JPH09282938A - Conductive porous material and manufacture thereof - Google Patents

Conductive porous material and manufacture thereof

Info

Publication number
JPH09282938A
JPH09282938A JP9514596A JP9514596A JPH09282938A JP H09282938 A JPH09282938 A JP H09282938A JP 9514596 A JP9514596 A JP 9514596A JP 9514596 A JP9514596 A JP 9514596A JP H09282938 A JPH09282938 A JP H09282938A
Authority
JP
Japan
Prior art keywords
porous material
conductive
conductive porous
fine
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9514596A
Other languages
Japanese (ja)
Inventor
Setsu Sakabe
節 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP9514596A priority Critical patent/JPH09282938A/en
Publication of JPH09282938A publication Critical patent/JPH09282938A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate manufacture, increase a surface area and reduce degradation of conductivity despite of extension by dispersing and cooling a conductive material in a polyvinyl alcohol solution, and freezing water so as to obtain a fine three-dimensional mesh structure. SOLUTION: In a conductive porous material having a fine three-dimensional mesh structure, a diameter of a pore formed in the three-dimensional mesh structure is 0.5-5μm. In manufacturing the conductive porous material having such a fine three-dimensional mesh structure, a conductive filler is added and dispersed into a polyvinyl alcohol solution, and then, is cast into a mold, followed by quenching. With this treatment, water contained in the solution is frozen to produce segregation, thereby forming fine pores. Subsequently, the segregation is heated above a freezing point for thawing. The freezing/ thawing treatment is repeated, so that the pore is grown and gelation proceeds, thereby forming a mesh-like structure. Consequently, almost all strain developed can be absorbed by deformation of the structure even if machining is carried out by uniaxial extension thus reducing degradation of conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電極材、発熱体、
帯電防止材料、電磁波遮蔽材料等に応用される導電性材
料に関する。
TECHNICAL FIELD The present invention relates to an electrode material, a heating element,
The present invention relates to a conductive material applied to an antistatic material, an electromagnetic wave shielding material and the like.

【0002】[0002]

【従来の技術】電極材などとして広く用いられている導
電性を有するポリビニルアルコール(PVA)のフィル
ムは、PVAフィルム上に酸化インジウムやポリピロー
ルなどからなる薄層が形成され、或いは、カーボンブラ
ック等の導電性付与剤を混合した原料を用いてフィルム
化されたものである。このようなフィルムは延伸される
とその導電性は著しく低下する。また、これらは二次元
的なフィルムであるため、表面積が大きいことが要求さ
れる分野には対応できなかった。
2. Description of the Related Art A polyvinyl alcohol (PVA) film having conductivity, which is widely used as an electrode material, has a thin layer of indium oxide, polypyrrole, or the like formed on the PVA film, or carbon black or the like. It is formed into a film by using a raw material mixed with a conductivity-imparting agent. When such a film is stretched, its conductivity is significantly reduced. Further, since these are two-dimensional films, they cannot be applied to the field requiring a large surface area.

【0003】[0003]

【発明が解決しようとする課題】本発明は製造が容易
で、表面積が大きく、かつ、延伸しても導電率の低下の
少ない高導電率の導電質材料を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly conductive conductive material which is easy to manufacture, has a large surface area, and has a small decrease in conductivity even when stretched.

【0004】[0004]

【課題を解決するための手段】本発明は、微細な三次元
網目構造を有する導電性多孔質材料である。
The present invention is a conductive porous material having a fine three-dimensional network structure.

【0005】[0005]

【発明の実施の形態】本発明に係る微細な三次元網目構
造を有する導電性多孔質材料において、三次元網目構造
の大きさとしては、その構造故に形成される孔の直径が
0.5〜5μmであることが望ましい。ここで、孔の直
径が5μmを越えると材料としての強度が低下したり、
或いは充分な表面積が得られず、また、孔の直径が0.
5μm未満であると、電極材として有効なものとならな
い。なお、孔の直径は、走査型電子顕微鏡或いは光学顕
微鏡で測定する。
BEST MODE FOR CARRYING OUT THE INVENTION In the conductive porous material having a fine three-dimensional network structure according to the present invention, the size of the three-dimensional network structure is such that the diameter of the pores formed is 0.5 to It is preferably 5 μm. Here, if the diameter of the hole exceeds 5 μm, the strength as a material is reduced,
Alternatively, a sufficient surface area cannot be obtained, and the diameter of the pore is 0.
If it is less than 5 μm, it is not effective as an electrode material. The diameter of the hole is measured with a scanning electron microscope or an optical microscope.

【0006】本発明においてポリビニルアルコールは水
溶性を有するため選択されている。従って、この性質が
失われない程度の誘導体化、修飾等は自由に行うことが
できる。また、本発明に係る微細な三次元網目構造を有
する導電性多孔質材料において、孔の存在比(空隙率)
は30%以上70%以下であることが望ましい。30%
未満であると充分な表面積が得られず、70%超である
と、電極材として必要な強度が得られない。なお、この
値は多孔質材料の嵩密度及び比重とを測定し、これらの
比から求めた値である。
In the present invention, polyvinyl alcohol is selected because it has water solubility. Therefore, derivatization, modification, etc. to the extent that this property is not lost can be freely performed. In the conductive porous material having a fine three-dimensional network structure according to the present invention, the abundance ratio of pores (porosity)
Is preferably 30% or more and 70% or less. 30%
If it is less than 70%, a sufficient surface area cannot be obtained, and if it exceeds 70%, the strength required as an electrode material cannot be obtained. In addition, this value is a value obtained by measuring the bulk density and the specific gravity of the porous material and calculating from these ratios.

【0007】本発明で用いる導電性フィラーとしては、
カーボンブラック、炭素繊維、金属粉、金属繊維、或い
は金属メッキされたフィラー等を挙げることができる。
これらの形状(直径、繊維直径、繊維長等)及び金属の
種類等は目的に応じ適宜選択することが可能である。ま
た、これら導電性フィラーの含有率も同様に目的に応じ
て調整する。
As the conductive filler used in the present invention,
Examples thereof include carbon black, carbon fiber, metal powder, metal fiber, and metal-plated filler.
These shapes (diameter, fiber diameter, fiber length, etc.) and the kind of metal can be appropriately selected according to the purpose. Further, the contents of these conductive fillers are also adjusted according to the purpose.

【0008】なお、本発明において三次元網目構造とは
海綿状の構造を指す。このような構造の場合、導電性フ
ィラーはその網目構造内にのみ存在するため、嵩体積当
たりのフィラー量が少なくても、フィラー同士の距離は
短く、そのため電気的なネットワークが形成されるので
全体としての導電性は非常に高いものとなる。
In the present invention, the three-dimensional mesh structure means a spongy structure. In the case of such a structure, since the conductive filler exists only in the mesh structure, the distance between the fillers is short even if the amount of the filler per bulk volume is small, and therefore an electrical network is formed, so that the entire structure is formed. The conductivity is extremely high.

【0009】また、このような海綿構造は一軸軸延伸に
よって加工されても、生じるひずみの殆どはこの構造が
変形することによって吸収されるので、含有される導電
性フィラー相互の距離には影響が少なく、従って導電率
の低下が少ない。本発明に係る微細な三次元網目構造を
有する導電性多孔質材料はそのまま用いても良いが、電
解重合や気相重合等により導電性高分子を表面に生成さ
せて用いることも可能である。
Even if such a sponge structure is processed by uniaxial stretching, most of the generated strain is absorbed by the deformation of the structure, so that the distance between the conductive fillers contained in the sponge structure is not affected. Less, and therefore less decrease in conductivity. The conductive porous material having a fine three-dimensional network structure according to the present invention may be used as it is, but it is also possible to generate a conductive polymer on the surface by electrolytic polymerization, gas phase polymerization or the like and use it.

【0010】このような微細な三次元網目構造を有する
導電性多孔質材料は例えば次のように容易に作製するこ
とができる(第1法)。ポリビニルアルコール水溶液に
導電性フィラーを添加して分散させ、これを型に流し込
み、型に入れたまま急冷する。この処理によって、ポリ
ビニルアルコール溶液中の水分が氷結するが、その際偏
析が生じる。このように水分が偏析した場所に微小な孔
が形成される。次いで氷点以上に加熱することによって
解凍させる。この氷結−解凍を繰り返すことによって、
孔が成長するとともにゲル化が進行し、網目状組織が形
成されて著しく強度が向上する。これはポリビニルアル
コール分子が孔部の成長によって網目状組織部へ局所的
に濃縮され、配向され、延伸されて結晶化が進むためと
考えられる。
The conductive porous material having such a fine three-dimensional network structure can be easily manufactured, for example, as follows (first method). A conductive filler is added to and dispersed in a polyvinyl alcohol aqueous solution, which is poured into a mold and rapidly cooled while being put in the mold. By this treatment, water in the polyvinyl alcohol solution freezes, but segregation occurs at that time. In this way, minute holes are formed at the locations where the water is segregated. Then it is thawed by heating above freezing. By repeating this freezing-thawing,
As the pores grow, gelation progresses, a network structure is formed, and the strength is remarkably improved. It is considered that this is because the polyvinyl alcohol molecules are locally concentrated, oriented, and stretched in the network structure due to the growth of the pores to promote crystallization.

【0011】また、解凍時には、ポリビニルアルコール
濃度の著しい変化を引き起こさないよう、水分の蒸発
や、結露を生じないような条件で行う必要がある。すな
わち、このとき温度としては5℃〜室温程度でかつ、乾
燥雰囲気で行うことが望ましい。氷結−解凍の繰り返し
回数はその他条件(例えばポリビニルアルコール溶液の
濃度等)にもよるが、5回以上であることが望ましい。
5回未満であると、強度が不足したり、或いは充分な導
電性が得られないことがある。上記のようにして得られ
た導電性多孔質材料はそのまま用いても良いが、必要に
応じて乾燥して用いても良い。
Further, at the time of thawing, it is necessary to perform the conditions under which vaporization of water and dew condensation do not occur so as not to cause a remarkable change in polyvinyl alcohol concentration. That is, at this time, it is desirable that the temperature is about 5 ° C. to room temperature and that the operation is performed in a dry atmosphere. The number of times of freezing-thawing depends on other conditions (for example, the concentration of the polyvinyl alcohol solution, etc.), but is preferably 5 times or more.
If it is less than 5 times, the strength may be insufficient, or sufficient conductivity may not be obtained. The conductive porous material obtained as described above may be used as it is, but may be used after drying if necessary.

【0012】この第1法は有害な有機溶媒等を用いるこ
となく導電性多孔質材料を得ることができる優れた方法
であり、溶剤回収等の手間も不要であるため、この方法
では微細な三次元網目構造を有する導電性多孔質材料を
低コストで得ることができる。なお、この方法によれば
比較的大きい直径を持つ孔(直径:5μm程度)を有す
る三次元網目構造を容易に得ることができる。
This first method is an excellent method that can obtain a conductive porous material without using a harmful organic solvent and the like, and the trouble of collecting the solvent is not necessary. A conductive porous material having an original network structure can be obtained at low cost. According to this method, it is possible to easily obtain a three-dimensional mesh structure having holes (diameter: about 5 μm) having a relatively large diameter.

【0013】本発明に係る微細な三次元網目構造を有す
る導電性多孔質材料は、また次のようにして作製するこ
とができる(第2法)。ポリビニルアルコールをジメチ
ルスルホキシド−水混合溶液に溶解し、この溶液に導電
性フィラーを添加して分散させ、これを型に流し込み、
この型に入れたまま急冷し保持する。このとき、ジメチ
ルスルホキシド−水混合溶液は凍結せず、ポリビニルア
ルコールはゲル化するが、このゲルフィルムを水に浸漬
し、ジメチルスルホキシドを水で置換すると、ハイドロ
ゲルフィルムが得られ、これを凍結することにより、ゲ
ル内に微小な細孔が多数形成されて三次元網目構造とな
る。この後冷却しながら真空乾燥を行うことによって微
細な三次元網目構造を有する導電性多孔質材料が得られ
る。
The conductive porous material having a fine three-dimensional network structure according to the present invention can be manufactured as follows (second method). Polyvinyl alcohol is dissolved in a dimethylsulfoxide-water mixed solution, a conductive filler is added to this solution and dispersed, and this is poured into a mold,
Hold in this mold by quenching. At this time, the dimethylsulfoxide-water mixed solution does not freeze, and the polyvinyl alcohol gels, but when this gel film is immersed in water and dimethylsulfoxide is replaced with water, a hydrogel film is obtained and frozen. As a result, a large number of minute pores are formed in the gel to form a three-dimensional network structure. After that, vacuum drying is performed while cooling to obtain a conductive porous material having a fine three-dimensional network structure.

【0014】上記においてジメチルスルホキシド−水混
合溶液はジメチルスルホキシドと水とが容積比で60対
40乃至70対30のものを用いることが望ましい。す
なわち処理温度が低いほど弾性率が高くなるが、この効
果は凍結が生じてしまうと得られない。ここで、溶媒の
構成比が上記比率である場合、−80℃においても凍結
しないため、ポリビニルアルコールによるゲル化が充分
に進行し、高弾性のものが得られる。なお、図1に−1
0℃、−40℃及び−80℃における混合溶媒作製時の
ジメチルスルホキシド(DMSO)の仕込比と混合溶媒
が凍結するまでの時間(凍結時間)との関係を示す。
In the above, it is preferable to use a dimethyl sulfoxide-water mixed solution having a volume ratio of dimethyl sulfoxide and water of 60:40 to 70:30. That is, the lower the processing temperature, the higher the elastic modulus, but this effect cannot be obtained if freezing occurs. Here, when the composition ratio of the solvent is the above ratio, it does not freeze even at −80 ° C., so that gelation with polyvinyl alcohol sufficiently progresses and a highly elastic one is obtained. In addition, in FIG.
The relationship between the charging ratio of dimethyl sulfoxide (DMSO) at the time of preparing a mixed solvent at 0 ° C., −40 ° C., and −80 ° C. and the time until the mixed solvent freezes (freezing time) is shown.

【0015】なお、ここでジメチルスルホキシドの代わ
りに、水に相溶し、ポリビニルアルコールを溶解する溶
媒であるならば、他の溶媒を適宜用いても良い。このよ
うなものとしてはエチレングリコール、ジメチルホルム
アミド等が挙げられる。冷却において、急冷することが
必要である。この冷却速度が遅いとスピノダール分解と
呼ばれる相分離が進行し、構造不整の原因となる。これ
をできる限り少なくするため、短時間に凍結する必要が
ある。このため、用いる型としてはできる限り熱容量の
小さい、かつ、伝熱性の良好なものを選択し、かつ、冷
蔵庫等を用いて−20〜−80℃或いはそれ以下の温度
環境に移すことによって達成することができる。この第
2法によれば冷却処理は2回のみであり工程が少ない。
なお、この方法は直径が1μm以下の孔を有する三次元
網目構造を形成するのに適した方法である。
Here, instead of dimethylsulfoxide, other solvent may be used as appropriate as long as it is a solvent that is compatible with water and dissolves polyvinyl alcohol. Examples of such substances include ethylene glycol and dimethylformamide. In cooling, rapid cooling is necessary. If this cooling rate is slow, phase separation called spinodal decomposition proceeds, causing structural irregularities. In order to reduce this as much as possible, it is necessary to freeze in a short time. For this reason, it is achieved by selecting a mold having a heat capacity as small as possible and having a good heat transfer property, and transferring the mold to a temperature environment of -20 to -80 ° C or lower using a refrigerator or the like. be able to. According to this second method, the cooling process is performed only twice, and the number of steps is small.
This method is suitable for forming a three-dimensional network structure having holes with a diameter of 1 μm or less.

【0016】[0016]

【実施例】【Example】

《実施例1:第1法による作製》ナカライテスク製のポ
リビニルアルコール(重合度:約2000、商品番号2
83−11)を水に10g/ lになるよう溶解し、これ
に、ポリビニルアルコールに対して30重量%になるよ
うライオン製ケッチェンブラックECを添加し、均一に
分散するまで攪拌した。
<< Example 1: Preparation by the first method >> Polyvinyl alcohol manufactured by Nacalai Tesque (degree of polymerization: about 2000, product number 2)
(83-11) was dissolved in water to 10 g / l, and Ketjen Black EC manufactured by Lion was added to the solution so that the weight of polyvinyl alcohol was 30% by weight, and the mixture was stirred until uniformly dispersed.

【0017】次いで、この分散溶液を深さ4mmになる
よう型に流し入れ、直ちに−60℃に保った冷凍庫に入
れた。30分後、上記溶液が凍結しているのを確認後、
5℃に保ったシリカゲルデシケーター内で解凍した。こ
の凍結−解凍のサイクルを計5回行い、微細な三次元網
目構造を有する導電性材料を得た。60℃で8時間乾燥
した後の厚さは250μmであった。このものはフィル
ム状の形態を有し、また延伸性に富むものである。この
ようにして得られた導電性材料の三次元網目構造によっ
て形成されている孔の直径を走査型電子顕微鏡で観察し
たところ4〜6μmであり、また、空隙率は60%であ
った。
Next, this dispersion solution was poured into a mold so that the depth was 4 mm, and immediately placed in a freezer kept at -60 ° C. After 30 minutes, after confirming that the solution is frozen,
Thaw in a silica gel desiccator kept at 5 ° C. This freeze-thaw cycle was performed 5 times in total to obtain a conductive material having a fine three-dimensional network structure. The thickness after drying at 60 ° C. for 8 hours was 250 μm. This has a film-like form and is highly stretchable. The diameter of the holes formed by the three-dimensional network structure of the conductive material thus obtained was observed by a scanning electron microscope to be 4 to 6 μm, and the porosity was 60%.

【0018】一方導電率について、幅2cm、長さ10
cmのサンプルの短辺に導電性塗料を塗布して測定を行
ったところ、103 S/cmと高い値であった。なお、
このものは電気的に等方性であった。次いで引張強度を
測定した。サンプル幅0.2〜0.5cm、つかみ間隔
2cm、引張速度10cm/分での引張強度は0.7G
Pa、このときの弾性率は10.2GPaであった。ま
た、7倍に一軸延伸を行ったサンプルについても同様に
導電率及び引張強度を測定した。このものは導電率の低
下が少ないにも係わらず、引張強度が増加しており、こ
のように加工後もその優れた特性が失われないことが判
った。
On the other hand, regarding the conductivity, the width is 2 cm and the length is 10.
When a conductive coating material was applied to the short side of the cm sample, the measurement was performed, and it was a high value of 10 3 S / cm. In addition,
This was electrically isotropic. The tensile strength was then measured. The sample width is 0.2-0.5 cm, the gripping interval is 2 cm, and the tensile strength at a tensile speed of 10 cm / min is 0.7 G.
Pa, the elastic modulus at this time was 10.2 GPa. Further, the conductivity and the tensile strength of the sample that was uniaxially stretched 7 times were measured in the same manner. It has been found that the tensile strength of this material is increased even though the decrease in conductivity is small, and thus the excellent characteristics are not lost even after processing.

【0019】《実施例2:第2法による作製》ジメチル
スルホキシド65容と水35容とを混合し、これに実施
例1で用いたのと同じポリビニルアルコールを10g/
lになるよう溶解した。次いで、ポリビニルアルコール
に対して30重量%となるよう気相成長炭素繊維を添加
し、均一に分散させ、型に厚さ4mmになるよう流し入
れた。上記分散溶液を入れた型を直ちに−80℃の冷凍
庫に一昼夜保持し、導電性フィラー分散ゲルフィルムを
得た。次いでこのゲルフィルム中の溶媒を水に置換して
ハイドロゲルとし、このものを−20℃で凍結乾燥し
て、厚さ3mmの導電性多孔質電極材を得た。なお、こ
のとき上記のハイドロゲルフィルムを別途60℃・8時
間真空乾燥したところ導電性多孔質フィルム(厚さ25
0μm)が得られた。
Example 2: Preparation by Second Method 65 volumes of dimethyl sulfoxide and 35 volumes of water were mixed, and 10 g of the same polyvinyl alcohol used in Example 1 was added thereto.
It was dissolved to be l. Next, vapor-grown carbon fibers were added so as to be 30% by weight with respect to polyvinyl alcohol, uniformly dispersed, and poured into a mold to have a thickness of 4 mm. The mold containing the dispersion solution was immediately kept in a freezer at −80 ° C. for a whole day and night to obtain a conductive filler-dispersed gel film. Then, the solvent in this gel film was replaced with water to obtain a hydrogel, which was freeze-dried at -20 ° C to obtain a conductive porous electrode material having a thickness of 3 mm. At this time, the above-mentioned hydrogel film was separately vacuum-dried at 60 ° C. for 8 hours, and the conductive porous film (thickness 25
0 μm) was obtained.

【0020】このようにして得られた導電性材料を走査
型電子顕微鏡で観察したところ、その孔の直径は0.5
〜1.2μmであった。また、このものの空隙率は56
%であった。一方、導電率について実施例1と同様に測
定を行ったところ、103 S/cmと高い値であった。
なお、このものは電気的に等方性であった。
When the conductive material thus obtained was observed with a scanning electron microscope, the diameter of the hole was 0.5.
Was 1.2 μm. The porosity of this product is 56.
%Met. On the other hand, when the conductivity was measured in the same manner as in Example 1, it was a high value of 10 3 S / cm.
This was electrically isotropic.

【0021】このもの及びこれを7倍に一軸延伸を行っ
たサンプルについても実施例1と同様に引張強度を測定
したが、延伸を行ったものは延伸を行わないサンプルの
ほぼ10倍の強度となり、加工後もその優れた特性が失
われないことが判った。なお、上記と同様に、但し、ジ
メチルスルホキシド−水混合比、及び、冷却処理温度を
変えて得たサンプルの弾性率について図2に示す。図2
より明らかなようにジメチルスルホキシドと水とが容積
比で60対40乃至70対30のものを用いた場合、高
い弾性率を有する導電性多孔質材料が得られることが判
る。
The tensile strength of this sample and that of a sample which was uniaxially stretched 7 times were measured in the same manner as in Example 1. The strength of the stretched sample was about 10 times that of the unstretched sample. However, it was found that the excellent characteristics are not lost even after processing. Note that the elastic moduli of the samples obtained in the same manner as above, except that the dimethyl sulfoxide-water mixing ratio and the cooling treatment temperature were changed, are shown in FIG. FIG.
It is clear that when dimethylsulfoxide and water are used in a volume ratio of 60:40 to 70:30, a conductive porous material having a high elastic modulus can be obtained.

【0022】[0022]

【発明の効果】本発明に係る導電性多孔質材料は微細な
三次元網目構造、いわゆる海綿構造を有するものであ
る。従って一軸延伸によって加工されても、生じるひず
みの殆どはこの構造が変形することによって吸収され、
含有される導電性フィラー相互の距離に影響が少ないた
め導電率の低下が少ない。
The conductive porous material according to the present invention has a fine three-dimensional network structure, a so-called sponge structure. Therefore, even if processed by uniaxial stretching, most of the generated strain is absorbed by the deformation of this structure,
Since there is little influence on the distance between the contained conductive fillers, the decrease in conductivity is small.

【0023】本発明に係る微細な三次元網目構造を有す
る導電性多孔質材料は、その表面積が大きいことから電
極材に用いた場合最大に利点を発揮するが、その他、導
電性が求められる分野、例えば導体、発熱体、帯電防止
材料や電磁波遮蔽材料などにも応用することが可能であ
る。
The conductive porous material having a fine three-dimensional network structure according to the present invention exhibits the greatest advantage when used as an electrode material due to its large surface area, but in other fields where conductivity is required. For example, it can be applied to conductors, heating elements, antistatic materials, electromagnetic wave shielding materials, and the like.

【0024】また、本発明に係る導電性多孔質材料はそ
の構造故に非常に軽量で、かつ強度が高いものであって
軽量性が求められる分野へ対応することができる。ま
た、フィルム状の形態にすることができるため、シート
型電池、ボタン型電池を始め、シート状の電極を巻いて
作製する円筒型電池や積層電池にも応用することができ
る。なお、本発明に係る導電性多孔質材料内部の空隙を
活物質の保持に利用するならば、極めてコンパクトな電
池を作製することができる。
Further, the conductive porous material according to the present invention is extremely lightweight and has high strength because of its structure, and it can be applied to the field where lightness is required. Further, since it can be formed into a film shape, it can be applied to a sheet type battery, a button type battery, a cylindrical type battery manufactured by winding a sheet electrode, and a laminated battery. If the voids inside the conductive porous material according to the present invention are used to hold the active material, an extremely compact battery can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】ジメチルスルホキシド(DMSO)−水混合溶
媒の混合比と凍結時間との関係を表す図である。
FIG. 1 is a diagram showing a relationship between a mixing ratio of a dimethyl sulfoxide (DMSO) -water mixed solvent and a freezing time.

【図2】第2法における、ジメチルスルホキシド(DM
SO)−水混合比、及び、処理温度を変化させて得たサ
ンプルの弾性率を示す図である。
FIG. 2 shows dimethyl sulfoxide (DM
It is a figure which shows the elastic modulus of the sample obtained by changing SO) -water mixing ratio and processing temperature.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微細な三次元網目構造を有することを特
徴とする導電性多孔質材料。
1. A conductive porous material having a fine three-dimensional network structure.
【請求項2】 ポリビニルアルコール水溶液に導電性物
質を分散させ、これを冷却して含有する水分を凍結させ
ることを特徴とする導電性多孔質材料の製造方法。
2. A method for producing a conductive porous material, characterized in that a conductive substance is dispersed in a polyvinyl alcohol aqueous solution, and this is cooled to freeze the contained water.
【請求項3】 上記凍結工程後解凍し、再度凍結させ、
これを繰り返すことを特徴とする請求項2に記載の導電
性多孔質材料の製造方法。
3. After the freezing step, it is thawed and then frozen again,
This is repeated, The manufacturing method of the electroconductive porous material of Claim 2 characterized by the above-mentioned.
【請求項4】 ポリビニルアルコールを有機溶媒と水と
からなる混合液に溶解し、導電性物質を添加して分散さ
せ、その後冷却しながら真空乾燥することを特徴とする
導電性多孔質材料の製造方法。
4. A method for producing a conductive porous material, which comprises dissolving polyvinyl alcohol in a mixed solution of an organic solvent and water, adding a conductive substance to disperse it, and then vacuum drying while cooling. Method.
【請求項5】 上記有機溶媒がジメチルスルホキシドで
あることを特徴とする請求項4に記載の導電性多孔質材
料の製造方法。
5. The method for producing a conductive porous material according to claim 4, wherein the organic solvent is dimethyl sulfoxide.
JP9514596A 1996-04-17 1996-04-17 Conductive porous material and manufacture thereof Withdrawn JPH09282938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9514596A JPH09282938A (en) 1996-04-17 1996-04-17 Conductive porous material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9514596A JPH09282938A (en) 1996-04-17 1996-04-17 Conductive porous material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09282938A true JPH09282938A (en) 1997-10-31

Family

ID=14129642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9514596A Withdrawn JPH09282938A (en) 1996-04-17 1996-04-17 Conductive porous material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09282938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359936A (en) * 2003-05-13 2004-12-24 Showa Denko Kk Porous product, its production process, and composite material using porous product
JP2005526186A (en) * 2001-08-08 2005-09-02 サーントル ナシオナル ドウ ラ ルシェルシェ シャーンティフィク(セー.エンヌ.エール.エス.) Synthetic fiber modification method and use thereof
JP2011032490A (en) * 2003-05-13 2011-02-17 Showa Denko Kk Method for production of porous body
US20230194914A1 (en) * 2021-12-20 2023-06-22 E Ink Corporation Multi-layer device comprising a repair layer having conductive a hydrogel film or beads

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526186A (en) * 2001-08-08 2005-09-02 サーントル ナシオナル ドウ ラ ルシェルシェ シャーンティフィク(セー.エンヌ.エール.エス.) Synthetic fiber modification method and use thereof
JP2004359936A (en) * 2003-05-13 2004-12-24 Showa Denko Kk Porous product, its production process, and composite material using porous product
JP2011032490A (en) * 2003-05-13 2011-02-17 Showa Denko Kk Method for production of porous body
US20230194914A1 (en) * 2021-12-20 2023-06-22 E Ink Corporation Multi-layer device comprising a repair layer having conductive a hydrogel film or beads
US20230197310A1 (en) * 2021-12-20 2023-06-22 E Ink Corporation Multi-layer device including a light-transmissive electrode layer comprising a porous mesh or porous spheres

Similar Documents

Publication Publication Date Title
US11641012B2 (en) Process for producing graphene/silicon nanowire hybrid material for a lithium-ion battery
CN108122687B (en) A kind of flexible self-supporting porous electrode and its preparation and application
AU2017364749A1 (en) Method of preparing anode slurry for secondary battery
US11515540B2 (en) Alkali metal-selenium secondary battery containing a graphene foam-protected selenium cathode
CN105826540B (en) A kind of lithium-sulfur cell composite positive pole and the preparation method and application thereof
CN106571454B (en) A kind of network-like silicon/graphite composite material and preparation method for lithium battery
CN108336310B (en) Composite material based on self-supporting reduced graphene oxide roll and preparation method
CN111138206B (en) Amorphous carbon modified SiC nanowire continuous three-dimensional network structure wave-absorbing foam and preparation method thereof
US10903466B2 (en) Alkali metal-selenium secondary battery containing a graphene-based separator layer
CN108929542A (en) A kind of dimethyl silicone polymer with negative permittivity/graphene flexible composite film and preparation method thereof
WO2019217651A1 (en) Alkali metal-selenium secondary battery containing a graphene-based separator layer
CN112002938B (en) Composite solid electrolyte membrane based on Cu (BDC) MOF (Metal organic framework) multilevel structure and preparation method thereof
US20190312261A1 (en) Production process for a graphene foam-protected selenium cathode and an alkali metal-selenium secondary battery containing same
US20230282801A1 (en) Batteries incorporating silica fibers
US10522732B2 (en) Thermoelectric polymer aerogels and methods of fabrication thereof
CN109713302A (en) Under a kind of ultralow temperature can big multiplying power charge and discharge lithium ion battery and preparation method thereof
WO2019199774A1 (en) Alkali metal-selenium secondary battery containing a graphene foam-protected selenium cathode
JPH09282938A (en) Conductive porous material and manufacture thereof
Pekala et al. Structure and performance of carbon aerogel electrodes
Maragani et al. Structural and Conductivity Studies of PAN-based Al 2 O 3 Nanocomposite Gel Polymer Electrolytes.
US10886536B2 (en) Method of alkali metal-selenium secondary battery containing a graphene-based separator layer
JP2004359936A (en) Porous product, its production process, and composite material using porous product
CN108987732B (en) SiO composite cathode material of lithium ion battery and preparation method thereof
US20210359292A1 (en) Conducting polymer network/graphene-protected negative electrode for a lithium-ion battery
TW202230855A (en) Lithium metal anode and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701