JP5296622B2 - 導電性樹脂組成物からなる成形品 - Google Patents

導電性樹脂組成物からなる成形品 Download PDF

Info

Publication number
JP5296622B2
JP5296622B2 JP2009161824A JP2009161824A JP5296622B2 JP 5296622 B2 JP5296622 B2 JP 5296622B2 JP 2009161824 A JP2009161824 A JP 2009161824A JP 2009161824 A JP2009161824 A JP 2009161824A JP 5296622 B2 JP5296622 B2 JP 5296622B2
Authority
JP
Japan
Prior art keywords
component
weight
parts
resin composition
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009161824A
Other languages
English (en)
Other versions
JP2011016902A (ja
Inventor
繭子 今森
正樹 光永
ちひろ 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009161824A priority Critical patent/JP5296622B2/ja
Priority to CN201010224696.8A priority patent/CN101948614B/zh
Publication of JP2011016902A publication Critical patent/JP2011016902A/ja
Application granted granted Critical
Publication of JP5296622B2 publication Critical patent/JP5296622B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性樹脂組成物からなる成形品に関する。さらに詳しくは、本発明は、良好な導電性および迅速な帯電圧減衰に制御することができ、成形品表面に塵やほこりが付着するのを防ぎ、成形品表面から発生するスパーク電流が小さく、成形品の樹脂表面からの導電性炭素材料の脱落が少なく、更には流動性、外観等にも優れた、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材、ガラスコンテナまたは自動車外装部品に適した導電性樹脂組成物からなる成形品に関する。
カメラなどに組み込まれるシャッター地板、シャッター羽根押え、中間板といったカメラシャッター部品等の電気電子部品、OA機器部品あるいは半導体関連部材は、その動作の際の摩擦により少しでも帯電すれば、誤作動に陥る恐れがあり、帯電防止性能が求められる。これには、電荷が逃げやすいよう、表面抵抗率を小さくし、帯電減衰時間を迅速にする必要がある。また、良好な導電性は周囲の塵やほこりの付着を防ぐことにも極めて有効である。
さらに、製品の小型軽量化や、高集積化、高精度化の進行とともに、関連する工程内での塵やほこりの付着低減は年々厳しくなってきており、さらに付着を防ぐための帯電防止機能に加えて、部品から発生するゴミ、いわゆる導電性炭素材料の脱落物に対する要求もますます厳しくなっている。
また、自動車外装部品は、塗料の付着効率を向上させるために静電塗装が一般に行われている。静電塗装とは、アースした塗装物を陽極、塗装霧化装置を陰極とし、これに負の高電圧を与えて、両極間に静電界を作り、霧化した塗装粒子を負に帯電させて反対極である被塗物に効率よく塗料を吸着させる塗装方法である。熱可塑性樹脂は電気絶縁性であるため、静電塗装を行うには導電性の付与が必要であり、少量の導電性物質の配合で高い導電性を得るために導電性炭素材料を配合することが広く行われている。芳香族ポリカーボネートと熱可塑性ポリアルキレンフタレートとのアロイに導電性炭素材料を配合することは公知であり、特許文献1では芳香族ポリカーボネートと導電性カーボンブラックに熱可塑性ポリアルキレンフタレートを配合することで、ポリカーボネート樹脂の機械特性や成形加工性、更には導電性を損なうことなく、カーボンブラックの分散性を向上させている。また、特許文献2では、耐衝撃性、寸法安定性、流動性、外観等にも優れた導電性樹脂組成物を提供すべく、芳香族ポリカーボネートとポリエチレンテレフタレートとのアロイに導電性カーボンブラックを配合し、かつ導電性カーボンブラックの分散をポリエチレンテレフタレート相に偏在させることを提案している。しかしながら、これらの特許文献では成形品の表面抵抗率が例示されているが、これは通例の静電気障害対策であり、部材の小型軽量化や、高集積化、高精度化が進む中で、より厳しい静電気障害に対するユーザーの要求に応えていくには不十分である。現状では、万が一スパークが発生した場合でも精密部品が破壊に至らないようにスパーク電流を小さく抑えることが必要となってきている。
特許第3897512号公報 特開2005−120323号公報
本発明の目的は、導電性領域内に、成形品の表面抵抗率と帯電圧半減衰時間を制御することで、成形品表面に塵やほこりが付着するのを防ぎ、成形品表面から発生するスパーク電流を抑制し、加えて成形品の樹脂表面からの導電性炭素材料の脱落が少なく、更には流動性、外観等にも優れた、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材、ガラスコンテナまたは自動車外装部品に適した導電性樹脂組成物からなる成形品を提供することにある。
本発明者らは上記課題を解決するために、鋭意検討を重ねた結果、本発明を完成した。即ち、本発明者らは、芳香族ポリカーボネート樹脂75〜95重量%(A成分)およびポリエチレンテレフタレート樹脂5〜25重量%(B成分)からなる樹脂成分100重量部に対し、導電性炭素材料(C成分)を1〜20重量部含有させることにより、該導電性樹脂組成物からなる成形品の表面抵抗率を導電性領域である10〜10Ω/sqに制御することに加えて10kVを印加したときの半減衰時間を10秒以下に制御することにより、静電気障害の一つとなるスパーク電流をも低減させることができるという驚くべき効果を見出した。さらに、ポリエチレンテレフタレートの添加量を5〜25重量%という限られた範囲に限定した場合、より少ない導電性炭素材料の添加量で上記スパーク電流の低減という効力を発揮させることができ、加えて成形品の樹脂表面に塵やほこりが付着するのを防ぐことができ、且つ導電性炭素材料の脱落を少なく抑制できることを見出し、本発明を完成させた。
スパーク電流が低減する機構は、導電性炭素材料が成形品の樹脂表面に微細分散し樹脂に溜まった静電気が導電性炭素材料へ迅速に移動するためスパーク電流が低減したものと考えられる。スパーク電流は電界誘導法で高電圧を印加した成形品に端子を近づけてスパークさせそのスパーク電流を測定する方法で測定でき、JEDEC規格(JESD22−C1010C)に準拠した方法である。成形品がより少ない導電性炭素材料の添加量で上記スパーク電流の低減という効力を発揮できるのは、導電性炭素材料がポリエチレンテレフタレートにのみ偏在するためと考えられる。成形品の樹脂表面からの導電性炭素材料の脱落がポリエチレンテレフタレートの配合により抑制できるのは、導電性炭素材料表面とポリエチレンテレフタレートとの馴染みが良いためと考えられる。
本発明の樹脂組成物からなる成形品は、成形品表面に塵やほこりが付着するのを防ぎ、静電気障害の一つとなるスパーク電流が小さく、導電性炭素材料の脱落も少なく、また好適な流動性、外観等を有するため、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材ガラスコンテナ、並びに自動車外装部品に有用である。
本発明の実施例で使用されるカメラシャッター部品を示す概略図である。
<A成分:芳香族ポリカーボネート>
芳香族ポリカーボネート(A成分)とは、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応の方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも靭性に優れる点からビスフェノールA(以下“BPA”と略称することがある)が特に好ましく、汎用されている。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
上記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネートを含む。また、得られたポリカーボネートの2種以上を混合した混合物であってもよい。
分岐ポリカーボネートは、本発明の樹脂組成物の溶融張力を増加させ、かかる特性に基づいて押出成形、発泡成形およびブロー成形における成形加工性を改善できる。結果として寸法精度により優れた、これらの成形法による成形品が得られる。
かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、および4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。その他多官能性芳香族化合物としては、フロログルシン、フロログルシド、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、並びにトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が例示される。中でも1,1,1−トリス(4−ヒドロキシフェニル)エタンおよび1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、二価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル部中、0.03〜1モル部、好ましくは0.07〜0.7モル部、特に好ましくは0.1〜0.4モル部である。
また、かかる分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換反応時の副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。
一方、脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましく、その具体例としては、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸等の直鎖飽和脂肪族ジカルボン酸並びにシクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。二官能性アルコールとしては脂環族ジオールが好適であり、例えば、シクロヘキサンジメタノール、シクロヘキサンジオール、トリシクロデカンジメタノール等が例示される。さらに、ポリオルガノシロキサン単位を共重合したポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
A成分は、二価フェノール成分の異なるポリカーボネート、分岐成分を含有するポリカーボネート、各種のポリエステルカーボネート、ポリカーボネート−ポリオルガノシロキサン共重合体等を2種以上混合したものであってもよい。さらに、製造法の異なるポリカーボネート、末端停止剤の異なるポリカーボネート等を2種以上混合したものを使用することもできる。本発明の芳香族ポリカーボネートの製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
本発明のA成分の芳香族ポリカーボネートとしては、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート、いわゆるマテリアルリサイクルされた芳香族ポリカーボネートの使用も可能である。使用済みの製品としては防音壁、ガラス窓、透光屋根材、および自動車サンルーフなどに代表される各種グレージング材、風防や自動車ヘッドランプレンズなどの透明部材、水ボトルなどの容器、並びに光記録媒体などが好ましく挙げられる。これらは多量の添加剤や他樹脂などを含むことがなく、目的の品質が安定して得られやすい。殊に自動車ヘッドランプレンズや光記録媒体などは上記の粘度平均分子量のより好ましい条件を満足するため好ましい態様として挙げられる。尚、上記のバージン原料とは、その製造後に未だ市場において使用されていない原料である。
本発明の成形品における表面抵抗率は、樹脂組成物の流動性に大きく影響を受けることがあるため、その調整方法の一つに流動性を制御する方法を取ることができる。芳香族ポリカーボネートの粘度平均分子量は、好ましくは1×10〜5×10、より好ましくは1.4×10〜3×10、更に好ましくは1.8×10〜2.5×10である。1×10〜5×10の範囲においては、特に良好な耐衝撃性と流動性との両立に優れ、樹脂組成物からなる成形品の表面抵抗率を導電性領域に調整することが容易となる。更に最も好適には、1.9×10〜2.4×10である。尚、かかる粘度平均分子量はA成分全体として満足すればよく、分子量の異なる2種以上の混合物によりかかる範囲を満足するものを含む。
本発明でいう粘度平均分子量はまず次式にて算出される比粘度を塩化メチレン100mlに芳香族ポリカーボネート0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
<B成分:ポリエチレンテレフタレート>
ポリエチレンテレフタレート(B成分)とは、芳香族ジカルボン酸成分としてテレフタル酸を主成分とし、かつ、ジオール成分としてエチレングリコールを主成分とし、これらの縮合反応によって得られる飽和ポリエステル重合体又は共重合体であり、繰返し単位としてエチレンテレフタレート単位を好ましくは70モル%以上、より好ましくは80モル%以上含む熱可塑性ポリエステル樹脂である。ポリエチレンテレフタレート樹脂の製造は、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重縮合触媒の存在下に、加熱しながら前記のジカルボン酸成分とジオール成分とを反応させ、副生する水又は低級アルコールを系外に排出することにより行われる。例えば、ゲルマニウム系重合触媒としては、ゲルマニウムの酸化物、水酸化物、ハロゲン化物、アルコラート、フェノラート等が例示でき、更に具体的には、酸化ゲルマニウム、水酸化ゲルマニウム、四塩化ゲルマニウム、テトラメトキシゲルマニウム等が例示できる。このとき、バッチ法、連続式のいずれの重合方法を取ることも可能であり、固相重合により重合度を上げることも可能である。
また使用するポリエチレンテレフタレートの末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。
また本発明では、従来公知の重縮合の前段階であるエステル交換反応において使用される、マンガン、亜鉛、カルシウム、マグネシウム等の化合物を併せて使用でき、およびエステル交換反応終了後にリン酸または亜リン酸の化合物等により、かかる触媒を失活させて重縮合することも可能である。
またポリエチレンテレフタレート(B成分)の分子量については特に制限されないが、樹脂組成物からなる成形品の表面抵抗率を制御するために好適な流動性を得るためには、o−クロロフェノールを溶媒として25℃で測定した固有粘度が、好ましくは0.4〜1.2、より好ましくは0.65〜1.15である。
かかるポリエチレンテレフタレート(B成分)の含有量は、芳香族ポリカーボネート(A成分)との合計100重量%当り、5〜25重量%であり、10〜25重量%が好ましく、13〜25重量%がより好ましく、15〜25重量%が最も好ましい。ポリエチレンテレフタレートを配合することによって、導電性炭素材料がポリエチレンテレフタレート相に偏在するため、より少ない導電性炭素材料の添加量で導電性を得ることができる。しかし、ポリエチレンテレフタレートの配合が5重量%より小さくなると、ポリエチレンテレフタレートの配合量が少ないために導電性炭素材料の脱落を抑制できなくなり好ましくない。25重量%を超えると、ポリエチレンテレフタレート相の導電性炭素材料が希釈され、かかる表面抵抗率は10Ω/sqより大きくなり、成形品表面に塵やほこりが付着しやすくなるため、好ましくない。
<C成分:導電性炭素材料>
導電性炭素材料(C成分)は、樹脂組成物に導電性を付与し、導電性樹脂組成物からなる成形品の表面抵抗率と帯電半減衰時間を制御するために配合するものである。
導電性炭素材料としては、カーボンブラック、カーボンナノチューブ、無定形炭素、グラファイト、繊維状炭素、ナノカーボン等が挙げられるが、これらの中でもアウトガス、表面仕上がりおよび光沢性、流動性、スパーク電流等の点から、導電性カーボンブラックおよびカーボンナノチューブが好ましい。
(導電性カーボンブラック)
導電性カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、サーマルブラック等が挙げられるが、これらの中でも従来の導電性カーボンブラックと比較して極少量で優れた導電性を示し、少量の添加で優れた導電性が得られる点で、ケッチェンブラックが好ましい。
この導電性カーボンブラックは、特に原料、製法に制限されるものではないが、そのDBP吸油量が400ml/100g以上で、かつBET比表面積が1000m2/g以上のカーボンブラックがより好適に使用できる。DBP給油量は400〜1000ml/100gがより好ましく、400〜600ml/100gがさらに好ましい。このDBP吸油量が400ml/100gより小さく、かつBET比表面積が1000m2/gより小さい場合、またはDBP吸油量が400ml/100g、BET比表面積が1000m2/gのいずれかが前記数値より小さい場合には、所望の表面抵抗率と帯電圧半減衰時間を得るためにより多くの配合量が必要となり、結果的に導電性炭素材料の脱落が多くなりかつ流動性が低下する可能性がある。また、BET比表面積の上限については特に制限はないが、作業性を大きく損なわせる虞がある点で、1,500m2/g以下がより好ましい。
ここでDBP吸油量とは、ジブチルフタレートアブソープトメーターによって測定された値で、導電性カーボンブラック100g当りに包含されるジブチルフタレートのml容量で、導電性カーボンブラックのストラクチャーの程度を示し、樹脂組成物に配合した際の導電性に影響するとされている。また、BET比表面積は液体窒素吸着法によって求めた値で、導電性カーボンブラック単位重量当たりの表面積を示す。
(カーボンナノチューブ)
カーボンナノチューブとしては、特に原料、製法に制限されるものではないが、グラフェンシートの層数が1層、2層、または2層を超える複数層であってもよく、特に2層を超える複数層が好ましい。カーボンナノチューブの直径は0.7〜100nmが好ましく、7〜100nmがより好ましく、15〜90nmが更に好ましい。カーボンナノチューブのアスペクト比は5以上が好ましく、50以上がより好ましく、100以上が更に好ましい。
アスペクト比は、走査型電子顕微鏡倍率3〜10万倍にて長さと直径を測定し、その比より求めることができる。なお、長さの測定は以下の方法で実施する。まずその観察像をCCDカメラに画像データとして取り込む。次に得られた画像データを、画像解析装置を使用して繊維長を算出する。測定本数は5000本以上として行う。また、直径の測定は以下の方法で実施する。まず電子顕微鏡の観察で得られる画像に対して、直径を測定する対象のカーボンナノチューブをランダムに抽出し、中央部に近いところで直径を測定する。なお、断面が円でない場合はその最大値を直径とする。得られた測定値から数平均直径を算出する。近年の電子顕微鏡はその観察画面上の長さを算出する機能が備えられているため、かかる直径も比較的容易に算出可能である。測定本数は1000本以上として行う。
かかる導電性炭素材料(B成分)の含有量は、樹脂成分の合計100重量部に対し1〜20重量部であり、2〜15重量部が好ましく、3〜10重量部がより好ましい。導電性炭素材料の配合量が1重量部未満であれば、表面抵抗率と帯電圧減衰時間が本発明の請求範囲に入らず、導電性炭素材料の配合量が20重量部を超えると導電性炭素材料の脱落が多くなり好ましくない。
<D成分:ガラス繊維及び/又はガラスフレーク>
本発明で使用されるガラス繊維及び/又はガラスフレークは、強度向上や成形品の反り低減のために配合する。
(ガラス繊維)
本発明で使用できるガラス繊維は、例えば長繊維タイプ(ロービング)や短繊維状のチョップドストランド、ミルドファイバーなどから選択して用いることができる。尚、ミルドファイバーにおいてはその数平均アスペクト比は5以上であることが好ましい。
ガラス繊維は、集束剤(例えばポリ酢酸ビニル、ウレタン、アクリル、エポキシ、ポリエステル集束剤等)、カップリング剤(例えばアルキルアルコキシシランやポリオルガノハイドロジェンシロキサンなどを含むシラン化合物、ボロン化合物、チタン化合物等)、その他の表面処理剤で処理されていてもよい。かかるその他の表面処理剤としては、高級脂肪酸エステル、酸化合物(例えば、亜リン酸、リン酸、カルボン酸、およびカルボン酸無水物など)並びにワックスなどが例示される。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。
(ガラスフレーク)
本発明に使用されるガラスフレークは、厚さに対して径が少なくとも数倍以上の鱗片状または層状の形状を有するもので、該導電性樹脂組成物からなる成形品の流動方向(MD)と垂直方向(TD)の成形収縮率の差を緩和、低減し、ソリの発生を低減するとともに寸法を安定させるために配合するものであるが、補助的に剛性の向上にも寄与する。ガラスフレークは、一般にその平均厚さと粒度の分布によって性状が表現され、これらの条件に特に限定されるものではないが、粒度については、標準ふるい法によるメジアン径が100〜500μmが好ましく、より好ましくは100〜400μm、更に好ましくは120〜300μm、特に好ましくは120〜200μmの範囲を挙げることができる。
本発明に使用されるガラスフレークは、従来公知の製造方法により得られる。例えば、溶融炉でガラス原料を溶融し、この融液をチューブ状に引き出し、ガラスの膜厚を一定にした後、ロールで粉砕することにより、特定の膜厚のフリットを得て、そのフリットを粉砕して所望のアスペクト比を有するフレークにすることができる。
ここで、ガラスフレークの粒度をガラスフレークの厚さで除した値をガラスフレークのアスペクト比と定義すれば、このアスペクト比の値が好ましくは9以上(厚さ5μmの場合、粒度45μm以上)の粒度分布が合計で全体の75%以上のもの、さらに好ましくはアスペクト比の値が28以上(厚さ5μmの場合、粒度140μm以上)の粒度分布が合計で全体の80%以上のものが、当該導電性樹脂組成物からなる成形品の流動方向(MD)と垂直方向(TD)の収縮率の差を緩和、低減するうえで好適に使用できる。
かかるガラス繊維及び/又はガラスフレーク(D成分)は、A成分とB成分の合計100重量部当り5〜50重量部配合するのが好ましく、10〜40重量部がより好ましい。ガラス繊維及び/又はガラスフレークを配合する場合は強度向上と成形品の反り低減が狙いであるが、5重量を下回ると所望の性能を得ることができず、50重量部を上回ると流動性が悪化し、生産性の面で好ましくない。もちろん、ガラス繊維とガラスフレークを所望の特性に応じて併用し、かつその配合比は所望の特性に応じて決めることは言うまでもない。
<E成分:ポリテトラフルオロエチレン粒子>
本発明で使用されるポリテトラフルオロエチレン粒子は、成形品に摺動性を付与し、導電性炭素材料の脱落を抑制するために配合する。
本発明のポリテトラフルオロエチレン粒子としては、低分子量ポリテトラフルオロエチレン、ポリビニリデンフルオライド、テトラフルオロエチレン・パーフルオロメチルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体等が挙げられいずれの使用も可能であるが、中でも摺動性の面から低分子量ポリテトラフルオロエチレンの使用が好ましい。該低分子量ポリテトラフルオロエチレンには少量の共重合成分を含んでいるものも含まれる。低分子量ポリテトラフルオロエチレンとしては、通常乾性潤滑剤として使用されるものが使用でき、好ましくは、微粉末状である。微粉末の粒子径は、パークロルエチレン中に分散させた分散液を光透過法により測定する方法で平均0.1〜100μmのものが好ましい。またポリテトラフルオロエチレン微粉末の融点は、DSC法測定で320℃以上のものが好ましい。ポリテトラフルオロエチレン微粉末は再凝集しやすいので再凝集し難くするために焼成処理等の処理を施したものもあり、これらも好ましく使用できる。ポリテトラフルオロエチレン樹脂はダイキン工業(株)よりルブロンL−5,L−2,L−7として、また旭アイシーアイフロロポリマーズ(株)よりフルオンL−150J,L−169J,L−170J,L−172Jとして、また三井・デュポンフロロケミカル(株)よりTLP−10F−1として、またヘキストジャパン(株)よりホスタフロンTF9202,TF9205として市販されており、容易に入手可能である。
かかるポリテトラフルオロエチレン粒子は、A成分とB成分の合計100重量部当り1〜10重量部配合するのが好ましく、1〜5重量部がより好ましい。1重量を下回ると所望の摺動性を得られないために導電性炭素材料の脱落が十分に抑制できず、10重量部を上回るとポリテトラフルオロエチレンの分散相が導電性炭素材料の導電経路を乱すため、成形品の表面抵抗率及び帯電圧半減衰時間に悪影響を及ぼす可能性がある。
<F成分:酸化防止剤>
酸化防止剤(F成分)は、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種である。酸化防止剤(F成分)は、ホスファイト系化合物およびヒンダードフェノール系化合物の二種からなることが、熱安定性向上の面で特に好ましい。
(ホスファイト系化合物)
ホスファイト系化合物として、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。
さらに他のホスファイト系化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。
好適なホスファイト系化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
(ホスホナイト系化合物)
ホスホナイト化合物として、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
(ヒンダードフェノール系化合物)
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル−6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレート等が例示される。
上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系化合物は、単独でまたは2種以上を組合せて使用することができる。
(チオエーテル系化合物)
チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。
かかる酸化防止剤(F成分)の含有量は、A成分とB成分の合計100重量部当たり、0.001〜2重量部が好ましく、より好ましくは0.005〜1重量部、さらに好ましくは0.01〜0.5重量部である。かかる配合量が0.001重量部より少ない場合は酸化防止効果が不足するため滞留熱安定性が低下し、2重量部を超えると、かえって酸化防止効果が低下するばかりか、酸化防止剤由来の揮発分による発生ガス量が多くなり、成形品のクリーン性を損ねる可能性がある。
また、前記リン系安定剤とヒンダードフェノール系安定剤を組み合わせて使用することが好ましい。リン系安定剤とヒンダードフェノール系安定剤を組み合わせて使用することで、安定剤としての相乗効果が発揮され、より成形時の熱安定性悪化を抑制できる。
<その他の添加剤>
本発明の組成物には、本発明の効果を発揮する範囲で、他の熱可塑性樹脂(例えば、ポリアリレート樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレンおよびポリプロピレンなどのポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリスチレン樹脂、高衝撃ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリメタクリレート樹脂、並びにフェノキシまたはエポキシ樹脂など)、D成分を除く無機充填剤(炭素繊維、炭素フレークなど)、有機充填剤(アラミド繊維、ケナフ繊維など)、衝撃改質剤(コアシェル型アクリルゴム、コアシェル型ブタジエンゴムなど)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系など)、光安定剤(HALSなど)、離型剤(飽和脂肪酸エステル、不飽和脂肪酸エステル、パラフィンワックス、蜜蝋など)、流動改質剤(ポリカプロラクトンなど)、着色剤(カーボンブラック、二酸チタン、各種の有機染料、メタリック顔料など)、帯電防止剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、赤外線吸収剤、並びにフォトクロミック剤紫外線吸収剤などを配合してもよい。これら各種の添加剤は、周知の配合量で利用することができる。
<導電性樹脂組成物の製造>
本発明の導電性樹脂組成物の製造には、任意の方法が採用される。例えばA成分からF成分を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などの予備混合手段を用いて充分に混合(いわゆるドライブレンド)した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより得られた予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、溶融混練後の組成物をペレタイザー等の機器によりペレット化する方法が挙げられる。
他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。予備混合する方法としては例えば、A成分のパウダーの一部とD成分及びD成分などの配合する添加剤とをドライブレンドして、パウダーで希釈された添加剤のマスターバッチを作成する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。これら溶融混練に際しての加熱温度は、通常250〜300℃の範囲で選ばれる。
尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。かかる液注装置、または液添装置は加温装置が設置されているものが好ましく使用される。
押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化することができる。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
本発明の樹脂組成物は、発生ガス量が2ppm以下であるものが好ましく、1ppm以下であるものがより好ましく、更には0.5ppm以下であるものがより好ましい。かかる発生ガス量が2ppmを超えると、クリーン性が悪化し、成形品周辺の精密部品に影響を及ぼす可能性があるため、好ましくない。なお樹脂組成物の発生ガス量は下記の方法で測定した。すなわち、本発明の導電性樹脂組成物ペレットをガスクロマトグラム(アジレント社製 GC‐MS)を使用し揮発性有機ガス量を測定した。具体的には、押出した組成物ペレット3gを150℃にて1時間加熱し、ガスクロマトグラム(GC−MS)にて揮発性有機ガス量を測定し、その総量をトルエン換算したものを発生ガス量とした。
<成形品の作成>
本発明の導電性樹脂組成物からなる成形品は、通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。射出成形品は、従来公知の成形法が何ら限定なく適用できるが、射出成形時、外観を上げる観点から、金型温度は好ましくは30℃以上、より好ましくは40℃以上である。しかし、成形品の変形を防ぐ意味において、金型温度は、好ましくは100℃以下、さらに好ましくは90℃以下である。また本発明の導電性樹脂組成物からなる成形品は、押出成形、回転成形やブロー成形などにより得ることも可能である。
さらに本発明の導電性樹脂組成物からなる成形品は、表面改質を施すことによりさらに他の機能を付与することが可能である。ここでいう表面改質とは、蒸着(物理蒸着、化学蒸着等)、メッキ(電気メッキ、無電解メッキ、溶融メッキ等)、塗装、コーティング、印刷等の樹脂成形品の表層上に新たな層を形成させるものであり、通常の樹脂成形品に用いられる方法が適用できる。
本発明の導電性樹脂組成物からなる成形品の用途としては、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材、ガラスコンテナ、および自動車外装部品が挙げられる。
本発明の成形品の表面抵抗率は10〜10Ω/sqであり、10〜10Ω/sqが好ましく、10〜10Ω/sqがより好ましい。かかる表面抵抗率が10Ω/sqより高いと電荷が帯電しやすく、成形品表面に塵やほこりが付着しやすくなるため好ましくない。また、表面抵抗率が高いと、スパーク電流が大きくなるため好ましくない。なお、成形品の表面抵抗率の測定はそれぞれの抵抗値に合った抵抗率計を使用して測定した。すなわち、1010Ω/sq以上の場合は、TOA株式会社製 デジタル絶縁計DSM-8103(印加電圧100V、専用プローブ)、10〜1010Ω/sqの場合には、三菱化学株式会社製 ハイレスターUP MCP-HT400(印加電圧100V、UR-SSプローブ(JISK6911準拠))、10Ω/sq以下の場合には、三菱化学株式会社製 ロレスターGP MCP-T600(印加電圧90V、ESPプローブ(JISK7194準拠))を使用した。具体的な測定方法としては、成形品から試験片(縦×横×厚み=90mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記の抵抗率計を使用して試験片面内の中央部の表面抵抗率を測定し3個の試験片から得られた値の平均値を試験片の表面抵抗率とした。
なお、本発明の成形品における表面抵抗率は、樹脂組成物の流動性に大きく影響を受けることがあるため、その調整方法の一つに流動性を制御する方法を取ることができる。具体的には、樹脂組成物のメルトボリュームフローレイト(MVR)は、好ましくは1〜80cm/10分、より好ましくは2〜50cm/10分、更により好ましくは3〜20cm/10分を示すとき、良好な表面抵抗率を得ることができる。かかる樹脂組成物のメルトボリュームフローレイトは、ISO1133(JIS K 7210)に準拠する方法で、シリンダー及びピストン温度を300℃、荷重1.2kgにて測定する。
本発明の成形品の10kVを印加したときの半減衰時間は10秒以下であり、5秒以下であるものが好ましく、3秒以下がより好ましい。かかる帯電圧半減衰時間が10秒を超えると、帯電した電荷が完全に減衰する前に新たな帯電が発生し、結果として成形品表面に塵やほこりが付着しやすくなり、また、スパークにいたる電流値が大きくなり、好ましくない。なお、成形品の半減衰時間は下記の方法で測定した。すなわち、本発明の導電性樹脂組成物からなる成形品を、スタチックオネストメーター(シシド静電気株式会社製 H−0110)を使用し印加電圧10kVにて測定した。具体的には、成形品から試験片(縦×横×厚み=60mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記したスタチックオネストメーターを使用して、試験片面内の中央部の帯電圧半減衰時間を測定し、3個の試験片から得られた値の平均値を試験片の帯電圧半減衰時間とした。
以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
[実施例1〜10、比較例1〜5]
1.組成物ペレットの製造
下記の方法により、組成物ペレットの製造を行った。
表1に記載の各成分を、表1に示す割合にてドライブレンドした後、径30mmφ、L/D=33.2、混練ゾーン2箇所のスクリューを装備したベント付きニ軸押出機(神戸製鋼所(株)製:KTX30)を用い、シリンダー温度290℃にて溶融混練し、押出し、ストランドカットすることで、各組成物のペレットを得た。
2.成形品の作成
かかる樹脂組成物を射出成形により、シリンダー温度290℃、金型温度80℃にて、図1に示すカメラシャッター部品を成形し、各種評価に合わせ試験片を切削した。
3.評価方法
実施例中における各値は下記の方法で求めた。
(1)表面抵抗率
上記の方法で得た成形品をそれぞれの抵抗値に合った抵抗率計を使用して測定した。すなわち、1010Ω/sq以上の場合は、TOA株式会社製 デジタル絶縁計DSM-8103(印加電圧100V、専用プローブ)、10〜1010Ω/sqの場合には、三菱化学株式会社製 ハイレスターUP MCP-HT400(印加電圧100V、UR-SSプローブ(JISK6911準拠))、10Ω/sq以下の場合には、三菱化学株式会社製 ロレスターGP MCP-T600(印加電圧90V、ESPプローブ(JISK7194準拠))を使用した。具体的な測定方法としては、成形品から試験片(縦×横×厚み=45mm×50mm×2mmt)を切削し、温度23℃、湿度50%RHの条件下において前記の抵抗率計を使用して試験片面内の中央部の表面抵抗率を測定し3個の試験片から得られた値の平均値を成形品の表面抵抗率とした。
(2)半減衰時間
上記の方法で得た成形品をスタチックオネストメーター(シシド静電気株式会社製 H−0110)を使用し印加電圧10kVにて測定した。具体的には、成形品から試験片(縦×横×厚み=45mm×50mm×2mmt)を切削し、温度23℃、湿度50%RHの条件下において前記したスタチックオネストメーターを使用して、試験片面内の中央部の帯電圧半減衰時間を測定し、3個の試験片から得られた値の平均値を成形品の帯電圧半減衰時間とした。
(3)発生ガス量
上記の方法で得た組成物ペレット3gを150℃にて1時間加熱し、ガスクロマトグラム(アジレント社製GC−MS)にて揮発性有機ガス量を測定し、その総量をトルエン換算したものを発生ガス量とした。
(4)スパーク電流
上記の方法で得た成形品を、CDMテスター(阪和電子工業製 HED−C5000)を使用し、JEDEC/JESD22−C101−Cに準拠する方法で、印加電圧2000V/正極1回印加により測定した。具体的には、成形品から試験片(縦×横×厚み=45mm×45mm×2mmt)を切削し、温度25℃、湿度50%RHの条件下において前記したCDMテスターを使用して、面内9箇所を5mm間隔でスパーク電流を測定し得られた値の平均値を成形品のスパーク電流とした。このスパーク電流は10A以下であることが必要である。
(5)灰付着試験
上記の方法で得た成形品を温度23℃、湿度50%RHの条件下において、煙草の灰の入ったビニール袋の中に投入し、十分に振って灰に曝した後、取り出した。次に、該成形品を軽くたたき、その際付着している灰の状態を目視にて評価した。灰付着が見られない場合を○、若干の灰付着が見られる場合を△、灰付着が見られる場合を×として評価した。
(6)導電性炭素材料の脱落性
上記の方法で得た組成物ペレットを射出成形機(三菱重工業(株)製:80MSP−5)を使用して、シリンダー温度280℃、金型温度80℃にて、測定用の試験片(直径×高さ=10mm×20mmのピン状成形片)を成形し、往復動摩擦磨耗試験機((株)オリンテック製:AFT−15M)を使用し、23℃、50%RHの条件下において0.5kgの一定荷重の下で台紙の上で往復摩擦させ台紙に付着した導電性炭素材料の脱落跡を評価した。台紙に導電性炭素材料の脱落跡がほとんど見られない場合を○、若干の導電性炭素材料の脱落跡が認められる場合を△、導電性炭素材料の脱落跡がはっきり確認できる場合を×として評価した。
(7)流動性
上記の方法で得た組成物ペレットを射出成形機(住友重機械工業(株)製:SG−150U)を使用して、シリンダー温度300℃、金型温度80℃、射出圧力119MPaにて、流路厚1mm、流路幅8mmのアルキメデス型スパイラル長を測定した。上記スパイラル長が10cm以上であるものを○、5〜10であるものを△、5以下であるものを×として評価した。
(8)外観
上記の方法で得た組成物ペレットを射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度280℃、金型温度80℃にて、測定用の試験片(縦×横×厚み=90mm×50mm×2mmtの成形片)を成形し、成形片の表面外観を目視評価した。表面が平滑である場合を○、若干のざらつきが見られる場合を△、ざらつきが見られる場合を×として評価した。
各実施例および比較例の各評価結果を表1〜表2に示した。
なお、実施例及び比較例で使用した原材料は、下記の通りである。
(A成分:芳香族ポリカーボネート)
A−1:芳香族ポリカーボネート(帝人化成株式会社製 L−1225)
(B成分:ポリエチレンテレフタレート)
B−1:ポリエチレンテレフタレート樹脂(帝人株式会社製 TR−4550BH)
(C成分:導電性炭素材料)
C−1:導電性カーボンブラック[ケッチェンブラックEC―600JD(ライオン株式会社製 DBP吸油量495ml/100g、BET比表面積1270m/g)]
C−2:導電性カーボンブラック[デンカブラック(電気化学工業株式会社製 DBP吸油量191ml/100g、BET比表面積68m/g)]
C−3:導電性カーボンブラック[MA−600(三菱化学株式会社製 DBP吸油量131ml/100g、BET比表面積140m/g)]
C−4:カーボンナノチューブ[15重量%カーボンナノチューブマスター MB6015−00(ハイペリオン社製 直径20nm、アスペクト比5以上)]
(D成分:ガラス繊維、ガラスフレーク)
D−1:ガラス繊維[CS 3PE−937(日東紡績株式会社製)]
D−2:ガラスフレーク[REFG−301(日本板硝子株式会社製)]
(E成分:ポリテトラフルオロエチレン粒子)
E−1:ルブロン L−5(ダイキン工業株式会社製)
(F成分:酸化防止剤)
F−1:アデカスタブ PEP−24G(旭電化工業株式会社製)
F−2:TMP(大八化学工業株式会社製)
Figure 0005296622
Figure 0005296622
実施例1、実施例2および実施例5に示すように、規定範囲量内のポリエチレンテレフタレートを配合した樹脂組成物からなり、半導電領域である10〜10Ω/sqの表面抵抗率及び帯電圧半減衰時間を10秒以下に制御した成形品は、成形品表面に塵やほこりが付着するのを防ぎ、成形品表面から発生するスパーク電流を抑制し、成形品の樹脂表面から導電性炭素材料が脱落することを抑制し、更には流動性、外観にも優れている。なお、実施例1の樹脂組成物におけるメルトボリュームフローレイトは3cm/10分、実施例2の樹脂組成物は4cm/10分、実施例5の樹脂組成物は4cm/10分であり、表面抵抗率を静電領域に制御するために好適な流動性を示す。一方、比較例1の樹脂組成物におけるメルトボリュームフローレイトは1cm/10分であり、表面抵抗率を静電領域に制御することが困難である。
比較例1、比較例2および比較例3はポリエチレンテレフタレートの配合量が規定範囲外であり、比較例1はポリエチレンテレフタレートが配合されていないため、導電性炭素材料の配合量が少ないとき十分な導電性を得ることができず、灰が付着しやすい。比較例2のようにポリエチレンテレフタレートの配合量が少ないと、導電性炭素材料の脱落が十分に抑制できない。一方、比較例3のように配合量が多いと、表面抵抗率が規定範囲内に制御できず、灰が付着しやすい。
比較例4及び比較例5は導電性炭素材料の配合量が規定範囲外であり、比較例4のように配合量が少ないと、表面抵抗率を規定範囲内に制御することが困難であり、灰が付着しやすく、且つスパーク電流も大きい。一方、比較例5のように配合量が多いと、導電性炭素材料の脱落を十分に抑制することができず、流動性も悪い。
実施例3、実施例4および実施例6〜10は導電性カーボンブラックの種類を変えた場合、ガラス繊維又はガラスフレークを更に配合した場合、ポリテトラフルオロエチレン粒子を更に配合した場合、酸化防止剤を更に配合した場合を示しており、いずれも良好な評価結果を示す。
1:孔部(φ30mm)
2:孔部(φ10mm)
3:半円状孔部(φ20mm)
4:凹部

Claims (5)

  1. 芳香族ポリカーボネート樹脂75〜95重量%(A成分)およびポリエチレンテレフタレート樹脂5〜25重量%(B成分)からなる樹脂成分100重量部に対し、n−ジブチルフタレート(DBP)吸油量が495ml/100g以上であるカーボンブラック(C成分)を1〜20重量部含有する導電性樹脂組成物からなる成形品であって、該成形品が下記(1)および(2)を満たす、カメラシャッター部品を含む電気電子部品、OA機器部品、半導体関連部材、ガラスコンテナ及び自動車外装部品よりなる群より選ばれる成形品であることを特徴とする導電性樹脂組成物からなる成形品。
    (1) 表面抵抗率が10〜10Ω/sqである。
    (2) 10kVを印加したときの半減衰時間が10秒以下である。
  2. ガラス繊維及び/又はガラスフレーク(D成分)をA成分とB成分の合計100重量部当り5〜50重量部含有する請求項1に記載の導電性樹脂組成物からなる成形品。
  3. ポリテトラフルオロエチレン粒子(E成分)をA成分とB成分の合計100重量部当り1〜10重量部含有する請求項1または2に記載の導電性樹脂組成物からなる成形品。
  4. 酸化防止剤(F成分)をA成分とB成分の合計100重量部当り0.001〜2重量部含有する請求項1〜のいずれかに記載の導電性樹脂組成物からなる成形品。
  5. 150℃にて1時間放置した後の揮発性有機ガス量が2ppm以下であることを特徴とする請求項1〜のいずれかに記載の導電性樹脂組成物からなる成形品。
JP2009161824A 2009-07-08 2009-07-08 導電性樹脂組成物からなる成形品 Active JP5296622B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009161824A JP5296622B2 (ja) 2009-07-08 2009-07-08 導電性樹脂組成物からなる成形品
CN201010224696.8A CN101948614B (zh) 2009-07-08 2010-07-06 由导电性树脂组合物形成的成型品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161824A JP5296622B2 (ja) 2009-07-08 2009-07-08 導電性樹脂組成物からなる成形品

Publications (2)

Publication Number Publication Date
JP2011016902A JP2011016902A (ja) 2011-01-27
JP5296622B2 true JP5296622B2 (ja) 2013-09-25

Family

ID=43452250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161824A Active JP5296622B2 (ja) 2009-07-08 2009-07-08 導電性樹脂組成物からなる成形品

Country Status (2)

Country Link
JP (1) JP5296622B2 (ja)
CN (1) CN101948614B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5592126B2 (ja) * 2010-03-10 2014-09-17 帝人株式会社 導電性樹脂組成物からなる成形品
BR112013028400B1 (pt) 2011-05-03 2020-11-24 The Board Of Regents For Oklahoma State University MATERIAL DE NANOCOMPdSITOS DE TEREFTALATO DE POLIETILENO-GRAFENO E SEU METODO DE PRODUQAO
JP5988971B2 (ja) * 2011-06-17 2016-09-07 出光興産株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形体
JP6110197B2 (ja) * 2013-04-23 2017-04-05 帝人株式会社 導電性ポリカーボネート樹脂組成物
KR20140141208A (ko) * 2013-05-31 2014-12-10 제일모직주식회사 전기전도성이 우수한 캐리어 테이프용 폴리카보네이트계 수지 조성물
JP2017513977A (ja) * 2014-04-09 2017-06-01 ティコナ・エルエルシー 静電防止ポリマー組成物
WO2015157050A1 (en) 2014-04-09 2015-10-15 Ticona Llc Camera module
JP6490704B2 (ja) * 2014-08-29 2019-03-27 エルジー・ケム・リミテッド 機械的物性が改善された複合材及びこれを含有する成形品
CN104912837B (zh) * 2015-06-10 2017-04-05 宁波生久散热科技有限公司 抗静电自清洁扇叶及其制作工艺
US9890263B2 (en) 2015-07-08 2018-02-13 Niagara Bottling, Llc Graphene reinforced polyethylene terephthalate
JP6976774B2 (ja) * 2016-09-27 2021-12-08 キヤノン株式会社 電子写真用導電性部材、プロセスカートリッジおよび電子写真画像形成装置
JP6904125B2 (ja) * 2017-07-18 2021-07-14 味の素株式会社 樹脂組成物
KR102627886B1 (ko) 2017-12-05 2024-01-19 티코나 엘엘씨 카메라 모듈에 사용하기 위한 방향족 중합체 조성물
CN108342035A (zh) * 2018-01-25 2018-07-31 东莞市杜特橡胶制品有限公司 一种石墨填充fkm橡胶材料
TWI815868B (zh) * 2018-03-28 2023-09-21 美商陶氏全球科技有限責任公司 極性有機共聚物及超低潤濕性碳黑之複合物
US20230131534A1 (en) * 2020-09-11 2023-04-27 Nitto Boseki Co., Ltd. Glass fiber-reinforced resin plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136652A (ja) * 1982-02-08 1983-08-13 Mitsubishi Chem Ind Ltd 導電性ポリカ−ボネ−ト樹脂組成物
JPH07330925A (ja) * 1994-06-15 1995-12-19 Teijin Ltd 導電性シート及びそれよりなる熱成形品
JPH1112454A (ja) * 1997-06-20 1999-01-19 Kanegafuchi Chem Ind Co Ltd 難燃性熱可塑性樹脂組成物
JP2003100147A (ja) * 2001-09-25 2003-04-04 Nagase & Co Ltd カーボンナノチューブを含有する導電性材料およびその製造方法
JP4760035B2 (ja) * 2005-02-01 2011-08-31 三菱化学株式会社 導電性熱可塑性樹脂組成物
WO2008018473A1 (fr) * 2006-08-10 2008-02-14 Denki Kagaku Kogyo Kabushiki Kaisha Feuille conductrice
JP5280669B2 (ja) * 2006-12-08 2013-09-04 帝人株式会社 難燃性ポリカーボネート樹脂組成物
JP5154820B2 (ja) * 2007-04-05 2013-02-27 帝人化成株式会社 導電性樹脂組成物
CN101092553A (zh) * 2007-06-28 2007-12-26 上海交通大学 一种抗静电高分子材料的制备方法
JP5679635B2 (ja) * 2009-03-03 2015-03-04 帝人株式会社 導電性樹脂組成物からなる成形品

Also Published As

Publication number Publication date
JP2011016902A (ja) 2011-01-27
CN101948614A (zh) 2011-01-19
CN101948614B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5296622B2 (ja) 導電性樹脂組成物からなる成形品
JP5592126B2 (ja) 導電性樹脂組成物からなる成形品
JP4907899B2 (ja) カーボンナノチューブを含有する樹脂組成物、およびカーボンナノチューブ配合用濃縮物
JP5154820B2 (ja) 導電性樹脂組成物
JP4817785B2 (ja) 高熱伝導絶縁性ポリカーボネート系樹脂組成物および成形体
JP5436219B2 (ja) 樹脂組成物
JP4817784B2 (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP5679635B2 (ja) 導電性樹脂組成物からなる成形品
JP5101810B2 (ja) 難燃性芳香族ポリカーボネート樹脂組成物
JP5352076B2 (ja) 樹脂組成物
JP5323701B2 (ja) 難燃性樹脂組成物
JP2013001801A (ja) 難燃性ポリカーボネート樹脂組成物
JP2009001740A (ja) 導電性の安定した熱可塑性樹脂組成物
JP2008285518A (ja) 導電性樹脂組成物
JP4705392B2 (ja) 難燃性樹脂組成物
JP5723892B2 (ja) 芳香族ポリカーボネート樹脂組成物およびその成形品
EP2776475A1 (en) Clean polycarbonate material for use in hard disk drive and semiconductor applications
JP2018188496A (ja) 炭素繊維/ポリカーボネート樹脂複合ペレット及びその製造方法
JP2015137307A (ja) 難燃性ポリカーボネート樹脂組成物
JP4919407B2 (ja) ポリカーボネート樹脂組成物
JP5792539B2 (ja) 芳香族ポリカーボネート樹脂組成物及びこれを成形してなる樹脂成形体
JP2008163270A (ja) ポリエステル系樹脂組成物
JP6110197B2 (ja) 導電性ポリカーボネート樹脂組成物
JP6337767B2 (ja) 炭素長繊維/ポリカーボネート樹脂複合材料及び炭素長繊維/ポリカーボネート樹脂複合ペレットの製造方法
KR20220084270A (ko) 수지 조성물 및 성형품

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5296622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150