株)島津製作所製SALD−3000)により測定
することができる。
In the production method of the present invention, the gap between the two plates is preferably in the range of 0.5 to 20 times the average particle size of the graphite particles to be treated. Here, the average particle size can be measured by a particle size distribution measuring device using a laser light scattering method (for example, SALD-3000 manufactured by Shimadzu Corporation).

【0015】この板間の間隙の大きさは、上下の板(例
えばグラインダー)の間のクリアランスとして制御さ
れ、上下の板が軽く接触する点を0として任意に設定す
ることができる。板間の間隙の大きさが平均粒子径の
0.5倍未満である場合、粒子の微細化が生じ、不可逆
容量が増加する傾向がある。一方、板間のギャップが平
均粒子径の20倍を超えると、処理効果が低下する傾向
がある。
The size of the gap between the plates is controlled as the clearance between the upper and lower plates (for example, a grinder), and can be arbitrarily set by setting the point at which the upper and lower plates lightly contact to zero. If the size of the gap between the plates is less than 0.5 times the average particle size, the particles will be refined and the irreversible capacity will tend to increase. On the other hand, when the gap between the plates exceeds 20 times the average particle size, the processing effect tends to decrease.

【0016】間隙をもって位置し、一方又は双方が回転
する2枚の板の、前記間隙に黒鉛質粒子を通過させる際
の、板の回転数は回転する板間の間隙、板の大きさ(直
径)と共に黒鉛質粒子の処理速度に影響を及ぼし、回転
数が増加すると処理速度が増加する。本発明では、この
回転数に関しては特に制限しないが、板形状を円盤とし
た場合の外周線速度が30m/sec〜120m/secとするこ
とが好ましい。外周線速度が低い場合には処理速度が低
下し、処理効率が低下する傾向がある。
The number of rotations of the two plates, which are positioned with a gap and rotate one or both of them, when passing graphitic particles through the gap is determined by the gap between the rotating plates, the size of the plate (diameter ) Together with the processing speed of the graphite particles, and the processing speed increases as the number of rotations increases. In the present invention, the number of rotations is not particularly limited, but it is preferable that the outer peripheral linear velocity when the plate shape is a disk is 30 m / sec to 120 m / sec. When the peripheral linear velocity is low, the processing speed tends to decrease, and the processing efficiency tends to decrease.

【0017】間隙をもって位置し、一方又は双方が回転
する2枚の板の間隙に黒鉛質粒子を通過させる本発明の
処理は、1回又は複数回行うことができる。処理を二回
以上行うことにより、一回のみの場合と比較してより高
いかさ密度が得られる。この場合、処理条件(間隙をも
って位置し、一方又は双方が回転する2枚の板の間隙の
大きさ、板の回転数、原料供給速度等)は、直前の処理
の条件と同じでも、異なっていてもよい。
The process of the present invention in which the graphite particles pass through the gap between two plates, one or both of which are positioned with a gap, can be performed once or multiple times. By performing the treatment twice or more, a higher bulk density can be obtained as compared with the case of only one treatment. In this case, the processing conditions (the size of the gap between two plates, one or both of which are positioned with a gap, the number of rotations of the plates, the material supply speed, etc.) are the same as or different from the conditions of the immediately preceding process. You may.

【0018】本発明の製造法は、乾式法及び湿式法いず
れの方法でも可能である。ここで乾式法とは、黒鉛質粒
子をそのまま一方又は双方が回転する2枚の板間の間隙
を通過させるものであり、一方、湿式法は適当な分散媒
中に分散させた黒鉛質粒子を処理するものである。湿式
法では処理後に分散媒黒鉛質粒子を分離する操作が必要
となる。分散媒としては水、アルコール等の有機溶剤を
用いることができる。より高いかさ密度が得られ、その
結果としてより良好な電極塗工性、電極密着性、不可逆
容量、放電容量が得られる、また分散媒への黒鉛質粒子
の分散工程、処理後の分散媒と黒鉛質粒子との分離工程
を含まないことから、製造コストが低くできるという点
より、乾式が好ましい。
The production method of the present invention can be either a dry method or a wet method. Here, the dry method is a method in which the graphite particles are passed through a gap between two plates, one or both of which rotate, while the wet method is a method in which the graphite particles dispersed in an appropriate dispersion medium are dispersed. To be processed. In the wet method, an operation for separating the dispersion medium graphite particles after the treatment is required. Organic solvents such as water and alcohol can be used as the dispersion medium. A higher bulk density is obtained, and as a result, better electrode coatability, electrode adhesion, irreversible capacity, and discharge capacity are obtained.In addition, the process of dispersing the graphitic particles in the dispersion medium, A dry process is preferred because it does not include a step of separating it from the graphitic particles, so that the production cost can be reduced.

【0019】本発明において、前記製造法を適用する材
料となる黒鉛質粒子としては、塊状の人造黒鉛であるこ
とが得られた黒鉛質粒子を用いた非水電解液二次電池の
特性(サイクル性、急速充放電特性等)を高めるという
点で好ましい。
In the present invention, the characteristics (cycle) of a non-aqueous electrolyte secondary battery using graphite particles obtained as a mass of artificial graphite as the graphite particles as a material to which the above-mentioned manufacturing method is applied. Properties, rapid charge / discharge characteristics, etc.).

【0020】また、複数の扁平状の黒鉛質粒子が互いに
非平行に集合或いは結合した構造を有し、アスペクト比
が5以下であり、粒子内に空隙を有する黒鉛質粒子であ
ることがより好ましい。このような黒鉛質粒子を処理す
ると、粒子内の扁平状黒鉛質粒子が非平行に集合或いは
結合した構造を維持したままで粒子内の空隙が減少する
ため、サイクル特性及び急族充放電特性が維持され、電
極塗工性及び電極密着性が向上し、かつ処理により表面
に非晶質炭素層が形成されるため不可逆容量が低下する
という効果が得られる。
It is more preferable that the graphite particles have a structure in which a plurality of flat graphite particles are gathered or bonded to each other in a non-parallel manner, have an aspect ratio of 5 or less, and have voids in the particles. . When such graphitic particles are treated, voids in the particles are reduced while maintaining a structure in which the flat graphitic particles in the particles are non-parallel aggregated or bonded, so that the cycle characteristics and the rapid charge / discharge characteristics are reduced. The effect is obtained that the electrode coatability and electrode adhesion are maintained, and an irreversible capacity is reduced because an amorphous carbon layer is formed on the surface by the treatment.

【0021】ここでアスペクト比が5以上の黒鉛質粒子
を用いた場合、本発明の処理で得られる黒鉛質粒子のア
スペクト比も大きくなり、その結果として非水電解液二
次電池のサイクル性、急速充放電特性が低下するため好
ましくない。アスペクト比は、黒鉛質粒子のSEM写真
より個々の粒子の長径、短径を測定し、その比から求め
ることができる。このようにして任意に100個の粒子
を選択して求めた比の平均値としてアスペクト比を決定
することができる。
Here, when graphite particles having an aspect ratio of 5 or more are used, the aspect ratio of the graphite particles obtained by the treatment of the present invention also increases, and as a result, the cycle characteristics of the nonaqueous electrolyte secondary battery, This is not preferable because the rapid charge / discharge characteristics deteriorate. The aspect ratio can be determined by measuring the major axis and minor axis of each particle from a SEM photograph of the graphite particles, and determining the ratio. In this way, the aspect ratio can be determined as an average value of the ratio obtained by arbitrarily selecting 100 particles.

【0022】上記の複数の扁平状の黒鉛質粒子が互いに
非平行に集合或いは結合した構造を有し、アスペクト比
が5以下であり、粒子内に空隙を有する黒鉛質粒子は、
例えば以下のようにして作製される。
The graphite particles having a structure in which the plurality of flat graphite particles are gathered or bonded to each other non-parallel to each other, have an aspect ratio of 5 or less, and have voids in the particles,
For example, it is produced as follows.

【0023】即ち、黒鉛化可能な骨材又は黒鉛と黒鉛化
可能なバインダに黒鉛化触媒を添加して混合し、焼成、
黒鉛化する。前記黒鉛化可能な骨材としては、フルード
コークス、ニードルコークス等の各種コークス類が使用
可能である。また、天然黒鉛や人造黒鉛などの既に黒鉛
化されている骨材を使用しても良い。黒鉛化可能なバイ
ンダとしては、石炭系、石油系、人造等の各種ピッチ、
タールが使用可能である。黒鉛化触媒としては、鉄、ニ
ッケル、チタン、ホウ素等、これらの炭化物、酸化物、
窒化物等が使用可能である。
That is, a graphitizing catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed and fired.
Graphitize. Various cokes such as fluid coke and needle coke can be used as the graphitizable aggregate. Also, an already graphitized aggregate such as natural graphite or artificial graphite may be used. Graphite binders include coal-based, petroleum-based, and artificial pitches,
Tar is available. As the graphitization catalyst, iron, nickel, titanium, boron, etc., their carbides, oxides,
Nitride or the like can be used.

【0024】黒鉛化触媒は、黒鉛化可能な骨材又は黒鉛
と黒鉛化可能なバインダの合計量100重量部に対して
1〜50重量部添加することが好ましい。1重量部未満
であると黒鉛質粒子の結晶の発達が悪くなり、充放電容
量が低下する傾向がある。一方、50重量部を超える、
均一に混合することが困難となり、作業性が低下する傾
向がある。
The graphitization catalyst is preferably added in an amount of 1 to 50 parts by weight based on 100 parts by weight of the total amount of the graphitizable aggregate or graphite and the graphitizable binder. If the amount is less than 1 part by weight, the development of crystals of the graphitic particles becomes worse, and the charge / discharge capacity tends to decrease. On the other hand, over 50 parts by weight,
It becomes difficult to mix uniformly, and the workability tends to decrease.

【0025】焼成は前記混合物が酸化し難い雰囲気で行
うことが好ましく、そのような雰囲気としては、例えば
窒素雰囲気中、アルゴンガス中、真空中で焼成する方法
が挙げられる。黒鉛化の温度は2000℃以上が好まし
く、2500℃以上であることがより好ましく、280
0℃以上であることがさらに好ましい。黒鉛化の温度が
2000℃未満では、黒鉛の結晶の発達が悪くなると共
に、黒鉛化触媒が作製した黒鉛質粒子に残存し易くな
り、いずれの場合も充放電容量が低下する傾向がある。
The firing is preferably performed in an atmosphere in which the mixture is hardly oxidized. Examples of such an atmosphere include a method of firing in a nitrogen atmosphere, an argon gas, or a vacuum. The temperature of graphitization is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and 280 ° C.
More preferably, it is 0 ° C. or higher. If the graphitization temperature is lower than 2,000 ° C., the development of graphite crystals becomes worse, and the graphitization catalyst tends to remain in the prepared graphitic particles. In either case, the charge / discharge capacity tends to decrease.

【0026】次に、得られた黒鉛化物を粉砕する。黒鉛
化物の粉砕方法については特に制限を設けないが、ジェ
ットミル、振動ミル、ピンミル、ハンマーミル等の既知
の方法を用いることができる。粉砕後の平均粒子径(メ
ディアン径)は100μm以下が好ましく、10〜50
μmがさらに好ましい。ついで、これを摩砕処理に供す
ることができる。
Next, the obtained graphitized product is pulverized. Although there is no particular limitation on the method of pulverizing the graphitized material, a known method such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used. The average particle diameter (median diameter) after pulverization is preferably 100 μm or less, and is 10 to 50 μm.
μm is more preferred. This can then be subjected to a grinding treatment.

【0027】本発明の非水電解液二次電池負極用黒鉛質
粒子の製造法は、上記のようにして作製された黒鉛質粒
子を、前記処理に供して得られるが、その前に前記黒鉛
質粒子を予め公知の冷間静水圧プレス処理してもよい。
以上の方法により、最終的には、電極塗工性、電極密着
性に優れ、急速充放電特性、サイクル特性が良好で不可
逆容量の小さい非水電解液二次電池負極用黒鉛質粒子が
得られる。
In the method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to the present invention, the graphite particles produced as described above are subjected to the treatment described above. The porous particles may be previously subjected to a known cold isostatic pressing.
By the above method, finally, the graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery having excellent electrode coating properties, electrode adhesion, rapid charge / discharge characteristics, good cycle characteristics, and small irreversible capacity can be obtained. .

【0028】前記黒鉛質粒子は、以下に示す各特性の何
れかを満たすことが好ましく、できる限り多くの特性を
満たすことがより好ましく、全ての特定を満たすこと
が、非水系電解液二次電池負極として特に好ましい。
The graphite particles preferably satisfy any of the following characteristics, more preferably satisfy as many characteristics as possible, and more preferably satisfy all of the characteristics. Particularly preferred as a negative electrode.

【0029】すなわち、平均粒子径が10〜50μmで
あり、真密度が2.2g/cm3以上、黒鉛の(002)面
の面間隔が0.337nm未満、かさ密度が0.8g/cm3
以上、比表面積が3〜6m2/g、水銀圧入法で測定される
全細孔容積が0.1〜0.5cm3/g、ラマンスペクトル
の1580cm-1付近のピーク強度(I1580)に対す
る1340cm-1付近のピーク強度(I1340)の比
(I1300/I1580)が0.1〜0.4、XPS
で測定される表面酸素濃度が1.0〜3.0atm%であ
る。
That is, the average particle size is 10 to 50 μm, the true density is 2.2 g / cm 3 or more, the spacing between graphite (002) planes is less than 0.337 nm, and the bulk density is 0.8 g / cm 3.
As described above, the specific surface area is 3 to 6 m 2 / g, the total pore volume measured by the mercury intrusion method is 0.1 to 0.5 cm 3 / g, and the peak intensity (I1580) around 1580 cm −1 in the Raman spectrum is 1340 cm. the ratio of -1 vicinity of the peak intensity (I1340) (I1300 / I1580) is 0.1 to 0.4, XPS
Is from 1.0 to 3.0 atm%.

【0030】ここで、平均粒子径が50μmを超える
と、電極とした場合、電極表面に凸凹が発生しやすくな
り、電池での短絡の原因となることがある。一方、平均
粒子径が10μm未満の場合には、比表面積が大きくな
り、電池の安全性が低下する傾向がある。
Here, when the average particle diameter exceeds 50 μm, when the electrode is used, the surface of the electrode tends to be uneven, which may cause a short circuit in the battery. On the other hand, when the average particle size is less than 10 μm, the specific surface area tends to be large, and the safety of the battery tends to decrease.

【0031】また、真密度が2.2g/cm3未満又はd0
02が0.337nm以上の場合、非水電解液二次電池負
極として、放電容量が低下する傾向がある。なお、前記
かさ密度は、黒鉛質粒子を容器に入れ、粒子容積が変化
しなくなるまでタップを繰り返して測定されたものをい
う。本発明における処理を黒鉛質粒子に施すことにより
かさ密度は増加するが、得られた黒鉛質粒子のかさ密度
が0.8g/cm3未満の場合、処理による不可逆容量の低
減効果が少ない。
Further, the true density is less than 2.2 g / cm 3 or d0
When 02 is 0.337 nm or more, the discharge capacity tends to decrease as a negative electrode of a non-aqueous electrolyte secondary battery. The bulk density refers to a value obtained by placing graphite particles in a container and repeating tapping until the particle volume does not change. Although the bulk density is increased by performing the treatment in the present invention on the graphite particles, when the bulk density of the obtained graphite particles is less than 0.8 g / cm 3 , the effect of reducing the irreversible capacity by the treatment is small.

【0032】一方、本発明における処理により黒鉛質粒
子の比表面積は一般に増加する傾向がある。得られる粒
子の比表面積が3m2/g未満の場合、急速充放電特性が低
下する傾向があり、6m2/gを超えると電池の安全性が低
下する傾向がある。
On the other hand, the specific surface area of the graphite particles generally tends to increase by the treatment in the present invention. When the specific surface area of the obtained particles is less than 3 m 2 / g, the rapid charge / discharge characteristics tend to decrease, and when it exceeds 6 m 2 / g, the safety of the battery tends to decrease.

【0033】本発明における処理により、水銀圧入法で
測定される全細孔容積は低下し、黒鉛質粒子は緻密化す
る。得られる黒鉛質粒子の水銀圧入法で測定される全細
孔容積が0.1cm3/g未満の場合、急速充放電特性が低
下する傾向にあり、一方0.5cm3/gを超える場合に
は、電極塗工性、電極密着性が悪化、不可逆容量が増加
する傾向にある。
By the treatment in the present invention, the total pore volume measured by the mercury intrusion method is reduced, and the graphitic particles are densified. When the total pore volume of the obtained graphitic particles measured by the mercury intrusion method is less than 0.1 cm 3 / g, the rapid charge / discharge characteristics tend to decrease, while when it exceeds 0.5 cm 3 / g, , The electrode coating properties and electrode adhesion tend to deteriorate, and the irreversible capacity tends to increase.

【0034】本発明の処理により、ラマンスペクトルの
1580cm-1付近のピーク強度(高さ)(I1580)
に対する1300cm-1付近のピーク強度(高さ)(I1
300)の比(I1300/I1580)は増加する。
1580cm-1付近のピークは高結晶性炭素(高黒鉛化炭
素)により、一方1340cm-1付近のピークは非晶質炭
素によるもので、I1340/I1580の増加は本発
明の製造法により黒鉛質粒子に非晶質炭素が導入された
ことを示す。得られる本発明の黒鉛質粒子のI1300
/I1580が、0.1未満の場合、電極塗工性、電極
密着性が悪化したり、不可逆容量が増加する傾向があ
り、一方0.4を超える場合には急速充放電特性が低下
する傾向がある。
According to the treatment of the present invention, the peak intensity (height) around 1580 cm -1 of the Raman spectrum (I1580)
Intensity (height) around 1300 cm -1 (I1
300) increases (I1300 / I1580).
The peak near 1580 cm -1 is due to highly crystalline carbon (highly graphitized carbon), while the peak near 1340 cm -1 is due to amorphous carbon. The increase in I1340 / I1580 is due to the production method of the present invention. Shows that amorphous carbon was introduced. I1300 of the obtained graphitic particles of the present invention
If / I1580 is less than 0.1, electrode coatability and electrode adhesion tend to deteriorate, and irreversible capacity tends to increase, while if / I1580 exceeds 0.4, rapid charge / discharge characteristics tend to decrease. There is.

【0035】本発明の処理により、XPSによって測定
される黒鉛質粒子表面の酸素濃度は増加する。これは、
間隙をもって位置し、一方又は双方が回転する2枚の板
の、前記間隙に黒鉛質粒子を通過させる際に、発生する
熱と周囲の酸素により黒鉛質粒子表面が酸化されるため
と推定され、表面酸素濃度の増加は、電極ペーストの安
定性、電解液との親和性、バインダーとの接着性等を向
上させる効果がある。酸素濃度が1.0atm%未満では
かさ密度の低い黒鉛質粒子に見られ、電極塗工性、電極
密着性が悪化、不可逆容量が増加する傾向がある。一
方、酸素濃度が3.0atm%を超える場合、急速充放電
特性が低下する傾向がある。
The treatment according to the present invention increases the oxygen concentration on the surface of the graphitic particles measured by XPS. this is,
Positioned with a gap, one or both of the two rotating plates, when passing the graphite particles through the gap, it is estimated that the surface of the graphite particles is oxidized by the generated heat and surrounding oxygen, Increasing the surface oxygen concentration has the effect of improving the stability of the electrode paste, the affinity with the electrolytic solution, the adhesion with the binder, and the like. If the oxygen concentration is less than 1.0 atm%, it is found in graphite particles having a low bulk density, and the electrode coating properties and electrode adhesion tend to deteriorate, and the irreversible capacity tends to increase. On the other hand, when the oxygen concentration exceeds 3.0 atm%, the rapid charge / discharge characteristics tend to decrease.

【0036】次に、非水電解液二次電池負極について説
明する。前記黒鉛質粒子は、一般に、有機系決着材及び
溶剤と混練して、シート状、ペレット状等の形状に成形
される。有機系結着剤としては、例えばポリエチレン、
ポリプロピレン、エチレンプロピレンポリマー、ブタジ
エンゴム、スチレンブタジエンゴム、ブチルゴム、イオ
ン導電性の大きな高分子化合物が使用できる。
Next, the nonaqueous electrolyte secondary battery negative electrode will be described. The graphite particles are generally kneaded with an organic solvent and a solvent and formed into a sheet or pellet shape. As the organic binder, for example, polyethylene,
Polypropylene, ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and high ion conductive polymer compounds can be used.

【0037】前記イオン導電率の大きな高分子化合物と
しては、ポリ弗化ビニリデン、ポリエチレンオキサイ
ド、ポリエピクロヒドリン、ポリフォスファゼン、ポリ
アクリロニトリル等が使用できる。有機系結着剤の含有
量は、黒鉛質粒子と有機系結着剤との混合物100重量
部に対して3〜20重量部含有することが好ましい。黒
鉛質粒子は、有機系結着剤及び溶剤と混練し、粘度を調
整した後、例えば集電体に塗布し、該集電体と一体化し
て非水電解液二次電池負極とされる。集電体としては、
例えばニッケル、銅等の箔、メッシュなどが使用でき
る。一体化は、例えばロール、プレス等の成形法で行う
ことができる。
As the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepihydrin, polyphosphazene, polyacrylonitrile and the like can be used. The content of the organic binder is preferably 3 to 20 parts by weight based on 100 parts by weight of the mixture of the graphite particles and the organic binder. The graphite particles are kneaded with an organic binder and a solvent, and after adjusting the viscosity, applied to, for example, a current collector and integrated with the current collector to form a nonaqueous electrolyte secondary battery negative electrode. As a current collector,
For example, a foil or mesh of nickel, copper, or the like can be used. The integration can be performed by a molding method such as a roll and a press.

【0038】このようにして得られた負極は、例えば、
セパレータを介して正極を対向して配置し、電解液を注
入することにより、非水電解液二次電池とすることがで
きる。非水電解液二次電池の代表例としては、リチウム
二次電池が挙げられる。得られる非水電解液二次電池
は、従来の炭素材料を用いた非水電解液二次電池と比較
して、急速充放電特性、サイクル特性に優れ、不可逆容
量が小さく、安全性に優れたものとなる。
The negative electrode thus obtained is, for example,
A nonaqueous electrolyte secondary battery can be obtained by arranging the positive electrode so as to face the separator and injecting the electrolyte. A typical example of the non-aqueous electrolyte secondary battery is a lithium secondary battery. The obtained non-aqueous electrolyte secondary battery has excellent rapid charge / discharge characteristics, cycle characteristics, small irreversible capacity, and excellent safety compared to conventional non-aqueous electrolyte secondary batteries using carbon materials. It will be.

【0039】本発明における非水電解液二次電池の正極
に用いられる材料は特に制限はなく、例えばLiNiO
2、LiCoO2、LiMn24等を単独または混合して
使用することができる。電解液としては、LiCl
4、LiPF6、LiAsF6、LiBF4、LiSO3
CF3等のリチウム塩を、例えばエチレンカーボネー
ト、ジエチルカーボネート、ジメトキシエタン、ジメチ
ルカーボネート、テトラヒドロフラン、プロピレンカー
ボネート等の非水系溶剤に溶解したいわゆる有機電解液
を使用することができる。
The material used for the positive electrode of the non-aqueous electrolyte secondary battery in the present invention is not particularly limited.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. As the electrolyte, LiCl
O 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3
A so-called organic electrolyte obtained by dissolving a lithium salt such as CF 3 in a non-aqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate can be used.

【0040】セパレータとしては、例えばポリエチレ
ン、ポリプロピレン等のポリオレフィンを主成分とした
不織布、クロス、微孔フィルム又はこれらを組み合わせ
たものを使用することができる。
As the separator, for example, a nonwoven fabric, cloth, microporous film, or a combination thereof containing a polyolefin such as polyethylene or polypropylene as a main component can be used.

【0041】なお、図1に非水電解液二次電池の一例と
して、円筒型リチウム二次電池の一例の一部断面正面図
を示す。図1に示す円筒型リチウム二次電池は、薄板状
に加工された正極1と、同様に加工された負極2がポリ
エチレン製微孔膜等のセパレータ3を介して重ねあわせ
たものを捲回し、これを金属製等の電池缶7に挿入し、
密閉化されている。正極1は正極タブ4を介して正極蓋
6に接合され、負極2は負極タブ5を介して電池底部へ
接合されている。正極蓋6はガスケット8にて電池缶
(正極缶)7へ固定されている。
FIG. 1 is a partial cross-sectional front view of an example of a cylindrical lithium secondary battery as an example of a non-aqueous electrolyte secondary battery. The cylindrical lithium secondary battery shown in FIG. 1 is obtained by winding a positive electrode 1 processed into a thin plate and a negative electrode 2 processed in the same manner via a separator 3 such as a polyethylene microporous membrane. This is inserted into a battery can 7 made of metal or the like,
Sealed. The positive electrode 1 is connected to a positive electrode cover 6 via a positive electrode tab 4, and the negative electrode 2 is connected to a battery bottom via a negative electrode tab 5. The positive electrode lid 6 is fixed to a battery can (positive electrode can) 7 by a gasket 8.

【0042】[0042]

【実施例】以下、実施例により本発明を詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0043】1.原料黒鉛質粒子作製 平均粒子径が5μmのコークス粉末100重量部、ター
ルピッチ40重量部、平均粒子径が48μmの炭化珪素
25重量部及びコールタール20重量部を混合し、27
0℃で1時間混合した。得られた混合物を粉砕し、ペレ
ット状に加圧成形、窒素中で900℃で焼成、アチソン
炉を用いて3000℃で黒鉛化、ハンマーミルを用いて
粉砕、200mesh標準篩を通過させ、黒鉛質粒子を作製
した。得られた黒鉛質粒子の走査型電子顕微鏡(SE
M)写真によれば、この黒鉛質粒子は、偏平状の粒子が
複数配向面が非平行となるように集合又は結合した構造
をしていた。得られた黒鉛質粒子の物性値及び分析方法
を表1に示す。なお、電極合材スラリー粘度は、電極塗
工性及び電極密着性の指標として測定したもので、粘度
が小さくなるほど電極塗工性及び電極密着性が改善され
る傾向がある。
1. Preparation of Raw Graphite Particles 100 parts by weight of coke powder having an average particle diameter of 5 μm, 40 parts by weight of tar pitch, 25 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 20 parts by weight of coal tar were mixed.
Mix for 1 hour at 0 ° C. The obtained mixture was pulverized, press-molded into pellets, baked at 900 ° C. in nitrogen, graphitized at 3000 ° C. using an Acheson furnace, pulverized using a hammer mill, passed through a 200 mesh standard sieve, and graphitized. Particles were made. Scanning electron microscope (SE) of the obtained graphitic particles
M) According to the photograph, the graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel. Table 1 shows the physical property values and analysis methods of the obtained graphitic particles. In addition, the electrode mixture slurry viscosity is measured as an index of electrode coatability and electrode adhesion. As the viscosity decreases, the electrode coatability and electrode adhesion tend to be improved.

【0044】[0044]

【表1】 [Table 1]

【0045】実施例1〜4、比較例1、2 上記黒鉛質粒子を、グラインダーGA10−120を装
着した増幸産業(株)製マスコロイダー(MK10−20
J)を用い、上下グラインダー間隙(クリアランス)を
上下グラインダーが軽く接触する点から40μm(実施
例1)、80μm(実施例2)、120μm(実施例
3)又は200μm(実施例4)開け、処理を行った。
また、比較例として、上下グラインダークリアランスを
10μm(比較例1)、250μm(比較例2)として
処理を行った、なお、マスコロイダー(MK10−20
J)の上下グラインダーの回転速度は4500rpmであ
り、黒鉛質粒子は1回通過させた。得られらた黒鉛質粒
子の物性値を表2及び表3に示す。同表には、上記処理
を行わない黒鉛質粒子(比較例3)の値も示す。
Examples 1 to 4 and Comparative Examples 1 and 2 The above graphite particles were mass-colloided (MK10-20 manufactured by Masuko Sangyo Co., Ltd.) equipped with a grinder GA10-120.
J), a gap (clearance) between the upper and lower grinders is opened by 40 μm (Example 1), 80 μm (Example 2), 120 μm (Example 3) or 200 μm (Example 4) from the point where the upper and lower grinders lightly contact. Was done.
In addition, as a comparative example, processing was performed by setting the upper and lower grinder clearances to 10 μm (Comparative Example 1) and 250 μm (Comparative Example 2). Note that a mass colloider (MK10-20) was used.
The rotation speed of the upper and lower grinders in J) was 4500 rpm, and the graphite particles were passed once. Tables 2 and 3 show physical properties of the obtained graphitic particles. The table also shows the values of the graphite particles not subjected to the above treatment (Comparative Example 3).

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】得られた黒鉛質粒子について、表4に示す
ような条件でリチウムイオン二次電池用負極としての評
価を行った。これらの結果を表5及び表6に示す。表6
には、本発明の処理を行っていない黒鉛質粒子について
の結果(比較例3)も示す。
The obtained graphite particles were evaluated as negative electrodes for lithium ion secondary batteries under the conditions shown in Table 4. Tables 5 and 6 show these results. Table 6
2 also shows the results (Comparative Example 3) for the graphite particles not subjected to the treatment of the present invention.

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】[0052]

【発明の効果】本発明の黒鉛質粒子を非水電解液二次電
池負極材料として用いると、電極塗工性、電極密着性、
不可逆容量、放電容量が改善される。従って、この負極
を用いて得られる非水電解液二次電池は、高容量でかつ
急速充放電特性に優れ、サイクル劣化の少ないものとな
る。また、本発明の黒鉛質粒子の製造法は、基本的に連
続作業が可能であるため、工程の簡略化が図れ、低コス
トでの黒鉛質粒子が作製可能であり、電池の低価格化に
寄与できる。
When the graphite particles of the present invention are used as a negative electrode material for a non-aqueous electrolyte secondary battery, electrode coating properties, electrode adhesion,
Irreversible capacity and discharge capacity are improved. Therefore, the non-aqueous electrolyte secondary battery obtained using this negative electrode has high capacity, excellent rapid charge / discharge characteristics, and little cycle deterioration. In addition, the method for producing graphitic particles of the present invention can basically be performed continuously, so that the steps can be simplified, graphite particles can be produced at low cost, and the cost of batteries can be reduced. Can contribute.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池として、リチウム
二次電池の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a lithium secondary battery as a non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ05 AJ14 AK03 AL07 AM02 AM07 BJ02 BJ14 CJ01 CJ30 HJ03 HJ05 HJ07 HJ08 HJ09 HJ13 5H050 AA02 AA07 AA08 AA19 BA17 CA08 CA09 CB08 DA03 FA17 GA01 GA29 GA30 HA03 HA05 HA07 HA08 HA09 HA13  ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference) HA13

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 間隙をもって位置し、一方又は双方が回
転する2枚の板の、前記間隙に黒鉛質粒子を通過させる
ことを特徴とする非水電解液二次電池負極用黒鉛質粒子
の製造法。
1. The production of graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery, wherein graphite particles are passed through the gap between two plates, one or both of which rotate with a gap. Law.
【請求項2】 2枚の板が、互いに逆方向に回転するも
のである、請求項1記載の非水電解液二次電池負極用黒
鉛質粒子の製造法。
2. The method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 1, wherein the two plates rotate in directions opposite to each other.
【請求項3】 2枚の板の間隙の大きさが、通過させる
黒鉛質粒子の平均粒子径の0.5〜20倍である請求項
1又は2記載の非水電解液二次電池負極用黒鉛質粒子の
製造法。
3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the size of the gap between the two plates is 0.5 to 20 times the average particle size of the graphite particles to be passed. A method for producing graphitic particles.
【請求項4】 通過させる黒鉛質粒子が、塊状の人造黒
鉛である請求項1、2又は3記載の非水電解液二次電池
負極用黒鉛質粒子の製造法。
4. The method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite particles to be passed are massive artificial graphite.
【請求項5】 通過させる黒鉛質粒子が、複数の扁平状
の黒鉛質粒子が互いに非平行に集合或いは結合した構造
を有し、アスペクト比が5以下であり、粒子内に空隙を
有するものである請求項1、2、3又は4記載の非水電
解液二次電池負極用黒鉛質粒子の製造法。
5. Graphite particles to be passed through have a structure in which a plurality of flat graphite particles are gathered or bonded to each other non-parallel, have an aspect ratio of 5 or less, and have voids in the particles. The method for producing graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 1, 2, 3, or 4.
【請求項6】 請求項1、2、3、4又は5記載の製造
法により製造される非水電解液二次電池負極用黒鉛質粒
子。
6. Graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery produced by the production method according to claim 1, 2, 3, 4, or 5.
【請求項7】 平均粒子径が10〜50μm、真密度が
2.2g/cm3以上、黒鉛の(002)面の面間隔d00
2が0.337nm未満、かさ密度が0.8g/cm3以上、
比表面積が3〜6m2/g、水銀圧入法で測定される細孔容
積が0.1〜0.5g/cm3、ラマンスペクトルの158
0cm-1付近のピーク強度(I1580)に対する134
0cm-1付近のピ−ク強度(I1300)の比(I134
0/I1580)が0.1〜0.4、XPSで測定され
る表面酸素濃度が1.0〜3.0atm%である請求項6
記載の非水電解液二次電池負極用黒鉛質粒子。
7. An average particle diameter of 10 to 50 μm, a true density of 2.2 g / cm 3 or more, and a spacing d00 between graphite (002) planes.
2 is less than 0.337 nm, bulk density is 0.8 g / cm 3 or more,
The specific surface area is 3-6 m 2 / g, the pore volume measured by mercury intrusion method is 0.1-0.5 g / cm 3 , and the Raman spectrum is 158.
134 for peak intensity (I1580) around 0 cm -1
The ratio of peak intensity (I1300) around 0 cm -1 (I134)
0 / I1580) is 0.1 to 0.4, and the surface oxygen concentration measured by XPS is 1.0 to 3.0 atm%.
The graphite particles for a negative electrode of a non-aqueous electrolyte secondary battery according to the above.
【請求項8】 請求項1、2、3、4若しくは5記載の
製造法で製造された黒鉛質粒子又は請求項6若しくは7
記載の黒鉛質粒子を用いてなる非水電解液二次電池負
極。
8. Graphitic particles produced by the production method according to claim 1, 2, 3, 4 or 5, or claim 6 or 7
A negative electrode for a non-aqueous electrolyte secondary battery using the graphite particles described in the above.
【請求項9】 請求項8記載の負極を有してなる非水電
解液二次電池。
9. A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 8.
JP2001017141A 2001-01-25 2001-01-25 Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery Pending JP2002222650A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001017141A JP2002222650A (en) 2001-01-25 2001-01-25 Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
PCT/JP2002/000564 WO2002059040A1 (en) 2001-01-25 2002-01-25 Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
CA002435980A CA2435980C (en) 2001-01-25 2002-01-25 Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell
CNB028041658A CN1315722C (en) 2001-01-25 2002-01-25 A rtificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
EP02716390.6A EP1361194B1 (en) 2001-01-25 2002-01-25 Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
US10/470,076 US7829222B2 (en) 2001-01-25 2002-01-25 Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell, negative electrode and method for manufacturing same, and lithium secondary cell
JP2002559347A JP4448279B2 (en) 2001-01-25 2002-01-25 Artificial graphite particles and production method thereof, nonaqueous electrolyte secondary battery negative electrode and production method thereof, and lithium secondary battery
KR1020037009738A KR100597065B1 (en) 2001-01-25 2002-01-25 Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
US12/938,673 US8211571B2 (en) 2001-01-25 2010-11-03 Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017141A JP2002222650A (en) 2001-01-25 2001-01-25 Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2002222650A true JP2002222650A (en) 2002-08-09

Family

ID=18883389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017141A Pending JP2002222650A (en) 2001-01-25 2001-01-25 Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2002222650A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
WO2005024980A1 (en) * 2003-09-05 2005-03-17 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
WO2006003849A1 (en) 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2013038072A (en) * 2011-07-12 2013-02-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
KR101439068B1 (en) 2011-09-03 2014-09-05 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Negative electrode material of electrode and preparing method therefor
WO2015147012A1 (en) * 2014-03-25 2015-10-01 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
US9263734B2 (en) 2010-10-29 2016-02-16 Mitsubishi Chemical Corporation Multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and process for producing multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
JP4635413B2 (en) * 2003-07-04 2011-02-23 日立化成工業株式会社 Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
JPWO2005024980A1 (en) * 2003-09-05 2008-06-12 日立化成工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
WO2005024980A1 (en) * 2003-09-05 2005-03-17 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP4866611B2 (en) * 2003-09-05 2012-02-01 日立化成工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
US7947394B2 (en) 2003-09-05 2011-05-24 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP4753870B2 (en) * 2004-02-20 2011-08-24 パナソニック株式会社 Manufacturing method of lithium ion secondary battery
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
JPWO2005081336A1 (en) * 2004-02-20 2007-10-25 松下電器産業株式会社 Manufacturing method of lithium ion secondary battery
US7575606B2 (en) 2004-02-20 2009-08-18 Panasonic Corporation Method for producing lithium ion secondary battery
KR100763090B1 (en) * 2004-02-20 2007-10-04 마쯔시다덴기산교 가부시키가이샤 Method for producing lithium ion secondary battery
US8302559B2 (en) 2004-02-20 2012-11-06 Panasonic Corporation Method of producing lithium ion secondary battery
EP1775785A4 (en) * 2004-06-30 2011-11-09 Mitsubishi Chem Corp Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2006003849A1 (en) 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
EP1775785A1 (en) * 2004-06-30 2007-04-18 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
US8637187B2 (en) 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
US9263734B2 (en) 2010-10-29 2016-02-16 Mitsubishi Chemical Corporation Multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and process for producing multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode
JP2013038072A (en) * 2011-07-12 2013-02-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
KR101439068B1 (en) 2011-09-03 2014-09-05 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Negative electrode material of electrode and preparing method therefor
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
WO2015147012A1 (en) * 2014-03-25 2015-10-01 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JPWO2015147012A1 (en) * 2014-03-25 2017-04-13 日立化成株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017188473A (en) * 2014-03-25 2017-10-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10122018B2 (en) 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019145529A (en) * 2014-03-25 2019-08-29 日立化成株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10601044B2 (en) 2014-03-25 2020-03-24 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
KR101790400B1 (en) Anode active material and lithium secondary battery comprising the same
EP1361194B1 (en) Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
WO2008026380A1 (en) Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
CN111225888A (en) Method for preparing negative active material and lithium secondary battery comprising same
KR20070026786A (en) Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
CN103443977A (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
JP2016110969A (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2009245613A (en) Carbon material for negative electrode of lithium-ion secondary battery, negative electrode mixture for lithium-ion secondary battery using the same, and lithium-ion secondary battery
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
WO2022162950A1 (en) Negative electrode material for lithium-ion secondary battery, method for evaluating negative electrode material, method for manufacturing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2002050346A (en) Negative electrode for lithium secondary cell, its manufacturing method and lithium secondary cell
JP2007294374A (en) Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2002222650A (en) Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP4635413B2 (en) Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
JP2002083587A (en) Negative electrode for lithium secondary battery
JP2004185989A (en) Graphite particle for electrode, its manufacturing method, negative electrode for nonaqueous secondary battery using the same, and nonaqueous electrolyte secondary battery
JP2005154242A (en) Particulate artificial graphite negative electrode material, method of manufacturing the same, negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode material
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001006669A (en) Graphite particles for lithium secondary battery negative electrode, manufacture of the particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2013254746A (en) Carbon material for lithium ion secondary battery negative electrode, and negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery, each using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040910