JP5261367B2 - Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber - Google Patents

Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber Download PDF

Info

Publication number
JP5261367B2
JP5261367B2 JP2009293608A JP2009293608A JP5261367B2 JP 5261367 B2 JP5261367 B2 JP 5261367B2 JP 2009293608 A JP2009293608 A JP 2009293608A JP 2009293608 A JP2009293608 A JP 2009293608A JP 5261367 B2 JP5261367 B2 JP 5261367B2
Authority
JP
Japan
Prior art keywords
carbon
fiber
carbon nanotubes
spinning
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009293608A
Other languages
Japanese (ja)
Other versions
JP2010168724A (en
Inventor
幸浩 阿部
浩和 西村
公一 平尾
信輔 山口
大介 佐倉
義弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Toyobo Co Ltd
Original Assignee
Japan Exlan Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd, Toyobo Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2009293608A priority Critical patent/JP5261367B2/en
Publication of JP2010168724A publication Critical patent/JP2010168724A/en
Application granted granted Critical
Publication of JP5261367B2 publication Critical patent/JP5261367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a precursor fiber, by which a carbon fiber having a high tensile strength and a high tensile elastic modulus can be produced. <P>SOLUTION: This method for producing the precursor fiber for the carbon fiber includes: (1) a process for preparing an aqueous solution of carboxymethylcellulose; (2) a process for adding carbon nanotubes to the aqueous solution of the carboxymethylcellulose, irradiating the mixture with ultrasonic waves to disperse the carbon nanotubes, and preparing the dispersion of the carbon nanotubes; (3) a process for preparing a spinning dope comprising the carbon nanotube dispersion, a polyacrylonitrile-based polymer and a rhodan salt; (4) a process for obtaining a coagulated fiber from the spinning dope by a wet or dry-wet type spinning method; and (5) a process for drawing the coagulated fiber to obtain the precursor fiber of the carbon fiber. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法に関する。また、本発明は、かかる製造方法によって得られる前駆体繊維、及びかかる前駆体繊維から得られる高強度かつ高弾性率の炭素繊維に関する。さらに、本発明は、かかる前駆体繊維の製造に使用する紡糸原液に関する。   The present invention relates to a method for producing precursor fibers for obtaining carbon fibers having high strength and high elastic modulus. The present invention also relates to a precursor fiber obtained by such a production method and a high-strength and high-modulus carbon fiber obtained from such a precursor fiber. Furthermore, the present invention relates to a spinning dope used for the production of such precursor fibers.

炭素繊維は、軽量かつ高強度、高弾性率という極めて優れた物性を有することから、釣竿、ゴルフクラブやスキー板等の運動用具からCNGタンク、フライホイール、風力発電用風車、タービンブレード等の形成材料、道路、橋脚等の構造物の補強材、さらには、航空機、宇宙用素材として使われ、さらにその用途は広がりつつある。   Carbon fiber has extremely excellent physical properties such as light weight, high strength, and high elastic modulus, so it can be used to form CNG tanks, flywheels, wind turbines, turbine blades, etc., from fishing equipment such as fishing rods, golf clubs and skis. It is used as a reinforcing material for structures such as materials, roads and piers, as well as aircraft and space materials, and its uses are expanding.

このような炭素繊維の用途の拡大につれて、より高強度、高弾性率を有する炭素繊維の開発が望まれるようになってきている。   As the use of such carbon fibers expands, development of carbon fibers having higher strength and higher elastic modulus has been desired.

炭素繊維は、ポリアクリロニトリルを原料とするPAN系炭素繊維と、石炭由来のコールタール、石油由来のデカントオイルやエチレンボトムなどを出発原料とするピッチ系炭素繊維に大別される。いずれの炭素繊維も、まずこれらの原料から前駆体繊維を製造し、この前駆体繊維を高温で加熱して耐炎化、予備炭素化、及び炭素化することによって製造される。   Carbon fibers are roughly classified into PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from coal-derived coal tar, petroleum-derived decant oil, ethylene bottom, and the like. Any carbon fiber is manufactured by first producing a precursor fiber from these raw materials and heating the precursor fiber at a high temperature to make it flame resistant, pre-carbonized, and carbonized.

物性の点から見ると、現在市販されているPAN系炭素繊維は、最大6GPa程度という極めて高い引張強度を達成することができるが、引張弾性率が発現しにくく、最大でも300GPa程度に留まっている。一方、現在市販されているピッチ系炭素繊維は、最大800GPa程度という極めて高い引張弾性率を達成することができるが、引張強度が発現しにくく、最大でも3GPa程度に留まっている。航空機や宇宙用素材として使用するためには、高引張強度かつ高引張弾性率の炭素繊維が望ましいが、このように、現在提案されている炭素繊維の中にこの要件を満たすものは存在しない。   From the viewpoint of physical properties, currently available PAN-based carbon fibers can achieve a very high tensile strength of about 6 GPa at the maximum, but it is difficult to develop a tensile elastic modulus and remains at a maximum of about 300 GPa. . On the other hand, pitch-based carbon fibers that are currently available on the market can achieve a very high tensile elastic modulus of about 800 GPa at the maximum, but the tensile strength is difficult to develop and remains at about 3 GPa at the maximum. For use as an aircraft or space material, a carbon fiber having a high tensile strength and a high tensile modulus is desirable, but there is no carbon fiber currently proposed that satisfies this requirement.

一方、特許文献1には、ポリアクリロニトリル系ポリマーにカーボンナノチューブを添加して紡糸することによって得られた前駆体繊維(カーボンナノチューブ含有PAN系前駆体繊維)が、従来のPAN系前駆体繊維より高い引張弾性率を示すことが開示されている。   On the other hand, in Patent Document 1, precursor fibers (carbon nanotube-containing PAN precursor fibers) obtained by adding carbon nanotubes to a polyacrylonitrile-based polymer and spinning them are higher than conventional PAN-based precursor fibers. It is disclosed to exhibit a tensile modulus.

しかし、特許文献1の方法で得られた前駆体繊維は、引張弾性率の点では優れるものの、断面形状が円形ではなく大きく歪んでいるため、この前駆体繊維から得られる炭素繊維は従来のPAN系炭素繊維のような高い引張強度を示さない。従って結局、高引張強度及び高引張弾性率という二つの特性を両立させた炭素繊維は未だ得られていない。
米国特許第6852410号
However, although the precursor fiber obtained by the method of Patent Document 1 is excellent in terms of tensile elastic modulus, since the cross-sectional shape is not circular but is greatly distorted, the carbon fiber obtained from this precursor fiber is a conventional PAN. It does not show high tensile strength like the carbon fiber. Therefore, after all, a carbon fiber having both the high tensile strength and the high tensile elastic modulus has not been obtained yet.
US Pat. No. 6,852,410

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、高引張強度(具体的には6GPa以上の引張強度)かつ高引張弾性率(具体的には300GPa以上の引張弾性率)の炭素繊維を製造することができる前駆体繊維及びその製造方法を提供することにある。   The present invention has been developed in view of the current state of the prior art, and its purpose is to have a high tensile strength (specifically, a tensile strength of 6 GPa or higher) and a high tensile modulus (specifically, a tensile strength of 300 GPa or higher). It is an object of the present invention to provide a precursor fiber capable of producing a carbon fiber having a modulus of elasticity and a method for producing the same.

本発明者は、上記目的を達成するために、特許文献1の方法の改良について鋭意検討した結果、特許文献1の方法で得られるカーボンナノチューブ含有PAN系前駆体繊維の断面形状が大きく歪む理由は、紡糸原液の溶剤としてジメチルホルムアミド(DMF)を使用しているためであり、ロダン塩の水溶液を紡糸原液の溶剤として使用すると、略円形断面のカーボンナノチューブ含有PAN系前駆体繊維が得られることを見出した。しかし、溶剤としてDMFの代わりにロダン塩の水溶液を使用すると、紡糸原液にカーボンナノチューブ分散液を添加した際に瞬時にカーボンナノチューブが凝集・析出しやすく、得られた凝固糸中に凝集・析出物の塊が散在するため、延伸時にこの塊を起点に糸切れを生じやすく、十分な延伸を行うことができないこと、このため前駆体繊維中のポリマー鎖及びカーボンナノチューブの配向が不十分になり、カーボンナノチューブの添加により本来期待されるべき高い引張強度および引張弾性率を発現することができないことが判明した。また、カーボンナノチューブが紡糸原液中で多量に凝集・析出すると、紡糸原液の曵糸性がなくなったり、紡糸口金のフィルター詰まりを起こし、紡糸不可能になることが判明した。そこで、本発明者らは、ロダン塩の水溶液を紡糸原液の溶剤として使用しつつも紡糸原液中のカーボンナノチューブの析出を抑制する方法についてさらに検討したところ、カーボンナノチューブを添加する際にカルボキシメチルセルロースを分散剤として併用すると、カーボンナノチューブが安定に溶剤中に分散されて凝集・析出しにくくなることを見出し、本発明の完成に至った。   As a result of earnestly examining the improvement of the method of Patent Document 1 in order to achieve the above object, the present inventor has the reason why the cross-sectional shape of the carbon nanotube-containing PAN precursor fiber obtained by the method of Patent Document 1 is largely distorted This is because dimethylformamide (DMF) is used as a solvent for the spinning dope. When an aqueous solution of rhodan salt is used as the solvent for the spinning dope, a carbon nanotube-containing PAN precursor fiber having a substantially circular cross section can be obtained. I found it. However, when an aqueous solution of rhodan salt is used instead of DMF as a solvent, carbon nanotubes easily aggregate and precipitate instantly when a carbon nanotube dispersion is added to the spinning dope, and aggregates and precipitates are obtained in the obtained coagulated yarn. Since the lump of lump is scattered, thread breakage tends to occur at the start of this lump at the time of stretching, and sufficient stretching cannot be performed, and therefore the orientation of polymer chains and carbon nanotubes in the precursor fiber becomes insufficient, It has been found that the addition of carbon nanotubes cannot exhibit the high tensile strength and tensile elastic modulus that are originally expected. It was also found that if carbon nanotubes agglomerate and precipitate in a large amount in the spinning dope, the spinning dope loses spinnability or the spinneret filter becomes clogged, making spinning impossible. Therefore, the present inventors further examined a method for suppressing the precipitation of carbon nanotubes in the spinning stock solution while using an aqueous solution of rhodan salt as a solvent for the spinning stock solution. When used in combination as a dispersant, it has been found that carbon nanotubes are stably dispersed in a solvent and hardly aggregate and precipitate, and the present invention has been completed.

即ち、本発明によれば、以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法が提供される:
(1)カルボキシメチルセルロースの水溶液を調製する工程;
(2)このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;
(3)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する工程;
(4)この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る工程;そして
(5)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。
That is, according to the present invention, there is provided a method for producing a carbon fiber precursor fiber, which comprises the following steps:
(1) a step of preparing an aqueous solution of carboxymethylcellulose;
(2) adding carbon nanotubes to the aqueous solution of carboxymethylcellulose, irradiating ultrasonic waves to disperse the carbon nanotubes, and preparing a carbon nanotube dispersion;
(3) a step of preparing a spinning dope containing the carbon nanotube dispersion, polyacrylonitrile-based polymer, and rhodan salt;
(4) a step of obtaining a coagulated yarn from the spinning solution by a wet or dry wet spinning method; and (5) a step of drawing the coagulated yarn to obtain a precursor fiber of carbon fiber.

また、本発明によれば、上記方法によって製造される、炭素繊維の前駆体繊維であって、略円形断面を有しかつカーボンナノチューブを含むことを特徴とする炭素繊維の前駆体繊維が提供される。   In addition, according to the present invention, there is provided a carbon fiber precursor fiber produced by the above method, wherein the carbon fiber precursor fiber has a substantially circular cross section and includes carbon nanotubes. The

さらに、本発明によれば、上記前駆体繊維を耐炎化、予備炭素化及び炭素化することによって製造される炭素繊維であって、6GPa以上の引張強度及び300GPa以上の引張弾性率を有することを特徴とする炭素繊維が提供される。   Furthermore, according to the present invention, a carbon fiber produced by flame-proofing, pre-carbonizing and carbonizing the precursor fiber, having a tensile strength of 6 GPa or more and a tensile modulus of 300 GPa or more. Characteristic carbon fibers are provided.

さらに、本発明によれば、ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる紡糸原液であって、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に分散していることを特徴とする紡糸原液が提供される。   Furthermore, according to the present invention, a spinning stock solution comprising an aqueous solution containing a rhodan salt, a polyacrylonitrile-based polymer, carbon nanotubes, and carboxymethylcellulose, wherein the carbon nanotubes are dispersed in water by the dispersing action of carboxymethylcellulose. A characterized stock spinning solution is provided.

本発明のカーボンナノチューブ含有PAN系前駆体繊維の製造方法では、紡糸原液の溶剤としてロダン塩の水溶液を使用しているので、略円形断面の前駆体繊維を得ることができる。また、カルボキシメチルセルロースを分散剤として使用して紡糸原液からのカーボンナノチューブの凝集・析出を抑制しているため、得られた糸は、凝集・析出物の塊を含まず、十分に延伸させてポリマー鎖及びカーボンナノチューブを配向させることができる。従って、かかる前駆体繊維から得られる炭素繊維は、適切に配向されたカーボンナノチューブの含有および高分子鎖の配向に起因する高い引張強度及び高い引張弾性率を示す。   In the method for producing a carbon nanotube-containing PAN precursor fiber of the present invention, an aqueous solution of rhodan salt is used as a solvent for the spinning dope, so that a precursor fiber having a substantially circular cross section can be obtained. In addition, since carboxymethyl cellulose is used as a dispersant to suppress the aggregation and precipitation of carbon nanotubes from the spinning dope, the obtained yarn does not contain agglomeration and precipitate lump, and is sufficiently stretched to form a polymer. Chains and carbon nanotubes can be oriented. Accordingly, carbon fibers obtained from such precursor fibers exhibit high tensile strength and high tensile modulus due to the inclusion of appropriately oriented carbon nanotubes and the orientation of the polymer chains.

以下、本発明のカーボンナノチューブ含有PAN系炭素繊維の前駆体繊維の製造方法について詳述する。本発明の製造方法ではまず、カルボキシメチルセルロースの水溶液を調製する(工程(1))。   Hereinafter, the manufacturing method of the precursor fiber of the carbon nanotube containing PAN system carbon fiber of this invention is explained in full detail. In the production method of the present invention, first, an aqueous solution of carboxymethyl cellulose is prepared (step (1)).

本発明で使用するカルボキシメチルセルロースは、市販のナトリウム塩、カリウム塩が使用される。また、これらの混合物を使用することもできる。   As the carboxymethyl cellulose used in the present invention, commercially available sodium salts and potassium salts are used. Mixtures of these can also be used.

カルボキシメチルセルロースの水溶液の調製は、水にカルボキシメチルセルロースを添加して約5℃〜約100℃で加熱しながら攪拌することによって容易に行うことができる。カルボキシメチルセルロースの濃度は、0.002〜9重量%(紡糸原液中の終濃度で0.001〜5重量%)であることが好ましく、0.1〜8重量%であることがさらに好ましい。上記下限未満では、カーボンナノチューブの分散剤としての効果を十分発揮できないおそれがある。また、上記上限を越えると、やはりカーボンナノチューブの分散剤としての効果を十分に発揮しなくなるおそれがある。   Preparation of the aqueous solution of carboxymethylcellulose can be easily performed by adding carboxymethylcellulose to water and stirring at about 5 ° C to about 100 ° C while heating. The concentration of carboxymethyl cellulose is preferably 0.002 to 9% by weight (0.001 to 5% by weight as the final concentration in the spinning dope), and more preferably 0.1 to 8% by weight. If the amount is less than the above lower limit, the effect of the carbon nanotube as a dispersant may not be sufficiently exhibited. On the other hand, if the above upper limit is exceeded, there is a possibility that the effect of the carbon nanotube as a dispersant will not be sufficiently exhibited.

次に、このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する(工程(2))。   Next, carbon nanotubes are added to this aqueous solution of carboxymethyl cellulose, and the carbon nanotubes are dispersed by irradiating with ultrasonic waves to prepare a carbon nanotube dispersion (step (2)).

本発明で使用するカーボンナノチューブは、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブのいずれであっても良く、これらの混合物であっても良い。各種カーボンナノチューブの末端は、閉じていても良いし、穴が開いていても良い。カーボンナノチューブの直径は、好ましくは0.4nm以上100nm以下であり、より好ましくは0.8nm以上80nm以下である。カーボンナノチューブの長さは、制限されるものではなく、任意の長さのものを用いることができるが、好ましくは0.6μm以上200μm以下であり、より好ましくは1μm以上200μm以下である。   The carbon nanotube used in the present invention may be a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, or a mixture thereof. The ends of various carbon nanotubes may be closed or perforated. The diameter of the carbon nanotube is preferably 0.4 nm or more and 100 nm or less, and more preferably 0.8 nm or more and 80 nm or less. The length of the carbon nanotube is not limited, and an arbitrary length can be used, but it is preferably 0.6 μm or more and 200 μm or less, and more preferably 1 μm or more and 200 μm or less.

本発明で使用するカーボンナノチューブの純度は、炭素純度として80%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。炭素純度は、示差熱分析により決定される。カーボンナノチューブの不純物としては、非晶炭素成分や触媒金属が挙げられる。空気中での200℃以上での加熱、または、過酸化水素水で洗浄することにより、非晶炭素成分を除くことができる。さらに、塩酸、硝酸、硫酸等の鉱酸で洗浄後、水洗することにより鉄等のカーボンナノチューブ製造時の触媒金属を除去することができる。本発明では、これらの精製操作を組み合わせることにより、種々の不純物を除去し、炭素純度を高めたカーボンナノチューブを使用することが好ましい。   The purity of the carbon nanotube used in the present invention is preferably 80% or more as carbon purity, more preferably 90% or more, and further preferably 95% or more. Carbon purity is determined by differential thermal analysis. Examples of carbon nanotube impurities include amorphous carbon components and catalytic metals. The amorphous carbon component can be removed by heating in air at 200 ° C. or higher or by washing with hydrogen peroxide. Furthermore, after washing with a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid, etc., the catalyst metal during the production of carbon nanotubes such as iron can be removed by washing with water. In the present invention, it is preferable to use carbon nanotubes in which various impurities are removed and carbon purity is increased by combining these purification operations.

カーボンナノチューブの添加量は、次の工程(3)で使用するポリアクリロニトリル系ポリマーの量に対して0.01〜5重量%であることが好ましく、0.1〜3重量%であることがさらに好ましい。上記下限未満では、得られる前駆体繊維中のカーボンナノチューブ量が少なくなり、十分高い引張弾性率を達成できないおそれがある。また、上記上限を越えると、紡糸原液に曵糸性がなくなり、紡糸が困難になるおそれがある。超音波照射は、約0〜70℃の温度で約1時間〜3日間行う。溶液が目視で黒色透明になれば、カーボンナノチューブは十分分散している。   The amount of carbon nanotube added is preferably 0.01 to 5% by weight, more preferably 0.1 to 3% by weight, based on the amount of polyacrylonitrile-based polymer used in the next step (3). preferable. If it is less than the said minimum, there exists a possibility that the amount of carbon nanotubes in the precursor fiber obtained may decrease and a sufficiently high tensile elastic modulus cannot be achieved. On the other hand, if the above upper limit is exceeded, the spinning dope loses spinnability, and spinning may be difficult. The ultrasonic irradiation is performed at a temperature of about 0 to 70 ° C. for about 1 hour to 3 days. If the solution becomes transparent and black, the carbon nanotubes are sufficiently dispersed.

次に、このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する(工程(3))。   Next, a spinning dope containing this carbon nanotube dispersion, polyacrylonitrile-based polymer, and rhodan salt is prepared (step (3)).

紡糸原液の調製においては、カーボンナノチューブ分散液にポリアクリロニトリル系ポリマーとロダン塩を添加してもよいし、また、ポリアクリロニトリル系ポリマーをロダン塩水溶液に溶かしたポリマー溶液とカーボンナノチューブ分散液を混合してもよい。前者の場合、ポリアクリロニトリル系ポリマーとロダン塩の添加は同時であってもよく、また、どちらを先に添加してもよい。添加は一度に行う必要はなく、分けて行ってもよい。ポリアクリロニトリル系ポリマーを添加するときは、必要により水を添加して水スラリーの状態にすることが好ましい。この場合、添加される水を予め多くし、後で常圧下又は減圧下で徐々に水を留去して紡糸原液の粘度を調整してもよい。   In the preparation of the spinning dope, a polyacrylonitrile-based polymer and a rhodan salt may be added to the carbon nanotube dispersion, or a polymer solution obtained by dissolving a polyacrylonitrile-based polymer in an aqueous rhodan salt solution and a carbon nanotube dispersion are mixed. May be. In the former case, the polyacrylonitrile-based polymer and the rhodan salt may be added simultaneously, or either may be added first. The addition need not be performed at once, but may be performed separately. When adding a polyacrylonitrile-based polymer, it is preferable to add water as necessary to form a water slurry. In this case, the viscosity of the spinning dope may be adjusted by increasing the amount of added water in advance and then gradually distilling off the water under normal pressure or reduced pressure.

本発明で使用するポリアクリロニトリル系ポリマーとしては、ポリアクリロニトリル、および、アクリロニトリルと共重合可能なビニル単量体からなる共重合体を使うことができる。共重合体としては、耐炎化反応に有効な作用を有するアクリロニトリル−メタクリル酸共重合体、アクリロニトリル−メタクリル酸メチル共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−イタコン酸共重合体、アクリロニトリル−メタクリル酸−イタコン酸共重合体、アクリロニトリル−メタクリル酸メチル−イタコン酸共重合体、アクリロニトリル−アクリル酸−イタコン酸共重合体等が挙げられ、いずれの場合もアクリロニトリル成分が85モル%以上であることが好ましい。これらのポリマーは、アルカリ金属またはアンモニアとの塩を形成していても良い。また、これらのポリマーは単独または2種以上の混合物としても使用できる。   As the polyacrylonitrile-based polymer used in the present invention, polyacrylonitrile and a copolymer composed of a vinyl monomer copolymerizable with acrylonitrile can be used. Examples of the copolymer include acrylonitrile-methacrylic acid copolymer, acrylonitrile-methyl methacrylate copolymer, acrylonitrile-acrylic acid copolymer, acrylonitrile-itaconic acid copolymer, acrylonitrile Examples include methacrylic acid-itaconic acid copolymer, acrylonitrile-methyl methacrylate-itaconic acid copolymer, acrylonitrile-acrylic acid-itaconic acid copolymer, and in any case, the acrylonitrile component should be 85 mol% or more. Is preferred. These polymers may form a salt with alkali metal or ammonia. These polymers can be used alone or as a mixture of two or more.

ポリアクリロニトリル系ポリマーの使用量は、紡糸原液中、5〜30重量%になるような量であることが好ましく、さらに好ましくは10〜20重量%になるような量である。上記下限未満では、紡糸張力をかけることができず、繊維自身および糸中のカーボンナノチューブの配向が不足し、強度不足の原因となるおそれがある。また、上記下限を越えると紡糸時に背圧上昇の原因となるおそれがある。   The amount of the polyacrylonitrile-based polymer used is preferably such an amount that it is 5 to 30% by weight, more preferably 10 to 20% by weight in the spinning dope. If it is less than the above lower limit, the spinning tension cannot be applied, and the orientation of the carbon itself and the carbon nanotubes in the yarn is insufficient, which may cause insufficient strength. On the other hand, if the above lower limit is exceeded, there is a risk of increasing the back pressure during spinning.

本発明で使用するロダン塩は、チオシアン酸と1価または2価の金属との塩であればよく、中でもチオシアン酸ナトリウム、チオシアン酸カリウムが好ましい。また、これらの混合物を用いることもできる。ロダン塩は極めて溶解しにくいため、ロダン塩の添加は、分散液を激しく攪拌しながら行うことが好ましい。必要により、ロダン塩を完全に溶解させるため、分散液を約30℃〜約90℃に加熱してもよい。   The rhodan salt used in the present invention may be a salt of thiocyanic acid and a monovalent or divalent metal, and among them, sodium thiocyanate and potassium thiocyanate are preferable. A mixture of these can also be used. Since the rhodan salt is very difficult to dissolve, it is preferable to add the rhodan salt while stirring the dispersion vigorously. If necessary, the dispersion may be heated to about 30 ° C. to about 90 ° C. to completely dissolve the rhodan salt.

ロダン塩の使用量は、紡糸原液中、30〜60重量%になるような量であることが好ましく、さらには40〜55重量%であることが好ましい。上記下限未満では、ポリアクリロニトリル系ポリマーが溶解できないおそれがある。また、上記上限を越えると、ロダン塩が析出したり、いったん分散したカーボンナノチューブが凝集し、析出してしまうおそれがある。   The amount of rhodan salt used is preferably such that it is 30 to 60% by weight, more preferably 40 to 55% by weight in the spinning dope. If it is less than the lower limit, the polyacrylonitrile-based polymer may not be dissolved. Moreover, when the above upper limit is exceeded, there is a possibility that rhodan salts precipitate or carbon nanotubes once dispersed aggregate and precipitate.

以上の工程(1)〜(3)によって得られた紡糸原液は、ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる。この水溶液中では、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に安定に分散しており、何らかの衝撃が加えられても析出しにくくなっている。   The spinning dope obtained by the above steps (1) to (3) comprises an aqueous solution containing a rhodan salt, a polyacrylonitrile-based polymer, carbon nanotubes, and carboxymethylcellulose. In this aqueous solution, the carbon nanotubes are stably dispersed in water due to the dispersing action of carboxymethyl cellulose, and it is difficult for them to precipitate even if any impact is applied.

本発明の紡糸原液の粘度は、通常30℃で、湿式紡糸では、2〜20Pa・secであることが好ましく、乾湿式紡糸では100〜500Pa・secであることが好ましい。それぞれの紡糸方法において、上記範囲を下回ると、紡糸時にノズル面に紡糸原液が付着してしまう恐れがあったり、吐出糸条の切断や品質斑の問題があり、上記範囲を上回ると、メルトフラクチャーが生じて安定に紡糸を行うことができなくなるなど、紡糸の操業性に問題が生じるおそれがある。   The viscosity of the spinning dope of the present invention is usually 30 ° C., preferably 2 to 20 Pa · sec for wet spinning, and preferably 100 to 500 Pa · sec for dry and wet spinning. In each spinning method, if the range is below the above range, there is a possibility that the spinning solution may adhere to the nozzle surface at the time of spinning, or there is a problem of cutting of the discharged yarn or quality unevenness. This may cause problems in spinning operability, such as inability to perform stable spinning.

次に、この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る(工程(4))。   Next, a coagulated yarn is obtained from this spinning dope by a wet or dry wet spinning method (step (4)).

紡糸口金の孔径は、通常、湿式紡糸では0.03〜0.1mmであることが好ましく、乾湿式紡糸では0.1〜0.3mmであることが好ましい。上記範囲を下回ると、紡糸時にドラフト比が小さくなり生産性を著しく損なうおそれがあったり、吐出糸条の切断や品質斑の問題があり、上記範囲を上回ると、紡糸原液の吐出線速度が小さくなり凝固槽内での糸の張力が大きくなるなど、紡糸の操業性に問題が生じるおそれがある。   In general, the hole diameter of the spinneret is preferably 0.03 to 0.1 mm for wet spinning, and preferably 0.1 to 0.3 mm for dry and wet spinning. Below the above range, the draft ratio may decrease during spinning and the productivity may be significantly impaired, and there is a problem of cutting of the discharged yarn and quality unevenness. When the above range is exceeded, the discharge linear velocity of the spinning dope becomes low. Therefore, there is a risk of problems in spinning operability such as an increase in yarn tension in the coagulation tank.

凝固浴としては、水、塩化亜鉛もしくは塩化アルミニウム等のルイス酸塩水溶液、又はロダン塩水溶液を用いることが好ましい。ルイス酸塩又はロダン塩の濃度は10〜20重量%であることが好ましく、温度は−5〜10℃に保つことが好ましい。ルイス酸塩又はロダン塩の濃度が10重量%未満では、吐出された紡糸原液の表面から急速に凝固が進み、繊維中心部の凝固が不充分となり、均一な糸の構造形成が行われないおそれがある。また、20重量%よりも濃度が高いと、凝固が遅くなり、巻き取りまでの工程で隣接する糸同士の接着を生じるおそれがある。また、凝固は多段で行われることが好ましく、特に好ましくは2〜3段で行われる。凝固が1段の場合、糸中心部までの凝固が不充分となり、均一な糸構造の形成ができないおそれがある。また、4段以上では、生産設備が重厚となり、現実的でない。   As the coagulation bath, it is preferable to use water, a Lewis acid salt aqueous solution such as zinc chloride or aluminum chloride, or a rhodan salt aqueous solution. The concentration of the Lewis acid salt or rhodan salt is preferably 10 to 20% by weight, and the temperature is preferably maintained at -5 to 10 ° C. If the concentration of the Lewis acid salt or the rhodan salt is less than 10% by weight, solidification rapidly proceeds from the surface of the discharged spinning stock solution, and the coagulation of the fiber center becomes insufficient, so that a uniform yarn structure may not be formed. There is. On the other hand, when the concentration is higher than 20% by weight, the solidification is slowed, and there is a possibility that adjacent yarns are bonded in the process up to winding. Further, the solidification is preferably performed in multiple stages, particularly preferably in 2 to 3 stages. When solidification is performed in one stage, solidification to the center of the yarn is insufficient, and there is a possibility that a uniform yarn structure cannot be formed. In addition, if there are four or more stages, the production equipment becomes heavy, which is not realistic.

紡糸時の引き取り速度は、3〜20m/分の範囲にあることが好ましい。3m/分未満では、生産性が極めて低くなるおそれがある。一方、20m/分を越えると、紡糸口金近傍での糸切れが多発し、操業性を著しく損なうおそれがある。   The take-up speed during spinning is preferably in the range of 3 to 20 m / min. If it is less than 3 m / min, the productivity may be extremely low. On the other hand, if it exceeds 20 m / min, yarn breakage frequently occurs in the vicinity of the spinneret and the operability may be significantly impaired.

次に、工程(4)で得られた凝固糸を延伸して炭素繊維の前駆体繊維を得る(工程(5))。延伸することによって、繊維中の分子鎖の配向性を高めて力学物性に優れた炭素繊維を得ることができる。延伸は、トータルの延伸倍率が4〜12倍になるように行うことが好ましく、より好ましくは、トータルの延伸倍率が5〜7倍になるように行う。トータルの延伸倍率が上記下限未満では、糸中のカーボンナノチューブの配向が不充分で、ポリアクリロニトリル系ポリマーが緻密に配向した炭素繊維前駆体を得ることができないおそれがある。また、トータルの延伸倍率が上記上限を越える場合は、延伸時に糸切れが頻発し、延伸安定性に欠けるおそれがある。延伸操作は、冷延伸、熱水中での延伸、蒸気中での延伸のいずれの方法でも良い。また、1度に延伸しても、多段で延伸しても良い。   Next, the coagulated yarn obtained in the step (4) is drawn to obtain a carbon fiber precursor fiber (step (5)). By stretching, a carbon fiber excellent in mechanical properties can be obtained by increasing the orientation of molecular chains in the fiber. The stretching is preferably performed so that the total stretching ratio is 4 to 12 times, and more preferably, the total stretching ratio is 5 to 7 times. If the total draw ratio is less than the above lower limit, the orientation of the carbon nanotubes in the yarn is insufficient, and it may not be possible to obtain a carbon fiber precursor in which the polyacrylonitrile polymer is densely oriented. Further, when the total draw ratio exceeds the above upper limit, yarn breakage frequently occurs during drawing and there is a possibility that the drawing stability may be lacking. The stretching operation may be any of cold stretching, stretching in hot water, and stretching in steam. Moreover, even if it extends | stretches at once, you may extend | stretch in multiple steps.

以上の工程(1)〜(5)によって得られた前駆体繊維は、高引張強度を発揮するのに必要な略円形断面を有し、しかも高引張弾性率をもたらすカーボンナノチューブを適切な配向で含む。従って、この前駆体繊維を耐炎化、予備炭素化、及び炭素化すれば、6GPa以上の引張強度及び300GPa以上の引張弾性率を有する高強度高弾性率の炭素繊維を得ることができる。なお、本発明の炭素繊維の引張強度及び引張弾性率の上限は特に制限されないが、実際にはそれぞれ12GPa及び800GPa程度である。   The precursor fibers obtained by the above steps (1) to (5) have a substantially circular cross section necessary for exhibiting high tensile strength, and carbon nanotubes that provide high tensile elastic modulus in an appropriate orientation. Including. Therefore, if this precursor fiber is flame-resistant, pre-carbonized, and carbonized, a high-strength and high-modulus carbon fiber having a tensile strength of 6 GPa or more and a tensile modulus of 300 GPa or more can be obtained. The upper limits of the tensile strength and tensile modulus of the carbon fiber of the present invention are not particularly limited, but are actually about 12 GPa and 800 GPa, respectively.

本発明では、前駆体繊維の耐炎化、予備炭素化、及び炭素化は、常法に従って行えばよく、例えば、前駆体繊維をまず、空気中で延伸比0.8〜2.5で延伸しながら200〜300℃で耐炎化し、次に、不活性気体中で延伸比0.9〜1.5で延伸しながら300〜800℃に加熱して予備炭素化し、さらに、不活性気体中で延伸比0.9〜1.1で1000〜2000℃に加熱して炭素化することによって炭素繊維を得ることができる。   In the present invention, the flame resistance, pre-carbonization, and carbonization of the precursor fiber may be performed according to conventional methods. For example, the precursor fiber is first stretched in air at a stretch ratio of 0.8 to 2.5. While flame-proofing at 200 to 300 ° C., pre-carbonization by heating to 300 to 800 ° C. while stretching in an inert gas at a stretch ratio of 0.9 to 1.5, and further stretching in an inert gas Carbon fibers can be obtained by heating to 1000 to 2000 ° C. at a ratio of 0.9 to 1.1 for carbonization.

予備炭素化処理および炭素化処理時に用いられる不活性気体としては、窒素、アルゴン、キセノン、および二酸化炭素等が挙げられる。経済的な観点からは窒素が好ましく用いられる。炭素化処理時の最高到達温度は所望の炭素繊維の力学物性に応じて1200〜3000℃の間で設定される。一般的に炭素化処理の最高到達温度が高い程、得られる炭素繊維の引張弾性率が大きくなる。一方、引張強度は1500℃で極大となる。本発明では、炭素化処理を1000〜2000℃、より好ましくは1200〜1700℃、さらに好ましくは1300〜1600℃で行うことにより、引張弾性率と引張強度の2つの力学物性を最大限に発現させることが可能である。   Examples of the inert gas used during the preliminary carbonization treatment and the carbonization treatment include nitrogen, argon, xenon, and carbon dioxide. Nitrogen is preferably used from an economical viewpoint. The maximum temperature achieved during the carbonization treatment is set between 1200 ° C. and 3000 ° C. according to the desired mechanical properties of the carbon fiber. Generally, the higher the maximum temperature reached in the carbonization treatment, the higher the tensile modulus of the carbon fiber obtained. On the other hand, the tensile strength reaches a maximum at 1500 ° C. In the present invention, the carbonization treatment is performed at 1000 to 2000 ° C., more preferably 1200 to 1700 ° C., and further preferably 1300 to 1600 ° C., so that the two mechanical properties of the tensile elastic modulus and the tensile strength are maximized. It is possible.

以下、実施例で本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

なお、本実施例で得た炭素繊維の引張強度および引張弾性率は、JIS R7606(2000)「炭素繊維−単繊維の引張特性の試験方法」に従ってNMB社製引張試験機「TG200NB」を用いて測定した。また、カルボキシメチルセルロースは、市販品のナトリウム塩をそのまま使用した。   The tensile strength and tensile modulus of the carbon fiber obtained in this example were measured using a tensile tester “TG200NB” manufactured by NMB in accordance with JIS R7606 (2000) “Testing method for tensile properties of carbon fiber-single fiber”. It was measured. As carboxymethylcellulose, a commercially available sodium salt was used as it was.

実施例1
紡糸原液の調製:水98gにカルボキシメチルセルロースのナトリウム塩2gを添加し、70℃で5分間加熱撹拌した。放冷後、孔径10μmのメンブレンフィルターでろ過したろ液に、二層カーボンナノチューブ(Unidym社製XOグレード)0.3gを添加し、超音波装置(日本精機社製Ultrasonic Homogenizer MODEL US−300T)で20kHz、300Wの超音波を2時間照射して、分散液を得た。500mlナスフラスコに上記カーボンナノチューブ分散液50.15gと水分含有率25%のAN94−MAA6共重合体20gを測り取り、撹拌してスラリー状にした。撹拌しながらチオシアン酸ナトリウム44.2gを2時間かけて添加した。室温で1時間撹拌した後、エバポレーターで水10.8gを留去し、紡糸原液を得た。
Example 1
Preparation of spinning stock solution: 2 g of sodium salt of carboxymethylcellulose was added to 98 g of water, and the mixture was heated and stirred at 70 ° C. for 5 minutes. After allowing to cool, 0.3 g of double-walled carbon nanotubes (XO grade manufactured by Unidym) is added to the filtrate filtered through a membrane filter having a pore size of 10 μm, and an ultrasonic device (Ultrasonic Homogenizer Model US-300T manufactured by Nippon Seiki Co., Ltd.) is used. An ultrasonic wave of 20 kHz and 300 W was irradiated for 2 hours to obtain a dispersion. In a 500 ml eggplant flask, 50.15 g of the carbon nanotube dispersion and 20 g of AN94-MAA6 copolymer having a water content of 25% were weighed and stirred to form a slurry. While stirring, 44.2 g of sodium thiocyanate was added over 2 hours. After stirring for 1 hour at room temperature, 10.8 g of water was distilled off with an evaporator to obtain a spinning dope.

紡糸:上記紡糸原液を80℃にて孔径0.15mm、孔数10の紡糸口金から押し出し、エアギャップ長5mmを経て0℃の15重量%チオシアン酸ナトリウム水溶液15lからなる凝固浴中へ導入した後、5重量%チオシアン酸ナトリウム水溶液で水洗した。その後、2倍に延伸し、水洗し、さらに0.2重量%硝酸で洗浄した。この後、さらにこの糸を沸騰水中で3倍延伸を行い、アミノ変性シリコーン油剤を付与して、150℃、5分間乾燥することにより、単糸繊度1.0dTexの前駆体繊維を得た。この繊維の断面形状を図1に示す。図1からわかるように、略円形断面の前駆体繊維が得られた。   Spinning: After spinning the above spinning solution from a spinneret having a pore diameter of 0.15 mm and a number of holes of 10 at 80 ° C., and introducing it into a coagulation bath consisting of 15 l of a 15 wt% sodium thiocyanate aqueous solution at 0 ° C. through an air gap length of 5 mm Washed with 5% by weight aqueous sodium thiocyanate. Thereafter, the film was stretched twice, washed with water, and further washed with 0.2 wt% nitric acid. Thereafter, the yarn was further stretched 3 times in boiling water, an amino-modified silicone oil agent was applied, and the yarn was dried at 150 ° C. for 5 minutes to obtain a precursor fiber having a single yarn fineness of 1.0 dTex. The cross-sectional shape of this fiber is shown in FIG. As can be seen from FIG. 1, precursor fibers having a substantially circular cross section were obtained.

耐炎化処理:上記の前駆体繊維を空気中で一定長にて、1段目220℃、2段目230℃、3段目240℃、4段目250℃でそれぞれ1時間加熱して、比重1.38の耐炎化処理糸を得た。
予備炭素化処理:上記耐炎化処理糸を窒素気流中で一定長にて、700℃で2分間加熱して予備炭素化処理糸を得た。
炭素化処理:上記予備炭素化処理糸を窒素気流中で一定長にて、1200℃で2分間加熱して炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。
Flameproofing treatment: The above precursor fibers were heated in air at a constant length for 1 hour at the first stage 220 ° C, the second stage 230 ° C, the third stage 240 ° C, and the fourth stage 250 ° C, respectively. A 1.38 flameproof yarn was obtained.
Precarbonization treatment: The flameproofing yarn was heated at 700 ° C. for 2 minutes in a nitrogen stream at a constant length to obtain a precarbonized yarn.
Carbonization treatment: The precarbonized yarn was heated at 1200 ° C. for 2 minutes in a nitrogen stream at a constant length to obtain carbon fibers. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber.

実施例2
実施例1において二層カーボンナノチューブの代わりに単層カーボンナノチューブ(CNI社製Hipco)を使用した以外は実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 2
Carbon fibers were obtained in the same manner as in Example 1 except that single-walled carbon nanotubes (Hipco manufactured by CNI) were used instead of double-walled carbon nanotubes in Example 1. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例3
実施例1において二層カーボンナノチューブの代わりに多層カーボンナノチューブ(Bayer社製Baytubes)を使用した以外は実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 3
Carbon fibers were obtained in the same manner as in Example 1 except that multi-walled carbon nanotubes (Baytubes manufactured by Bayer) were used instead of double-walled carbon nanotubes in Example 1. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例4
実施例1においてAN94−MAA6共重合体の代わりにAN95−MA5共重合体を使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 4
Carbon fibers were obtained in the same manner as in Example 1 except that AN95-MA5 copolymer was used instead of AN94-MAA6 copolymer in Example 1. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例5
実施例3においてAN94−MAA6共重合体の代わりにAN95−MAA4−IA1共重合体を使用した以外は、実施例3と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 5
A carbon fiber was obtained in the same manner as in Example 3 except that AN95-MAA4-IA1 copolymer was used instead of AN94-MAA6 copolymer in Example 3. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例6
実施例1においてAN94−MAA6共重合体の代わりにPANを使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 6
Carbon fibers were obtained in the same manner as in Example 1 except that PAN was used instead of the AN94-MAA6 copolymer in Example 1. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例7
実施例6において二層カーボンナノチューブの代わりに単層カーボンナノチューブを使用した以外は、実施例6と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 7
Carbon fibers were obtained in the same manner as in Example 6 except that single-walled carbon nanotubes were used instead of double-walled carbon nanotubes in Example 6. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例8
実施例4において二層カーボンナノチューブの代わりに多層カーボンナノチューブを使用した以外は、実施例4と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張り弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 8
Carbon fibers were obtained in the same manner as in Example 4 except that multi-walled carbon nanotubes were used instead of double-walled carbon nanotubes in Example 4. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

実施例9
実施例1において二層カーボンナノチューブを1.0g使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張り弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Example 9
A carbon fiber was obtained in the same manner as in Example 1 except that 1.0 g of the double-walled carbon nanotube was used in Example 1. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

比較例1
紡糸原液の調製:500mlナスフラスコに水39.2mlと水分含有率25%のAN94−MAA6共重合体20gを測り取り、撹拌してスラリー状にした。撹拌しながらチオシアン酸ナトリウム44.2gを2時間かけて添加した。室温で1時間撹拌した後、60℃まで加熱して均一な紡糸原液を得た。紡糸、耐炎化処理、予備炭素化処理、炭素化処理については実施例1と同様に処理を行い、炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
Comparative Example 1
Preparation of spinning dope: In a 500 ml eggplant flask, 39.2 ml of water and 20 g of AN94-MAA6 copolymer having a water content of 25% were weighed and stirred to form a slurry. While stirring, 44.2 g of sodium thiocyanate was added over 2 hours. After stirring for 1 hour at room temperature, the mixture was heated to 60 ° C. to obtain a uniform spinning dope. Spinning, flameproofing treatment, preliminary carbonization treatment, and carbonization treatment were carried out in the same manner as in Example 1 to obtain carbon fibers. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber. In addition, when the cross-sectional shape of the precursor fiber was confirmed, it was a substantially circular cross section as in Example 1.

比較例2
紡糸原液の調製:ジメチルホルムアミド600mlに二層カーボンナノチューブ(Unidym社製XOグレード)0.025gを添加し、超音波装置(BRANSON 3510R MT)で42kHz,100Wの超音波を36時間照射した。この分散液を合計6本調製した。500ml三口フラスコ中でジメチルホルムアミド100mlを撹拌しながら乾燥したAN94−MAA6共重合体15gを30分間かけて添加した。70℃15分間加熱して均一な溶液にした。室温まで放冷後、上記のカーボンナノチューブ分散液を150mlずつ添加してジメチルホルムアミド3600mlを留去して紡糸原液とした。
Comparative Example 2
Preparation of spinning stock solution: 0.025 g of double-walled carbon nanotubes (XO grade manufactured by Unidym) was added to 600 ml of dimethylformamide, and ultrasonic waves of 42 kHz and 100 W were irradiated for 36 hours with an ultrasonic device (BRANSON 3510R MT). A total of 6 dispersions were prepared. While stirring 100 ml of dimethylformamide in a 500 ml three-necked flask, 15 g of dried AN94-MAA6 copolymer was added over 30 minutes. A uniform solution was obtained by heating at 70 ° C. for 15 minutes. After allowing to cool to room temperature, 150 ml of the above carbon nanotube dispersion was added and 3600 ml of dimethylformamide was distilled off to obtain a spinning dope.

紡糸:上記紡糸原液を80℃にて孔径0.15mm、孔数1の紡糸口金から押し出し、エアギャップ長40mmを経て−60℃に冷却したメタノール15lからなる凝固浴中へ導入し、糸を巻き取った。−60℃のメタノール中に1昼夜糸を漬けた後、9倍延伸を行い、アミノ変性シリコーン油剤を付与して、150℃、5分間乾燥することにより、単糸繊度1.8dTexの前駆体繊維を得た。この繊維の断面形状を図2に示す。図2からわかるように、この前駆体繊維は略円形断面ではなく、歪な断面形状をしている。   Spinning: The above spinning solution is extruded from a spinneret having a pore diameter of 0.15 mm and a number of holes of 1 at 80 ° C., introduced into a coagulation bath consisting of 15 l of methanol cooled to −60 ° C. through an air gap length of 40 mm, and the yarn is wound I took it. After dipping the yarn for one day in methanol at -60 ° C, the fiber is stretched 9 times, provided with an amino-modified silicone oil, and dried at 150 ° C for 5 minutes to give a precursor fiber having a single yarn fineness of 1.8 dTex. Got. The cross-sectional shape of this fiber is shown in FIG. As can be seen from FIG. 2, this precursor fiber has a distorted cross-sectional shape rather than a substantially circular cross-section.

耐炎化処理、予備炭素化処理、炭素化処理を実施例1と同様にして行い炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。   Flame proofing treatment, preliminary carbonization treatment, and carbonization treatment were carried out in the same manner as in Example 1 to obtain carbon fibers. Table 1 shows the tensile strength and tensile modulus of the obtained carbon fiber.

表1からわかるように、カーボンナノチューブを添加し、紡糸原液の溶剤としてロダン塩水溶液を使用し、分散剤としてカルボキシメチルセルロースを使用した実施例1〜9はいずれも、高い引張強度及び引張弾性率の炭素繊維が得られているのに対し、カーボンナノチューブを使用せず、分散剤を使用しなかった比較例1(従来の一般的なPAN系炭素繊維)は、引張強度は高いが引張弾性率が劣る。また、カーボンナノチューブは使用したが、紡糸原液の溶剤としてDMFを使用し、分散剤も使用しなかった比較例2(特許文献1の炭素繊維)は、引張弾性率は比較例1より高いが、繊維の断面が歪んでいるため、引張強度が劣る。   As can be seen from Table 1, each of Examples 1 to 9 in which carbon nanotubes were added, a rhodan salt aqueous solution was used as the solvent for the spinning dope, and carboxymethyl cellulose was used as the dispersant had high tensile strength and tensile modulus. In comparison example 1 (conventional general PAN-based carbon fiber) in which carbon fibers are obtained but carbon nanotubes are not used and a dispersant is not used, tensile strength is high but tensile modulus is high. Inferior. Moreover, although the carbon nanotube was used, but the comparative example 2 (carbon fiber of patent document 1) which used DMF as a solvent of a spinning undiluted | stock solution and did not use a dispersing agent has a higher tensile elasticity modulus than the comparative example 1, Since the cross section of the fiber is distorted, the tensile strength is inferior.

本発明の製造方法によって得られた前駆体繊維を使用すれば、高い引張強度と高い引張弾性率を兼ね備えた炭素繊維を得ることができる。かかる炭素繊維は、航空機材料や宇宙船材料として極めて有用である。   If the precursor fiber obtained by the production method of the present invention is used, a carbon fiber having both high tensile strength and high tensile elastic modulus can be obtained. Such carbon fibers are extremely useful as aircraft materials and spacecraft materials.

実施例1で得られた前駆体繊維の断面写真である。2 is a cross-sectional photograph of the precursor fiber obtained in Example 1. 比較例2で得られた前駆体繊維の断面写真である。4 is a cross-sectional photograph of a precursor fiber obtained in Comparative Example 2.

Claims (5)

以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法:
(1)カルボキシメチルセルロースの水溶液を調製する工程;
(2)このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;
(3)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する工程;
(4)この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る工程;そして
(5)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。
A method for producing a carbon fiber precursor fiber, comprising the following steps:
(1) a step of preparing an aqueous solution of carboxymethylcellulose;
(2) adding carbon nanotubes to the aqueous solution of carboxymethylcellulose, irradiating ultrasonic waves to disperse the carbon nanotubes, and preparing a carbon nanotube dispersion;
(3) a step of preparing a spinning dope containing the carbon nanotube dispersion, polyacrylonitrile-based polymer, and rhodan salt;
(4) a step of obtaining a coagulated yarn from the spinning solution by a wet or dry wet spinning method; and (5) a step of drawing the coagulated yarn to obtain a precursor fiber of carbon fiber.
工程(3)で調製される紡糸原液が、30〜60重量%のロダン塩、5〜30重量%のポリアクリロニトリル系ポリマー、ポリアクリロニトリル系ポリマーに対して0.01〜5重量%のカーボンナノチューブ、及び0.001〜5重量%のカルボキシメチルセルロースを含むことを特徴とする請求項1に記載の方法。   The spinning dope prepared in step (3) is 30 to 60% by weight of rhodanic salt, 5 to 30% by weight of polyacrylonitrile-based polymer, 0.01 to 5% by weight of carbon nanotubes relative to the polyacrylonitrile-based polymer, And 0.001 to 5% by weight of carboxymethylcellulose. 請求項1又は2に記載の方法によって製造される、炭素繊維の前駆体繊維であって、略円形断面を有しかつカーボンナノチューブを含むことを特徴とする炭素繊維の前駆体繊維。   A carbon fiber precursor fiber produced by the method according to claim 1, wherein the carbon fiber precursor fiber has a substantially circular cross section and includes carbon nanotubes. 請求項3に記載の炭素繊維の前駆体繊維を耐炎化、予備炭素化、及び炭素化することによって製造される炭素繊維であって、6GPa以上の引張強度及び300GPa以上の引張弾性率を有することを特徴とする炭素繊維。   A carbon fiber produced by flame-proofing, pre-carbonizing, and carbonizing the carbon fiber precursor fiber according to claim 3, having a tensile strength of 6 GPa or more and a tensile modulus of 300 GPa or more. Carbon fiber characterized by ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる紡糸原液であって、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に分散していることを特徴とする紡糸原液。   A spinning dope comprising an aqueous solution containing a rhodan salt, a polyacrylonitrile-based polymer, carbon nanotubes, and carboxymethyl cellulose, wherein the carbon nanotubes are dispersed in water by a dispersing action of carboxymethyl cellulose.
JP2009293608A 2008-12-26 2009-12-25 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber Active JP5261367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293608A JP5261367B2 (en) 2008-12-26 2009-12-25 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008332240 2008-12-26
JP2008332240 2008-12-26
JP2009293608A JP5261367B2 (en) 2008-12-26 2009-12-25 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber

Publications (2)

Publication Number Publication Date
JP2010168724A JP2010168724A (en) 2010-08-05
JP5261367B2 true JP5261367B2 (en) 2013-08-14

Family

ID=42701116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293608A Active JP5261367B2 (en) 2008-12-26 2009-12-25 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber

Country Status (1)

Country Link
JP (1) JP5261367B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251524B2 (en) * 2009-01-09 2013-07-31 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP2016028109A (en) * 2012-11-13 2016-02-25 保土谷化学工業株式会社 Water dispersion of carboxymethylcellulose sodium containing multilayer carbon nanotube
KR101625739B1 (en) * 2013-06-21 2016-06-13 코오롱인더스트리 주식회사 Polyacrylonitrile Precursor for Carbon Fiber and Method for Preparing the Same
JP6440963B2 (en) * 2014-04-15 2018-12-19 国立研究開発法人産業技術総合研究所 Method for producing coagulated spinning structure
FR3075227B1 (en) * 2017-12-18 2020-11-13 Association Pour Le Developpement De Lenseignement Et Des Recherches Aupres Des Univ Des Centres De PROCESS FOR MANUFACTURING A CARBON FIBER FROM RECYCLED COTTON AND USE OF THE FIBER SO OBTAINED FOR THE FORMATION OF AN ARTICLE IN COMPOSITE MATERIAL
CN109023592B (en) * 2018-05-08 2020-09-01 中国科学院宁波材料技术与工程研究所 High-tensile-strength high-tensile-modulus carbon fiber and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
JP4861693B2 (en) * 2004-12-21 2012-01-25 三菱レイヨン株式会社 Acrylic fiber, method for producing the same, and carbon fiber
JP4742650B2 (en) * 2005-04-08 2011-08-10 東レ株式会社 Carbon nanotube composition, biosensor, and production method thereof
JP2007320828A (en) * 2006-06-02 2007-12-13 Horiba Ltd Method for producing carbon nanotube-containing material
WO2008112349A2 (en) * 2007-01-30 2008-09-18 Georgia Tech Research Corporation Carbon fibers and films and methods of making same
JP4965300B2 (en) * 2007-03-23 2012-07-04 一般財団法人 化学物質評価研究機構 Water dispersion method of carbon nanotube

Also Published As

Publication number Publication date
JP2010168724A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5536439B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP5261405B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP5697258B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP5251524B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP5261367B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP4940948B2 (en) Flame resistant fiber, carbon fiber and method for producing them
JP2011500978A (en) Carbon fiber and film and method for producing the same
US9409337B2 (en) Polyacrylonitrile/cellulose nano-structure fibers
CN101768798B (en) Preparation method of sodium alga acid/ carbon nano tube composite fibre
CN104695040A (en) Preparation method of high-strength polyacrylonitrile nano-composite fiber
Newcomb et al. The properties of carbon fibers
JP2011208327A (en) Composite fiber and method for producing composite fiber
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JPWO2011102400A1 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
CN113832560B (en) Clay-cellulose-alginic acid composite flame-retardant large fiber and preparation and application thereof
JP2007182657A (en) Polymer composition for carbon fiber precursor fiber
JP2007291557A (en) Carbon fiber and method for producing the same
TWI422633B (en) Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber
JP4582819B1 (en) Method for producing high-strength polyacrylonitrile-based carbon fiber
JPWO2020090597A1 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP2015030926A (en) Method of producing dope for acrylic fiber
JP2010174161A (en) Method for producing dispersion of polyacrylonitrile-based polymer for precursor fiber of carbon fiber
Ranjan et al. Multi-walled carbon nanotube/polymer composite: a nano-enabled continuous fiber
JP2007092185A (en) Polyacrylonitrile polymer for carbon fiber precursor fiber
JP2007211356A (en) Method for producing carbon nanofiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250