JP5494746B2 - Method for producing particle aggregate - Google Patents

Method for producing particle aggregate Download PDF

Info

Publication number
JP5494746B2
JP5494746B2 JP2012158944A JP2012158944A JP5494746B2 JP 5494746 B2 JP5494746 B2 JP 5494746B2 JP 2012158944 A JP2012158944 A JP 2012158944A JP 2012158944 A JP2012158944 A JP 2012158944A JP 5494746 B2 JP5494746 B2 JP 5494746B2
Authority
JP
Japan
Prior art keywords
particle
dispersion
particles
zirconia particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012158944A
Other languages
Japanese (ja)
Other versions
JP2012236763A (en
Inventor
暢 木下
剛 川瀬
徹 具志堅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2012158944A priority Critical patent/JP5494746B2/en
Publication of JP2012236763A publication Critical patent/JP2012236763A/en
Application granted granted Critical
Publication of JP5494746B2 publication Critical patent/JP5494746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、粒子集合体の製造方法に関し、さらに詳しくは、固体酸化物形燃料電池の燃料極または空気極などの材料として好適に用いられ、比較的低温にて焼結が可能であるとともに、焼結によって得られる焼結体の空孔率の制御が可能な粒子集合体の製造方法に関するものである。   The present invention relates to a method for producing a particle assembly. More specifically, the present invention is suitably used as a material for a fuel electrode or an air electrode of a solid oxide fuel cell, and can be sintered at a relatively low temperature. The present invention relates to a method for producing a particle aggregate capable of controlling the porosity of a sintered body obtained by sintering.

近年、自動車の動力源や火力発電所の代替用途として、電解質として酸化物イオン(O2−)の透過性が高い安定化ジルコニアなどの焼結体からなるイオン伝導性セラミックスを用いた固体酸化物形燃料電池(Solid Oxide Fuel Cell、SOFC)が注目されている。この固体酸化物形燃料電池は、エネルギー変換効率が高く、排出ガスがクリーンであり、また、二次電池と比較して充電の手間が不要であるなどの利点がある。   In recent years, as an alternative to automobile power sources and thermal power plants, solid oxide forms using ion-conducting ceramics made of a sintered body such as stabilized zirconia with high oxide ion (O2-) permeability as an electrolyte A fuel cell (Solid Oxide Fuel Cell, SOFC) has attracted attention. This solid oxide fuel cell has advantages such as high energy conversion efficiency, clean exhaust gas, and no need for charging compared to a secondary battery.

固体酸化物形燃料電池では、貯蔵や簡便さの点から、水素の代わりに、メタンや天然ガスそしてメタノールなどの炭化水素が燃料として使用される。すなわち、固体酸化物形燃料電池では、水蒸気とともに炭化水素を直接、燃料極に送り込むことによって、燃料極内において炭化水素を改質し、燃料極で使用する水素を取り出すことができる。   In solid oxide fuel cells, hydrocarbons such as methane, natural gas, and methanol are used as fuel instead of hydrogen from the viewpoint of storage and simplicity. That is, in a solid oxide fuel cell, hydrocarbons can be directly reformed into the fuel electrode together with water vapor to reform the hydrocarbon in the fuel electrode and take out hydrogen used in the fuel electrode.

固体酸化物形燃料電池の出力密度を向上させるためには、例えば、燃料極において、燃料である水素、イットリア安定化ジルコニア(YSZ)などの酸素伝導体からなる固体電解質、および、ニッケルなどの触媒の三相が寄与する反応活性点を増やす必要があり、そのためには、燃料極の比表面積の制御およびニッケル(Ni)の析出と配置状態が重要となる。   In order to improve the output density of a solid oxide fuel cell, for example, a fuel such as hydrogen, a solid electrolyte composed of an oxygen conductor such as yttria-stabilized zirconia (YSZ), and a catalyst such as nickel in the fuel electrode Therefore, it is necessary to increase the reaction active points contributed by the three phases. For this purpose, the control of the specific surface area of the fuel electrode and the deposition and arrangement of nickel (Ni) are important.

固体酸化物形燃料電池用の電極の比表面積を大きくするために、この電極用の材料として粉末状の金属酸化物粒子であって、窪みまたは細孔を有するものが開示されている(例えば、特許文献1参照)。   In order to increase the specific surface area of an electrode for a solid oxide fuel cell, a powdered metal oxide particle having a depression or a pore is disclosed as a material for the electrode (for example, Patent Document 1).

特許第4037899号公報Japanese Patent No. 4037899

しかしながら、特許文献1に開示されている窪みまたは細孔を有する金属酸化物粒子を製造するには、イットリウム、ジルコニウムなどの金属塩、および、熱可塑性樹脂粉末や熱可塑性樹脂繊維からなる造孔剤を含む分散液を調製し、この分散液を噴霧しながら、500〜1200℃の高温で加熱する必要があり、非常に製造コストが嵩むという問題があった。   However, in order to produce metal oxide particles having depressions or pores disclosed in Patent Document 1, a metal salt such as yttrium and zirconium, and a pore-forming agent comprising thermoplastic resin powder and thermoplastic resin fibers There is a problem that the manufacturing cost is very high because it is necessary to prepare a dispersion liquid containing and to spray the dispersion liquid at a high temperature of 500 to 1200 ° C.

本発明は、上記事情に鑑みてなされたものであって、比表面積が大きい固体酸化物形燃料電池用の燃料極または空気極を、簡便かつ安価な方法により作製可能とする粒子集合体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a method for producing a particle assembly that can produce a fuel electrode or an air electrode for a solid oxide fuel cell having a large specific surface area by a simple and inexpensive method. It aims to provide a method.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製し、この粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝して凍結させ、この凍結した粒子分散液の溶媒を昇華させて、除去することにより得られた多孔質球状の粒子集合体は、比表面積が大きい固体酸化物形燃料電池用の燃料極または空気極を、簡便かつ安価な方法により作製可能とすることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that tetragonal zirconia particles or stabilized zirconia particles having a primary particle size of 1 nm to 20 nm and a dispersed particle size of 1 nm to 100 nm are used. A particle dispersion is prepared by dispersing in a solvent, and the particle dispersion is sprayed to obtain a sprayed liquid state. The sprayed liquid particle dispersion is exposed to a cooling substance of −196 ° C. or higher and 0 ° C. or lower. The porous spherical particle aggregate obtained by freezing and sublimating and removing the solvent of the frozen particle dispersion is a fuel electrode or air electrode for a solid oxide fuel cell having a large specific surface area. The inventors have found that it can be produced by a simple and inexpensive method, and have completed the present invention.

すなわち、本発明の粒子集合体の製造方法は、一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなす粒子集合体の製造方法であって、一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下とすることを特徴とする。   That is, the method for producing a particle aggregate according to the present invention is a method for producing a particle aggregate having a primary spherical diameter of 1 to 20 nm and containing tetragonal zirconia particles or stabilized zirconia particles as a main component and forming a porous sphere. A step A of preparing a particle dispersion by dispersing tetragonal zirconia particles or stabilized zirconia particles having a primary particle size of 1 nm to 20 nm and a dispersed particle size of 1 nm to 100 nm in a solvent; Spraying the dispersion to obtain a sprayed liquid state, and exposing the particle dispersion in the sprayed liquid state to a cooling substance of −196 ° C. or more and 0 ° C. or less to freeze the particle dispersion, and And sublimating and removing the solvent of the frozen particle dispersion, and in step A, tetragonal zirconia particles in the particle dispersion. Others the content of the stabilized zirconia particles 1 mass% or more and 70 mass% or less, in step B, characterized by a droplet size of the spray liquid state and 1μm or more and 100μm or less.

本発明の粒子集合体の製造方法によれば、一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなす粒子集合体の製造方法であって、一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下としたので、従来のように、焼結によって焼失する造孔剤などを使用することなく、多孔質球状の粒子集合体を製造できるので、材料コストを低減することができる。また、粒子分散液に含まれる正方晶ジルコニア粒子または安定化ジルコニア粒子の分散粒径や含有率を調整することにより、粒子集合体の空孔率や孔径を制御することができる。さらに、粒子集合体の製造において、粒子を高温で加熱する必要がないので、製造コストを低減することができる。   According to the method for producing a particle aggregate of the present invention, a method for producing a particle aggregate having a primary spherical diameter of 1 to 20 nm and having a tetragonal zirconia particle or a stabilized zirconia particle as a main component and forming a porous sphere. A step A of preparing a particle dispersion by dispersing tetragonal zirconia particles or stabilized zirconia particles having a primary particle size of 1 nm to 20 nm and a dispersed particle size of 1 nm to 100 nm in a solvent; Spraying the dispersion to obtain a sprayed liquid state, and exposing the particle dispersion in the sprayed liquid state to a cooling substance of −196 ° C. or more and 0 ° C. or less to freeze the particle dispersion, and Sublimating and removing the solvent of the frozen particle dispersion liquid, and in step A, the tetragonal zirconia particles in the particle dispersion liquid or Since the content of the stabilized zirconia particles is 1% by mass or more and 70% by mass or less, and the droplet diameter in the spray liquid state is 1 μm or more and 100 μm or less in Step B, it is burned out by sintering as in the past. Since a porous spherical particle aggregate can be produced without using a pore-forming agent or the like, the material cost can be reduced. Moreover, the porosity and the pore diameter of the particle aggregate can be controlled by adjusting the dispersed particle diameter and content of the tetragonal zirconia particles or the stabilized zirconia particles contained in the particle dispersion. Furthermore, in the production of the particle aggregate, it is not necessary to heat the particles at a high temperature, so that the production cost can be reduced.

本発明の実施例1の粒子集合体を示す走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image which shows the particle assembly of Example 1 of this invention.

本発明の粒子集合体の製造方法の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the method for producing a particle aggregate of the present invention will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

「粒子集合体」
本発明の粒子集合体の製造方法を用いて製造される粒子集合体は、一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなすものである。
"Particle assembly"
The particle aggregate produced by using the method for producing a particle aggregate of the present invention is composed mainly of tetragonal zirconia particles or stabilized zirconia particles having a primary particle diameter of 1 nm or more and 20 nm or less, and forms a porous sphere. Is.

ここで、ジルコニア(ZrO)粒子を正方晶ジルコニア粒子に限定した理由は、微粒子合成の立場からは、微粒子の一次粒子径が20nm以下になると、正方晶の方が従来知られている単斜晶よりも安定になり、また、硬度が高いので、これを固体電解質や触媒、構造材料などに適用した場合、その機械的特性を向上させることができる上に、単斜晶ジルコニア粒子に比べて、マルテンサイト変態と称される体積膨張により高い靱性を示すからである。 Here, the reason why the zirconia (ZrO 2 ) particles are limited to tetragonal zirconia particles is that, from the viewpoint of fine particle synthesis, when the primary particle diameter of the fine particles is 20 nm or less, the tetragonal crystal is conventionally known monoclinic. Since it is more stable than crystals and has high hardness, its mechanical properties can be improved when applied to solid electrolytes, catalysts, structural materials, etc., compared to monoclinic zirconia particles. This is because high toughness is exhibited by volume expansion called martensitic transformation.

安定化ジルコニア粒子としては、イットリアドープ安定化ジルコニア(YSZ)粒子、スカンジアドープ安定化ジルコニア(ScSZ)粒子、カルシアドープ安定化ジルコニア(CSZ)粒子、マグネシアドープ安定化ジルコニア(MSZ)粒子、セリアドープ安定化ジルコニア(CeSZ)粒子などが挙げられる。
イットリアドープ安定化ジルコニア(YSZ)粒子としては、3モル%イットリアをドープした正方晶部分安定化ジルコニア(PSZ)粒子、8モル%イットリアをドープした立方晶安定化ジルコニア(FSZ)が一般的である。
Stabilized zirconia particles include yttria doped stabilized zirconia (YSZ) particles, scandia doped stabilized zirconia (ScSZ) particles, calcia doped stabilized zirconia (CSZ) particles, magnesia doped stabilized zirconia (MSZ) particles, ceria doped stabilized. Examples thereof include zirconia (CeSZ) particles.
Commonly used yttria-doped stabilized zirconia (YSZ) particles are tetragonal partially stabilized zirconia (PSZ) particles doped with 3 mol% yttria and cubic stabilized zirconia (FSZ) doped with 8 mol% yttria. .

また、正方晶ジルコニア粒子または安定化ジルコニア粒子の一次粒子径を1nm以上かつ20nm以下と限定した理由は、一次粒子径が1nm未満であると、粒子として存在することが難しいからであり、一方、一次粒子径が20nmを超えると、上述のような正方晶ジルコニア粒子の安定性や硬度などが損なわれるからである。   The reason why the primary particle diameter of the tetragonal zirconia particles or the stabilized zirconia particles is limited to 1 nm or more and 20 nm or less is that when the primary particle diameter is less than 1 nm, it is difficult to exist as particles, This is because when the primary particle diameter exceeds 20 nm, the stability and hardness of the tetragonal zirconia particles as described above are impaired.

正方晶ジルコニア粒子または安定化ジルコニア粒子以外の成分としては、酸化チタン(TiO)などの無機酸化物粒子が含まれていてもよい。 As components other than tetragonal zirconia particles or stabilized zirconia particles, inorganic oxide particles such as titanium oxide (TiO 2 ) may be contained.

この多孔質球状の粒子集合体の粒子径(二次粒子径)は、1μm以上かつ100μm以下の範囲である。   The particle diameter (secondary particle diameter) of the porous spherical particle aggregate is in the range of 1 μm or more and 100 μm or less.

「粒子集合体の製造方法」
本発明の粒子集合体の製造方法は、一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなす粒子集合体の製造方法であって、一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下とする方法である。
"Production method of particle assembly"
The method for producing a particle aggregate according to the present invention is a method for producing a particle aggregate having a primary spherical diameter of 1 to 20 nm and having a tetragonal zirconia particle or a stabilized zirconia particle as a main component and forming a porous sphere. Step A of preparing a particle dispersion by dispersing tetragonal zirconia particles or stabilized zirconia particles having a primary particle diameter of 1 nm to 20 nm and a dispersed particle diameter of 1 nm to 100 nm in a solvent, and the particle dispersion And spraying the particle dispersion in the sprayed liquid state to a cooling substance having a temperature of −196 ° C. to 0 ° C. to freeze the particle dispersion, and the frozen liquid dispersion And sublimating and removing the solvent of the particle dispersion liquid, and in step A, tetragonal zirconia particles or stable in the particle dispersion liquid. The content of the zirconia particles and 1 wt% or more and 70 mass% or less, in the step B, the droplet size of the spray liquid state is a method to 1μm or more and 100μm or less.

工程Aにおいて、粒子分散液に含まれる上記の正方晶ジルコニア粒子または安定化ジルコニア粒子の分散粒径を、1nm以上かつ100nm以下とした理由は、分散粒径が1nm未満であると、粒子として存在することが難しく、一方、分散粒径が100nmを超えると、工程Bにおける凍結の過程において、粒子が分散した状態で凍結溶媒に取り込まれてしまい、吐き出されて集合体を形成することが困難となるからである。   In step A, the reason why the dispersed particle diameter of the above-mentioned tetragonal zirconia particles or stabilized zirconia particles contained in the particle dispersion is 1 nm or more and 100 nm or less is that the dispersion particle diameter is less than 1 nm. On the other hand, when the dispersed particle diameter exceeds 100 nm, in the process of freezing in Step B, the particles are taken into the frozen solvent in a dispersed state, and it is difficult to form an aggregate by being discharged. Because it becomes.

粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率は、これらの粒子の分散粒径が1nm以上かつ100nm以下の範囲を維持できる濃度であり、1質量%以上かつ70質量%以下であることが好ましい。
粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率は、1質量%以上かつ70質量%以下であることが好ましい理由は、含有率が1質量%未満では、粒子の含有率が低すぎて、1つの粒子集合体において板状形状を形成するに満たないからであり、一方、70質量%を超えると、粒子分散液において、分散粒径を1nm以上かつ100nm以下に維持できなくなるからである。
The content of the tetragonal zirconia particles or the stabilized zirconia particles in the particle dispersion is a concentration at which the dispersed particle diameter of these particles can be maintained in the range of 1 nm to 100 nm, and is 1% by mass to 70% by mass. Preferably there is.
The reason why the content of the tetragonal zirconia particles or the stabilized zirconia particles in the particle dispersion is preferably 1% by mass or more and 70% by mass or less is that when the content is less than 1% by mass, the content of the particles is low. This is because it is not sufficient to form a plate shape in one particle aggregate. On the other hand, if it exceeds 70% by mass, the dispersed particle size cannot be maintained at 1 nm or more and 100 nm or less in the particle dispersion. It is.

溶媒は、固体から気体へ状態変化する昇華工程(工程C)を経由して、乾燥できるものであれば特に限定されず、工業的には0℃以上かつ50℃以下、1atm以下の範囲にて昇華できるものが好適に用いられる。このような溶媒としては、例えば、水、もしくは水を主成分とする溶媒であって昇華工程を妨げないものであれば何であってもよい。   The solvent is not particularly limited as long as it can be dried through a sublimation step (step C) in which the state changes from a solid to a gas, and is industrially in a range of 0 ° C. or more and 50 ° C. or less and 1 atm or less. Those that can be sublimated are preferably used. As such a solvent, any solvent may be used as long as it is water or a solvent mainly containing water and does not interfere with the sublimation process.

工程Bでは、粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を凍結するが、その液滴の径(液滴径)は、1μm以上かつ100μm以下であることが好ましい。
液滴の径(液滴径)は、1μm以上かつ100μm以下であることが好ましい理由は、液滴径が1μm未満であると、液滴発生量が少なすぎて、その回収量が少なくなるため、生産性が悪くなるからであり、一方、液滴径が100μmを超えると、空孔の領域が大きくなり、粒子で構成されている粒子集合体の壁面が破壊し、多孔質球状を維持しなくなるからである。
In step B, the particle dispersion is sprayed to form a sprayed liquid state, and the sprayed liquid state of the particle dispersion is frozen. The droplet diameter (droplet diameter) is 1 μm or more and 100 μm or less. Is preferred.
The reason why the droplet diameter (droplet diameter) is preferably 1 μm or more and 100 μm or less is that when the droplet diameter is less than 1 μm, the amount of droplets generated is too small and the amount collected is small. On the other hand, when the droplet diameter exceeds 100 μm, the pore area becomes large, the wall surface of the particle aggregate composed of particles is destroyed, and the porous spherical shape is maintained. Because it disappears.

粒子分散液の凍結温度は、溶媒が凍結する温度であればよいが、各種形態をなす粒子分散液を−196℃以上かつ0℃以下に冷却した冷却固体、冷却溶媒、冷却気体などの冷却物質に曝すことにより凍結する。   The freezing temperature of the particle dispersion may be a temperature at which the solvent freezes, but a cooling substance such as a cooling solid, a cooling solvent, or a cooling gas obtained by cooling the particle dispersion in various forms to −196 ° C. or more and 0 ° C. or less. Freeze by exposure.

工程Cでは、工程Bにおいて凍結した粒子分散液の溶媒を昇華させて、除去する際の圧力は、溶媒の昇華が起これば特に限定されないが、溶媒として水を用いた場合には、常温において昇華が起こる600Pa以下の真空領域とする。   In step C, the pressure at which the solvent of the particle dispersion frozen in step B is sublimated and removed is not particularly limited as long as the solvent sublimates, but at room temperature when water is used as the solvent. A vacuum region of 600 Pa or less where sublimation occurs.

このようにして得られた粒子集合体は、一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなしているので、この粒子集合体を焼結するなどして作製された成形体は、空孔率が高く、比表面積が大きくなっており、固体酸化物形燃料電池用の燃料極または空気極として好適である。また、この多孔質球状の粒子集合体を製造する際に、従来のように、焼結によって焼失する造孔剤などを使用する必要がないので、材料コストを低減することができる。また、粒子分散液に含まれる正方晶ジルコニア粒子または安定化ジルコニア粒子の分散粒径や含有率を調整することにより、粒子集合体の空孔率や孔径を制御することができる。さらに、粒子集合体の製造において、粒子を高温で加熱する必要がないので、製造コストを低減することができる。   The particle aggregate obtained in this way is composed mainly of tetragonal zirconia particles or stabilized zirconia particles having a primary particle diameter of 1 nm or more and 20 nm or less, and has a porous spherical shape. The molded body produced by sintering and the like has a high porosity and a large specific surface area, and is suitable as a fuel electrode or an air electrode for a solid oxide fuel cell. Moreover, when manufacturing this porous spherical particle aggregate, it is not necessary to use a pore-forming agent or the like that burns away by sintering as in the prior art, so that the material cost can be reduced. Moreover, the porosity and the pore diameter of the particle aggregate can be controlled by adjusting the dispersed particle diameter and content of the tetragonal zirconia particles or the stabilized zirconia particles contained in the particle dispersion. Furthermore, in the production of the particle aggregate, it is not necessary to heat the particles at a high temperature, so that the production cost can be reduced.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

「実施例1」
一次粒子径が3nmの正方晶ジルコニア粒子を水に分散したジルコニア分散液(正方晶ジルコニア粒子の分散粒径:10nm、正方晶ジルコニア粒子の含有率:10質量%、住友大阪セメント社製)をガラス製容器に入れ、液滴径12μmで液体窒素中に滴下し、−196℃にて凍結した。
次いで、凍結したジルコニア分散液を、常温にて、50Paの真空下で昇華乾燥させ、実施例1の粒子集合体を得た。
得られた粒子集合体を、X線回折法(XRD)および走査型電子顕微鏡(SEM)により観察した。図1に、この粒子集合体の走査型電子顕微鏡(SEM)像を示す。
観察の結果(粒子集合体の形状、粒子径)を表1に示す。
"Example 1"
A zirconia dispersion in which tetragonal zirconia particles having a primary particle diameter of 3 nm are dispersed in water (dispersion particle size of tetragonal zirconia particles: 10 nm, content of tetragonal zirconia particles: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) The solution was put in a container, dropped into liquid nitrogen with a droplet diameter of 12 μm, and frozen at −196 ° C.
Next, the frozen zirconia dispersion was sublimated and dried at room temperature under a vacuum of 50 Pa to obtain a particle assembly of Example 1.
The obtained particle aggregate was observed with an X-ray diffraction method (XRD) and a scanning electron microscope (SEM). FIG. 1 shows a scanning electron microscope (SEM) image of this particle assembly.
Table 1 shows the observation results (shape of particle aggregate, particle diameter).

「実施例2」
ジルコニア分散液を−70℃に調整したエタノール中に滴下し、−70℃にて凍結した以外は実施例1と同様にして、実施例2の粒子集合体を得た。
得られた粒子集合体を、X線回折法(XRD)および走査型電子顕微鏡(SEM)により観察した。
観察の結果(粒子集合体の形状、粒子径)を表1に示す。
"Example 2"
A particle aggregate of Example 2 was obtained in the same manner as Example 1 except that the zirconia dispersion was dropped into ethanol adjusted to -70 ° C and frozen at -70 ° C.
The obtained particle aggregate was observed with an X-ray diffraction method (XRD) and a scanning electron microscope (SEM).
Table 1 shows the observation results (shape of particle aggregate, particle diameter).

「実施例3」
ジルコニア分散液を−50℃に調整したエタノール中に滴下し、−50℃にて凍結した以外は実施例1と同様にして、実施例3の粒子集合体を得た。
得られた粒子集合体を、X線回折法(XRD)および走査型電子顕微鏡(SEM)により観察した。
観察の結果(粒子集合体の形状、粒子径)を表1に示す。
"Example 3"
A particle assembly of Example 3 was obtained in the same manner as in Example 1 except that the zirconia dispersion was dropped into ethanol adjusted to −50 ° C. and frozen at −50 ° C.
The obtained particle aggregate was observed with an X-ray diffraction method (XRD) and a scanning electron microscope (SEM).
Table 1 shows the observation results (shape of particle aggregate, particle diameter).

「実施例4」
一次粒子径が3nmの8モル%イットリア安定化ジルコニア(8YSZ)粒子を水に分散したジルコニア分散液(8モル%イットリア安定化ジルコニア粒子の分散粒径:15nm、8モル%イットリア安定化ジルコニア粒子の含有率:10質量%、住友大阪セメント社製)を用いた以外は実施例1と同様にして、実施例4の粒子集合体を得た。
得られた粒子集合体を、X線回折法(XRD)および走査型電子顕微鏡(SEM)により観察した。
観察の結果(粒子集合体の形状、粒子径)を表1に示す。
Example 4
A zirconia dispersion in which 8 mol% yttria-stabilized zirconia (8YSZ) particles having a primary particle diameter of 3 nm are dispersed in water (dispersed particle size of 8 mol% yttria-stabilized zirconia particles: 15 nm, 8 mol% yttria-stabilized zirconia particles) A particle aggregate of Example 4 was obtained in the same manner as in Example 1 except that the content ratio: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd. was used.
The obtained particle aggregate was observed with an X-ray diffraction method (XRD) and a scanning electron microscope (SEM).
Table 1 shows the observation results (shape of particle aggregate, particle diameter).

「比較例1」
一次粒子径が3nmの正方晶ジルコニア粒子を水に分散したジルコニア分散液(正方晶ジルコニア粒子の分散粒径:200nm、正方晶ジルコニア粒子の含有率:10質量%、住友大阪セメント社製)を用いた以外は実施例1と同様にして、比較例1の粒子集合体を得た。
得られた粒子集合体を、X線回折法(XRD)および走査型電子顕微鏡(SEM)により観察した。
観察の結果(粒子集合体の形状、粒子径)を表1に示す。
"Comparative Example 1"
A zirconia dispersion in which tetragonal zirconia particles having a primary particle diameter of 3 nm are dispersed in water (tetragonal zirconia particle dispersion diameter: 200 nm, tetragonal zirconia particle content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) is used. A particle assembly of Comparative Example 1 was obtained in the same manner as Example 1 except that.
The obtained particle aggregate was observed with an X-ray diffraction method (XRD) and a scanning electron microscope (SEM).
Table 1 shows the observation results (shape of particle aggregate, particle diameter).

表1の結果から、実施例1〜4の粒子集合体は、多孔質球状をなしていることが確認された。
一方、比較例1の粒子集合体は単に球状をなしていることが確認された。
From the results in Table 1, it was confirmed that the particle aggregates of Examples 1 to 4 had a porous spherical shape.
On the other hand, it was confirmed that the particle aggregate of Comparative Example 1 was simply spherical.

Claims (1)

一次粒子径が1nm以上かつ20nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を主成分としてなり、多孔質球状をなす粒子集合体の製造方法であって、
一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、
前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下とすることを特徴とする粒子集合体の製造方法。
A method for producing a particle aggregate having a primary spherical diameter of 1 nm or more and 20 nm or less of tetragonal zirconia particles or stabilized zirconia particles as a main component and forming a porous sphere,
Step A for preparing a particle dispersion by dispersing tetragonal zirconia particles or stabilized zirconia particles having a primary particle diameter of 1 nm or more and 20 nm or less and a dispersion particle diameter of 1 nm or more and 100 nm or less in a solvent, and the particle dispersion A step B of freezing the particle dispersion by exposing the particle dispersion in the spray liquid state to a cooling substance having a temperature of −196 ° C. or higher and 0 ° C. or lower by spraying, and the frozen particles And sublimating and removing the solvent of the dispersion liquid,
In step A, the content of tetragonal zirconia particles or stabilized zirconia particles in the particle dispersion is 1% by mass to 70% by mass, and in step B, the droplet diameter in the spray liquid state is 1 μm to 100 μm. A method for producing a particle aggregate, characterized by:
JP2012158944A 2012-07-17 2012-07-17 Method for producing particle aggregate Expired - Fee Related JP5494746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158944A JP5494746B2 (en) 2012-07-17 2012-07-17 Method for producing particle aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158944A JP5494746B2 (en) 2012-07-17 2012-07-17 Method for producing particle aggregate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008210944A Division JP2010047432A (en) 2008-08-19 2008-08-19 Aggregate of particles and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012236763A JP2012236763A (en) 2012-12-06
JP5494746B2 true JP5494746B2 (en) 2014-05-21

Family

ID=47460019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158944A Expired - Fee Related JP5494746B2 (en) 2012-07-17 2012-07-17 Method for producing particle aggregate

Country Status (1)

Country Link
JP (1) JP5494746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898742B (en) * 2017-03-10 2020-02-18 赣州市芯隆新能源材料有限公司 Method for preparing nickel cobalt lithium manganate lithium ion battery anode material from waste lithium battery
CN106816579B (en) * 2017-03-10 2020-02-18 赣州市芯隆新能源材料有限公司 Method for preparing lithium nickel cobalt manganese oxide lithium ion battery positive electrode material by freezing crystallization method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217430A (en) * 1982-06-09 1983-12-17 Etsuro Kato Fine zirconia powder and manufacture
JPS59107969A (en) * 1982-12-08 1984-06-22 加藤 悦朗 Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture
JPS60103035A (en) * 1983-11-04 1985-06-07 Nippon Mining Co Ltd Manufacture of fine zirconium oxide powder
JPS6197134A (en) * 1984-10-16 1986-05-15 Etsuro Kato Powder of zirconia agglomerated particle and preparation thereof
US5004710A (en) * 1987-06-08 1991-04-02 Exxon Research And Engineering Company Method for the chemical preparation of zirconia alloy powders and article
JPH02129031A (en) * 1988-11-07 1990-05-17 Fujitsu Ltd Production of alumina-coated ceramic powder
FR2720295B1 (en) * 1994-05-27 1996-07-12 Rhone Poulenc Chimie Dispersible compound based on a rare earth, colloidal suspension obtained from this compound, their methods of preparation and use in the manufacture of catalysts.
JP4998663B2 (en) * 2005-08-30 2012-08-15 株式会社豊田中央研究所 Composite metal oxide porous body
JP2010047431A (en) * 2008-08-19 2010-03-04 Sumitomo Osaka Cement Co Ltd Aggregate of particles and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012236763A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
Zakaria et al. A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation
Panthi et al. Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes
Sun et al. Lowering grain boundary resistance of BaZr 0.8 Y 0.2 O 3− δ with LiNO 3 sintering-aid improves proton conductivity for fuel cell operation
Zhigachev et al. Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: A review
JP2006028009A (en) NiO-CERAMIC COMPOSITE POWDER, FUEL ELECTRODE FOR SOLID OXIDE FUEL CELL MANUFACTURED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
Jiang et al. Development of Ni/Y2 O3–ZrO2 cermet anodes for solid oxide fuel cells
Jarot et al. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications
KR20080010737A (en) The cubic scandia stabilized zirconia for electrolyte of solid oxide fuel cells, and the fabrication method the same
Baek et al. PdO-doped BaZr0. 8Y0. 2O3− δ electrolyte for intermediate-temperature protonic ceramic fuel cells
Jiang et al. Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction
CN113506905A (en) Proton conduction type half cell, proton conduction type solid oxide cell, and preparation method and application thereof
SA et al. Optical, mechanical and electrical properties of LSCF–SDC composite cathode prepared by sol–gel assisted rotary evaporation technique
JP5494746B2 (en) Method for producing particle aggregate
Jarot et al. Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering
JP2014159642A (en) Method for fabricating nickel-cermet electrode
US10418657B2 (en) Formation of solid oxide fuel cells by spraying
JP2010047432A (en) Aggregate of particles and manufacturing method thereof
JP2007115536A (en) Manufacturing method of electrode for porous solid oxide fuel cell
Zhou et al. Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor
Gaudon et al. YSZ electrolyte of anode-supported SOFCs prepared from sub micron YSZ powders
JP2010047431A (en) Aggregate of particles and manufacturing method thereof
Dhongde et al. A Sr2CoNbO6-δ@ Sm0. 2Ce0. 8O2-δ nanofiber composite as cathode accelerates oxygen reduction reaction for IT-SOFC
WO2014207993A1 (en) Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system
Yoshito et al. Reduction kinetics of NiO–YSZ composite for application in solid oxide fuel cell
Blennow et al. Characterization of Ce0. 9Gd0. 1O1. 95 powders synthesized by spray drying

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees