JP2015095455A - Negative electrode material of on-vehicle energy storage lithium ion battery, and manufacturing method thereof - Google Patents

Negative electrode material of on-vehicle energy storage lithium ion battery, and manufacturing method thereof Download PDF

Info

Publication number
JP2015095455A
JP2015095455A JP2014156362A JP2014156362A JP2015095455A JP 2015095455 A JP2015095455 A JP 2015095455A JP 2014156362 A JP2014156362 A JP 2014156362A JP 2014156362 A JP2014156362 A JP 2014156362A JP 2015095455 A JP2015095455 A JP 2015095455A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
lithium ion
ion battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156362A
Other languages
Japanese (ja)
Other versions
JP6152076B2 (en
Inventor
敏 岳
Min Yue
敏 岳
慧青 ▲エン▼
慧青 ▲エン▼
Huiqing Yan
正 鐘
Zheng Zhong
正 鐘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTR New Energy Materials Inc
Original Assignee
BTR New Energy Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTR New Energy Materials Inc filed Critical BTR New Energy Materials Inc
Publication of JP2015095455A publication Critical patent/JP2015095455A/en
Application granted granted Critical
Publication of JP6152076B2 publication Critical patent/JP6152076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode material of an on-vehicle energy storage lithium ion battery, a battery and a manufacturing method thereof.SOLUTION: A quality-modification method by a mechanical mill is adopted, in which a nano conductive carbon is fit in the surface of each graphite particle by coating them with the nano conductive carbon. This is a point where the present invention differs from the prior art. The method enables the increase in the efficiency of using a conducting agent, and the improvement of stability on a material surface, thereby increasing the compatibility between a negative electrode active material and an electrolyte, and improving a lithium ion battery in low-temperature and rate characteristics. The method achieves 94.0% or more as to an initial charge/discharge efficiency, and 98.0% or more for a 25°C-low-temperature recovery rate, which represents an increase of 8.0% or more from that achieved in the prior art. The method of the present invention is simple in operation, easy to manage, low in production cost, and adequate for the industrial productivity.

Description

本発明はリチウムイオン電池材料分野に関する。具体的には、車載用及びエネルギー貯蔵用リチウムイオン電池負極材料及びその製造方法に関する。   The present invention relates to the field of lithium ion battery materials. Specifically, the present invention relates to a lithium ion battery negative electrode material for on-vehicle use and energy storage and a method for producing the same.

従来、商用リチウムイオン電池用負極材料は主に黒鉛系材料であり、黒鉛を負極材料とする場合の理論比容量は372mAh/gに達する。しかし充放電レート特性が悪く、電解質との相容性や低温特性が悪いため、リチウムイオン電池の車載及びエネルギー貯蔵分野での開発進捗に直接影響を与える。   Conventionally, negative electrode materials for commercial lithium ion batteries are mainly graphite-based materials, and the theoretical specific capacity when graphite is used as the negative electrode material reaches 372 mAh / g. However, the charge / discharge rate characteristics are poor and the compatibility with the electrolyte and the low temperature characteristics are poor, which directly affects the development progress of lithium ion batteries in the vehicle and energy storage fields.

黒鉛系材料に対して被覆改質処理を行うことにより、材料の可逆容量、サイクル特性及び電解液との相容性を大幅に向上させることができるが、被覆材料であるピッチ又は樹脂又は高分子物質の導電特性は黒鉛より悪いため、電極材料の導電特性も悪くなり、且つ低温特性は良くない。本発明者らは鋭意検討を行なった結果、導電剤の添加は被覆黒鉛材料の導電特性を効果的に向上させるとともに、電極材料と電解液の相容性を向上させることができることを発見した。   By performing a coating modification process on the graphite-based material, the reversible capacity, cycle characteristics, and compatibility with the electrolytic solution of the material can be greatly improved. Since the conductive property of the substance is worse than that of graphite, the conductive property of the electrode material is also deteriorated, and the low temperature property is not good. As a result of intensive studies, the present inventors have found that the addition of a conductive agent can effectively improve the conductive properties of the coated graphite material and improve the compatibility between the electrode material and the electrolyte.

特許文献1は液相混合、乾燥、炭素化処理、高温処理、複合化などの工程を含むリチウムイオン電池負極材料の製造方法を開示している。   Patent document 1 is disclosing the manufacturing method of the lithium ion battery negative electrode material including processes, such as liquid phase mixing, drying, carbonization processing, high temperature processing, and compounding.

中国特許出願公開第101887967号明細書China Patent Application Publication No. 10188967

導電性材料の添加はある程度黒鉛材料の導電特性を向上させることができるが、導電剤の分散が難しく、生産効率が低い等の問題が存在する。また分散された導電剤を適時に使用しないと、更に二次凝集を引き起こす。従って導電剤の使用効率及び材料の均一性に影響を与え、リチウムイオン電池のサイクル特性とレート特性が低下する。   The addition of the conductive material can improve the conductive properties of the graphite material to some extent, but there are problems such as difficulty in dispersing the conductive agent and low production efficiency. Further, if the dispersed conductive agent is not used in a timely manner, secondary aggregation is caused. Accordingly, the use efficiency of the conductive agent and the uniformity of the material are affected, and the cycle characteristics and rate characteristics of the lithium ion battery are deteriorated.

前述の特許文献1の負極材料の製造方法は炭素化処理と高温処理を含み、前記複合化は順次混合と融合を含むため、エネルギー消費やコストが高く、操作が複雑であり、産業としての生産性に不利である。   The manufacturing method of the negative electrode material described in Patent Document 1 includes carbonization treatment and high-temperature treatment. Since the composite includes sequential mixing and fusion, energy consumption and cost are high, operation is complicated, and production as an industry. It is disadvantageous to sex.

従って、導電特性、サイクル特性及びレート特性が優れ、且つ製造方法が簡単で、生産コストが低いリチウムイオン電池負極材料を開発することは所属分野の技術難題である。   Therefore, it is a technical challenge in the field to which it belongs to develop a lithium ion battery negative electrode material that is excellent in conductive characteristics, cycle characteristics and rate characteristics, has a simple manufacturing method, and has low production costs.

従来技術の不足に対して、本発明の目的の1つ目は車載用及びエネルギー貯蔵用リチウムイオン電池負極材料の製造方法を提供することであり、
有機炭素源で黒鉛系材料を被覆して、混合材料を得る工程(1)、
工程(1)で得られた混合材料を、500〜1800℃で炭素化処理を行い、表面に不規則の炭素材料被覆層を有する黒鉛材料を得る工程(2)、
工程(2)で得られた材料と導電性材料に対して、メカニカルミル法で改質処理を行う工程(3)、及び
篩分け、消磁してリチウムイオン電池負極材料を得る工程(4)を含み、
好ましくは、前記黒鉛系材料は天然黒鉛、人造黒鉛又はカーボンマイクロビーズのうちの1種又は少なくとも2種の組合せであり、好ましくは、前記黒鉛系材料の固定炭素含有率は99.9%以上であり、アスペクト比は1.0〜2.5であり、平均粒径は1〜30μm、Dmax≦40.0μmであり、比表面積は2.0〜20.0m2/gであり、粉末プレス密度は1.45〜2.05g/cm3であり、層面間隔(d002)は0.3354〜0.3363nmであり、菱形構造(3R)含有量は1.0〜35.0%であり、ID/IG(面積比)は0.1〜1.0であり、I110/I004は0.05〜0.95であり、Lcは200.0〜1000.0nmであり、Laは800.0〜1800.0nmであり、磁性物質含有量は0.5ppm以下であり、金属異物粒子の大きさは100.0μm以下であり、プレス密度が1.5g/ccである場合の粉末導電率は50.0〜800.0S/cmである。
In contrast to the shortage of the prior art, the first object of the present invention is to provide a method for producing a negative electrode material for lithium ion battery for vehicle use and energy storage,
Coating a graphite material with an organic carbon source to obtain a mixed material (1);
A step of carbonizing the mixed material obtained in step (1) at 500 to 1800 ° C. to obtain a graphite material having an irregular carbon material coating layer on the surface (2);
A step (3) of performing a modification treatment by a mechanical mill method on the material and the conductive material obtained in the step (2), and a step (4) of obtaining a lithium ion battery negative electrode material by sieving and demagnetizing. Including
Preferably, the graphite material is one or a combination of at least two of natural graphite, artificial graphite or carbon microbeads, and preferably the fixed carbon content of the graphite material is 99.9% or more. Yes, the aspect ratio is 1.0 to 2.5, the average particle size is 1 to 30 μm, D max ≦ 40.0 μm, the specific surface area is 2.0 to 20.0 m 2 / g, and the powder press The density is 1.45 to 2.05 g / cm 3 , the layer spacing (d 002 ) is 0.3354 to 0.3363 nm, and the rhomboid structure (3R) content is 1.0 to 35.0%. , I D / I G (area ratio) is 0.1 to 1.0, I 110 / I 004 is 0.05 to 0.95, Lc is 20.0 to 10.0 nm, La Is 80.0 to 180.0 nm, and the magnetic substance content is 0.5 ppm or less. The powder conductivity is 50.0-80.0 S / cm when the size is 100.0 μm or less and the press density is 1.5 g / cc.

好ましくは、前記有機炭素源はタールピッチ、石油ピッチ、メソピッチ、高分子材料又は重合体のうちの1種又は少なくとも2種の組合せである。   Preferably, the organic carbon source is one or a combination of at least two of tar pitch, petroleum pitch, meso pitch, polymeric material or polymer.

好ましくは、前記導電性材料はナノ導電剤及び/又は導電性黒鉛であり、好ましくは、前記ナノ導電剤はCNTs、炭素繊維、ナノ黒鉛又はグラフェンのうちの1種又は少なくとも2種の組合せであり、好ましくは、前記ナノ導電剤の平均寸法(D50)は10〜600.0nmであり、比表面積SSAは2.0〜60.0m2/gであり、好ましくは、前記ナノ導電剤の平均寸法は10.0〜300.0nmであり、好ましくは、前記CNTと炭素繊維の直径は1〜300nmであり、長さは1〜20μmであり、好ましくは、前記グラフェンの黒鉛層の数は1〜100であり、好ましくは、前記ナノ導電剤はナノ導電性液体の状態で存在し、好ましくは、前記ナノ導電性液体におけるナノ導電剤の含有量は0.5〜20wt%であり、好ましくは、前記ナノ導電性液体における分散溶媒は水、メタノール、エタノール、アセトン又はクロロホルムのうちの1種又は少なくとも2種の組合せである。 Preferably, the conductive material is a nano conductive agent and / or conductive graphite, and preferably the nano conductive agent is one or a combination of at least two of CNTs, carbon fiber, nanographite, or graphene. Preferably, the nano conductive agent has an average dimension (D 50 ) of 10 to 60.0 nm and a specific surface area SSA of 2.0 to 60.0 m 2 / g. The dimension is 10.0 to 300.0 nm, preferably the diameter of the CNT and carbon fiber is 1 to 300 nm and the length is 1 to 20 μm, preferably the number of graphite layers of the graphene is 1 To 100, preferably, the nano-conductive agent is present in the form of a nano-conductive liquid, preferably the content of the nano-conductive agent in the nano-conductive liquid is 0.5 to 20 wt%, preferably , Dispersion solvent in serial nano conductive liquid is one or at least two kinds of combination of water, methanol, ethanol, acetone or chloroform.

好ましくは、前記導電性材料は導電性天然黒鉛粉末、導電性人造黒鉛粉末又はナノ導電性炭素ブラック(Super−P)のうちの1種又は少なくとも2種の組合せであり、好ましくは、前記導電性材料はシート状又はブロック状を呈し、長短径比は1.3〜4.5であり、平均粒径は0.5〜12.0μmであり、比表面積SSAは2.0〜60.0m2/gである。 Preferably, the conductive material is one or a combination of at least two of conductive natural graphite powder, conductive artificial graphite powder or nano-conductive carbon black (Super-P), preferably the conductive material The material is in the form of a sheet or block, the major axis to minor axis ratio is 1.3 to 4.5, the average particle diameter is 0.5 to 12.0 μm, and the specific surface area SSA is 2.0 to 60.0 m 2. / G.

好ましくは、工程(1)に記載の被覆は固相被覆又は液相被覆である。   Preferably, the coating described in step (1) is a solid phase coating or a liquid phase coating.

本発明における固相被覆は所属分野の既知技術であり、当業者は必要に応じて適当な技術パラメータを選択できる。前記固相被覆の非限定的な例は、有機炭素源と黒鉛系材料を混合機の中に置き、温度を15℃〜80℃に制御し、400〜2000rpmの回転速度で、1〜300分間処理し、混合材料を得る。前記混合機は高速改質VC混合機、コーンミキサー又は混練機であるということを含む。   The solid phase coating in the present invention is a known technique in the field to which the person belongs, and those skilled in the art can select appropriate technical parameters as necessary. Non-limiting examples of the solid phase coating include placing an organic carbon source and a graphite-based material in a mixer, controlling the temperature at 15 ° C. to 80 ° C., and rotating at 400 to 2000 rpm for 1 to 300 minutes. Process to obtain mixed material. It includes that the mixer is a high speed reforming VC mixer, cone mixer or kneader.

本発明における液相被覆は所属分野の既知技術であり、当業者は必要に応じて適合な技術パラメータを選択できる。前記液相被覆の非限定的な例として以下を挙げる。有機炭素源を溶媒の中に加え、高速ミキサーで液相混合を行い、攪拌回転速度が3000〜5000rpmであり、攪拌時間が20〜60分間であり、温度が80〜90℃であり、その後黒鉛基体材料を前記混合物の中に加え、有機炭素源と黒鉛基体材料の質量比は(1:9)〜(2:8)であり、続けて高速ミキサーで液相混合を行い、攪拌回転速度は3000〜5000rpmであり、攪拌時間は120〜180分間であり、使用される溶媒と黒鉛基体材料の質量比は2〜1.2であり、乾燥して、混合材料を得る、前記溶媒はエタノール又はメタノールであり、前記液相被覆における乾燥は噴霧乾燥機で行い、噴霧乾燥機の入口温度は150〜350℃であり、出口温度は20〜250℃であり、圧力は10〜100MPaであり、供給頻度は10〜100Hzであり、攪拌回転速度は3000〜5000rpmであり、攪拌時間は120〜180分間であり、使用される溶媒と黒鉛基体材料の質量比は2〜1.2であり、乾燥して、混合材料を得る、前記溶媒はエタノール又はメタノールである。   The liquid phase coating in the present invention is a known technique in the field to which the present invention pertains, and those skilled in the art can select suitable technical parameters as required. The following are given as non-limiting examples of the liquid phase coating. An organic carbon source is added to the solvent, liquid phase mixing is performed with a high-speed mixer, the stirring rotation speed is 3000 to 5000 rpm, the stirring time is 20 to 60 minutes, the temperature is 80 to 90 ° C., and then graphite The base material is added to the mixture, and the mass ratio of the organic carbon source to the graphite base material is (1: 9) to (2: 8), followed by liquid phase mixing with a high-speed mixer, and the stirring rotation speed is It is 3000-5000 rpm, the stirring time is 120-180 minutes, the mass ratio of the solvent used and the graphite base material is 2-1.2, and is dried to obtain a mixed material. The solvent is ethanol or It is methanol, and the drying in the liquid phase coating is performed by a spray dryer, the inlet temperature of the spray dryer is 150 to 350 ° C., the outlet temperature is 20 to 250 ° C., the pressure is 10 to 100 MPa, and the supply The frequency is 10 to 100 Hz, the stirring rotation speed is 3000 to 5000 rpm, the stirring time is 120 to 180 minutes, the mass ratio of the solvent used and the graphite substrate material is 2 to 1.2, and drying is performed. Thus, the solvent for obtaining the mixed material is ethanol or methanol.

好ましくは、工程(2)に記載の炭素化処理温度は600〜1600℃であり、特に好ましくは700〜1500℃である。   Preferably, the carbonization temperature described in the step (2) is 600 to 1600 ° C, particularly preferably 700 to 1500 ° C.

好ましくは、工程(3)に記載のメカニカルミル法での改質処理はボールミリング処理、融合処理又は高速ナノ分散処理であり、好ましくは、前記ボールミリング改質処理時間は5.0分間以上であり、処理速度は200〜4000r/minであり、前記ボールミリング改質処理時間は6.0分間、8.0分間、10.0分間、15.0分間、20.0分間、50.0分間、100.0分間、200.0分間、300.0分間、500.0分間、800.0分間、1000.0分間、1100.0分間、1150.0分間、1180.0分間、1190.0分間、1195.0分間又は1199.0分間等であっても良く、好ましくは5.0〜1200.0分間であり、前記ボールミリング改質処理速度は210r/min、220r/min、250r/min、300r/min、500r/min、1000r/min、1500r/min、2000r/min、2500r/min、3000r/min、3500r/min、3800r/min、3900r/min又は3950r/min等であっても良く、好ましくは、前記ボールミリング改質処理に採用したボールの直径は0.1〜3.0mmであり、ボールの種類はアルミナボール又はコランダムボールであり、好ましくは、前記融合処理時間は20.0〜800.0分間であり、回転速度は800〜3000r/minであり、キャビティ隙間は0.1〜2.0cmであり、温度は10〜80℃であり、好ましくは、前記融合処理時間は20.0〜300.0分間であり、好ましくは、前記融合処理回転速度は800〜2600r/minであり、好ましくは、前記融合処理のキャビティ隙間は0.1〜1.0cmであり、好ましくは、前記融合処理温度は20〜60℃であり、好ましくは、前記高速ナノ分散時間は20.0〜1200.0分間であり、回転速度は200〜8000r/minであり、好ましくは、前記高速ナノ分散は分散剤を採用し、好ましくは、前記導電性材料と分散剤の質量比は(1:0.1)〜(1:1)であり、特に好ましくは(1:0.3)〜(1:0.8)であり、好ましくは、前記分散剤はナトリウムカルボキシメチルセルロース、リグニンスルホン酸ナトリウム、リグニンスルホン酸マグネシウム、ポリスチレンスルホン酸ナトリウム、ポリスチレンスルホン酸アンモニウム、メチレンジナフチルスルホン酸ナトリウム又はポリアクリルアミドのうちの1種又は少なくとも2種の組合せである。   Preferably, the modification process by the mechanical mill method described in the step (3) is a ball milling process, a fusion process or a high-speed nano-dispersion process. Preferably, the ball milling modification process time is 5.0 minutes or more. Yes, the treatment speed is 200 to 4000 r / min, and the ball milling reforming treatment time is 6.0 minutes, 8.0 minutes, 10.0 minutes, 15.0 minutes, 20.0 minutes, 50.0 minutes. , 100.0 minutes, 200.0 minutes, 300.0 minutes, 50.0 minutes, 80.0 minutes, 100.0 minutes, 110.0 minutes, 110.0 minutes, 110.0 minutes, 110.0 minutes 1199.0 minutes or 1199.0 minutes, and preferably 5.0 to 120.0 minutes, and the ball milling reforming treatment speed is 210 r / min, 220 r / min, 250 r / min, 30 r / min, 500 r / min, 1000 r / min, 1500 r / min, 2000 r / min, 2500 r / min, 3000 r / min, 3500 r / min, 3800 r / min, 3900 r / min, 3950 r / min, etc. Preferably, the diameter of the ball employed in the ball milling reforming treatment is 0.1 to 3.0 mm, the type of the ball is an alumina ball or a corundum ball, and preferably the fusion treatment time is 20.0 to 80.0 minutes, rotation speed is 800-3000 r / min, cavity gap is 0.1-2.0 cm, temperature is 10-80 ° C., preferably the fusion treatment time is 20. 0 to 300.0 minutes, preferably, the fusion processing rotation speed is 800 to 2600 r / min, Preferably, the fusion process has a cavity clearance of 0.1 to 1.0 cm, preferably the fusion process temperature is 20 to 60 ° C., and preferably the high speed nano dispersion time is 20.0 to 1200. 0 minutes, and the rotational speed is 200 to 8000 r / min. Preferably, the high-speed nano-dispersion employs a dispersant, and preferably the mass ratio of the conductive material to the dispersant is (1: 0.1). ) To (1: 1), particularly preferably (1: 0.3) to (1: 0.8). Preferably, the dispersant is sodium carboxymethyl cellulose, sodium lignin sulfonate, lignin sulfonic acid. One of magnesium, sodium polystyrene sulfonate, ammonium polystyrene sulfonate, sodium methylene dinaphthyl sulfonate or polyacrylamide or A combination of at least two.

好ましくは、工程(4)に記載の消磁の磁気誘導強度は3000〜30000Gsであり、処理温度は10〜80℃であり、消磁時間は10〜120sである。   Preferably, the magnetic induction strength of demagnetization described in the step (4) is 3000 to 30000 Gs, the processing temperature is 10 to 80 ° C., and the demagnetization time is 10 to 120 s.

本発明の目的の2つ目は車載用及びエネルギー貯蔵用リチウムイオン電池負極材料を提供することであり、本発明の方法により製造した前記負極材料は、電解液との浸潤性が良く、電子導電率が高く、低温レート特性及びサイクル特性が優れる。   The second object of the present invention is to provide a lithium ion battery negative electrode material for on-vehicle use and energy storage, and the negative electrode material produced by the method of the present invention has good infiltration with an electrolyte solution, and electronic conductivity. The rate is high and the low temperature rate characteristics and cycle characteristics are excellent.

前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料は黒鉛系材料、基体表面における不規則な炭素材料被覆層及び導電性材料からなり、且つ黒鉛粒子の表面に導電性材料を均一にコーティングして嵌め込む。   The lithium ion battery negative electrode material for in-vehicle use and energy storage is composed of a graphite material, an irregular carbon material coating layer on the surface of the substrate and a conductive material, and the surface of the graphite particles is uniformly coated with a conductive material and fitted. Include.

好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における導電性材料の含有量は0.1〜20.0wt%であり、更に好ましくは0.5〜18.0wt%であり、特に好ましくは1〜15.0wt%である。   Preferably, the content of the conductive material in the in-vehicle and energy storage lithium ion battery negative electrode material is 0.1 to 20.0 wt%, more preferably 0.5 to 18.0 wt%, and particularly preferably. Is 1 to 15.0 wt%.

好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における不規則な炭素材料被覆層の含有量は0.1〜20.0wt%であり、更に好ましくは0.5〜18.0wt%であり、特に好ましくは1〜15.0wt%であり、
好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における不規則な炭素材料被覆層と黒鉛系材料の質量比は(0.1:100)〜(20.0:100)であり、更に好ましくは(0.5:100)〜(18.0:100)であり、特に好ましくは(0.5:100)〜(15.0:100)である。
Preferably, the content of the irregular carbon material coating layer in the in-vehicle and energy storage lithium ion battery negative electrode material is 0.1 to 20.0 wt%, more preferably 0.5 to 18.0 wt%. Yes, particularly preferably 1 to 15.0 wt%,
Preferably, the mass ratio of the irregular carbon material coating layer to the graphite-based material in the in-vehicle and energy storage lithium ion battery negative electrode material is (0.1: 100) to (20.0: 100), It is preferably (0.5: 100) to (18.0: 100), and particularly preferably (0.5: 100) to (15.0: 100).

好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における黒鉛系材料と導電性材料の質量比は(10:0.01)〜(10:10.0)であり、更に好ましくは(10:0.1)〜(10:8.0)であり、特に好ましくは(10:0.5)〜(10:6.0)である。   Preferably, the mass ratio of the graphite-based material to the conductive material in the in-vehicle and energy storage lithium ion battery negative electrode materials is (10: 0.01) to (10: 10.0), and more preferably (10 : 0.1) to (10: 8.0), particularly preferably (10: 0.5) to (10: 6.0).

本発明の目的の3つ目は車載用及びエネルギー貯蔵用リチウムイオン電池を提供することであり、前記車載用及びエネルギー貯蔵用リチウムイオン電池は本発明に記載の車載用及びエネルギー貯蔵用リチウムイオン電池負極材料を含む。   The third object of the present invention is to provide a lithium ion battery for vehicle use and energy storage, and the lithium ion battery for vehicle use and energy storage is the lithium ion battery for vehicle use and energy storage according to the present invention. Includes negative electrode material.

本発明は、従来の技術に比べて、メカニカルミル法での改質処理で、ナノ導電剤及び/又は導電性黒鉛を均一に黒鉛粒子表面にコーティングして嵌め込み、且つナノ炭素を黒鉛粒子表面にコーティングして嵌め込むことによって、二次凝集を防止する。導電剤と黒鉛粒子の間の作用力を増加させ、導電剤の使用効率と材料表面での安定性を向上させることによって、負極活物質と電解液の相容性を向上させ、リチウムイオン電池の低温特性とレート特性を改善させる。本発明に記載の負極材料の初回充放電効率は94.0%以上であり、従来の技術サンプルに比べて2.0%以上高く、25℃低温回復率は98.0%より高く、従来の技術に比べて8.0%以上向上した。本発明による方法は操作が簡単で、制御し易く、生産コストも低く、産業化生産に適合する。   Compared with the prior art, the present invention is a modification process using a mechanical mill method, in which a nano conductive agent and / or conductive graphite is uniformly coated and fitted on the surface of the graphite particles, and nano carbon is applied to the surface of the graphite particles. Secondary aggregation is prevented by coating and fitting. By increasing the working force between the conductive agent and the graphite particles, and improving the use efficiency of the conductive agent and the stability on the surface of the material, the compatibility of the negative electrode active material and the electrolytic solution is improved, and the lithium ion battery Improve low temperature characteristics and rate characteristics. The initial charge / discharge efficiency of the negative electrode material described in the present invention is 94.0% or more, 2.0% or more higher than the conventional technical sample, and the low temperature recovery rate at 25 ° C. is higher than 98.0%. Compared to technology, it was improved by 8.0% or more. The method according to the invention is simple to operate, easy to control, low in production costs and suitable for industrial production.

本発明の実施例3のSEM写真である。It is a SEM photograph of Example 3 of the present invention. 本発明の実施例2と比較実施例1の導電率を対比して示した図である。It is the figure which contrasted and showed the electrical conductivity of Example 2 and Comparative Example 1 of this invention. 本発明の実施例と比較実施例の低温特性を比較して示した図である。It is the figure which compared and showed the low temperature characteristic of the Example of this invention, and a comparative example.

本発明を分かりやすくさせるために、以下のように実施例に基づいて説明する。実施例は本発明を理解するためのものだけであり、本発明に対する具体的な限定と見なすべきではない。   In order to make the present invention easier to understand, description will be made based on examples as follows. The examples are only for the purpose of understanding the invention and should not be construed as specific limitations to the invention.

実施例1
炭素含有量が99.9%以上、粒子径が3〜40μmである球状天然黒鉛を、VC反応釜中に入れ、天然黒鉛との質量比が5:100である石油ピッチを導入して固相混合し、回転速度は1200rpm、混合時間は90分間で、混合材料を得る。前記混合材料を、窒素ガスの雰囲気下に配置し、1200℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。メカニカルボールミリングを用いて、ボールミルの回転速度が200rpm、処理時間が480分間で表面に不規則な炭素材料被覆層を有する天然黒鉛とナノ導電剤グラフェンを100:2の質量比で均一に混合した。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径11.2μmのリチウムイオン電池黒鉛負極材料を得る。
Example 1
Spherical natural graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm is placed in a VC reaction kettle, and a petroleum pitch having a mass ratio of 5: 100 with natural graphite is introduced to form a solid phase. Mixing is performed at a rotation speed of 1200 rpm and a mixing time of 90 minutes to obtain a mixed material. The mixed material is placed in an atmosphere of nitrogen gas, carbonized at 1200 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. Using mechanical ball milling, natural graphite having an irregular carbon material coating layer on the surface and a nano-conductive agent graphene were uniformly mixed at a mass ratio of 100: 2 with a ball mill rotating speed of 200 rpm and a processing time of 480 minutes. . The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 11. A 2 μm lithium ion battery graphite negative electrode material is obtained.

実施例2
一定量のアクリル酸樹脂を水の中に加え、高速ミキサーで液相混合を行い、攪拌回転速度は3000rpm、攪拌時間は60分間、温度は90℃であり、その後炭素含有量が99.9%以上、粒子径が3〜40μmであるブロック状天然黒鉛を前記混合物の中に加え、そのうちアクリル酸樹脂と天然黒鉛の質量比は15:100であり、続いて高速ミキサーで液相混合を行い、攪拌回転速度は3000rpm、攪拌時間は180分間であり、使用される溶媒水とブロック状天然黒鉛の質量比は200:100であり、噴霧乾燥機で乾燥し、入口温度は350℃、出口温度は150℃、圧力は100MPa、供給頻度は10Hzで、混合材料を得る。得られた混合材料を窒素ガスの雰囲気下に配置し、500℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。表面に不規則な炭素材料被覆層を有するブロック状天然黒鉛とCNTを、100:9の質量比で融合機にて均一に混合し、そのうち融合機の回転速度が2600rpmで、処理時間が90分間である。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が8.9μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 2
A certain amount of acrylic acid resin is added to water and mixed in a liquid phase with a high-speed mixer. The rotation speed is 3000 rpm, the stirring time is 60 minutes, the temperature is 90 ° C., and the carbon content is 99.9%. As described above, block-like natural graphite having a particle size of 3 to 40 μm is added to the mixture, among which the mass ratio of acrylic resin and natural graphite is 15: 100, followed by liquid phase mixing with a high-speed mixer, The stirring rotation speed is 3000 rpm, the stirring time is 180 minutes, the mass ratio of the solvent water to be used and the block-like natural graphite is 200: 100, it is dried with a spray dryer, the inlet temperature is 350 ° C., and the outlet temperature is A mixed material is obtained at 150 ° C., a pressure of 100 MPa, and a supply frequency of 10 Hz. The obtained mixed material is placed in an atmosphere of nitrogen gas, carbonized at 500 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. Block-like natural graphite having an irregular carbon material coating layer on the surface and CNT are uniformly mixed in a fusion machine at a mass ratio of 100: 9, of which the fusion machine has a rotation speed of 2600 rpm and a processing time of 90 minutes. It is. The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 8 A lithium ion battery graphite negative electrode material having a thickness of 9.9 μm is obtained.

実施例3
炭素含有量が99.9%以上、粒子径が3〜40μmである人造黒鉛を、コーンミキサー中に入れ、人造黒鉛との質量比が4:100であるメソピッチを導入して固相混合した。回転速度は50rpm、混合時間が300分間で、混合材料を得る。混合材料を窒素ガスの雰囲気下に配置し、1800℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する人造黒鉛を得る。表面に不規則な炭素材料被覆層を有する人造黒鉛、導電性天然黒鉛粉末、SPを、100:9:0.1の質量比で融合機にて均一に混合し、融合機の回転速度が800rpmで、処理時間が300分間である。得られた物に対して篩分け、消磁を行い、消磁回数が3回、磁気誘導強度が10000Gs、処理温度が10℃、電磁式ハンマー打撃回数が20回/秒であり、平均粒径が14.5μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 3
Artificial graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm was placed in a corn mixer, and meso pitch having a mass ratio of 4: 100 with the artificial graphite was introduced and solid phase mixed. The rotation speed is 50 rpm and the mixing time is 300 minutes, and the mixed material is obtained. The mixed material is placed in an atmosphere of nitrogen gas, carbonized at 1800 ° C., and then the reaction product is cooled to room temperature to obtain artificial graphite having an irregular carbon material coating layer on the surface. Artificial graphite having an irregular carbon material coating layer on the surface, conductive natural graphite powder, and SP are uniformly mixed at a mass ratio of 100: 9: 0.1 in a fusion machine, and the rotation speed of the fusion machine is 800 rpm. The processing time is 300 minutes. The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 14 A lithium ion battery graphite negative electrode material having a thickness of 0.5 μm is obtained.

実施例4
炭素含有量が99.9%以上、粒子径が3〜40μmであるブロック状天然黒鉛を、VC反応釜に入れ、天然黒鉛との質量比が20:100であるタールピッチを導入して固相混合し、回転速度は2000rpm、混合時間は60分間で、混合材料を得る。前記混合材料を窒素ガスの雰囲気下に配置し、炭素化処理を行い、温度は950℃、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。表面に不規則な炭素材料被覆層を有する天然黒鉛、SP、分散剤を100:8:3の質量比で高速ナノ分散にて均一に混合し、そのうち高速ナノ分散の回転速度は8000rpm、処理時間は60分間、分散剤はポリアクリルアミドである。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度が10000Gsで、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が17.0μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 4
Block-shaped natural graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm is placed in a VC reaction kettle, and a tar pitch having a mass ratio with natural graphite of 20: 100 is introduced to form a solid phase. Mixing is performed at a rotation speed of 2000 rpm and a mixing time of 60 minutes to obtain a mixed material. The mixed material is placed in an atmosphere of nitrogen gas and subjected to carbonization treatment, the temperature is 950 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. Natural graphite having an irregular carbon material coating layer on the surface, SP, and a dispersant are uniformly mixed at a mass ratio of 100: 8: 3 by high-speed nanodispersion, of which the rotation speed of high-speed nanodispersion is 8000 rpm, treatment time For 60 minutes and the dispersant is polyacrylamide. The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the processing temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is A lithium ion battery graphite negative electrode material having a size of 17.0 μm is obtained.

実施例5
炭素含有量が99.9%以上、粒子径が3〜40μmであるカーボンマイクロビーズを、コーンミキサーに入れ、カーボンマイクロビーズとの質量比が0.1:100であるタールピッチを導入して固相混合し、回転速度は120rpm、混合時間は90分間で、混合材料を得る。前記混合材料を窒素ガスの雰囲気下に配置し、1500℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有するカーボンマイクロビーズを得る。表面に不規則な炭素材料被覆層を有するカーボンマイクロビーズ、導電性天然黒鉛粉末、分散剤を100:20:8の質量比で高速ナノ分散にて均一に混合し、そのうち高速ナノ分散の回転速度が5000rpm、処理時間は90分間、分散剤はナトリウムカルボキシメチルセルロースである。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒で、平均粒径が9.8μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 5
Carbon microbeads having a carbon content of 99.9% or more and a particle diameter of 3 to 40 μm are placed in a cone mixer, and a tar pitch having a mass ratio with the carbon microbeads of 0.1: 100 is introduced to solidify. Phase mixing is performed, the rotation speed is 120 rpm, and the mixing time is 90 minutes to obtain a mixed material. The mixed material is placed in an atmosphere of nitrogen gas and subjected to carbonization treatment at 1500 ° C., and then the reaction product is cooled to room temperature to obtain carbon micro beads having an irregular carbon material coating layer on the surface. Carbon microbeads having an irregular carbon material coating layer on the surface, conductive natural graphite powder, and a dispersant are uniformly mixed at a mass ratio of 100: 20: 8 by high-speed nanodispersion, of which the rotation speed of high-speed nanodispersion Is 5000 rpm, the processing time is 90 minutes, and the dispersing agent is sodium carboxymethylcellulose. The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 9. A lithium ion battery graphite negative electrode material of 8 μm is obtained.

実施例6
一定量のポリエチレンオキシドをジメチルアセトアミド中に加え、高速ミキサーで液相混合を行い、攪拌回転速度は5000rpm、攪拌時間は20分間、温度は80℃であり、その後炭素含有量が99.9%以上、粒子径が3〜40μmである球状天然黒鉛を前記混合物中に加え、そのうちポリエチレンオキシドと球状天然黒鉛の質量比が18:100であり、続けて高速ミキサーで液相混合を行い、攪拌回転速度は5000rpm、攪拌時間は120分間、使用される溶媒のジメチルアセトアミドと球状天然黒鉛の質量比が12:100であり、噴霧乾燥機で乾燥し、入口温度は280℃、出口温度は120℃、圧力は80MPa、供給頻度は30Hzで、混合材料を得る。得られた混合材料を窒素ガスの雰囲気下に配置し、700℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。表面に不規則な炭素材料被覆層を有する天然黒鉛、導電性人造黒鉛粉末、炭素繊維を100:5:3の質量比でボールミルにて均一に混合し、ボールミルの回転速度は1200rpm、処理時間は120分間である。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が13.8μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 6
A certain amount of polyethylene oxide is added to dimethylacetamide, and liquid phase mixing is performed with a high-speed mixer. The rotation speed is 5000 rpm, the stirring time is 20 minutes, the temperature is 80 ° C., and the carbon content is 99.9% or more. In addition, spherical natural graphite having a particle size of 3 to 40 μm is added to the mixture, and the mass ratio of polyethylene oxide to spherical natural graphite is 18: 100, followed by liquid phase mixing with a high-speed mixer, stirring rotation speed Is 5000 rpm, the stirring time is 120 minutes, the mass ratio of dimethylacetamide, which is the solvent used, and spherical natural graphite is 12: 100, and is dried with a spray dryer, the inlet temperature is 280 ° C., the outlet temperature is 120 ° C., and the pressure Is 80 MPa, the supply frequency is 30 Hz, and a mixed material is obtained. The obtained mixed material is placed in an atmosphere of nitrogen gas, carbonized at 700 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. Natural graphite having an irregular carbon material coating layer on the surface, conductive artificial graphite powder, and carbon fiber are uniformly mixed in a ball mill at a mass ratio of 100: 5: 3, the rotation speed of the ball mill is 1200 rpm, and the processing time is 120 minutes. The obtained product is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 13 A lithium ion battery graphite negative electrode material of .8 μm is obtained.

実施例7
炭素含有量が99.9%以上、粒子径が3〜40μmである人造黒鉛を、VC反応釜に入れ、人造黒鉛との質量比が6:100であるタールピッチを導入して固相混合し、回転速度が800rpm、混合時間が120分間で、混合材料を得る。前記混合材料を窒素ガスの雰囲気下に配置し、900℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する人造黒鉛を得る。表面に不規則な炭素材料被覆層を有する人造黒鉛、導電性天然黒鉛粉末を100:15の質量比で融合機にて均一に混合させ、そのうち融合機の回転速度は1800rpmであり、処理時間は120分間である。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が15.3μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 7
Artificial graphite having a carbon content of 99.9% or more and a particle diameter of 3 to 40 μm is placed in a VC reaction kettle, and a tar pitch with a mass ratio of 6: 100 to the artificial graphite is introduced and solid phase mixed. The mixed material is obtained at a rotation speed of 800 rpm and a mixing time of 120 minutes. The mixed material is placed in an atmosphere of nitrogen gas, carbonized at 900 ° C., and then the reaction product is cooled to room temperature to obtain artificial graphite having an irregular carbon material coating layer on the surface. Artificial graphite having an irregular carbon material coating layer on its surface and conductive natural graphite powder are uniformly mixed in a fusion machine at a mass ratio of 100: 15, of which the rotation speed of the fusion machine is 1800 rpm, and the processing time is 120 minutes. The obtained product is sieved and demagnetized, the number of times of demagnetization is 3, the magnetic induction strength is 10000 Gs, the processing temperature is 10 ° C., the number of times of hammering the electromagnetic hammer is 20 times / second, and the average particle size is 15 A lithium ion battery graphite negative electrode material having a thickness of .3 μm is obtained.

実施例8
炭素含有量が99.9%以上、粒子径が3〜40μmであるブロック状天然黒鉛を、混練機中に入れ、ブロック状天然黒鉛との質量比が10:100である石油ピッチを導入して固相混合した。回転速度は180rpm、混合時間は60分間、温度は80℃で、混合材料を得る。前記混合材料を窒素ガスの雰囲気下に配置し、1300℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。表面に不規則な炭素材料被覆層を有する天然黒鉛、導電性人造黒鉛粉末、分散剤を100:12:5の質量比で高速ナノ分散にて均一に混合させ、そのうち高速ナノ分散の回転速度は2500rpm、処理時間は240分間であり、分散剤はポリスチレンスルホン酸アンモニウムである。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が12.1μmであるリチウムイオン電池黒鉛負極材料を得る。
Example 8
Block-shaped natural graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm is placed in a kneader, and a petroleum pitch having a mass ratio with the block-shaped natural graphite of 10: 100 is introduced. Solid phase mixed. The rotation speed is 180 rpm, the mixing time is 60 minutes, the temperature is 80 ° C., and a mixed material is obtained. The mixed material is placed in an atmosphere of nitrogen gas, carbonized at 1300 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. Natural graphite having an irregular carbon material coating layer on the surface, conductive artificial graphite powder, and a dispersant are uniformly mixed at a mass ratio of 100: 12: 5 by high-speed nanodispersion, and the rotation speed of the high-speed nanodispersion is 2500 rpm, the processing time is 240 minutes, and the dispersing agent is ammonium polystyrene sulfonate. The obtained material is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 12 A lithium ion battery graphite negative electrode material having a thickness of 0.1 μm is obtained.

比較実施例1
炭素含有量が99.9%以上、粒子径が3〜40μmであるブロック状天然黒鉛を、VC反応釜中に入れ、天然黒鉛との質量比が8:100である石油ピッチを導入して固相混合した。回転速度は1200rpm、混合時間は120分間で、混合材料を得る。前記混合材料を窒素ガスの雰囲気下に配置し、1200℃で炭素化処理を行い、その後反応産物を常温まで冷却し、表面に不規則な炭素材料被覆層を有する天然黒鉛を得る。得られた物に対して篩分け、消磁を行い、消磁回数は3回、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、平均粒径が12.5μmであるリチウムイオン電池黒鉛負極材料を得る。
Comparative Example 1
Block-shaped natural graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm is placed in a VC reaction kettle and introduced into a petroleum pitch having a mass ratio of 8: 100 to natural graphite. Phase mixed. The rotating speed is 1200 rpm and the mixing time is 120 minutes, and the mixed material is obtained. The mixed material is placed in an atmosphere of nitrogen gas, carbonized at 1200 ° C., and then the reaction product is cooled to room temperature to obtain natural graphite having an irregular carbon material coating layer on the surface. The obtained material is sieved and demagnetized, the demagnetization frequency is 3 times, the magnetic induction strength is 10000 Gs, the treatment temperature is 10 ° C., the electromagnetic hammer hit frequency is 20 times / second, and the average particle size is 12 A lithium ion battery graphite negative electrode material having a thickness of 0.5 μm is obtained.

比較実施例2
炭素含有量が99.9%以上、粒子径が3〜40μmである球状天然黒鉛とナノ導電剤SPを100:3の質量比でメカニカルボールミリングにて均一に混合し、そのうちボールミルの回転速度は1200rpm、処理時間は120分間である。得られた物に対して篩分け、消磁を行い、消磁回数は3回行い、磁気誘導強度は10000Gs、処理温度は10℃、電磁式ハンマー打撃回数は20回/秒であり、そして平均粒径が14.6μmであるリチウムイオン電池黒鉛負極材料を得る。
Comparative Example 2
Spherical natural graphite having a carbon content of 99.9% or more and a particle size of 3 to 40 μm and nano-conductive agent SP are uniformly mixed at a mass ratio of 100: 3 by mechanical ball milling, of which the rotational speed of the ball mill is 1200 rpm, processing time is 120 minutes. The obtained material is sieved, demagnetized, the number of demagnetization is three times, the magnetic induction strength is 10,000 Gs, the treatment temperature is 10 ° C., the number of times of hammering the electromagnetic hammer is 20 times / second, and the average particle diameter A lithium ion battery graphite negative electrode material having a particle size of 14.6 μm is obtained.

図1から、導電剤が被覆黒鉛材料の表面に均一に分散しているということが分かる。本発明の機械的改質方法によれば、導電剤の使用効率と材料表面での安定性を大幅に向上させることができ、これによって負極活物質と電解液の相容性を向上させ、リチウムイオン電池の低温特性とレート特性を改善させることができる。   It can be seen from FIG. 1 that the conductive agent is uniformly dispersed on the surface of the coated graphite material. According to the mechanical reforming method of the present invention, the use efficiency of the conductive agent and the stability on the surface of the material can be greatly improved, thereby improving the compatibility between the negative electrode active material and the electrolyte, The low temperature characteristics and rate characteristics of the ion battery can be improved.

本発明の方法により製造された車載用及びエネルギー貯蔵用リチウムイオン電池負極材料は、導電剤の添加及び均一な分散により、図2から、機械的改質処理を採用した被覆黒鉛材料は、導電剤を添加しない比較例1と比べて、導電率が著しく優れ、60〜180S/cm向上したことが分かる。   The lithium ion battery negative electrode material for in-vehicle use and energy storage manufactured by the method of the present invention is obtained by adding a conductive agent and uniformly dispersing, and from FIG. It can be seen that the conductivity is remarkably excellent and improved by 60 to 180 S / cm as compared with Comparative Example 1 in which no is added.

本発明の機械的改質方法によれば、図3から、導電剤の均一な分散が導電剤の使用効率と材料表面での安定性を大幅に向上させ、リチウムイオン電池の低温特性を改善し、全ての実施例の低温特性はいずれも比較例1と2より優れ、全ての実施例の25℃低温回復率が98.0%より高く、従来の技術に比べて8.0%以上向上させていることが分かる。   According to the mechanical reforming method of the present invention, it can be seen from FIG. 3 that the uniform dispersion of the conductive agent greatly improves the use efficiency of the conductive agent and the stability on the material surface, and improves the low temperature characteristics of the lithium ion battery. The low temperature characteristics of all examples are superior to those of Comparative Examples 1 and 2, and the low temperature recovery rate at 25 ° C. of all examples is higher than 98.0%, which is improved by 8.0% or more compared to the conventional technology. I understand that

本発明の方法により製造した車載用及びエネルギー貯蔵用リチウムイオン電池負極材料は、形態がS:4800走査型電子顕微鏡により測定し、導電率がMCP−PD51粉末導電率測定システムにより測定した。   The lithium ion battery negative electrode material for in-vehicle use and energy storage manufactured by the method of the present invention was measured by S: 4800 scanning electron microscope and the conductivity was measured by MCP-PD51 powder conductivity measurement system.

通常の評価用測定方法を用いて、実施例及び比較実施例の方法により製造された車載用及びエネルギー貯蔵用リチウムイオン電池負極材料の半電池特性を測定する。   Using normal measurement methods for evaluation, the half-cell characteristics of the in-vehicle and energy storage lithium-ion battery negative electrode materials produced by the methods of Examples and Comparative Examples are measured.

各実施例及び比較実施例の半電池結果は以下の表1により示す。   The half cell results for each example and comparative example are shown in Table 1 below.

本発明に使用する全電池試験方法は以下の通りである。実施例1〜8及び比較例1〜2を負極材料とし、CMCとSBRをバインダーとし、Super−Pを導電剤とし、負極材料とバインダーと導電剤を95.8:3.2:1.0の質量比で混合して、銅箔の集電体に塗布し、乾燥、プレス、切取りを行ない負極極片を得る。さらにLiCoO2を正極材料とし、PVDFをバインダーとし、Super−Pを導電剤とし、正極材料とバインダーと導電剤を94.5:1.5:4.0の質量比で混合して、アルミ箔の集電体に塗布し、通常の方法で乾燥、プレス、切取りを行ない正極極片を得る。前記マッチングする正負極極片に対して、(PE又はPP)をセパレーターとし、正極/セパレーター/負極の順番で上から下に置き、その後レート特性が優れた円筒形18650セルに巻き取れる。セルを鋼製ケーシングに組み込んで、密封してから乾燥のアルゴンガスグローブボックスにおいてセル注液口から適量の電解液(lmol/L LiPF6/DMC+EMC+EC,1:1:1)を注入する。開口形成し、0.1Cで50%S℃まで充電し、4〜6時間静置後、再び1Cで3サイクル充放電させ、25℃の電池容量が得られ、再び室温で0.5C充電し、低温(−30℃、−20℃、−10℃)で0.5C放電する。低温測定終了後、電池を室温に放置して一回充放電させ、低温回復率を計算する。具体的な結果は表2に示した通りである。 The whole battery test method used in the present invention is as follows. Examples 1 to 8 and Comparative Examples 1 to 2 were used as negative electrode materials, CMC and SBR were used as binders, Super-P was used as a conductive agent, and negative electrode materials, a binder, and a conductive agent were used as 95.8: 3.2: 1.0. Are mixed on a current collector of copper foil, dried, pressed and cut to obtain a negative electrode pole piece. Furthermore, LiCoO 2 is used as a positive electrode material, PVDF is used as a binder, Super-P is used as a conductive agent, and the positive electrode material, the binder, and the conductive agent are mixed at a mass ratio of 94.5: 1.5: 4.0 to obtain an aluminum foil. The positive electrode piece is obtained by applying, drying, pressing and cutting by a conventional method. With respect to the matching positive and negative electrode pieces, (PE or PP) is used as a separator, placed in the order of positive electrode / separator / negative electrode, and then wound on a cylindrical 18650 cell having excellent rate characteristics. The cell is assembled in a steel casing and sealed, and then an appropriate amount of electrolyte (lmol / L LiPF6 / DMC + EMC + EC, 1: 1: 1) is injected from the cell inlet in a dry argon gas glove box. Opened, charged at 0.1C to 50% S ° C, allowed to stand for 4-6 hours, then charged and discharged again at 1C for 3 cycles to obtain a battery capacity of 25 ° C, and charged again at room temperature for 0.5C. Discharge 0.5C at low temperature (-30 ° C, -20 ° C, -10 ° C). After completion of the low temperature measurement, the battery is left at room temperature to charge and discharge once, and the low temperature recovery rate is calculated. Specific results are as shown in Table 2.

以下の方法で低温回復率を計算する。
低温回復率=低温測定前25℃電池容量/低温測定後25℃電池回復容量×100%
The low temperature recovery rate is calculated by the following method.
Low temperature recovery rate = 25 ° C. battery capacity before low temperature measurement / 25 ° C. battery recovery capacity after low temperature measurement × 100%

本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (10)

車載用及びエネルギー貯蔵用リチウムイオン電池負極材料の製造方法であって、有機炭素源で黒鉛系材料を被覆して、混合材料を得る工程(1)、
混合材料に対して500〜1800℃で炭素化処理を行い、表面に不規則な炭素材料被覆層を有する黒鉛材料を得る工程(2)、
工程(2)で得られた材料と導電性材料に対してメカニカルミル法での改質処理を行う工程(3)、及び
篩分け、消磁してリチウムイオン電池負極材料を得る工程(4)を含む車載用及びエネルギー貯蔵用リチウムイオン電池負極材料の製造方法。
A method for producing a lithium ion battery negative electrode material for in-vehicle use and energy storage, wherein a graphite-based material is coated with an organic carbon source to obtain a mixed material (1),
(2) a step of carbonizing the mixed material at 500 to 1800 ° C. to obtain a graphite material having an irregular carbon material coating layer on the surface;
A step (3) of performing a modification process by a mechanical mill method on the material and the conductive material obtained in the step (2), and a step (4) of obtaining a lithium ion battery negative electrode material by sieving and demagnetizing. The manufacturing method of the lithium ion battery negative electrode material for vehicle-mounted and energy storage containing.
前記黒鉛系材料は天然黒鉛、人造黒鉛又はカーボンマイクロビーズのうちの1種又は少なくとも2種の組合せであり、好ましくは、前記黒鉛系材料の固定炭素含有率は99.9%以上であり、アスペクト比は1.0〜2.5であり、平均粒径は1〜30μmであり、Dmax≦40.0umであり、比表面積は2.0〜20.0m2/gであり、粉末プレス密度は1.45〜2.05g/cm3であり、層面間隔は0.3354〜0.3363nmであり、菱形構造含有量は1.0〜35.0%であり、ID/IGは0.1〜1.0であり、I110/I004は0.05〜0.95であり、Lcは200.0〜1000.0nmであり、Laは800.0〜1800.0nmであり、磁性物質含有量は0.5ppm以下であり、金属異物粒子の大きさは100.0μm以下であり、プレス密度は1.5g/ccである場合の粉末導電率は50.0〜800.0S/cmであることを特徴とする請求項1に記載の方法。 The graphite material is one or a combination of at least two of natural graphite, artificial graphite and carbon microbeads. Preferably, the fixed carbon content of the graphite material is 99.9% or more. The ratio is 1.0 to 2.5, the average particle diameter is 1 to 30 μm, D max ≦ 40.0 um, the specific surface area is 2.0 to 20.0 m 2 / g, and the powder press density Is 1.45 to 2.05 g / cm 3 , the layer spacing is 0.3354 to 0.3363 nm, the rhomboid structure content is 1.0 to 35.0%, and I D / I G is 0 0.1 to 1.0, I 110 / I 004 is 0.05 to 0.95, Lc is 20.0 to 10.0 nm, La is 80.0 to 180.0 nm, The substance content is 0.5 ppm or less, and the size of the foreign metal particles is 100.0 μm or less. Scan density method according to claim 1, wherein the powder conductivity when it is 1.5 g / cc is 50.0~800.0S / cm. 前記有機炭素源はタールピッチ、石油ピッチ、メソピッチ、高分子材料又は重合体のうちの1種又は少なくとも2種の組合せであり、
好ましくは、前記導電性材料はナノ導電剤及び/又は導電性黒鉛であり、好ましくは、前記ナノ導電剤はCNTs、炭素繊維、ナノ黒鉛又はグラフェンのうちの1種又は少なくとも2種の組合せであり、好ましくは、前記ナノ導電剤の平均寸法は10〜600.0nmであり、比表面積SSAは2.0〜60.0m2/gであり、好ましくは、前記ナノ導電剤の平均寸法は10.0〜300.0nmであり、好ましくは、前記CNTと炭素繊維の直径は1〜300nmであり、長さは1〜20μmであり、好ましくは、前記グラフェンの黒鉛層の数は1〜100であり、好ましくは、前記ナノ導電剤はナノ導電性液体の形で存在し、好ましくは、前記ナノ導電性液体におけるナノ導電剤の含有量は0.5〜20wt%であり、好ましくは、前記ナノ導電性液体における分散溶媒は水、メタノール、エタノール、アセトン又はクロロホルムのうちの1種又は少なくとも2種の組合せであることを特徴とする請求項1又は2に記載の方法。
The organic carbon source is one or a combination of at least two of tar pitch, petroleum pitch, meso pitch, polymer material or polymer,
Preferably, the conductive material is a nano conductive agent and / or conductive graphite, and preferably the nano conductive agent is one or a combination of at least two of CNTs, carbon fiber, nanographite, or graphene. Preferably, the nano conductive agent has an average size of 10 to 60.0 nm and a specific surface area SSA of 2.0 to 60.0 m 2 / g. Preferably, the nano conductive agent has an average size of 10. The diameter of the CNT and the carbon fiber is 1 to 300 nm, the length is 1 to 20 μm, and preferably the number of the graphite layers of the graphene is 1 to 100 Preferably, the nano-conductive agent is present in the form of a nano-conductive liquid, and preferably the content of the nano-conductive agent in the nano-conductive liquid is 0.5 to 20 wt%. The method according to claim 1 or 2 dispersed solvent in sexual liquid is characterized water, methanol, ethanol, that is one or at least two combinations of acetone or chloroform.
前記導電性材料は導電性天然黒鉛粉末、導電性人造黒鉛粉末又はナノ導電性炭素ブラックのうちの1種又は少なくとも2種の組合せであり、好ましくは、前記導電性材料はシート状又はブロック状を呈し、長短径比は1.3〜4.5であり、平均粒径は0.5〜12.0μmであり、比表面積SSAは2.0〜60.0m2/gであることを特徴とする請求項1〜3のいずれか1項に記載の方法。 The conductive material is one or a combination of at least two of conductive natural graphite powder, conductive artificial graphite powder, and nanoconductive carbon black. Preferably, the conductive material has a sheet shape or a block shape. The major and minor axis ratio is 1.3 to 4.5, the average particle diameter is 0.5 to 12.0 μm, and the specific surface area SSA is 2.0 to 60.0 m 2 / g. The method according to any one of claims 1 to 3. 工程(1)に記載の被覆は固相被覆又は液相被覆であり、
工程(2)に記載の炭素化処理温度は600〜1600℃であり、特に好ましくは700〜1500℃であることを特徴とする請求項1〜4のいずれか1項に記載の方法。
The coating described in step (1) is a solid phase coating or a liquid phase coating,
The method according to any one of claims 1 to 4, wherein the carbonization temperature in the step (2) is 600 to 1600 ° C, particularly preferably 700 to 1500 ° C.
工程(3)に記載のメカニカルミル法での改質処理はボールミリング処理、融合処理又は高速ナノ分散処理であり、好ましくは、前記ボールミリング改質処理時間は5.0分間以上であり、処理速度は200〜4000r/minであり、好ましくは、前記ボールミリング改質処理時間は5.0〜1200.0分間であり、好ましくは、前記ボールミリング改質処理に採用したボールの直径は0.1〜3.0mmであり、ボールの種類はアルミナボール、酸化ジルコニウム又はコランダムボールであり、好ましくは、前記融合処理時間は20.0〜800.0分間であり、回転速度は800〜3000r/minであり、キャビティ隙間は0.1〜2.0cmであり、温度は10〜80℃であり、好ましくは、前記融合処理時間は20.0〜300.0分間であり、好ましくは、前記融合処理回転速度は800〜2600r/minであり、好ましくは、前記融合処理のキャビティ隙間は0.1〜1.0cmであり、好ましくは、前記融合処理温度は20〜60℃であり、好ましくは、前記高速ナノ分散時間は20.0〜1200.0分間であり、回転速度は200〜8000r/minであり、好ましくは、前記高速ナノ分散は分散剤を採用し、好ましくは、前記導電性材料と分散剤の質量比は(1:0.1)〜(1:1)であり、特に好ましくは(1:0.3)〜(1:0.8)であり、好ましくは、前記分散剤はナトリウムカルボキシメチルセルロース、リグニンスルホン酸ナトリウム、リグニンスルホン酸マグネシウム、ポリスチレンスルホン酸ナトリウム、ポリスチレンスルホン酸アンモニウム、メチレンジナフチルスルホン酸ナトリウム又はポリアクリルアミドのうちの1種又は少なくとも2種の組合せであり、
好ましくは、工程(4)に記載の消磁の磁気誘導強度は3000〜30000Gsであり、処理温度は10〜80℃であり、消磁時間は10〜120sであることを特徴とする請求項1〜5のいずれか1項に記載の方法。
The modification treatment by the mechanical mill method described in the step (3) is a ball milling treatment, a fusion treatment or a high-speed nano-dispersion treatment, and preferably the ball milling modification treatment time is 5.0 minutes or more. The speed is 200 to 4000 r / min, preferably the ball milling reforming treatment time is 5.0 to 120.0 minutes, and preferably the diameter of the ball employed in the ball milling reforming treatment is 0.00. 1 to 3.0 mm, the type of the ball is alumina ball, zirconium oxide or corundum ball, preferably the fusion treatment time is 20.0 to 80.0 minutes and the rotation speed is 800 to 3000 r / min. The cavity gap is 0.1 to 2.0 cm, the temperature is 10 to 80 ° C., and preferably, the fusion treatment time is 20.0 to 30.0 minutes. Yes, preferably, the fusion process rotation speed is 800-2600 r / min, preferably the fusion process cavity gap is 0.1-1.0 cm, preferably, the fusion process temperature is 20-60. The high-speed nano-dispersion time is 20.0 to 120.0 minutes, the rotation speed is 200 to 8000 r / min, and preferably the high-speed nano-dispersion employs a dispersant, The mass ratio of the conductive material to the dispersant is (1: 0.1) to (1: 1), particularly preferably (1: 0.3) to (1: 0.8), Preferably, the dispersant is sodium carboxymethyl cellulose, sodium lignin sulfonate, magnesium lignin sulfonate, sodium polystyrene sulfonate, ammonium polystyrene sulfonate, Is one or at least two combinations of the switch range naphthyl sodium sulfonate or polyacrylamide,
Preferably, the magnetic induction strength of demagnetization described in the step (4) is 3000 to 30000 Gs, the processing temperature is 10 to 80 ° C., and the demagnetization time is 10 to 120 s. The method of any one of these.
請求項1〜6のいずれか1項に記載の方法により製造されることを特徴とする車載用及びエネルギー貯蔵用リチウムイオン電池負極材料。   A lithium ion battery negative electrode material for in-vehicle use and energy storage produced by the method according to any one of claims 1 to 6. 黒鉛系材料、基体の表面における不規則な炭素材料被覆層及び導電性材料からなり、且つ導電性材料が均一に黒鉛粒子表面にコーティングして嵌め込まれることを特徴とする請求項7に記載の車載用及びエネルギー貯蔵用リチウムイオン電池負極材料。   8. The in-vehicle apparatus according to claim 7, wherein the in-vehicle structure is composed of a graphite-based material, an irregular carbon material coating layer on the surface of the substrate, and a conductive material, and the conductive material is uniformly coated on the surface of the graphite particles. Lithium ion battery negative electrode materials for energy use and energy storage. 前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における導電性材料の含有量は0.1〜20.0wt%であり、更に好ましくは0.5〜18.0wt%であり、特に好ましくは1〜15.0wt%であり、
好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における不規則な炭素材料被覆層の含有量は0.1〜20.0wt%であり、更に好ましくは0.5〜18.0wt%であり、特に好ましくは1〜15.0wt%であり、
好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における不規則な炭素材料被覆層と黒鉛系材料の質量比は(0.1:100)〜(20.0:100)であり、更に好ましくは(0.5:100)〜(18.0:100)であり、特に好ましくは(0.5:100)〜(15.0:100)であり、
好ましくは、前記車載用及びエネルギー貯蔵用リチウムイオン電池負極材料における黒鉛系材料と導電性材料の質量比は(10:0.01)〜(10:10.0)であり、更に好ましくは(10:0.1)〜(10:8.0)であり、特に好ましくは(10:0.5)〜(10:6.0)であることを特徴とする請求項7又は8に記載の車載用及びエネルギー貯蔵用リチウムイオン電池負極材料。
The content of the conductive material in the lithium ion battery negative electrode material for in-vehicle use and energy storage is 0.1 to 20.0 wt%, more preferably 0.5 to 18.0 wt%, and particularly preferably 1 to 1 wt%. 15.0 wt%,
Preferably, the content of the irregular carbon material coating layer in the in-vehicle and energy storage lithium ion battery negative electrode material is 0.1 to 20.0 wt%, more preferably 0.5 to 18.0 wt%. Yes, particularly preferably 1 to 15.0 wt%,
Preferably, the mass ratio of the irregular carbon material coating layer to the graphite-based material in the in-vehicle and energy storage lithium ion battery negative electrode material is (0.1: 100) to (20.0: 100), Preferably (0.5: 100) to (18.0: 100), particularly preferably (0.5: 100) to (15.0: 100),
Preferably, the mass ratio of the graphite-based material to the conductive material in the in-vehicle and energy storage lithium ion battery negative electrode materials is (10: 0.01) to (10: 10.0), and more preferably (10 : 0.1) to (10: 8.0), and particularly preferably (10: 0.5) to (10: 6.0). Lithium ion battery negative electrode materials for energy use and energy storage.
請求項7〜9のいずれか1項に記載の車載用及びエネルギー貯蔵用リチウムイオン電池負極材料を含むことを特徴とする車載用及びエネルギー貯蔵用リチウムイオン電池。   A lithium ion battery for in-vehicle use and energy storage, comprising the negative electrode material for in-vehicle use and energy storage according to any one of claims 7 to 9.
JP2014156362A 2013-11-08 2014-07-31 Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof Active JP6152076B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310554920.3A CN103560247B (en) 2013-11-08 2013-11-08 Vehicle-mounted and energy-storage lithium ion battery cathode material and preparation method thereof
CN201310554920.3 2013-11-08

Publications (2)

Publication Number Publication Date
JP2015095455A true JP2015095455A (en) 2015-05-18
JP6152076B2 JP6152076B2 (en) 2017-06-21

Family

ID=50014448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156362A Active JP6152076B2 (en) 2013-11-08 2014-07-31 Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6152076B2 (en)
KR (1) KR20150053693A (en)
CN (1) CN103560247B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156358A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Method for producing graphene based composite negative electrode material, negative electrode material produced thereby, and lithium ion secondary battery
CN106410264A (en) * 2016-06-23 2017-02-15 河南大学 Molten salt preparation method of lithium ion battery negative electrode material zinc titanate
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
CN107758653A (en) * 2016-08-17 2018-03-06 宁波杉杉新材料科技有限公司 A kind of preparation method of lithium ion battery composite particles graphite cathode material
CN108039493A (en) * 2017-11-22 2018-05-15 深圳市德方纳米科技股份有限公司 A kind of lithium ion battery electrocondution slurry and its preparation method and application
CN108598437A (en) * 2018-05-03 2018-09-28 合肥宸翊商贸有限公司 Lithium ion battery negative material and preparation method thereof suitable for low temperature
CN113078000A (en) * 2021-04-01 2021-07-06 浙江科技学院 Preparation method of flexible electrode material of high-load lignin carbon spheres
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof
CN114874576A (en) * 2021-02-05 2022-08-09 深圳市研一新材料有限责任公司 High molecular polymer composite coating material, preparation method and application thereof
CN115117355A (en) * 2022-08-24 2022-09-27 湖南金阳烯碳新材料股份有限公司 Preparation method and application of negative electrode material for secondary battery
CN115692910A (en) * 2022-12-28 2023-02-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery
CN116283292A (en) * 2021-12-21 2023-06-23 湖南中科星城石墨有限公司 Quick-charge graphite negative electrode material, preparation method thereof and lithium ion battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124431B (en) * 2014-08-12 2016-11-23 长沙赛维能源科技有限公司 A kind of lithium ion battery graphite cathode material and preparation method thereof
CN106207180B (en) * 2016-07-19 2019-01-15 福建翔丰华新能源材料有限公司 A kind of preparation method of porous hollow graphite material
CN106848468B (en) * 2017-01-25 2019-05-14 天津市捷威动力工业有限公司 A kind of method and apparatus of the cleaning solution preparation hard charcoal coated graphite using recycling
KR102040212B1 (en) 2017-12-14 2019-11-04 자동차부품연구원 Material for electrode of lithium ion secondary battery and methods of fabricating the same
CN110854371A (en) * 2019-11-26 2020-02-28 宁夏百川新材料有限公司 Carbon composite negative electrode material and preparation method thereof
CN112563473A (en) * 2020-12-28 2021-03-26 山东天瀚新能源科技有限公司 Anode material, anode pole piece, preparation method and application
CN113265008B (en) * 2021-07-02 2022-03-01 重庆力宏精细化工有限公司 High-viscosity lithium carboxymethyl cellulose and preparation method and application thereof
CN115117366B (en) * 2022-08-29 2022-11-18 天津凯普瑞特新能源科技有限公司 Carbon-coated aluminum foil, manufacturing process thereof and lithium ion battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196609A (en) * 2002-12-19 2004-07-15 Jfe Chemical Corp Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005097010A (en) * 2003-09-22 2005-04-14 Showa Denko Kk Carbon material, production method therefor and its application
JP2005294011A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006077214A (en) * 2004-09-13 2006-03-23 Lignyte Co Ltd Carbon-phenol resin composite material, carbon-phenol resin cured composite material, carbon-phenol resin carbonized composite material, fuel cell separator, conductive resin composition, cell electrode and electric double layer capacitor
JP2008186732A (en) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2009158105A (en) * 2007-12-25 2009-07-16 Tokai Carbon Co Ltd Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
JP2010218758A (en) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
CN101887967A (en) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery cathode material and preparation method thereof
JP2012519124A (en) * 2009-03-02 2012-08-23 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
WO2012140790A1 (en) * 2011-04-13 2012-10-18 エス・イー・アイ株式会社 Electrode material for lithium secondary battery and lithium secondary battery
WO2013002162A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Nonaqueous electrolyte secondary cell and method for manufacturing same
JP2013506233A (en) * 2010-07-02 2013-02-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Method for producing lithium ion battery negative electrode material
JP2013201104A (en) * 2011-03-29 2013-10-03 Mitsubishi Chemicals Corp Negative electrode carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP2013222641A (en) * 2012-04-18 2013-10-28 Showa Denko Kk Negative electrode material for lithium ion battery and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624955A (en) * 2003-12-01 2005-06-08 上海杉杉科技有限公司 Method for manufacturing carbon nagtive electrode material of lithium ion cell
KR101154291B1 (en) * 2005-03-23 2012-06-13 니폰 제온 가부시키가이샤 Binder for electrode of nonaqueous electrolyte secondary battery, electrode, and nonaqueous electrolyte secondary battery
CN100350654C (en) * 2005-04-20 2007-11-21 深圳市贝特瑞电子材料有限公司 Cathode material of Li-ion battery and preparation method, battery cathode, battery thereof
CN101412510A (en) * 2007-10-15 2009-04-22 台湾松下能源股份有限公司 Composite graphite for lithium secondary battery and manufacturing method thereof
EP2450985B1 (en) * 2009-07-01 2017-09-27 Zeon Corporation Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196609A (en) * 2002-12-19 2004-07-15 Jfe Chemical Corp Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005097010A (en) * 2003-09-22 2005-04-14 Showa Denko Kk Carbon material, production method therefor and its application
JP2005294011A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006077214A (en) * 2004-09-13 2006-03-23 Lignyte Co Ltd Carbon-phenol resin composite material, carbon-phenol resin cured composite material, carbon-phenol resin carbonized composite material, fuel cell separator, conductive resin composition, cell electrode and electric double layer capacitor
JP2008186732A (en) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2009158105A (en) * 2007-12-25 2009-07-16 Tokai Carbon Co Ltd Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
JP2012519124A (en) * 2009-03-02 2012-08-23 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
JP2010218758A (en) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
CN101887967A (en) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery cathode material and preparation method thereof
JP2013506233A (en) * 2010-07-02 2013-02-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Method for producing lithium ion battery negative electrode material
JP2013201104A (en) * 2011-03-29 2013-10-03 Mitsubishi Chemicals Corp Negative electrode carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
WO2012140790A1 (en) * 2011-04-13 2012-10-18 エス・イー・アイ株式会社 Electrode material for lithium secondary battery and lithium secondary battery
WO2013002162A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Nonaqueous electrolyte secondary cell and method for manufacturing same
JP2013222641A (en) * 2012-04-18 2013-10-28 Showa Denko Kk Negative electrode material for lithium ion battery and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156358A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Method for producing graphene based composite negative electrode material, negative electrode material produced thereby, and lithium ion secondary battery
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
JP2019520674A (en) * 2016-06-13 2019-07-18 日本電気株式会社 Fast chargeable lithium ion battery with nanocarbon coated anode material and imide anion based lithium salt electrolyte
CN106410264A (en) * 2016-06-23 2017-02-15 河南大学 Molten salt preparation method of lithium ion battery negative electrode material zinc titanate
CN107758653A (en) * 2016-08-17 2018-03-06 宁波杉杉新材料科技有限公司 A kind of preparation method of lithium ion battery composite particles graphite cathode material
CN108039493A (en) * 2017-11-22 2018-05-15 深圳市德方纳米科技股份有限公司 A kind of lithium ion battery electrocondution slurry and its preparation method and application
CN108039493B (en) * 2017-11-22 2020-06-23 深圳市德方纳米科技股份有限公司 Conductive slurry for lithium ion battery and preparation method and application thereof
CN108598437A (en) * 2018-05-03 2018-09-28 合肥宸翊商贸有限公司 Lithium ion battery negative material and preparation method thereof suitable for low temperature
CN114874576A (en) * 2021-02-05 2022-08-09 深圳市研一新材料有限责任公司 High molecular polymer composite coating material, preparation method and application thereof
CN114874576B (en) * 2021-02-05 2023-08-22 深圳市研一新材料有限责任公司 High-molecular polymer composite coating material, preparation method and application thereof
CN113078000A (en) * 2021-04-01 2021-07-06 浙江科技学院 Preparation method of flexible electrode material of high-load lignin carbon spheres
CN113078000B (en) * 2021-04-01 2022-08-30 浙江科技学院 Preparation method of flexible electrode material of high-load lignin carbon spheres
CN116283292A (en) * 2021-12-21 2023-06-23 湖南中科星城石墨有限公司 Quick-charge graphite negative electrode material, preparation method thereof and lithium ion battery
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof
CN114804095B (en) * 2022-04-27 2023-12-12 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micropowder waste, and preparation method and application thereof
CN115117355A (en) * 2022-08-24 2022-09-27 湖南金阳烯碳新材料股份有限公司 Preparation method and application of negative electrode material for secondary battery
CN115692910A (en) * 2022-12-28 2023-02-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery
CN115692910B (en) * 2022-12-28 2023-03-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery

Also Published As

Publication number Publication date
JP6152076B2 (en) 2017-06-21
KR20150053693A (en) 2015-05-18
CN103560247A (en) 2014-02-05
CN103560247B (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6152076B2 (en) Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof
Zheng et al. Fabrication and understanding of Cu 3 Si-Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries
KR101687288B1 (en) Silicon based Composite Anode Material for Lithium Ion Battery and its Preparation Method and Battery
Wu et al. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries
JP5864687B2 (en) Method for producing graphene-based composite negative electrode material, and manufactured negative electrode material and lithium ion secondary battery
JP5509458B2 (en) Negative electrode material and manufacturing method thereof
CN107369823A (en) A kind of lithium ion battery artificial composite cathode material of silicon/carbon/graphite and preparation method thereof
Gurunathan et al. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders
CN112573923A (en) High-rate lithium ion battery artificial graphite negative electrode material and preparation method thereof
CN111224078A (en) Silicon-based composite negative electrode material, preparation method thereof and lithium ion battery negative electrode
CN104140093B (en) Ion secondary battery cathode material lithium and preparation method thereof
CN106571454B (en) A kind of network-like silicon/graphite composite material and preparation method for lithium battery
CN105576210A (en) Silicon and carbon composite material for lithium ion battery anode and preparation method thereof
CN108448080A (en) A kind of graphene coated silicon/metal composite negative pole material and preparation method thereof
Jin et al. Pomegranate-like Li3VO4/3D graphene networks nanocomposite as lithium ion battery anode with long cycle life and high-rate capability
WO2016169150A1 (en) Method for graphite fine powder to be doped and used as negative electrode material
Xie et al. A facile fabrication of micro/nano-sized silicon/carbon composite with a honeycomb structure as high-stability anodes for lithium-ion batteries
Zhu et al. Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability
Zou et al. Sodium Titanate/Carbon (Na2Ti3O7/C) Nanofibers via Electrospinning Technique as the Anode of Sodium‐ion Batteries
Shao et al. Low pressure preparation of spherical Si@ C@ CNT@ C anode material for lithium-ion batteries
CN103915609A (en) Silicon-silicon oxide-carbon composite material, lithium ion secondary battery anode material, preparation methods of two and application of composite material
Mu et al. Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage
Liu et al. Rational-design micro-nanostructure of porous carbon film/silicon nanowire/graphite microsphere composites for high-performance lithium-ion batteries
CN112768689A (en) Graphene modified graphite negative electrode material and preparation method thereof
JP7119131B2 (en) Natural graphite, modified natural graphite material prepared from natural graphite, preparation method and use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170526

R150 Certificate of patent or registration of utility model

Ref document number: 6152076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250