JP5335174B2 - Porous body, manufacturing method thereof, and composite material using porous body - Google Patents

Porous body, manufacturing method thereof, and composite material using porous body Download PDF

Info

Publication number
JP5335174B2
JP5335174B2 JP2004088678A JP2004088678A JP5335174B2 JP 5335174 B2 JP5335174 B2 JP 5335174B2 JP 2004088678 A JP2004088678 A JP 2004088678A JP 2004088678 A JP2004088678 A JP 2004088678A JP 5335174 B2 JP5335174 B2 JP 5335174B2
Authority
JP
Japan
Prior art keywords
porous body
carbon fiber
grown carbon
vapor grown
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088678A
Other languages
Japanese (ja)
Other versions
JP2004359936A (en
Inventor
隆 黒瀬
辰宏 高橋
千明 外輪
利夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004088678A priority Critical patent/JP5335174B2/en
Publication of JP2004359936A publication Critical patent/JP2004359936A/en
Application granted granted Critical
Publication of JP5335174B2 publication Critical patent/JP5335174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、気相法炭素繊維を含む多孔質体に関する。さらに詳しく言えば、有機または無機ゲル化物質の溶液中に気相法炭素繊維を分散させ、ゲル化物質(ゲルとなる原料)をゲル化させた後、溶媒を除去・乾燥することにより得られる気相法炭素繊維とゲル化物質を含む多孔質複合体、その製造方法及びその用途に関する。   The present invention relates to a porous body containing vapor grown carbon fiber. More specifically, it is obtained by dispersing vapor grown carbon fiber in a solution of an organic or inorganic gelling substance, gelling the gelling substance (raw material that becomes a gel), and then removing and drying the solvent. The present invention relates to a porous composite containing vapor grown carbon fiber and a gelling substance, a method for producing the same, and a use thereof.

石油ピッチやポリアクリロニトリルを溶融紡糸して作られる炭素繊維や金属を触媒として不活性雰囲気下で炭化水素化合物を熱分解させて製造される気相法炭素繊維は、熱伝導性、電気伝導性、機械的強度等に優れていることから、樹脂等に導電性や熱伝導性を付与する目的等で気相法炭素繊維を用いた各種複合材料が開発されてきた。   Vapor-grown carbon fiber produced by thermally decomposing hydrocarbon compounds in an inert atmosphere using carbon fiber or metal made by melt spinning of petroleum pitch or polyacrylonitrile as a catalyst, thermal conductivity, electrical conductivity, Because of its excellent mechanical strength and the like, various composite materials using vapor grown carbon fiber have been developed for the purpose of imparting conductivity and thermal conductivity to resins and the like.

炭素繊維を含む樹脂等との複合材を作製する際には、従来、炭素繊維にバインダーを用いてプリプレグを作製し、または炭素繊維織物等を作製し、それらに樹脂等を含浸させる方法がとられてきた。   When producing a composite material with a resin containing carbon fiber, conventionally, there is a method of producing a prepreg using a binder for carbon fiber, or producing a carbon fiber woven fabric, and impregnating them with a resin or the like. Has been.

特開2002−327113号公報(特許文献1)には、炭素繊維のプリプレグを作るためのバインダーに用いる樹脂組成物が、また、特開2002−180356公報(特許文献2)には、金属材料を含浸するために使用する炭素繊維からなる三次元繊維構造体が開示されている。   Japanese Patent Laid-Open No. 2002-327113 (Patent Document 1) discloses a resin composition used as a binder for making a prepreg of carbon fiber, and Japanese Patent Laid-Open No. 2002-180356 (Patent Document 2) includes a metal material. A three-dimensional fiber structure composed of carbon fibers used for impregnation is disclosed.

一方、気相法炭素繊維は、繊維径が前記先行技術文献に記載の炭素繊維に比べて微細であることなどから、それら炭素繊維と同様なプリプレグ等の作製は極めて困難であり、作製できたとしてもプリプレグ等に空隙が少ないため、複合材料を十分に含浸させた複合材を作ることができなかった。   On the other hand, vapor-grown carbon fiber has a finer fiber diameter than the carbon fiber described in the above-mentioned prior art document. However, since there are few voids in the prepreg or the like, a composite material sufficiently impregnated with the composite material could not be produced.

そこで、樹脂複合材を作製する場合には、一般的には、例えば気相法炭素繊維と樹脂を混練機により混練して複合化する方法がとられてきた。しかし、混練中に繊維が切断され繊維長が短くなるために繊維同士の三次元的ネットワークの繋がりが不足し、そのため繊維が切断された分を補うために多量の気相法炭素繊維の添加が必要であった。また、気相法炭素繊維を多く添加すると、樹脂成形時の流れ特性が低下すること、コストが高くなること等の問題があった。   Therefore, in the case of producing a resin composite material, generally, for example, a method has been adopted in which a vapor-grown carbon fiber and a resin are kneaded with a kneader to form a composite. However, since the fiber is cut during kneading and the fiber length is shortened, the connection of the three-dimensional network between the fibers is insufficient, so that a large amount of vapor grown carbon fiber is added to compensate for the amount of the fiber cut. It was necessary. In addition, when a large amount of vapor grown carbon fiber is added, there are problems such as a decrease in flow characteristics during resin molding and an increase in cost.

この問題を解決するために、多くの研究がなされている。
特開2002−348741号公報(特許文献3)には、活性な結晶の端部が繊維の外側へ向いている、いわゆるヘリンボン型結晶構造と呼ばれる気相法炭素繊維が開示されている。ヘリンボン型結晶構造を持つ気相法炭素繊維は樹脂等と親和性が高いこと、また樹脂との混練時においては繊維がS字状、Z字状、スパイラル状に変形しやすく、樹脂とのフィッティング性が高いことから少量の添加で効果が発現することが示されている。
Many studies have been made to solve this problem.
Japanese Patent Application Laid-Open No. 2002-348741 (Patent Document 3) discloses a vapor grown carbon fiber called a herringbone-type crystal structure in which the end of an active crystal faces the outside of the fiber. Vapor grown carbon fiber with herringbone crystal structure has high affinity with resin, etc., and when kneaded with resin, the fiber is easily deformed into S shape, Z shape, spiral shape, and fitting with resin It is shown that the effect is manifested by addition of a small amount because of its high properties.

特表2001−521984公報(特許文献4)には、繊維径が3.5〜70nmで実質的に一定の繊維径を持ち、実質的に円筒形である気相法炭素繊維に関して、前述した炭素繊維のプリプレグ等に相当する気相法炭素繊維を含んだ多孔質体を作製し、それに樹脂を含浸または多孔質体の中で有機モノマーを重合させてなる複合材料が開示されている。   JP-T-2001-521984 (Patent Document 4) discloses the above-mentioned carbon regarding vapor grown carbon fiber having a substantially constant fiber diameter of 3.5 to 70 nm and a substantially cylindrical shape. A composite material is disclosed in which a porous body containing vapor-grown carbon fibers corresponding to a fiber prepreg or the like is prepared and impregnated with a resin or an organic monomer is polymerized in the porous body.

これに使用する多孔質体の製法については、特表平8−509788(特許文献5)に、気相法炭素繊維を水または有機溶媒中に分散させた後、溶媒を除去する方法が開示されている。また、特表2000−511864(特許文献6)には、気相法炭素繊維の繊維同士を接着剤により、及び/または熱分解により相互接触点を融着または結合を起こさせることにより、堅い多孔質体が得られることが開示されている。また、この堅い多孔質体は、接着剤が溶解した溶液あるいはゲル流体中に気相法炭素繊維を分散させ、その後溶媒を除去あるいは超臨界抽出する方法により得られることが開示されている。   Regarding a method for producing a porous material used for this, JP 8-509788 (Patent Document 5) discloses a method in which a vapor-grown carbon fiber is dispersed in water or an organic solvent and then the solvent is removed. ing. In addition, JP 2000-511864 (Patent Document 6) discloses that a solid porous material is obtained by fusing or bonding mutual contact points by using an adhesive and / or thermal decomposition of vapor grown carbon fibers. It is disclosed that a mass is obtained. Further, it is disclosed that this rigid porous body can be obtained by a method of dispersing vapor grown carbon fiber in a solution or gel fluid in which an adhesive is dissolved, and then removing the solvent or performing supercritical extraction.

しかし、これら先行技術文献に開示されている製造方法では、多孔質体中に気相法炭素繊維が凝集体の状態で含まれること、また凝集体を一本ずつの繊維に分散させるために高剪断力をかける操作を行っていること、多孔質体を製造する過程で混練機により過度の混練が行われていることに起因する問題があった。すなわち、炭素繊維が凝集体の状態で多孔質体ひいては複合材料中に含まれていると、導電性等は凝集体同士の繋がりにより決定されることとなるため、一本ずつの繊維にほぐれた状態で存在する場合にくらべ繋がりが少なくなり、導電性等が低くなる。そのため、気相法炭素繊維の添加量を増やすことが必要となり、更には成形性等の低下にも繋がる。また、混練機による混練や、高剪断力をかけることによる繊維の分散では繊維が切断されるため繊維同士の三次元的ネットワークの繋がりが不足し、結果的にこの場合も気相法炭素繊維の添加量を増加させる先述と同様の問題があった。   However, in the production methods disclosed in these prior art documents, the vapor grown carbon fibers are contained in the porous body in the state of aggregates, and it is difficult to disperse the aggregates into individual fibers. There are problems due to the operation of applying a shearing force and excessive kneading by a kneader in the process of manufacturing the porous body. That is, when carbon fibers are contained in a porous body and in a composite material in the form of aggregates, conductivity and the like are determined by the connection between the aggregates, so that the fibers are loosened one by one. When present in a state, the connection is reduced, and the conductivity and the like are lowered. Therefore, it is necessary to increase the addition amount of vapor grown carbon fiber, which further leads to a decrease in moldability and the like. In addition, kneading with a kneader or dispersion of fibers by applying a high shearing force cuts the fibers, resulting in insufficient three-dimensional network connection between the fibers. There was the same problem as described above for increasing the amount of addition.

一方、金属や非金属固体と寒天のようにゲル化する有機結合材と無機結合材を水中で混合して分散させて、有機結合材に応じてゲル化させ、凍結乾燥して作製する多孔性成形部材、また、これらの成形部材を熱処理し無機結合材を硬化させることを特徴とする多孔性成形部材の作成方法が知られている(特表平9−505266(特許文献7))。しかし、この方法では熱処理時の体積収縮が著しいという課題を残していた。   On the other hand, organic and inorganic binders that gel like metal and non-metallic solids and agar are mixed and dispersed in water, gelled according to the organic binder, and lyophilized to create a porous material There is known a method for producing a molded molded member and a porous molded member characterized by heat-treating the molded member to cure the inorganic binder (Japanese Patent Publication No. 9-505266 (Patent Document 7)). However, this method has a problem that the volume shrinkage during the heat treatment is remarkable.

特開2002−327113号公報JP 2002-327113 A 特開2002−180356号公報JP 2002-180356 A 特開2002−348741号公報JP 2002-348741 A 特表2001−521984号公報Special table 2001-521984 gazette 特表平8−509788号公報JP-T 8-509788 特表2000−511864号公報JP 2000-511864 A 特表平9−505266号公報JP-T 9-505266

本発明の目的は気相法炭素繊維の凝集体を実質的に含まず、かつ繊維長が温存された繊維同士の三次元的ネットワークが形成されている多孔質体を提供することにある。
更に本発明の目的は、少量の気相法炭素繊維の使用で添加効果が発現する樹脂等との複合材(多孔質体)を容易に製造する方法を提供することにある。
更に本発明の目的は、熱処理時の体積収縮率の小さい多孔質体の製造方法を提供することにある。
An object of the present invention is to provide a porous body that is substantially free of agglomerates of vapor grown carbon fibers and in which a three-dimensional network of fibers having a preserved fiber length is formed.
Furthermore, the objective of this invention is providing the method of manufacturing easily the composite material (porous body) with resin etc. which the addition effect expresses by use of a small amount of vapor grown carbon fiber.
Furthermore, the objective of this invention is providing the manufacturing method of a porous body with a small volumetric shrinkage rate at the time of heat processing.

上記課題を解決するためには、気相成長炭素繊維の繊維長を温存させたままで、かつ繊維の三次元的ネットワークを持った多孔質体を製造することが重要である。
本発明者らは、分散性の良好な気相法炭素繊維の選定と、容易に多孔質体となる物質、または多孔質体を製造する方法との組合せについて鋭意検討した。その結果、炭素繊維として湾曲部分が少なく直線性が高い気相法炭素繊維を使用すれば、例えば超音波照射を行うことにより簡単に溶液中に分散できること、多孔質体となる材料として寒天等のような有機材料を使用することにより簡単に多孔質体を製造できること、また一般的によく知られているゾル・ゲル法によっても比較的容易にこのような多孔質体を製造することができることを見出し、本発明を完成した。
すなわち、本発明は、以下に示す多孔質体、その製造方法、及び多孔質体を利用した複合材料を提供するものである。
In order to solve the above-mentioned problems, it is important to produce a porous body having a three-dimensional network of fibers while keeping the fiber length of the vapor-grown carbon fiber.
The present inventors diligently studied the combination of selection of vapor-grown carbon fiber having good dispersibility and a material that easily becomes a porous material or a method of producing a porous material. As a result, if a vapor-grown carbon fiber with few curved portions and high linearity is used as the carbon fiber, it can be easily dispersed in a solution by, for example, ultrasonic irradiation, and the material to be a porous material such as agar That a porous body can be easily produced by using such an organic material, and that such a porous body can be produced relatively easily by a generally well-known sol-gel method. The headline and the present invention were completed.
That is, the present invention provides the following porous body, a method for producing the same, and a composite material using the porous body.

1.三次元的ネットワークを形成した気相法炭素繊維を含むことを特徴とする多孔質体。
2.気相法炭素繊維を10〜95質量%含む請求項1に記載の多孔質体。
3.気相法炭素繊維が、繊維径1〜1000nm、アスペクト比5〜15000、比表面積2〜2000m2/g、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580)0.1〜2.0である請求項1または2に記載の多孔質体。
4.気相法炭素繊維の結晶内あるいは結晶表面にホウ素が0.001〜5質量%含有されている請求項1乃至3のいずれか1項に記載の多孔質体。
5.全体積(V0)に対する細孔が占める体積(V)の割合として表される多孔度(V/V0)が0.50〜0.99である請求項1乃至4のいずれか1項に記載の多孔質体。
6.比表面積が5〜1000m2/gである請求項1乃至5のいずれか1項に記載の多孔質体。
7.多孔質体のセル壁面がさらに多孔質構造となっている請求項1乃至6のいずれか1項に記載の多孔質体。
8.電気抵抗値が103Ω・cm未満である請求項1乃至7のいずれか1項に記載の多孔質体。
9.ゲル化物質の溶液中に気相法炭素繊維を分散させた後、ゲル化物質をゲル化させ、溶媒を除去することを特徴とする請求項1に記載の気相法炭素繊維を含む多孔質体の製造方法。
10.水溶性ポリマー及び/またはケイ酸アルカリ塩を溶解させ、及び/または固体微粒子を分散させて調製したゲル化物質の溶液中を使用する請求項9に記載の多孔質体の製造方法。
11.溶媒を除去した後、不活性雰囲気下100〜1000℃の温度で熱処理を行う請求項9または10に記載の多孔質体の製造方法。
12.溶媒の除去が、真空乾燥または凍結乾燥法により行われる請求項9または10に記載の多孔質体の製造方法。
13.溶媒の臨界温度及び臨界圧力を超えた温度及び圧力下におき、その後圧力を臨界圧力以下に下げることで溶媒の除去が行われる請求項9または10に記載の多孔質体の製造方法。
14.ゲル化物質が有機化合物である請求項9または10に記載の多孔質体の製造方法。
15.有機化合物が、寒天、アガロース、ゼラチン、アルギン酸塩のうち少なくとも一種類以上からなり、溶媒が水である請求項14に記載の多孔質体の製造方法。
16.溶媒が、界面活性剤を添加した水溶液である請求項15に記載の多孔質体の製造方法。
17.水溶性ポリマーが,フェノール樹脂、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸及びポリアクリル酸塩から選択される少なくとも一種類のものである請求項10に記載の多孔質体の製造方法。
18.ゲル化物質が、極性溶媒中に溶解した金属化合物を酸またはアルカリにより加水分解反応、縮合反応または重合反応により生成したゾル状物質である請求項9または10に記載の多孔質体の製造方法。
19.金属化合物が、金属アルコキシド、金属アセチルアセトネート、酢酸金属塩、カルボン酸金属塩、硝酸金属塩、金属塩化物、及び金属オキシ化合物から選択される少なくとも一種類であり、溶媒が水または水と極性有機溶媒との混合物である請求項18に記載の多孔質体の製造方法。
20.液状ポリマー中に気相法炭素繊維を分散させ、その後に液状ポリマーを発泡させることを特徴とする請求項1に記載の多孔質体の製造方法。
21.液状ポリマーがポリイソシアネート及びポリオールからなる請求項20に記載の多孔質体の製造方法。
22.請求項9乃至21のいずれか1項に記載の製造方法によって得られる多孔質体。
23.請求項1乃至8及び22のいずれか1項に記載の多孔質体にポリマーを含浸させてなることを特徴とする樹脂複合体。
24.ポリマーが、フェノール樹脂、エポキシ樹脂、ポリイミド、及びポリカーボネートから選択される少なくとも一種類からなるポリマーである請求項23に記載の樹脂複合体。
25.請求項1乃至8及び22のいずれか1項に記載の多孔質体にポリマーを含浸させることを特徴とする樹脂複合体の製造方法。
26.請求項1乃至8及び22のいずれか1項に記載の多孔質体に金属を含有させてなることを特徴とする金属複合体。
27.金属が、アルミニウム、マグネシウム、銅、及び銀から選択される少なくとも一種類の金属またはそれらの合金の溶融物である請求項26に記載の金属複合体。
28.請求項1乃至8及び22のいずれか1項に記載の多孔質体に金属を含有させることを特徴とする金属複合体の製造方法。
29.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いたガス吸収用フィルター。
30.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いた水ろ過用フィルター。
31.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いた触媒担体。
1. A porous material comprising vapor grown carbon fibers forming a three-dimensional network.
2. The porous body according to claim 1, comprising 10 to 95% by mass of vapor grown carbon fiber.
3. Vapor grown carbon fibers, fiber diameter 1 to 1,000 nm, an aspect ratio 5-15000, a specific surface area 2~2000m 2 / g, the peak intensity ratio of 1580 cm -1 and 1360 cm -1 of the Raman scattering spectrum (I 1360 / I 1580) The porous body according to claim 1 or 2, which is 0.1 to 2.0.
4). The porous body according to any one of claims 1 to 3, wherein 0.001 to 5 mass% of boron is contained in the crystal of the vapor grown carbon fiber or in the crystal surface.
5. To any one of claims 1 to 4 porosity, expressed as a percentage of the volume occupied by pores (V) (V / V 0 ) is 0.50 to 0.99 to the total volume (V 0) The porous body as described.
6). The porous body according to any one of claims 1 to 5, which has a specific surface area of 5 to 1000 m 2 / g.
7). The porous body according to any one of claims 1 to 6, wherein the cell wall surface of the porous body further has a porous structure.
8). The porous body according to any one of claims 1 to 7, which has an electric resistance value of less than 10 3 Ω · cm.
9. The porous material containing vapor grown carbon fiber according to claim 1, wherein the vapor grown carbon fiber is dispersed in a solution of the gelled material, the gelled material is gelled, and the solvent is removed. Body manufacturing method.
10. The method for producing a porous body according to claim 9, wherein the gel is used in a solution of a gelled substance prepared by dissolving a water-soluble polymer and / or alkali silicate and / or dispersing solid fine particles.
11. The manufacturing method of the porous body of Claim 9 or 10 which heat-processes at the temperature of 100-1000 degreeC in inert atmosphere after removing a solvent.
12 The method for producing a porous body according to claim 9 or 10, wherein the solvent is removed by vacuum drying or freeze drying.
13. The method for producing a porous body according to claim 9 or 10, wherein the solvent is removed by placing the solution at a temperature and pressure exceeding a critical temperature and a critical pressure of the solvent, and then lowering the pressure to a critical pressure or lower.
14 The method for producing a porous body according to claim 9 or 10, wherein the gelling substance is an organic compound.
15. The method for producing a porous body according to claim 14, wherein the organic compound is composed of at least one of agar, agarose, gelatin, and alginate, and the solvent is water.
16. The method for producing a porous body according to claim 15, wherein the solvent is an aqueous solution to which a surfactant is added.
17. The method for producing a porous body according to claim 10, wherein the water-soluble polymer is at least one selected from a phenol resin, polyvinyl alcohol, polyethylene oxide, polyacrylic acid, and polyacrylate.
18. The method for producing a porous body according to claim 9 or 10, wherein the gelling substance is a sol-like substance produced by hydrolyzing, condensing or polymerizing a metal compound dissolved in a polar solvent with an acid or an alkali.
19. The metal compound is at least one selected from metal alkoxide, metal acetylacetonate, metal acetate, metal carboxylate, metal nitrate, metal chloride, and metal oxy compound, and the solvent is water or water and polar The method for producing a porous body according to claim 18, which is a mixture with an organic solvent.
20. The method for producing a porous body according to claim 1, wherein vapor-grown carbon fibers are dispersed in the liquid polymer, and then the liquid polymer is foamed.
21. The method for producing a porous body according to claim 20, wherein the liquid polymer comprises a polyisocyanate and a polyol.
22. The porous body obtained by the manufacturing method of any one of Claims 9 thru | or 21.
23. 23. A resin composite obtained by impregnating the porous body according to any one of claims 1 to 8 and 22 with a polymer.
24. The resin composite according to claim 23, wherein the polymer is at least one polymer selected from a phenol resin, an epoxy resin, a polyimide, and a polycarbonate.
25. 23. A method for producing a resin composite, comprising impregnating a polymer into the porous body according to any one of claims 1 to 8 and 22.
26. A metal composite comprising the porous body according to any one of claims 1 to 8 and 22, wherein a metal is contained.
27. 27. The metal composite according to claim 26, wherein the metal is a melt of at least one metal selected from aluminum, magnesium, copper, and silver, or an alloy thereof.
28. 23. A method for producing a metal composite, wherein the porous body according to any one of claims 1 to 8 and 22 contains a metal.
29. A gas absorption filter using the porous material according to any one of claims 1 to 8 and 22.
30. A filter for water filtration using the porous body according to any one of claims 1 to 8 and 22.
31. A catalyst carrier using the porous body according to any one of claims 1 to 8 and 22.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

[気相法炭素繊維]
本発明で用いる気相法炭素繊維は、不活性ガス、かつ高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる(特開平7−150419号公報等)。
気相法炭素繊維は、生成したままでも、例えば生成したものを800〜1500℃で熱処理したものでも、例えば生成したものを2000〜3000℃で黒鉛化処理したもののいずれもが使用可能である。
[Vapor grown carbon fiber]
The vapor grown carbon fiber used in the present invention can be produced by blowing an organic compound gasified with iron as a catalyst in an inert gas and a high temperature atmosphere (Japanese Patent Laid-Open No. 7-150419, etc.). ).
The vapor grown carbon fiber can be used as it is produced, for example, one produced by heat treatment at 800-1500 ° C., or one produced by graphitization at 2000-3000 ° C., for example.

本発明で用いる気相法炭素繊維は、中空構造を有していることが好ましい。その場合、繊維の円筒部分を構成している炭素層が連続している。中空構造とは炭素層が円筒状に巻いている構造であるが、繊維径は実質的に一定ではない。完全な円筒でない部分、部分的な切断箇所を有する部分、積層した2層の炭素層が1層に結合した部分等を含む。   The vapor grown carbon fiber used in the present invention preferably has a hollow structure. In that case, the carbon layer which comprises the cylindrical part of a fiber is continuing. The hollow structure is a structure in which the carbon layer is wound in a cylindrical shape, but the fiber diameter is not substantially constant. It includes a part that is not a complete cylinder, a part having a partial cut portion, a part in which two laminated carbon layers are bonded to one layer, and the like.

繊維の断面は完全な円に限らず楕円や多角化のものを含む。さらに繊維表面には、熱分解炭素が析出してできた炭素質物質の存在もある。気相法炭素繊維の製造後、2000℃以上の温度で熱処理を行うことでさらに結晶化度を上げ、導電性を増すことができる。   The cross section of the fiber is not limited to a perfect circle, but includes an ellipse or a polygon. Furthermore, there is also a carbonaceous material formed by depositing pyrolytic carbon on the fiber surface. After the vapor grown carbon fiber is manufactured, the crystallinity can be further increased and the conductivity can be increased by performing a heat treatment at a temperature of 2000 ° C. or higher.

本発明で用いる気相法炭素繊維は、その結晶内あるいは結晶表面にホウ素が0.001〜5質量%含まれていても良い。ホウ素は炭素繊維の黒鉛化度を促進させる働きがあり、前記熱処理前に気相法炭素繊維にホウ素化合物を添加する。ホウ素化合物としては、例えば、炭化ホウ素(B4C)、酸化ホウ素(B23)、元素状ホウ素、ホウ酸(H3BO3)、ホウ酸塩等が挙げられる。
ホウ素化合物の添加量は、用いるホウ素化合物の化学的特性、物理的特性に依存するために限定されないが、例えば炭化ホウ素(B4C)を使用する場合には、気相法炭素繊維に対して0.01〜10質量%、好ましくは0.1〜5質量%の範囲である。ホウ素化合物を添加して熱処理することにより、気相法黒鉛化炭素繊維の炭素の結晶性が向上し、導電性が向上する。
また、ホウ素化合物の代わりにケイ素、アルミニウム、ベリリウム等の化合物を用いることでも、炭素繊維の黒鉛化を促進させることができる。
The vapor grown carbon fiber used in the present invention may contain 0.001 to 5% by mass of boron in the crystal or in the crystal surface. Boron has a function of promoting the graphitization degree of the carbon fiber, and a boron compound is added to the vapor grown carbon fiber before the heat treatment. Examples of the boron compound include boron carbide (B 4 C), boron oxide (B 2 O 3 ), elemental boron, boric acid (H 3 BO 3 ), borate, and the like.
The amount of boron compound added is not limited because it depends on the chemical and physical properties of the boron compound used. For example, when boron carbide (B 4 C) is used, The range is 0.01 to 10% by mass, preferably 0.1 to 5% by mass. By adding a boron compound and heat-treating, the crystallinity of carbon in the vapor-phase graphitized carbon fiber is improved and the conductivity is improved.
Moreover, graphitization of carbon fiber can also be promoted by using a compound such as silicon, aluminum, or beryllium in place of the boron compound.

本発明で使用する気相法炭素繊維は、以下の物性値を有するものが好ましい。
・繊維径:1〜1000nm、好ましくは1〜200nm。
・アスペクト比:5〜15000、好ましくは5〜5000。
・比表面積:2〜2000m2/g、好ましくは10〜1000m2/g。
・ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580):0.1〜2.0、好ましくは0.1〜1.5。
The vapor grown carbon fiber used in the present invention preferably has the following physical property values.
Fiber diameter: 1-1000 nm, preferably 1-200 nm.
Aspect ratio: 5 to 15000, preferably 5 to 5000.
Specific surface area: 2 to 2000 m 2 / g, preferably 10 to 1000 m 2 / g.
Peak intensity ratio (I 1360 / I 1580 ) of Raman scattering spectrum at 1580 cm −1 and 1360 cm −1 : 0.1 to 2.0, preferably 0.1 to 1.5.

気相法炭素繊維は、好ましくは湾曲部分が少なく直線性が高いものが好ましい。このような炭素繊維は繊維同士の絡み合いが抑えられ、溶媒中、または溶液中に分散させ易い特徴がある。   The vapor grown carbon fiber is preferably one having few curved portions and high linearity. Such a carbon fiber is characterized in that the entanglement between the fibers is suppressed and is easily dispersed in a solvent or a solution.

[多孔質体]
本発明の多孔質体は、ゲルとなる原料(ゲル化物質)の溶液中に気相法炭素繊維を分散させた後、ゲル化させて気相法炭素繊維が分散したゲル状物質(ゲル化物質の溶液をゲル化させて生成したもの)を得、次いで溶媒を除去・乾燥することにより製造することができる。
[Porous material]
The porous body of the present invention is a gel-like material (gelled) in which vapor-grown carbon fibers are dispersed after the vapor-grown carbon fibers are dispersed in a solution of a gel raw material (gelled material). Produced by gelling a solution of the substance), and then the solvent is removed and dried.

ゲル化物質としては、有機化合物の他、極性溶媒中に溶解した金属化合物を酸またはアルカリによる加水分解反応、縮合反応または重合反応に付すことにより生成したゾル状物質等を使用することができる。有機化合物としては、例えば、寒天、アガロース、ゼラチン、アルギン酸塩等が挙げられる。金属化合物としては、金属アルコキシド、金属アセチルアセトネート、酢酸金属塩、カルボン酸金属塩、硝酸金属塩、金属塩化物、金属オキシ化合物等が挙げられる。これらは、単独でまたは二種以上組み合わせて用いることができる。   As the gelling substance, in addition to an organic compound, a sol-like substance produced by subjecting a metal compound dissolved in a polar solvent to a hydrolysis reaction, condensation reaction or polymerization reaction with an acid or alkali can be used. Examples of the organic compound include agar, agarose, gelatin, alginate and the like. Examples of the metal compound include metal alkoxide, metal acetylacetonate, metal acetate, metal carboxylate, metal nitrate, metal chloride, metal oxy compound and the like. These can be used alone or in combination of two or more.

溶媒は特に制限されず、水や各種の有機溶媒及びこれらの混合溶媒が使用できる。ゲル化物質として寒天、アガロース、ゼラチン、アルギン酸塩等の有機化合物を用いる場合には、溶媒は水が好ましい。ゲル化物質として上記ゾル状物質を用いる場合には、溶媒は水または水と極性有機溶媒との混合溶媒が好ましい。ただし、水のように極性の高い溶媒を用いる際には、界面活性剤を併用することが好ましい。用いる界面活性剤の種類は特に制限されるものではないが、例えばドデシルベンゼンスルホン酸塩等を用いることができる。
ゲル物質溶液中への気相法炭素繊維の分散は、マグネティックスターラー等の剪断力をかけない撹拌機、または超音波照射による撹拌により行うことができ、超音波照射による撹拌が好ましい。
また、ゲル化物質の溶液の代わりにゲル流体を用い、それに直接気相法炭素繊維を分散させることもできる。
A solvent in particular is not restrict | limited, Water, various organic solvents, and these mixed solvents can be used. When an organic compound such as agar, agarose, gelatin, or alginate is used as the gelling substance, the solvent is preferably water. When the sol-like substance is used as the gelling substance, the solvent is preferably water or a mixed solvent of water and a polar organic solvent. However, when using a highly polar solvent such as water, it is preferable to use a surfactant in combination. Although the kind of surfactant to be used is not particularly limited, for example, dodecylbenzene sulfonate can be used.
The dispersion of the vapor grown carbon fiber in the gel substance solution can be performed by a stirrer that does not apply a shearing force such as a magnetic stirrer, or stirring by ultrasonic irradiation, and stirring by ultrasonic irradiation is preferable.
It is also possible to use a gel fluid instead of the gelling substance solution and directly disperse the vapor grown carbon fiber therein.

溶媒の除去は、真空乾燥、凍結乾燥または超臨界抽出による方法が好ましい。
超臨界抽出による溶媒の除去は、溶媒の臨界温度及び臨界圧力を超える温度及び圧力下においた後、圧力を臨界圧力以下に下げることで気液二相とし、溶媒と多孔質体とを分離することで行うことができる。この操作を数回繰り返すことで、完全に溶媒を除去することができる。
The solvent is preferably removed by vacuum drying, freeze drying or supercritical extraction.
Solvent removal by supercritical extraction is carried out at a temperature and pressure exceeding the critical temperature and critical pressure of the solvent, and then the pressure is lowered below the critical pressure to form a gas-liquid two phase to separate the solvent and the porous material. Can be done. By repeating this operation several times, the solvent can be completely removed.

多孔質体の強度、化学的特性及び物理的特性は、ゲル状態中に第三成分として水溶性物質を溶解させることにより調整することができる。水溶性物質としては、水溶性であれば物質の種類は制限されないが、フェノール樹脂、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸塩(ポリアクリル酸ナトリウム、ポリアクリル酸カルシウムなど)等の水溶性ポリマー(有機化合物)やケイ酸アルカリ塩等の無機化合物を挙げることができる。このような第三成分は、有機化合物の場合は、繊維同士の結着を強める、孔の大きさを制御する、新たな官能基を導入し表面状態を変化させる等の効果がある。無機化合物の場合は、金属元素を導入することにより表面状態を変化させる効果がある。   The strength, chemical characteristics and physical characteristics of the porous body can be adjusted by dissolving a water-soluble substance as a third component in the gel state. As the water-soluble substance, the kind of the substance is not limited as long as it is water-soluble, but such as phenol resin, polyvinyl alcohol, polyethylene oxide, polyacrylic acid, polyacrylic acid salt (sodium polyacrylate, calcium polyacrylate, etc.) Mention may be made of inorganic compounds such as water-soluble polymers (organic compounds) and alkali silicates. In the case of an organic compound, such a third component has effects such as strengthening the binding between fibers, controlling the size of the pores, and introducing a new functional group to change the surface state. In the case of an inorganic compound, there is an effect of changing the surface state by introducing a metal element.

また、多孔質体の強度、化学的特性及び物理的特性は、ゲル状態中に第三成分として微粒子分散粒子などの結合材を分散させることによっても調整することができる。この微粒子分散粒子は寒天などのゲル化する物質が乾燥する際に形成する特有の多孔質構造を壊さないものであれば良いが、例えばポリテトラフッ化エチレンの微粒子を分散させたフッ素樹脂粒子分散液等が挙げられる。   Moreover, the strength, chemical characteristics, and physical characteristics of the porous body can be adjusted by dispersing a binder such as fine particle dispersed particles as a third component in the gel state. The fine particle-dispersed particles may be any particles that do not break the specific porous structure formed when the gelling substance such as agar dries. For example, a fluororesin particle dispersion in which fine particles of polytetrafluoroethylene are dispersed Is mentioned.

本発明の多孔質体は、上記の方法以外にも、液状ポリマー中に気相法炭素繊維を分散させ、その後に液状ポリマーを発泡させることによっても、製造することができる。液状ポリマーとしては、ポリイソシアネートとポリオールからなるポリマー等が挙げられる。   In addition to the above method, the porous body of the present invention can be produced by dispersing vapor grown carbon fiber in a liquid polymer and then foaming the liquid polymer. Examples of the liquid polymer include polymers composed of polyisocyanate and polyol.

多孔質体の用途として、高分子または金属との複合材、各種フィルター、触媒担体が挙げられる。
より緻密で、機械的強度等に優れた複合材を作製するには、なるべく多くの空隙が存在していることが不可欠である。そのため、多孔度は0.50〜0.99の範囲に属していることが望ましい。さらに好ましい多孔度は0.70〜0.99である。多孔度が0.50未満になると空隙の量が少ないことから、マトリックス材料を十分に含浸することができない。
また、各種フィルター及び触媒担体として使用する際にも、単位体積あたりにおける気体または液体との接触頻度を上げることが重要であり、その観点からも多孔度は前述の範囲に属していることが望ましい。
ここで、多孔度とは、全体積(見かけの体積:V0)に対する細孔が占める体積(V)の割合(V/V0)として表される。
Applications of the porous body include composite materials with polymers or metals, various filters, and catalyst carriers.
In order to produce a more dense composite material with excellent mechanical strength and the like, it is essential that as many voids as possible exist. Therefore, the porosity is desirably in the range of 0.50 to 0.99. A more preferred porosity is 0.70 to 0.99. When the porosity is less than 0.50, the amount of voids is small, so that the matrix material cannot be sufficiently impregnated.
Also, when used as various filters and catalyst carriers, it is important to increase the frequency of contact with gas or liquid per unit volume, and from this viewpoint, the porosity is preferably within the above-mentioned range. .
Here, the porosity is expressed as the ratio (V / V 0 ) of the volume (V) occupied by the pores to the total volume (apparent volume: V 0 ).

また、本発明においては、多孔質体の孔を形成するセル壁面を多孔質構造とすることもできる(図3参照)。セル壁面を多孔質構造とすることにより、特異な物理的効果の発現が期待できる。例えば、触媒担体として使用する際に、触媒の担持量を飛躍的に増やすことができると期待される。
セル壁面を多孔質構造とするには、気相法炭素繊維を分散した液中にフッ素樹脂微粉分散液を添加し、さらに60℃の寒天水溶液を加えて、撹拌、乾燥させることにより実現できる。
Moreover, in this invention, the cell wall surface which forms the hole of a porous body can also be made into a porous structure (refer FIG. 3). By making the cell wall surface porous, it is possible to expect a specific physical effect. For example, when used as a catalyst carrier, it is expected that the amount of catalyst supported can be dramatically increased.
The cell wall surface can have a porous structure by adding a fluororesin fine powder dispersion to a liquid in which vapor-grown carbon fibers are dispersed, adding a 60 ° C. agar aqueous solution, and stirring and drying.

多孔質体の比表面積は、5〜1000m2/gの範囲に制御することが望ましい。更に好ましい比表面積は10〜1000m2/gである。比表面積がこれ以上大きくなると、多孔質体そのものの機械的強度を失ってしまったり、マトリックス材料と多孔質体表面との親和が却って十分に起こらず、結果として十分に緻密な複合材を作製できないことの原因となる。 The specific surface area of the porous body is desirably controlled in the range of 5 to 1000 m 2 / g. A more preferable specific surface area is 10 to 1000 m 2 / g. If the specific surface area is larger than this, the mechanical strength of the porous body itself will be lost, or the affinity between the matrix material and the porous body surface will not occur sufficiently, and as a result, a sufficiently dense composite material cannot be produced. Cause that.

本発明の多孔質体は、高温下で熱処理する場合に、あるいは高温下で使用する場合に、熱による体積収縮が小さいという特徴と有する。体積収縮が大きいと寸法設計が著しく困難となるうえ、体積減少分だけコストが割高になるため経済的観点からも不利となる。本発明の多孔質体を、不活性雰囲気下で100〜1000℃での温度で加熱した場合、その体積収縮率は20%未満に収まり、またその範囲に収まれば実用に十分足りる。
高温下で熱処理することにより、寒天及び添加物の炭素化を進めることができ、それに伴って表面物性、例えば親水性から疎水性へと変化させることができる。また、高温下で熱処理することにより、複合材とした後の水分の蒸発を原因とする複合材の劣化を抑制することができる。
The porous body of the present invention has a feature that volume shrinkage due to heat is small when heat-treated at high temperature or when used at high temperature. If the volume shrinkage is large, the dimensional design becomes extremely difficult, and the cost is increased by the volume reduction, which is disadvantageous from an economic viewpoint. When the porous body of the present invention is heated at a temperature of 100 to 1000 ° C. in an inert atmosphere, its volume shrinkage is less than 20%, and if it falls within that range, it is sufficient for practical use.
By heat-treating at a high temperature, the carbonization of the agar and the additive can be promoted, and the surface properties such as hydrophilicity to hydrophobicity can be changed accordingly. In addition, by performing heat treatment at a high temperature, deterioration of the composite material due to evaporation of moisture after the composite material can be suppressed.

本発明の多孔質体は、その用途に応じて電気抵抗値(体積固有抵抗値)が103Ω・cm未満となるように調整することが好ましい。更に好ましい電気抵抗値は102Ω・cm未満である。
電気抵抗値を下げることは(導電性を上げることは)、例えば気相法炭素繊維の配合量を増加させたり、溶媒除去後に熱処理を行ったり、気相法炭素繊維自体の導電性を向上させたりすること等により行うことができる。ただし、本発明の多孔質体は、炭素繊維同士の繋がりの度合いが高く、高レベルで三次元ネットワークが形成されているため、気相法炭素繊維の配合量を従来ほど高めなくても、電気抵抗値を所望の値まで下げることが可能である。
The porous body of the present invention is preferably adjusted so that the electric resistance value (volume specific resistance value) is less than 10 3 Ω · cm according to the application. A more preferable electric resistance value is less than 10 2 Ω · cm.
Decreasing the electrical resistance value (increasing conductivity) increases the electrical conductivity of the vapor grown carbon fiber itself, for example, by increasing the compounding amount of vapor grown carbon fiber, performing heat treatment after removing the solvent, etc. Or the like. However, the porous body of the present invention has a high degree of connection between carbon fibers and a three-dimensional network formed at a high level. It is possible to reduce the resistance value to a desired value.

[複合材料]
上記方法で得た多孔質体を使用して複合材料を製造するには、一般的なマトリックスとなる材料を含浸させる方法で行うことができる。すなわち、マトリックス材料としての溶融状態の樹脂または金属を多孔質体中に含浸または含有させることにより製造することができる。
マトリックスとなる樹脂としては、例えばフェノール樹脂、エポキシ樹脂、ポリイミド、ポリカーボネート等が挙げられる。マトリックスとなる金属としては、例えばアルミニウム、マグネシウム、銅、銀またはそれらの合金の溶融物が挙げられる。
[Composite material]
Production of a composite material using the porous body obtained by the above method can be performed by a method of impregnating a material that becomes a general matrix. That is, it can be produced by impregnating or containing a molten resin or metal as a matrix material in a porous body.
Examples of the resin serving as the matrix include phenol resin, epoxy resin, polyimide, polycarbonate, and the like. Examples of the matrix metal include a melt of aluminum, magnesium, copper, silver, or an alloy thereof.

[その他の用途]
本発明の多孔質体は三次元的にネットワークを形成した気相法炭素繊維を含む複合体を製造する用途に有用であるが、その他にも、ガス吸収用フィルター、水ろ過用フィルター、塩素化合物除去用フィルター等のフィルター材料としても使用することができる。さらに触媒、触媒担体、燃料電池のガス透過性多孔質材料としても使用することができる。
[Other uses]
The porous body of the present invention is useful for the production of a composite containing a vapor grown carbon fiber having a three-dimensional network, but also includes a gas absorption filter, a water filtration filter, and a chlorine compound. It can also be used as a filter material such as a filter for removal. Further, it can be used as a gas permeable porous material for a catalyst, a catalyst carrier, and a fuel cell.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
本発明の多孔質体の多孔度、気相法炭素繊維の含有量、比表面積の測定、抵抗値の測定は以下の方法により行った。
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
The porosity of the porous body of the present invention, the content of vapor grown carbon fiber, the measurement of the specific surface area, and the resistance value were measured by the following methods.

多孔度:
立方体または直方体の形で得られた多孔質体の各辺の長さを測定することにより全容量(V0)を算出し、また真密度測定器ウルトラピクノメータ1000(ユアサアイオニクス製)にて多孔質体の真密度を測定し、この数値を逆数にして質量を乗じた数値を全容積(V0)から差し引くことで細孔容積(V)を得、全容積中の細孔容積の割合(V/V0)を算出し、これを多孔度とした。
Porosity:
The total volume (V 0 ) is calculated by measuring the length of each side of the porous body obtained in the form of a cube or a rectangular parallelepiped, and the true density measuring instrument Ultra Pycnometer 1000 (manufactured by Yuasa Ionics) The true density of the porous body is measured, and the value obtained by reversing this value and multiplying the mass is subtracted from the total volume (V 0 ) to obtain the pore volume (V), and the ratio of the pore volume in the total volume (V / V 0 ) was calculated and used as the porosity.

気相法炭素繊維の含有量:
多孔質体となったときの質量に対する、使用した気相法炭素繊維の質量の割合を、気相法炭素繊維の含有量(%)とした。
Vapor grown carbon fiber content:
The ratio of the mass of the vapor-grown carbon fiber used to the mass when it became a porous body was defined as the content (%) of the vapor-grown carbon fiber.

比表面積:
多孔質体サンプルを約1〜2mm大に砕いて専用のガラスセルに充填し、比表面積測定装置NOVA−1200(ユアサアイオニクス製)を用いて、一般的な比表面積の測定方法であるBET法により測定した。
Specific surface area:
A porous material sample is crushed to about 1 to 2 mm and filled into a dedicated glass cell, and a BET method, which is a general method for measuring a specific surface area, using a specific surface area measuring device NOVA-1200 (manufactured by Yuasa Ionics). It was measured by.

体積固有抵抗値:
多孔質体サンプルを正確に5cm×5cm大に切り出し、マイクロメーター(日本測定工具製)を用いて厚さを正確に計測した。次いで抵抗測定器ロレスタHP(MCP−T410型;ダイヤインスツルメンツ製)を用いて四探針法により、体積固有抵抗値を測定した。
Volume resistivity:
The porous body sample was accurately cut into a size of 5 cm × 5 cm, and the thickness was accurately measured using a micrometer (manufactured by Nippon Measuring Tool). Subsequently, the volume resistivity value was measured by a four-probe method using a resistance measuring instrument Loresta HP (MCP-T410 type; manufactured by Dia Instruments).

実施例1:
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した。これに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、ついで、冷凍庫から取り出して凍結乾燥装置(FD−15LI:サンペック製)に入れて水分の乾燥を行い、多孔質体を得た。凍結乾燥法による乾燥は、まず装置内の圧力を減圧して450Pa以下となるように保持し、次いで氷が昇華するように0〜60℃で24時間加熱することにより行った。
得られた多孔質体の多孔度は0.95、気相法炭素繊維含有量は74質量%、比表面積は12m2/g、体積固有抵抗値は130Ω・cmであった。この多孔質体を走査型電子顕微鏡で観察したところ、孔の多いものであることが確認された(図1)。
Example 1:
1.5 g of agar was dissolved in 50 g of purified water under heating at 95 ° C., and this was designated as solution A. On the other hand, 0.45 g of 40 mass% concentration of sodium dodecylbenzenesulfonate (manufactured by Aldrich) was added to 75 g of purified water. To this was added 4.2 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15), The mixture was irradiated with ultrasonic waves for 30 minutes, and further stirred and dispersed with a magnetic stirrer for 1 hour.
After liquid A was cooled to 60 ° C., liquid B was added and mixed. After that, it was placed in a frozen state at −15 ° C. to −20 ° C. in a freezer, then taken out from the freezer and placed in a freeze-drying device (FD-15LI: manufactured by Sanpec) to dry the water, thereby obtaining a porous body. . Drying by the freeze-drying method was performed by first reducing the pressure in the apparatus to hold it at 450 Pa or less and then heating at 0 to 60 ° C. for 24 hours so that the ice sublimates.
The obtained porous body had a porosity of 0.95, a vapor grown carbon fiber content of 74% by mass, a specific surface area of 12 m 2 / g, and a volume resistivity of 130 Ω · cm. When this porous body was observed with a scanning electron microscope, it was confirmed that the porous body had many pores (FIG. 1).

実施例2:
実施例1で得られた多孔質体を、管状加熱炉にてアルゴンガス10L/min流通下において800℃で1時間熱処理した。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は93質量%、比表面積は520m2/g、熱処理時の体積収縮率は13体積%、体積固有抵抗値は40Ω・cmであった。
Example 2:
The porous body obtained in Example 1 was heat-treated at 800 ° C. for 1 hour in a tubular heating furnace under a flow of argon gas of 10 L / min. The porosity of the obtained porous body was 0.98, the vapor grown carbon fiber content was 93% by mass, the specific surface area was 520 m 2 / g, the volume shrinkage during heat treatment was 13% by volume, and the volume resistivity value was It was 40 Ω · cm.

実施例3:
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した。これに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)8.5gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、ついで、冷凍庫から取り出し、実施例1と同様の方法で凍結乾燥を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は85質量%、比表面積は13m2/g、体積固有抵抗値は10Ω・cmであった。
Example 3:
1.5 g of agar was dissolved in 50 g of purified water under heating at 95 ° C., and this was designated as solution A. On the other hand, 0.45 g of 40 mass% concentration of sodium dodecylbenzenesulfonate (manufactured by Aldrich) was added to 75 g of purified water. To this was added 8.5 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15), The mixture was irradiated with ultrasonic waves for 30 minutes, and further stirred and dispersed with a magnetic stirrer for 1 hour.
After liquid A was cooled to 60 ° C., liquid B was added and mixed. Then, it was placed in a frozen state at −15 ° C. to −20 ° C. in a freezer, then taken out from the freezer and freeze-dried in the same manner as in Example 1 to obtain a porous body. The obtained porous body had a porosity of 0.98, a vapor grown carbon fiber content of 85% by mass, a specific surface area of 13 m 2 / g, and a volume resistivity of 10 Ω · cm.

実施例4:
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、0.45質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した後、水溶性フェノール樹脂(BRL120Z,昭和高分子製)3.9gを溶解させた。その溶液に気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。ついで、冷凍庫にて冷凍させ、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において800℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は93質量%、比表面積は72m2/g、熱処理時の体積収縮率は15体積%、体積固有抵抗値は40Ω・cmであった。
Example 4:
1.5 g of agar was dissolved in 50 g of purified water under heating at 95 ° C., and this was designated as solution A. On the other hand, 0.45 g of 0.45 mass% sodium dodecylbenzenesulfonate (Aldrich) was added to 75 g of purified water, and then 3.9 g of water-soluble phenolic resin (BRL120Z, Showa Polymer) was dissolved. I let you. To this solution, 4.2 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added. The mixture was irradiated with ultrasonic waves for 30 minutes, and further stirred and dispersed with a magnetic stirrer for 1 hour, which was designated as solution B.
After liquid A was cooled to 60 ° C., liquid B was added and mixed. Subsequently, it was frozen in a freezer and water was dried by freeze-drying as in Example 1.
Thereafter, using a tubular heating furnace, heat treatment was performed at 800 ° C. for 1 hour under a flow of argon gas of 10 L / min to obtain a porous body. The resulting porous body has a porosity of 0.98, a vapor grown carbon fiber content of 93% by mass, a specific surface area of 72 m 2 / g, a volume shrinkage during heat treatment of 15% by volume, and a volume resistivity value of It was 40 Ω · cm.

実施例5:
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g加えた後、珪酸ナトリウム(純正化学製)を40質量%の濃度に溶解させた水溶液6.5gを加えた。その溶液に気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加、30分間超音間照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。次いで、冷凍庫にて冷凍させ、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において800℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は38質量%、比表面積は5m2/g、熱処理時の体積収縮率は5体積%、体積固有抵抗値は125Ω・cmであった。この多孔質体を走査型電子顕微鏡で観察したところ、孔の多いものであることが確認された(図2)。また多孔質体の孔壁表面も多孔質構造をなしていた(図3)。
Example 5:
1.5 g of agar was dissolved in 50 g of purified water under heating at 95 ° C., and this was designated as solution A. On the other hand, an aqueous solution 6 in which 0.45 g of sodium dodecylbenzenesulfonate (Aldrich) having a concentration of 40% by mass was added to 75 g of purified water and then sodium silicate (Pure Chemical) was dissolved to a concentration of 40% by mass was obtained. 0.5 g was added. To the solution, 4.2 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added, Ultrasonic irradiation was performed for 30 minutes, and the mixture was further stirred and dispersed with a magnetic stirrer for 1 hour.
After liquid A was cooled to 60 ° C., liquid B was added and mixed. Subsequently, it was frozen in a freezer and water was dried by freeze-drying as in Example 1.
Thereafter, using a tubular heating furnace, heat treatment was performed at 800 ° C. for 1 hour under a flow of argon gas of 10 L / min to obtain a porous body. The resulting porous body has a porosity of 0.98, a vapor-grown carbon fiber content of 38% by mass, a specific surface area of 5 m 2 / g, a volume shrinkage during heat treatment of 5% by volume, and a volume resistivity value of It was 125 Ω · cm . When this porous body was observed with a scanning electron microscope, it was confirmed that the porous body had many pores (FIG. 2). The pore wall surface of the porous body also had a porous structure (FIG. 3).

実施例6:
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を5g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃、1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.96、気相法炭素繊維含有量は47質量%、比表面積は7m2/g、体積収縮率は2体積%、体積固有抵抗値は50Ω・cmであった
Example 6:
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. Meanwhile, 3 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added to 45 g of purified water. Then, it was irradiated for 30 minutes between supersonic waves. 5 g of fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); manufactured by Mitsui / DuPont Fluorochemical) was added to the solution, and this was designated as B solution.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas of 10 L / min to obtain a porous body. The resulting porous body has a porosity of 0.96, a vapor grown carbon fiber content of 47% by mass, a specific surface area of 7 m 2 / g, a volume shrinkage of 2% by volume, and a volume resistivity of 50 Ω · cm. It was .

実施例7:
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を10g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.95、気相法炭素繊維含有量は32質量%、比表面積は4m2/g、体積収縮率は19体積%、体積固有抵抗値は65Ω・cmであった。
Example 7:
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. Meanwhile, 3 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added to 45 g of purified water. Then, it was irradiated for 30 minutes between supersonic waves. 10 g of a fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); Mitsui / DuPont Fluorochemical) was added to the solution, and this was designated as B solution.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas at 10 L / min to obtain a porous body. The resulting porous body has a porosity of 0.95, a vapor grown carbon fiber content of 32% by mass, a specific surface area of 4 m 2 / g, a volume shrinkage of 19% by volume, and a volume resistivity of 65 Ω · cm. Met.

実施例8:
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を30g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.91、気相法炭素繊維含有量は14質量%、比表面積は3m2/g、体積収縮率は19体積%、体積固有抵抗値は110Ω・cmであった。
Example 8:
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. Meanwhile, 3 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added to 45 g of purified water. Then, it was irradiated for 30 minutes between supersonic waves. 30 g of fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); Mitsui / DuPont Fluorochemical) was added to the solution, and this was designated as B solution.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas at 10 L / min to obtain a porous body. The porosity of the obtained porous body was 0.91, the content of vapor grown carbon fiber was 14% by mass, the specific surface area was 3 m 2 / g, the volume shrinkage was 19% by volume, and the volume resistivity was 110 Ω · cm. Met.

実施例9:
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を50g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃、1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.70、気相法炭素繊維含有量は10質量%、比表面積は2m2/g、体積収縮率は8体積%、体積固有抵抗値は400Ω・cmであった。
Example 9:
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. Meanwhile, 3 g of vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) is added to 45 g of purified water. Then, it was irradiated for 30 minutes between supersonic waves. 50 g of fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); manufactured by Mitsui / DuPont Fluorochemical) was added to the solution, and this was designated as B solution.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas of 10 L / min to obtain a porous body. The porosity of the obtained porous body was 0.70, the content of vapor grown carbon fiber was 10% by mass, the specific surface area was 2 m 2 / g, the volume shrinkage was 8% by volume, and the volume resistivity was 400 Ω · cm. Met.

比較例1:
特表平9−505266号公報に記載の方法に従って、以下の操作を行った。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gにフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)5gを添加し、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.73、比表面積は1m2/g、体積収縮率は90体積%、体積固有抵抗値は1010Ω・cm以上であった。この多孔質体を走査型電子顕微鏡で観察したところ、実施例1乃至9と比較して、孔壁が明らかに厚かった(図4)。
Comparative Example 1:
The following operations were performed according to the method described in JP-T-9-505266.
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. On the other hand, 5 g of a fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); Mitsui / DuPont Fluorochemical) was added to 45 g of purified water.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas at 10 L / min to obtain a porous body. The resulting porous body had a porosity of 0.73, a specific surface area of 1 m 2 / g, a volume shrinkage of 90% by volume, and a volume resistivity of 10 10 Ω · cm or more. When this porous body was observed with a scanning electron microscope, the pore walls were clearly thicker than those of Examples 1 to 9 (FIG. 4).

比較例2:
特表平9−505266号公報に記載の方法に従って、以下の操作を行った。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水40gにフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)10gを添加し、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.75、比表面積は1m2/g、体積収縮率は85体積%、体積固有抵抗値は1010Ω・cm以上であった。
Comparative Example 2:
The following operations were performed according to the method described in JP-T-9-505266.
1.5 g of agar was added to 50 g of purified water and dissolved under heating at 95 ° C., and this was designated as solution A. On the other hand, 10 g of a fluororesin particle dispersion (MDF PTFE30-J (60% by mass dispersoid); Mitsui / DuPont Fluorochemical) was added to 40 g of purified water, and this was designated as B solution.
After the liquid A was cooled to 60 ° C., the liquid B was mixed and stirred. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, and water was dried by the freeze-drying method similarly to Example 1. FIG.
Thereafter, using a tubular heating furnace, heat treatment was performed at 400 ° C. for 1 hour under a flow of argon gas at 10 L / min to obtain a porous body. The resulting porous body had a porosity of 0.75, a specific surface area of 1 m 2 / g, a volumetric shrinkage of 85% by volume, and a volume resistivity of 10 10 Ω · cm or more.

比較例3:
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g溶解させた水溶液を調製し、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、実施例1と同様に凍結乾燥法により水を乾燥、多孔質体を得た。得られた多孔質体の多孔度は0.98、体積固有抵抗値は1010Ω・cm以上であった。
Comparative Example 3:
1.5 g of agar was dissolved in 50 g of purified water under heating at 95 ° C., and this was designated as solution A. On the other hand, an aqueous solution in which 0.45 g of 40 mass% sodium dodecylbenzenesulfonic acid sodium salt (manufactured by Aldrich) was dissolved in 75 g of purified water was prepared.
After liquid A was cooled to 60 ° C., liquid B was added and mixed. Then, it put into the frozen state at -15 degreeC--20 degreeC with the freezer, water was dried by the freeze-drying method similarly to Example 1, and the porous body was obtained. The obtained porous body had a porosity of 0.98 and a volume resistivity of 10 10 Ω · cm or more.

実施例1〜9及び比較例1〜3の結果を表1にまとめて示す。

Figure 0005335174
The results of Examples 1 to 9 and Comparative Examples 1 to 3 are summarized in Table 1.
Figure 0005335174

実施例10:
実施例1に記載の多孔質体100gを金属容器に入れて280℃で溶融させたポリカーボネートパンライト(帝人化成製)96gを流し込んだ。これを真空ガス置換炉KDF−V50R(デンケン製)で加熱しながら3時間真空引き(10-1Pa)を行うことで、多孔質体へポリカーボネートを含浸させた樹脂複合材を得た。得られた樹脂複合材について抵抗測定器ロレスタHP(MCP−T410型;ダイヤインスツルメンツ製)を用い、四探針法により体積固有抵抗値を測定し、560Ω・cmの値を得た。
Example 10:
96 g of polycarbonate panlite (manufactured by Teijin Chemicals), in which 100 g of the porous material described in Example 1 was put in a metal container and melted at 280 ° C., was poured. While this was heated in a vacuum gas replacement furnace KDF-V50R (manufactured by Denken), evacuation (10 −1 Pa) was performed for 3 hours to obtain a resin composite material in which a porous material was impregnated with polycarbonate. The obtained resin composite material was measured for volume resistivity by a four-probe method using a resistance measuring instrument Loresta HP (MCP-T410 type; manufactured by Dia Instruments) to obtain a value of 560 Ω · cm.

実施例11:
実施例2に記載の多孔質体100gを用いた以外は実施例10と同様にして、樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、620Ω・cmの値を得た。
Example 11:
A resin composite material was obtained in the same manner as in Example 10 except that 100 g of the porous body described in Example 2 was used. The volume resistivity value was measured in the same manner as in Example 10, and a value of 620 Ω · cm was obtained.

実施例12:
実施例4に記載の多孔質体100gを用いた以外は実施例10と同様にして、樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、500Ω・cmの値を得た。
Example 12:
A resin composite material was obtained in the same manner as in Example 10 except that 100 g of the porous body described in Example 4 was used. The volume resistivity value was measured in the same manner as in Example 10 to obtain a value of 500 Ω · cm.

比較例4:
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)960gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)40gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、2.3×1014Ω・cmの値を得た。
Comparative Example 4:
960 g of polycarbonate panlite (manufactured by Teijin Kasei) and vapor grown carbon fiber VGCF (registered trademark, manufactured by Showa Denko; fiber diameter: while heating the inside of the apparatus of the labo plast mill (manufactured by Toyo Seiki) to 280 ° C. A resin composite material was obtained by kneading and extruding 40 g of 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15). The volume specific resistance value was measured in the same manner as in Example 10, and a value of 2.3 × 10 14 Ω · cm was obtained.

比較例5:
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)900gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)100gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、1.6×108Ω・cmの値を得た。
Comparative Example 5:
Kneading / extrusion equipment Labo Plast Mill (Toyo Seiki) heated to 280 ° C. while polycarbonate panlite (Teijin Chemicals) 900 g and vapor grown carbon fiber VGCF (registered trademark, Showa Denko; fiber diameter: A resin composite was obtained by kneading and extruding 100 g of 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15). The volume specific resistance value was measured in the same manner as in Example 10 to obtain a value of 1.6 × 10 8 Ω · cm.

比較例6:
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)700gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)300gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、7.3×104Ω・cmの値を得た。
Comparative Example 6:
Kneading / extrusion equipment Labo Plast Mill (Toyo Seiki) while heating to 280 ° C., 700 g of polycarbonate panlite (made by Teijin Chemicals) and vapor grown carbon fiber VGCF (registered trademark, Showa Denko; fiber diameter: 150 nm, aspect ratio: 60, specific surface area: 13 m 2 / g, Raman spectral intensity ratio: 0.15) 300 g were kneaded and extruded to obtain a resin composite. The volume resistivity value was measured in the same manner as in Example 10 to obtain a value of 7.3 × 10 4 Ω · cm.

実施例10〜12及び比較例4〜6の結果を表2にまとめて示す。

Figure 0005335174
The results of Examples 10-12 and Comparative Examples 4-6 are summarized in Table 2.
Figure 0005335174

本発明の多孔質体及びその製造方法によれば、多孔質体中に含まれる気相法炭素繊維の繊維長が温存され、かつ三次元的なネットワークが形成されるので、それを使用して得られる複合材は、従来の複合材の製造方法で製造したものよりも少量の気相法炭素繊維で導電性付与等の添加効果を発現できる。また、気相法炭素繊維を含む多孔質体とすることにより、熱処理時における体積収縮を抑制できる。   According to the porous body and the method for producing the same of the present invention, the fiber length of the vapor grown carbon fiber contained in the porous body is preserved and a three-dimensional network is formed. The resulting composite material can exhibit an effect of adding conductivity and the like with a smaller amount of vapor-grown carbon fiber than that produced by the conventional composite material production method. Moreover, volume shrinkage at the time of heat processing can be suppressed by setting it as the porous body containing a vapor grown carbon fiber.

実施例1で生成した多孔質体の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the porous body produced in Example 1. FIG. 実施例5で生成した多孔質体の走査型電子顕微鏡写真である。 6 is a scanning electron micrograph of the porous body produced in Example 5. FIG. 図2の孔壁面を拡大した走査型電子顕微鏡写真である。It is the scanning electron micrograph which expanded the hole wall surface of FIG. 比較例1で生成した多孔質体の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a porous body produced in Comparative Example 1.

Claims (8)

気相法炭素繊維を含むゲル状物質から生成される多孔質体であって、セル壁面がさらに多孔質構造となっている多孔質体。 A porous body produced from a gel-like substance containing vapor grown carbon fiber, wherein the cell wall surface further has a porous structure. 気相法炭素繊維を10〜95質量%含む請求項1に記載の多孔質体。   The porous body according to claim 1, comprising 10 to 95% by mass of vapor grown carbon fiber. 気相法炭素繊維が、繊維径1〜1000nm、アスペクト比5〜15000、比表面積2〜2000m2/g、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580)0.1〜2.0である請求項1または2に記載の多孔質体。 Vapor grown carbon fibers, fiber diameter 1 to 1,000 nm, an aspect ratio 5-15000, a specific surface area 2~2000m 2 / g, the peak intensity ratio of 1580 cm -1 and 1360 cm -1 of the Raman scattering spectrum (I 1360 / I 1580) The porous body according to claim 1 or 2, which is 0.1 to 2.0. 気相法炭素繊維の結晶内あるいは結晶表面にホウ素が0.001〜5質量%含有されている請求項1乃至3のいずれか1項に記載の多孔質体。   The porous body according to any one of claims 1 to 3, wherein 0.001 to 5 mass% of boron is contained in the crystal of the vapor grown carbon fiber or in the crystal surface. 全体積(V0)に対する細孔が占める体積(V)の割合として表される多孔度(V/V0)が0.50〜0.99である請求項1乃至4のいずれか1項に記載の多孔質体。 To any one of claims 1 to 4 porosity, expressed as a percentage of the volume occupied by pores (V) (V / V 0 ) is 0.50 to 0.99 to the total volume (V 0) The porous body as described. 比表面積が5〜1000m2/gである請求項1乃至5のいずれか1項に記載の多孔質体。 The porous body according to any one of claims 1 to 5, which has a specific surface area of 5 to 1000 m 2 / g. 電気抵抗値が103Ω・cm未満である請求項1乃至6のいずれか1項に記載の多孔質体。 The porous body according to any one of claims 1 to 6, wherein the electrical resistance value is less than 10 3 Ω · cm. 請求項1乃至7のいずれか1項に記載の多孔質体を用いた触媒担体。   A catalyst carrier using the porous body according to any one of claims 1 to 7.
JP2004088678A 2003-05-13 2004-03-25 Porous body, manufacturing method thereof, and composite material using porous body Expired - Fee Related JP5335174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088678A JP5335174B2 (en) 2003-05-13 2004-03-25 Porous body, manufacturing method thereof, and composite material using porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003134964 2003-05-13
JP2003134964 2003-05-13
JP2004088678A JP5335174B2 (en) 2003-05-13 2004-03-25 Porous body, manufacturing method thereof, and composite material using porous body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010246883A Division JP4999128B2 (en) 2003-05-13 2010-11-02 Method for producing porous body

Publications (2)

Publication Number Publication Date
JP2004359936A JP2004359936A (en) 2004-12-24
JP5335174B2 true JP5335174B2 (en) 2013-11-06

Family

ID=34067186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088678A Expired - Fee Related JP5335174B2 (en) 2003-05-13 2004-03-25 Porous body, manufacturing method thereof, and composite material using porous body

Country Status (1)

Country Link
JP (1) JP5335174B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994671B2 (en) * 2005-01-21 2012-08-08 昭和電工株式会社 Conductive resin composition, production method and use thereof
JP3720044B1 (en) * 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 Composite material
US20090060961A1 (en) * 2005-08-10 2009-03-05 Toray Industries Inc. Spongelike Structure and Powder, As Well As Process for Producing the Same
JP2007119693A (en) * 2005-10-31 2007-05-17 Bussan Nanotech Research Institute Inc Colored polymer composition
JP4815205B2 (en) * 2005-12-06 2011-11-16 国立大学法人群馬大学 Carbon material for electric double layer capacitor and electric double layer capacitor using the material
GB0622060D0 (en) 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
EP2351705B1 (en) * 2009-03-05 2014-04-30 Showa Denko K.K. Carbon fiber agglomerates and process for production of same
CN102060288B (en) * 2010-11-29 2012-12-12 湖南大学 Method for preparing porous carbon material for copolymerization and charring of pored chain segment from dibasic acid
JP2015072899A (en) * 2013-09-06 2015-04-16 宇部興産株式会社 Conductive polyimide porous membrane and method for producing the same
JP7405524B2 (en) 2019-07-01 2023-12-26 イビデン株式会社 Graphite material and its manufacturing method
KR102282019B1 (en) * 2019-10-23 2021-07-29 한국과학기술연구원 A porous composite comprising boron nitride nanomaterial and a manufacturing method thereof
CN115323788B (en) * 2022-09-20 2023-11-03 四川大学 Method for realizing carbon fiber surface modification by creating controllable three-dimensional microstructure on carbon fiber surface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790048A (en) * 1980-11-25 1982-06-04 Toray Ind Inc Antistatic porous resin
JPS6094344A (en) * 1983-10-30 1985-05-27 前田 眞 Porous structure
JPS63286443A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Foam containing carbon whisker
JP2925639B2 (en) * 1990-03-22 1999-07-28 三菱化学株式会社 Analysis equipment
JP2799187B2 (en) * 1989-06-01 1998-09-17 三菱化学株式会社 Porous graphitic carbon granules and support materials for chromatography using the same
JPH09282938A (en) * 1996-04-17 1997-10-31 Yazaki Corp Conductive porous material and manufacture thereof
JPH11279307A (en) * 1998-03-27 1999-10-12 Sekisui Chem Co Ltd Thermoplastic foamed article
TW524904B (en) * 1999-03-25 2003-03-21 Showa Denko Kk Carbon fiber, method for producing same and electrodes for electric cells
JP4916632B2 (en) * 2001-09-10 2012-04-18 昭和電工株式会社 Vapor grown carbon fiber and its use
JP3629540B2 (en) * 2002-03-11 2005-03-16 国立大学法人信州大学 carbon nanotube

Also Published As

Publication number Publication date
JP2004359936A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4999128B2 (en) Method for producing porous body
Jiang et al. Lightweight spongy bone-like graphene@ SiC aerogel composites for high-performance microwave absorption
Araby et al. Aerogels based on carbon nanomaterials
JP5335174B2 (en) Porous body, manufacturing method thereof, and composite material using porous body
Chithra et al. Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust
Allahbakhsh et al. Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications
Wu et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications
JP2014507365A (en) Porous graphene material, production method thereof, and application as electrode material
Farhan et al. Carbon foam decorated with silver particles and in situ grown nanowires for effective electromagnetic interference shielding
CN107922666B (en) Preparation of articles comprising graphite particles
Zhang et al. Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique
CN105802589A (en) High-strength heat-conducting film and preparation method thereof
KR102342310B1 (en) Method for preparing graphite sheet
Kim et al. Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA–AAc solution
Singh et al. Porous materials for EMI shielding
Yang et al. Chemo-mechanically exfoliated boron nitride nanosheet/poly (vinyl alcohol) composites as efficient heat dissipation components
Wu et al. Novel in-situ constructing approach for vertically aligned AlN skeleton and its thermal conductivity enhancement effect on epoxy
CN116941062A (en) Fiber carbon silicon composite material and manufacturing method thereof
Stojanovska et al. Carbon-based foams: Preparation and applications
JP5494024B2 (en) Porous material and method for producing the same
JP4523829B2 (en) Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
Huang et al. Enhanced ablation resistance of phenolic composites through the construction of a sea-island nanostructured char layer via in-situ catalytic graphitization of incorporated Salen-Ni complex
JP5071837B2 (en) Method for producing graphite porous body
Zhou et al. Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional‐freezing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Ref document number: 5335174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees