JPS6197134A - Powder of zirconia agglomerated particle and preparation thereof - Google Patents

Powder of zirconia agglomerated particle and preparation thereof

Info

Publication number
JPS6197134A
JPS6197134A JP59216767A JP21676784A JPS6197134A JP S6197134 A JPS6197134 A JP S6197134A JP 59216767 A JP59216767 A JP 59216767A JP 21676784 A JP21676784 A JP 21676784A JP S6197134 A JPS6197134 A JP S6197134A
Authority
JP
Japan
Prior art keywords
particles
zirconia
agglomerated
aggregated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59216767A
Other languages
Japanese (ja)
Other versions
JPH0472772B2 (en
Inventor
Etsuro Kato
加藤 悦朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59216767A priority Critical patent/JPS6197134A/en
Publication of JPS6197134A publication Critical patent/JPS6197134A/en
Publication of JPH0472772B2 publication Critical patent/JPH0472772B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the titled powder having narrow particle size distribution and being useful for fine ceramic by heating and hydrolyzing aqueous suspension obtd. by adding a Zr salt to monoclinic zirconia agglomerated particles in acidic condition causing crystal growth. CONSTITUTION:Aq. soln. of a Zr salt (e.g. ZrOCl2.8H2O) is hydrolyzed by heating to obtain agglomerated paticles of monoclinic zirconia having >=ca.1,000 Angstrom particle size. An aq. suspension comprising the agglomerated particles and Zr salt is admixed with an acid to adjust the pH to <=1, and the suspension is hydrolyzed by heating at 90-250 deg.C while keeping the suspended particles in suspended state. Crystals are grown to >=3,000 Angstrom from the obtd. suspended particle as seed crystal. The grown crystals comprise secondary particles consisting of monoclinic superfine primary particles having <=100 Angstrom crystallite size being agglomerated orientedly. Thus, a powder body consisting of almost spherical agglomerated zirconia particles having 0.3-3mum particle size is obtd.

Description

【発明の詳細な説明】 本発明は結晶子径が100A以下の結晶質1次粒子から
成り、特別の微溝造を持ち、ファインセラミックスとし
て最も重要な03〜3μmの範囲の且つ比較的狭い部分
にある。はぼ球状をしたジルコニア系凝集粒子粉末、お
よびこれに関連したジルコニア系凝集粒子および凝集粒
子粉末の製造方法に係るものである。ここにジルコニア
系とはジルコニアを主成分とする固溶体や化合物を含め
る意である。
Detailed Description of the Invention The present invention consists of crystalline primary particles with a crystallite diameter of 100A or less, has a special microgroove structure, and has a relatively narrow portion in the range of 03 to 3μm, which is the most important for fine ceramics. It is in. The present invention relates to a spherical zirconia-based agglomerated particle powder, and a method for producing the zirconia-based agglomerated particle and agglomerated particle powder related thereto. Here, the term zirconia-based includes solid solutions and compounds containing zirconia as a main component.

最近ファインセラミックスの高性能化とともに。With the recent improvement in the performance of fine ceramics.

使用原料は超微粒子化の傾向にあり、ジルコニア系セラ
ミックス、特に強靭性セラミックスとして注目されてい
る半安定化ジルコニアセラミックスなども超微粒子原料
が次第に重要性を増し、サブミクロンの微粒子、或は5
00人程変身下の超微粒子が使用され始めている。
There is a trend toward ultrafine raw materials, and ultrafine raw materials are gradually becoming more important for zirconia ceramics, especially semi-stabilized zirconia ceramics, which are attracting attention as strong ceramics.
About 00 people have begun to use ultrafine particles under the transformation.

しかしながら、微粒子、特に500A程度以下の超微粒
子は少くとも次の2点において、セラミック製造上重要
な障害を伴うものである。その一つは粉末製造上の問題
であり、他は粉末から成形体を得る際の問題である。
However, fine particles, especially ultrafine particles of about 500A or less, pose important obstacles in the production of ceramics in at least the following two points. One of them is a problem in powder production, and the other is a problem in obtaining a molded body from powder.

すなわち一般に500A以下の超微粒子は、粉末調製の
ための乾燥仮焼の段階で水の作用などにより強固な粒子
間の結合を生じて不規則塊状となり。
That is, in general, ultrafine particles of 500A or less form irregular lumps due to strong bonding between particles due to the action of water during the drying and calcining stage for powder preparation.

粉砕しても再び均一粒径の粉末になり難く、超微粒子の
特性の殆んどすべてを失うことである。通常乾燥の前に
水分を高価なアルコール等で置換するか、凍結乾燥によ
るかして強固不規則な凝集化を防ぐ必要があり、繁雑で
且つ不経済なものであった。
Even after pulverization, it is difficult to re-form powder with a uniform particle size, and almost all of the characteristics of ultrafine particles are lost. Usually, before drying, it is necessary to replace water with expensive alcohol or the like or freeze-dry to prevent strong and irregular agglomeration, which is complicated and uneconomical.

欠点の他の一つは、セラミック原料粉末は微粒子になる
と、たとえ強固不規則な凝集化を防ぐことができたとし
てもなお著しく成形田無なことである。すなわち微粒子
は均一な密充填が困魚となり、焼成収縮率は増大し、変
形や亀裂が発生し易くなり、焼成後の寸法精度が悪くな
るなどである。
Another drawback is that when the ceramic raw material powder becomes fine particles, even if strong and irregular agglomeration can be prevented, it is still extremely difficult to shape. In other words, it is difficult to pack the fine particles evenly and tightly, the firing shrinkage rate increases, deformation and cracks are more likely to occur, and the dimensional accuracy after firing deteriorates.

この成形における均一密充填性を改善する工業的手段は
噴霧乾燥による造粒技術であるが、前述したように水使
用は微粒子の特性を損うため、仮焼などで凝集化した後
でこれを造粒することとなり。
The industrial means to improve the uniform close packing properties in this molding is granulation technology using spray drying, but as mentioned above, the use of water impairs the characteristics of the fine particles, so it is necessary to use water after agglomeration by calcination etc. It will be granulated.

この場合構成する凝集粒子は超微粒子の特性を失いかつ
不均一なもので、結局成形体内部組織に不均一性を導入
することとなる。
In this case, the constituting agglomerated particles lose the characteristics of ultrafine particles and are non-uniform, resulting in non-uniformity being introduced into the internal structure of the compact.

本発明は活性なジルコニア系超微粒子を、均一な0.3
〜3μmの範囲でほぼ球状の凝集粒子として液中に生成
させるもので、上記の欠点をすべて除去するものであり
、水による噴霧乾燥処理を行っても微粒子性を失わず、
また噴霧乾燥を必ずしも必要としない球状をしたファイ
ンセラミックス用のジルコニア系微粒子粉末を与えるも
のである。
The present invention uses active zirconia-based ultrafine particles with a uniform 0.3
It is produced as approximately spherical agglomerated particles in the range of ~3 μm, which eliminates all of the above drawbacks, and does not lose its fine particle nature even when spray-dried with water.
Further, it provides a spherical zirconia-based fine particle powder for use in fine ceramics that does not necessarily require spray drying.

本発明者は詳細な研究によって、ジルコニウム塩水溶液
の90〜250℃の加熱加水分解によって生成する懸濁
粒子は結晶子径100A以下の単斜ジルコニア微結晶(
ハフニウム等不純物の固溶体を含む)の双晶的な凝集2
次粒子であり、その2次粒子径は30〜3000 Aの
範囲にあることを見出した。
Through detailed research, the present inventor has discovered that suspended particles produced by heating hydrolysis of a zirconium salt aqueous solution at 90 to 250°C are monoclinic zirconia microcrystals (with a crystallite diameter of 100A or less).
(including solid solutions of impurities such as hafnium) twinned agglomeration 2
It was found that the secondary particles are secondary particles, and the secondary particle diameter is in the range of 30 to 3000 A.

しかし如何に条件を変えてもこの凝集粒子は3000Å
以上には殆んど成長しなかった。従来このような300
0 A以上の凝集粒子から成る粉末は従って全く得られ
ていなかったし、その特徴についても全く問題にされて
いなかった。本発明はこのような3000 A以上の大
きさの凝集粒子粉末を容易に製造し実用化させるもので
ある。
However, no matter how the conditions are changed, these aggregated particles remain at 3000 Å.
It didn't grow much beyond that. Conventionally, 300 like this
Therefore, no powder consisting of agglomerated particles of 0 A or more has been obtained, and its characteristics have not been questioned at all. The present invention aims to easily produce and put into practical use such agglomerated particle powder having a size of 3000 A or more.

すなわち、ジルコニウム塩水溶液を加熱加水分解して得
られる約100OA以上の結晶質ジルコニア系凝集粒子
にジルコニウム塩を加えた混合懸濁水溶液のPHを1以
下の強酸性とし、凝集粒子を浮遊状態に保ちながら90
〜250℃の温度で加熱加水分解を行い、懸濁粒子を種
結晶としてこれを3000λ以上に成長させることを特
徴とするものである。
That is, a mixed suspended aqueous solution in which a zirconium salt is added to crystalline zirconia-based aggregated particles of about 100 OA or more obtained by heating and hydrolyzing an aqueous zirconium salt solution is made to have a strongly acidic pH of 1 or less, and the aggregated particles are kept in a suspended state. While 90
It is characterized by performing thermal hydrolysis at a temperature of ~250°C and growing the suspended particles to a size of 3000λ or more using them as seed crystals.

本発明者の実験によれば、ジルコニウム塩の加熱加水分
解の温度は90’C以下では成長に時間がかかり過ぎ、
250℃以上では1次粒子が大きくなって反応活性を失
うとともに2次凝集粒子相互に接合が生じ始めるので適
当でない。また1000 A以上の凝集粒子は小さい程
その重量当り成長表面積が大きくなり且つ液中に浮遊し
て成長し易いが自身は3000λ以上には成長せず、沈
降し易い比較的粗大な凝集粒子の成長を妨げることが判
明した。
According to the inventor's experiments, if the heating hydrolysis temperature of zirconium salt is below 90'C, it takes too long for growth.
A temperature of 250° C. or higher is not suitable because the primary particles become large and lose their reaction activity, and the secondary agglomerated particles begin to bond with each other. In addition, the smaller the aggregated particles of 1000 A or more, the larger the growth surface area per weight, and the easier they are to float in the liquid and grow, but they themselves do not grow to over 3000λ, and the growth of relatively coarse aggregated particles that tend to settle. It was found that it hinders.

またPHl以下の強酸性では孤立微粒子が発生し燈いこ
とも見出された。上記の発明はこれらの実験結果を応用
したものである。
It has also been found that in strong acidity below PHL, isolated fine particles are generated and light is emitted. The above invention is an application of these experimental results.

なおさらに実験を繰返し1本発明者は、PHが一層低く
なり、塩酸濃度で1.5N以上となるとジルコニア系懸
濁粒子は相互に凝集して沈降し始めること、この凝集は
PHが高い場合と異って孤立した0、5〜3μm程度の
ほぼ球状の比較的弱い凝集粒子となること、および、さ
らにこの一時的な沈降性凝集粒子は@濁状態でもしくは
これにジルコニウム塩を加えた懸濁状態で90℃〜25
0“′Cに加熱処理すれば強固安定な凝集粒子となるこ
となどを見出した。恐らく凝集状態での再結晶あるいは
凝集粒子表面での成長によると考えられる。
After repeated experiments, the inventor discovered that when the pH becomes lower and the hydrochloric acid concentration exceeds 1.5N, the zirconia-based suspended particles begin to coagulate and settle, and that this aggregation occurs when the pH is high. Differently, isolated, approximately spherical, relatively weak agglomerated particles of about 0.5 to 3 μm are formed, and furthermore, these temporary sedimentary agglomerated particles are formed in a turbid state or in a suspension with a zirconium salt added thereto. 90℃~25℃
It has been found that heat treatment at 0"'C results in strong and stable aggregated particles. This is probably due to recrystallization in an aggregated state or growth on the surface of the aggregated particles.

本発明の一部は以上の発見に基づくものであり。A part of the present invention is based on the above discovery.

結晶質ジルコニア系微粒子ゾルに@濁粒子が相互に凝集
して沈降を起すに十分な量の酸を加え、生成する一時的
な沈降性凝集粒子を90〜250℃の温度で必要時間加
熱処理を行い、これを安定な形状の2次凝集粒子に変え
ることを特徴とする方法である。
A sufficient amount of acid is added to the crystalline zirconia-based fine particle sol to cause the turbid particles to coagulate with each other and cause sedimentation, and the temporary sedimentary agglomerated particles that are formed are heated at a temperature of 90 to 250°C for the necessary time. This method is characterized by converting the secondary agglomerated particles into stable-shaped secondary agglomerated particles.

本発明方法により得られる以上の凝集粒子は。The above agglomerated particles obtained by the method of the present invention are as follows.

すべて水系の懸濁液の状態として生成し、すべて100
八以下の結晶質の1次超微粒子から構成され。
All are produced as aqueous suspensions, and all are 100%
It is composed of crystalline primary ultrafine particles of 8 or less.

且つ3000 A以上の孤立化したほぼ球状をした凝集
粒子として得られる点に著しい特徴がある。これは沈降
法又は遠心法によれば粒径の分級が容易であり2通常の
加熱乾燥でその特性を失わず、乾燥後容易にほぐれて孤
立した凝集粒子からなる粉末を与える。これはまさに水
中での微小造粒法と6いえるもので、このような0.3
〜3μmの微小範囲での造粒は従来全く行れておらず、
特lこ特許請求の範囲0)に記載されたジルコニア系凝
集粒子粉末は従来全く得られていないものである。これ
らの凝集を#御された凝集粒子粉末は後述するように極
めて工業的価値の高いものである。
It is also remarkable in that it is obtained as isolated, almost spherical agglomerated particles of 3000 A or more. It is easy to classify the particle size by sedimentation or centrifugation, does not lose its properties by ordinary heat drying, and is easily loosened after drying to give a powder consisting of isolated agglomerated particles. This can be truly called a microgranulation method in water6, and this 0.3
Until now, granulation in the microscopic range of ~3 μm has not been carried out at all,
Particularly, the zirconia-based agglomerated particle powder described in claim 0) has not been obtained at all heretofore. The agglomerated particle powder whose aggregation is controlled has extremely high industrial value, as will be described later.

さらに本発明方法により得られろ凝集粒子の特徴として
、仮焼処理の容易さがある。すなわち沈降法等によって
所望の大きさに分級された上記のような凝集粒子は単独
で、または他の金属化合物を混合し、  1000℃以
下の増白な温度で熱処理または仮焼することにより、そ
の1次粒子の大きさ。
Furthermore, the agglomerated particles obtained by the method of the present invention are characterized by ease of calcining treatment. In other words, the above-mentioned agglomerated particles classified into a desired size by a sedimentation method or the like can be treated alone or mixed with other metal compounds, and then heat-treated or calcined at a whitening temperature of 1000°C or less. Size of primary particles.

結晶形、化学組成、凝集状態などを変化させろことがで
きる。1o00’c以下での仮焼では通常起る凝集粒子
間の接合は内部と較べて相対的に弱いので容易にほぐれ
2m集粒子の形状や粒径の均一性。
It is possible to change the crystal shape, chemical composition, agglomeration state, etc. During calcination at temperatures below 1o00'c, the bonds between aggregated particles that normally occur are relatively weak compared to the inside, so they are easily loosened, resulting in uniformity in shape and size of 2m aggregated particles.

孤立性などは殆んど損れない。There is almost no loss of isolation.

以上によって9本発明方法は、最終的に、3ミクロン以
下0.3ミクロンまで(30000λ〜3000λ)の
任意の粒径と分布を持つ、はぼ球状をした孤立粒子か・
ら成る理想的なセラミック用粉末を与えるものであり、
しかもこの粉末粒子は0.05ミクロン(500A)以
下の1次超微粒子から成る凝集2次粒子であって極めて
活性であり反応性、焼結性に優れ、さらに目的に応じて
仮焼、固相反応などにより化学組成、1次粒子の大きさ
と凝集状態等の内部微組織を適宜調節可能であるなど2
粒子自体も極めて侵れた特性を持つものである。
According to the above, the method of the present invention can finally produce isolated particles having a spherical shape and having an arbitrary particle size and distribution of 3 microns or less and up to 0.3 microns (30,000λ to 3,000λ).
It provides an ideal ceramic powder consisting of
Moreover, these powder particles are agglomerated secondary particles consisting of primary ultrafine particles of 0.05 microns (500 A) or less, and are extremely active and have excellent reactivity and sinterability. Chemical composition, primary particle size, agglomeration state, and other internal microstructures can be adjusted appropriately through reactions, etc.2
The particles themselves also have extremely aggressive characteristics.

本発明は以上のように比軸的簡単な方法により殆んど完
壁な形の理想的なジルコニア系凝集粒子粉末の工業的製
造を可能とし、ファインセラミックスの工業生産を初め
研磨剤、化粧品、乳濁剤。
As described above, the present invention enables industrial production of ideal zirconia-based agglomerated particle powder with almost perfect shape by a relatively simple method, and is suitable for industrial production of fine ceramics, abrasives, cosmetics, etc. Emulsifier.

などの分野においても優れた価値を持つものである。It has excellent value in other fields as well.

実施例1 試薬塩化ジルコニル(ZrOClz・8ルO)約10g
を蒸留水約60m1中に溶解して約0.5mol/dの
溶液とし、その約60m1を密閉容器中で攪拌しつつ1
50℃に8時間加熱加水分解を行った。得られた@濁液
はX線的に約40A の単斜超微結晶が配向的に凝集し
た2次粒子であるが、  100OA以下の微細凝集粒
子を含むので遠心分離器により約1000八以上の部分
を分離し、その一部を種結晶として塩化ジルコニル約1
0fと混合し約60肩tの懸濁液を作った。溶液中のZ
rに対する秒結晶の割合はZr比で約L/′8であった
。この懸濁液を再び密閉′8器中で攪拌しつつ150℃
に8時間加熱水分解したところ、X線的な結晶子径は最
初とほぼ同様の約40較的均−なほぼ球状の凝集粒子で
あった。さらにこの凝集粒子を種結晶として同様の製作
を繰返し。
Example 1 Approximately 10 g of reagent zirconyl chloride (ZrOClz・80)
was dissolved in about 60 ml of distilled water to make a solution of about 0.5 mol/d, and about 60 ml of the solution was dissolved in a closed container while stirring.
Hydrolysis was carried out by heating at 50° C. for 8 hours. The obtained @turbidity is X-ray-detected as secondary particles in which monoclinic ultrafine crystals of approximately 40A are aggregated in an oriented manner, but since it contains fine aggregated particles of less than 100OA, it is separated by centrifugation into particles of approximately 1000A or more. Separate the portion and use it as a seed crystal to produce about 1 zirconyl chloride.
A suspension of approximately 60 kg was prepared by mixing with 0f. Z in solution
The ratio of second crystals to r was approximately L/'8 in terms of Zr ratio. This suspension was heated to 150°C while stirring again in a closed vessel.
When the mixture was heated for 8 hours to undergo water decomposition, the X-ray crystallite size was approximately 40, which was approximately the same as the initial size, and the particles were relatively uniform and approximately spherical. The same process was then repeated using these aggregated particles as seed crystals.

4回目で大部分を約10000人の凝集粒子にまで成長
させることができた。
In the fourth attempt, we were able to grow most of the particles to about 10,000 aggregate particles.

実施例2 上記実施例1により得られた単斜ジルコニア凝集粒子懸
濁液から、遠心分離器により約5000±500A程度
に相当する部分を分離し、ジルコニアに対し6モル%に
相当する量の硝酸イツトリウムを加えてよ(混合し、 
 800’Cで1時間仮焼した。
Example 2 From the monoclinic zirconia aggregate particle suspension obtained in Example 1 above, a portion corresponding to approximately 5000±500A was separated using a centrifuge, and nitric acid was added in an amount equivalent to 6 mol% based on the zirconia. Add yztrium (mix and
It was calcined at 800'C for 1 hour.

仮焼物は軽く凝結したが)L鉢で容易にほぐれた。Although the calcined product was slightly condensed, it was easily loosened in the L pot.

溶体であり、遊離のY2O2は認められなかった。この
粉末に0.3重量%のセロゾール(ステアリン酸懸濁液
)を潤滑剤として加え、造粒製作をせずにそのまま2 
t/dの圧力で加圧成形し、  1350℃に1時間焼
成したところ理論密度のほぼ98%に相当する焼結体を
与えた。この場合焼成線収縮率は約15 ’/’(l 
でこの種の易焼結性粉末としては収縮率が極めて小さく
、成形時の充填性が非常に優れていることを示した。
It was a solution, and no free Y2O2 was observed. 0.3% by weight of cellosol (stearic acid suspension) was added to this powder as a lubricant, and 2
When the material was press-molded at a pressure of t/d and fired at 1350° C. for 1 hour, a sintered body having approximately 98% of the theoretical density was obtained. In this case, the firing line shrinkage rate is approximately 15'/' (l
It was shown that the shrinkage rate was extremely small for this type of easily sinterable powder, and the filling properties during molding were excellent.

実施例3 試薬塩化ジルコニル約97g 蒸留水約500xrlに
溶解し、これに1:1アンモニア水を十分量加えて水酸
化ジルコニウムの沈澱を作った。これを吸引濾過して得
られる含水状態のケーキに試薬塩化ジルコニル39ダ 
を加え攪拌し流動性スラリーとし、これを97℃で約4
0時間保持し、X線的には約3OA (電子顕微鏡でも
約4OA)の単斜ジルコニア超微結晶を1次粒子とし、
これが配向的に凝集した約100OAの2次凝集微粒子
から成るゾルを得た。このゾルに12N の塩酸を適下
した所。
Example 3 Approximately 97 g of reagent zirconyl chloride was dissolved in approximately 500×rl of distilled water, and a sufficient amount of 1:1 aqueous ammonia was added to form a precipitate of zirconium hydroxide. This is filtered under suction, and the resulting water-containing cake is mixed with the reagent zirconyl chloride (39 dA).
was added and stirred to make a fluid slurry, and this was heated to about 4°C at 97°C.
After holding for 0 hours, monoclinic zirconia ultrafine crystals with an X-ray measurement of approximately 3 OA (electron microscopy approximately 4 OA) were used as primary particles.
A sol consisting of secondary agglomerated fine particles of about 100 OA which were oriented and agglomerated was obtained. 12N hydrochloric acid was added to this sol.

塩酸濃度が約2N付近になった所で沈降分離が起った。Sedimentation separation occurred when the hydrochloric acid concentration reached approximately 2N.

この沈降物は光学顕@鏡によれば約1μm(10000
A)の球状凝集粒子であるが、凝集は弱く、そのままで
は乾燥粒子にならない。この沈降物に少量の塩化ジルコ
ニル(Zr比で1/10)を加え、密閉容器中で攪拌し
つつ150℃に8時間加熱処理したところ、X線的な結
晶子径は僅かに増加(約35A)するのみで、その2次
凝集粒子は約1μmで強固安定となり、乾燥により凝集
粒子間は互に固結しない微粉末を与えた。
According to an optical microscope, this sediment is about 1 μm (10,000
A) is a spherical agglomerated particle, but the aggregation is weak and it will not become dry particles as it is. When a small amount of zirconyl chloride (Zr ratio: 1/10) was added to this precipitate and heat treated at 150°C for 8 hours while stirring in a closed container, the X-ray crystallite size increased slightly (approximately 35A). ), the secondary agglomerated particles became strong and stable at about 1 μm, and upon drying, a fine powder was obtained in which the agglomerated particles did not coagulate with each other.

得られた粉末粒子の反応性、焼結性は実施例2によって
得られた粉末粒子の結果とほぼ同様のものであった。
The reactivity and sinterability of the obtained powder particles were almost the same as those of the powder particles obtained in Example 2.

Claims (4)

【特許請求の範囲】[Claims] (1)結晶子径が100Å以下の単斜結晶1次超微粒子
が配向的に凝集した2次粒子から成り、ほぼ球状で、大
きさが0.3μm〜3μmの範囲の且つ比較的狭い部分
にあることを特徴とするジルコニア系凝集粒子粉末。
(1) Consisting of secondary particles in which monoclinic primary ultrafine particles with a crystallite diameter of 100 Å or less are aggregated in an oriented manner, they are approximately spherical and have a size in the range of 0.3 μm to 3 μm and are formed in a relatively narrow part. A zirconia-based agglomerated particle powder characterized by the following.
(2)ジルコニウム塩水溶液を加熱加水分解して得られ
る約1000Å以上の単斜ジルコニア系凝集粒子にジル
コニウム塩を加えた混合懸濁水溶液のPHを1以下の強
酸性とし、凝集粒子を浮遊状態に保ちながら90℃〜2
50℃の温度で加熱加水分解を行い、懸濁粒子を種結晶
としてこれを3000Å以上に成長させることを特徴と
するジルコニア系凝集粒子の製造方法。
(2) A mixed suspension aqueous solution in which a zirconium salt is added to monoclinic zirconia aggregate particles of approximately 1000 Å or more obtained by heating and hydrolyzing an aqueous zirconium salt solution is made to have a strongly acidic pH of 1 or less to bring the aggregate particles into a suspended state. While maintaining 90℃~2
A method for producing zirconia-based aggregated particles, which comprises performing thermal hydrolysis at a temperature of 50° C. and growing suspended particles to a size of 3000 Å or more using seed crystals.
(3)結晶質ジルコニア系微粒子ゾルに、懸濁粒子が相
互に凝集して沈降を起すに十分な量の酸を加え、生成す
る一時的な沈降性凝集粒子を90〜250℃の温度で必
要時間加熱処理を行い、これを安定な形状の2次凝集粒
子に変えることを特徴とするジルコニア系凝集粒子の製
造方法。
(3) A sufficient amount of acid is added to the crystalline zirconia-based fine particle sol to cause the suspended particles to coagulate with each other and cause sedimentation, and temporary sedimentary agglomerated particles are generated at a temperature of 90 to 250°C. A method for producing zirconia-based aggregated particles, which comprises performing a heat treatment for a period of time to convert the particles into secondary aggregated particles having a stable shape.
(4)ジルコニウム塩水溶液の加熱加水分解から得られ
る2次凝集粒子を種結晶としてさらに加水分解を続け3
000Å以上に成長させたジルコニア系凝集粒子、また
は結晶質ジルコニア系微粒子ゾルに酸を加え一時的な沈
降性凝集粒子としこれを安定な形状の2次粒子に変えた
ジルコニア系凝集粒子の何れかを含む白濁液から沈降又
は遠心分離によって大きさが3000Å以上の任意の粒
径範囲部分を分離し、これを単独で、またはこれに他の
金属化合物を混合し、1000℃以下の温度で熱処理す
ることを特徴とするジルコニア系凝集粒子粉末の製造方
法。
(4) Further hydrolysis is continued using secondary agglomerated particles obtained from heating hydrolysis of a zirconium salt aqueous solution as seed crystals.
Either zirconia-based aggregated particles grown to a size of 000 Å or more, or zirconia-based aggregated particles made by adding acid to a crystalline zirconia-based fine particle sol to create temporary sedimentary aggregated particles, which are then changed into stable secondary particles. Separate a particle size range of 3000 Å or more from the white cloudy liquid by sedimentation or centrifugation, and heat-treat this alone or in combination with other metal compounds at a temperature of 1000°C or less. A method for producing a zirconia-based agglomerated particle powder, characterized by:
JP59216767A 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof Granted JPS6197134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216767A JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216767A JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6197134A true JPS6197134A (en) 1986-05-15
JPH0472772B2 JPH0472772B2 (en) 1992-11-19

Family

ID=16693583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216767A Granted JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6197134A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194556A2 (en) * 1985-03-04 1986-09-17 Nissan Chemical Industries Ltd. Powder of coagulated spherical zirconia particles and process for producing them
JPH01153530A (en) * 1987-10-31 1989-06-15 Degussa Ag Crystalline zirconium oxide powder, method for its manufacture and method for manufacturing sintered ceramic
US5248463A (en) * 1989-09-29 1993-09-28 Nissan Chemical Industries, Ltd. Preparation of zirconia sintered body
US5318765A (en) * 1991-03-01 1994-06-07 Degussa Aktiengesellschaft Monoclinic zirconium dioxide, method of its production and use
US5326518A (en) * 1991-10-08 1994-07-05 Nissan Chemical Industries, Ltd. Preparation of sintered zirconia body
JP2004010418A (en) * 2002-06-06 2004-01-15 Hosokawa Micron Corp Method of producing zirconia sol and method of producing zirconia fine powder
JPWO2006006277A1 (en) * 2004-07-09 2008-04-24 旭化成ケミカルズ株式会社 Catalyst and process for producing cycloolefin
JP2008526669A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Zirconia particles
JP2012236763A (en) * 2012-07-17 2012-12-06 Sumitomo Osaka Cement Co Ltd Method for producing particle aggregate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194556A2 (en) * 1985-03-04 1986-09-17 Nissan Chemical Industries Ltd. Powder of coagulated spherical zirconia particles and process for producing them
JPH01153530A (en) * 1987-10-31 1989-06-15 Degussa Ag Crystalline zirconium oxide powder, method for its manufacture and method for manufacturing sintered ceramic
JPH0574532B2 (en) * 1987-10-31 1993-10-18 Degussa
US5248463A (en) * 1989-09-29 1993-09-28 Nissan Chemical Industries, Ltd. Preparation of zirconia sintered body
US5318765A (en) * 1991-03-01 1994-06-07 Degussa Aktiengesellschaft Monoclinic zirconium dioxide, method of its production and use
US5326518A (en) * 1991-10-08 1994-07-05 Nissan Chemical Industries, Ltd. Preparation of sintered zirconia body
JP2004010418A (en) * 2002-06-06 2004-01-15 Hosokawa Micron Corp Method of producing zirconia sol and method of producing zirconia fine powder
JPWO2006006277A1 (en) * 2004-07-09 2008-04-24 旭化成ケミカルズ株式会社 Catalyst and process for producing cycloolefin
JP4777891B2 (en) * 2004-07-09 2011-09-21 旭化成ケミカルズ株式会社 Catalyst and process for producing cycloolefin
JP2008526669A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Zirconia particles
JP2012236763A (en) * 2012-07-17 2012-12-06 Sumitomo Osaka Cement Co Ltd Method for producing particle aggregate

Also Published As

Publication number Publication date
JPH0472772B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
EP0229657B1 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and a process for its production
AU601275B2 (en) Stabilised metallic oxides
JP2537662B2 (en) Method for producing ceric oxide and ceric oxide having novel morphological characteristics
US4820593A (en) Stabilised metallic oxides
JPS63185821A (en) Production of zirconium oxide fine powder
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
JPH02503790A (en) sinterable nitride
EP0384728B1 (en) Preparation method for zircon powder
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JPS5879818A (en) Colloidal sol, fine powder of crystalline zirconia and preparation thereof
JPH0346407B2 (en)
JPH04295014A (en) Stabilized metal oxide composition and method of preparing same
US4774068A (en) Method for production of mullite of high purity
JPH04930B2 (en)
JP2528462B2 (en) Method for producing sodium hexatitanate fine particle powder
WO2015056488A1 (en) Zirconium oxide-titanium oxide composite sol and production method thereof
RU2144505C1 (en) Method of preparing titanium dioxide
JPH0558633A (en) Production of strontium titanate
JP2838802B2 (en) Synthesis method of zircon powder
JPS61141620A (en) Crystalline zirconia fine powder, and production thereof
JP2882040B2 (en) Method for producing hydrated zirconia sol
JPS6016819A (en) Production of zirconium oxide powder containing yttrium as solid solution
JPS59227725A (en) Preparation of powder of zirconium oxide having yttrium as solid solution
JPH0524864B2 (en)
JPH0524865B2 (en)