JP4965300B2 - Water dispersion method of carbon nanotube - Google Patents

Water dispersion method of carbon nanotube Download PDF

Info

Publication number
JP4965300B2
JP4965300B2 JP2007075855A JP2007075855A JP4965300B2 JP 4965300 B2 JP4965300 B2 JP 4965300B2 JP 2007075855 A JP2007075855 A JP 2007075855A JP 2007075855 A JP2007075855 A JP 2007075855A JP 4965300 B2 JP4965300 B2 JP 4965300B2
Authority
JP
Japan
Prior art keywords
water
carbon nanotubes
surfactant
carbon nanotube
dispersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007075855A
Other languages
Japanese (ja)
Other versions
JP2008230935A (en
Inventor
義之 井上
直明 屋形
峰夫 高月
Original Assignee
一般財団法人 化学物質評価研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人 化学物質評価研究機構 filed Critical 一般財団法人 化学物質評価研究機構
Priority to JP2007075855A priority Critical patent/JP4965300B2/en
Publication of JP2008230935A publication Critical patent/JP2008230935A/en
Application granted granted Critical
Publication of JP4965300B2 publication Critical patent/JP4965300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カーボンナノチューブを安定に水に分散させる方法に関する。   The present invention relates to a method for stably dispersing carbon nanotubes in water.

炭素原子が中空の棒状に結合してなるカーボンナノチューブは、機能性材料として注目され、電子材料や触媒材料、医薬品の分野等において様々な研究がなされている。カーボンナノチューブの生産量は年々増加しており、その一方で廃棄量も増加していることから、生体や生態系に及ぼす影響について調査することが社会的に要請されている。   Carbon nanotubes in which carbon atoms are bonded in a hollow rod shape are attracting attention as functional materials, and various studies have been made in the fields of electronic materials, catalyst materials, pharmaceuticals, and the like. The production of carbon nanotubes has been increasing year by year, and on the other hand, the amount of waste has also increased, so there is a social demand to investigate the effects on living organisms and ecosystems.

化学物質の急性毒性試験や生体濃縮試験においては、試験物質を適当な濃度に溶解又は分散させた試験溶液を調製し、試験溶液中で所定の濃度を保ちながら魚介類を飼育することが一般に行われている。   In acute toxicity tests and bioconcentration tests for chemical substances, it is common practice to prepare a test solution in which the test substance is dissolved or dispersed at an appropriate concentration, and breed fish and shellfish while maintaining the prescribed concentration in the test solution. It has been broken.

カーボンナノチューブは骨格が炭素で形成されているため水に対する親和性が低く、一般的な固体微粒子の分散方法である超音波照射や界面活性剤を添加する方法を適用してもカーボンナノチューブ同士が凝集してしまい、水中に分散させることはできない。   Carbon nanotubes have a low affinity for water because the skeleton is made of carbon, and the carbon nanotubes aggregate even if a method of adding ultrasonic waves or adding a surfactant, which is a general dispersion method of solid fine particles, is applied. Therefore, it cannot be dispersed in water.

従来用いられているカーボンナノチューブ水分散液の調製法には、電気化学的に酸化及び/又は還元可能な界面活性剤によりカーボンナノチューブ粒子をミセル化して水性媒体中に分散又は可溶化する方法(特許文献1参照)、分散剤(界面活性剤)と疎水部−親水部−疎水部の構造を有する化合物(分散助剤)とを併用してカーボンナノチューブを水等の親水性溶媒中に分散させる方法(特許文献2参照)などがある。   A conventionally used method for preparing an aqueous dispersion of carbon nanotubes is a method in which carbon nanotube particles are micellized by an electrochemically oxidizable and / or reducible surfactant and dispersed or solubilized in an aqueous medium (patented). Reference 1), a method of dispersing a carbon nanotube in a hydrophilic solvent such as water by using a dispersant (surfactant) and a compound having a structure of hydrophobic part-hydrophilic part-hydrophobic part (dispersing aid) in combination. (See Patent Document 2).

しかしながら、特許文献1の方法では、操作が煩雑であったり、分散が充分ではない。特許文献2の方法では、疎水部−親水部−疎水部の構造を有する化合物の調製や入手が煩雑である。   However, in the method of Patent Document 1, the operation is complicated and the dispersion is not sufficient. In the method of Patent Document 2, it is complicated to prepare and obtain a compound having a structure of hydrophobic part-hydrophilic part-hydrophobic part.

また、上記生物試験の用途以外にもカーボンナノチューブの水分散液は各種工業用途に使用されることが期待される。
特開2001−48511号公報 (特許請求の範囲) 特開2003−238126号公報 (特許請求の範囲)
In addition to the above-mentioned biological test applications, the carbon nanotube aqueous dispersion is expected to be used in various industrial applications.
JP 2001-48511 A (Claims) JP 2003-238126 A (Claims)

本発明の目的は、操作が簡単で、生体に安全で、入手が容易な分散助剤を使用してカーボンナノチューブを水中に分散させる方法を提供することにある。   An object of the present invention is to provide a method of dispersing carbon nanotubes in water using a dispersion aid that is simple in operation, safe for living bodies, and easily available.

本発明者等が検討を行ったところ、カーボンナノチューブに、界面活性剤と、所定の糖類と、必要により無機塩の結晶とを加えて擂潰した後、水を加えることにより、操作を煩雑にすることなくカーボンナノチューブが均一に分散したカーボンナノチューブ水分散液が得られることを見出し本発明を完成するに到った。   As a result of studies by the present inventors, a surfactant, a predetermined saccharide and, if necessary, crystals of an inorganic salt are added to the carbon nanotubes and crushed, and then the operation is complicated by adding water. Thus, the present inventors have found that an aqueous dispersion of carbon nanotubes in which carbon nanotubes are uniformly dispersed can be obtained without completing the present invention.

即ち、上記課題を解決する本発明は以下に記載するものである。   That is, the present invention for solving the above problems is described below.

〔1〕 単糖又は少糖の結晶と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。   [1] A method of dispersing water of carbon nanotubes, comprising adding water to a crushed mixture obtained by crushing monosaccharide or oligosaccharide crystals, carbon nanotubes, and a nonionic or anionic surfactant. .

〔2〕 単糖又は少糖が、ショ糖又はグルコースである〔1〕に記載のカーボンナノチューブの水分散方法。   [2] The carbon nanotube water dispersion method according to [1], wherein the monosaccharide or oligosaccharide is sucrose or glucose.

〔3〕 界面活性剤が、ポリオキシエチレン硬化ヒマシ油又はポリオキシエチレンソルビタン脂肪酸エステルである〔1〕に記載のカーボンナノチューブの水分散方法。   [3] The water dispersion method for carbon nanotubes according to [1], wherein the surfactant is polyoxyethylene hydrogenated castor oil or polyoxyethylene sorbitan fatty acid ester.

〔4〕 水溶性多糖と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。   [4] A method for dispersing carbon nanotubes in water, comprising adding water to a crushed mixture obtained by crushing a water-soluble polysaccharide, carbon nanotubes, and a nonionic or anionic surfactant.

〔5〕 無機塩の結晶と、水溶性糖類と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。   [5] Water of carbon nanotubes characterized in that water is added to a crushed mixture obtained by crushing inorganic salt crystals, water-soluble saccharides, carbon nanotubes, and nonionic or anionic surfactant. Distribution method.

〔6〕 無機塩がKBr又はNaClである〔5〕に記載のカーボンナノチューブの水分散方法。   [6] The carbon nanotube water dispersion method according to [5], wherein the inorganic salt is KBr or NaCl.

〔7〕 水溶性糖類が、ショ糖、グルコース、又はカルボキシメチルセルロースである〔5〕に記載のカーボンナノチューブの水分散方法。   [7] The water dispersion method for carbon nanotubes according to [5], wherein the water-soluble saccharide is sucrose, glucose, or carboxymethylcellulose.

〔8〕 界面活性剤が、ポリオキシエチレン硬化ヒマシ油又はポリオキシエチレンソルビタン脂肪酸エステルである〔5〕に記載のカーボンナノチューブの水分散方法。   [8] The water dispersion method for carbon nanotubes according to [5], wherein the surfactant is polyoxyethylene hydrogenated castor oil or polyoxyethylene sorbitan fatty acid ester.

本発明においては、非イオン又は陰イオン界面活性剤と糖類とを分散助剤として使用し、あるいはこれらの分散助剤と共に必要により無機塩の結晶を使用してカーボンナノチューブ水分散液を製造する。   In the present invention, an aqueous dispersion of carbon nanotubes is produced using a nonionic or anionic surfactant and a saccharide as a dispersion aid or, if necessary, a crystal of an inorganic salt together with these dispersion aids.

本発明により得られるカーボンナノチューブの分散液は、操作が簡単で、生体に対する毒性が低い非イオン界面活性剤を使用する場合には生体に対する安全性が問題となる添加物を含まないので、急性毒性試験等の試験に使用できる。   The dispersion of carbon nanotubes obtained by the present invention does not contain additives that are easy to operate and low in toxicity to living organisms and does not contain additives that cause safety issues to living organisms. Can be used for tests such as tests.

本発明に用いる分散助剤は、一般市場に流通している糖類であり、その入手が容易である。   The dispersion aid used in the present invention is a saccharide distributed in the general market and is easily available.

本発明により得られるカーボンナノチューブ水分散液は分散安定性が高いので各種の分野において利用することが可能である。   Since the carbon nanotube aqueous dispersion obtained by the present invention has high dispersion stability, it can be used in various fields.

カーボンナノチューブは、グラファイトの1枚面(グラファイト又はグラフェンシート)を筒型に巻いた形状をしており、その直径が数nm〜250nmの値で、長さが数nm〜数μmである。カーボンナノチューブには、ただ1枚のグラフェンシートが筒状になった単層のものや、それらが重層構造になった多層のものがあり、カーボンナノチューブと云えば、その何れも指す。   The carbon nanotube has a shape in which one surface of graphite (graphite or graphene sheet) is wound into a cylindrical shape, and has a diameter of several nm to 250 nm and a length of several nm to several μm. There are single-walled carbon nanotubes in which only one graphene sheet is formed into a cylindrical shape, and multi-walled ones in which they have a multi-layer structure, and carbon nanotubes refer to any of them.

本発明で使用するカーボンナノチューブは、特に限定されるものではないが、入手のしやすさから直径が100nm以下のものが好ましく、長さが10nm〜1μmのものが好ましい。この形態において、単層、多層は問わない。   The carbon nanotubes used in the present invention are not particularly limited, but those having a diameter of 100 nm or less are preferable and those having a length of 10 nm to 1 μm are preferable from the viewpoint of availability. In this form, a single layer and a multilayer are not ask | required.

(第1の水分散方法)
本発明第1の水分散方法は、単糖又は少糖の結晶と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することによりカーボンナノチューブを水に分散させる方法である。
(First water dispersion method)
In the first water dispersion method of the present invention, a carbon nanotube is obtained by adding water to a crushed mixture obtained by crushing a monosaccharide or oligosaccharide crystal, a carbon nanotube, and a nonionic or anionic surfactant. Is a method of dispersing water in water.

界面活性剤としては、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、脂肪酸ナトリウム等の陰イオン界面活性剤、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル等の非イオン界面活性剤が使用できる。これらのうち、生物試験に用いる分散液を調製する場合は生体に対する安全性の観点から非イオン界面活性剤を使用することが好ましい。   As the surfactant, anionic surfactants such as sodium alkyl sulfonate, sodium alkylbenzene sulfonate, and fatty acid sodium, and nonionic surfactants such as polyoxyethylene hydrogenated castor oil and polyoxyethylene sorbitan fatty acid ester can be used. Among these, when preparing a dispersion for use in a biological test, it is preferable to use a nonionic surfactant from the viewpoint of safety to living organisms.

界面活性剤の使用量は、カーボンナノチューブ100質量部に対して100質量部以上とするが、好ましくは150質量部以上である。界面活性剤の使用量に上限はないが、溶液粘度の増加を抑制する観点から、好ましい使用量はカーボンナノチューブ100質量部に対し20000質量部までである。   The amount of the surfactant used is 100 parts by mass or more, preferably 150 parts by mass or more, with respect to 100 parts by mass of the carbon nanotubes. There is no upper limit to the amount of the surfactant used, but from the viewpoint of suppressing an increase in the solution viscosity, the preferable amount is up to 20000 parts by mass with respect to 100 parts by mass of the carbon nanotubes.

糖類としては、単糖又は少糖であって、その形態が結晶を形成しているものであればよく、具体的には、グルコース、フルクトース、ガラクトース等の単糖;ショ糖、マルトース、ラクトース等の少糖を挙げることができる。   Saccharides may be monosaccharides or oligosaccharides as long as their forms form crystals. Specifically, monosaccharides such as glucose, fructose, galactose; sucrose, maltose, lactose, etc. Can be mentioned.

なお、単糖又は少糖の結晶は、カーボンナノチューブの分散助剤としての作用に加えて擂潰に際してはカーボンナノチューブを細粒化する作用を有している。結晶を形成している単糖又は少糖を使用する場合であっても、吸湿性が高い結晶の場合には、擂潰するうちに吸湿によりカーボンナノチューブを細粒化する作用効果が喪失してしまう場合があるので、この場合には乾燥雰囲気で擂潰を行うか、後述する第3の水分散方法に記載の無機塩と共に擂潰することが望ましい。   In addition, the monosaccharide or oligosaccharide crystals have the effect of making the carbon nanotubes finer when crushing, in addition to the action of dispersing the carbon nanotubes. Even when using monosaccharides or oligosaccharides that form crystals, in the case of crystals with high hygroscopicity, the effect of finely pulverizing carbon nanotubes due to moisture absorption is lost during crushing. In this case, it is desirable to carry out crushing in a dry atmosphere or to crush with an inorganic salt described in the third water dispersion method described later.

単糖又は少糖の使用量は、カーボンナノチューブ100質量部に対して100質量部以上とするが、150質量部以上とすることが好ましい。単糖又は少糖の使用量に特に上限はないが、水に対する溶解度から実際に可能な使用量は10000質量部までである。   The amount of monosaccharide or oligosaccharide used is 100 parts by mass or more, preferably 150 parts by mass or more, with respect to 100 parts by mass of the carbon nanotubes. There is no particular upper limit to the amount of monosaccharide or oligosaccharide used, but the amount actually used is up to 10,000 parts by mass due to solubility in water.

(第2の水分散方法)
本発明第2の水分散方法は、水溶性多糖と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加するカーボンナノチューブの水分散方法である。
(Second water dispersion method)
The second water dispersion method of the present invention is a water dispersion method of carbon nanotubes in which water is added to a crushed mixture obtained by crushing a water-soluble polysaccharide, carbon nanotubes, and a nonionic or anionic surfactant. .

界面活性剤の種類、使用量は上述した第1の分散方法と同様である。   The kind and amount of the surfactant used are the same as those in the first dispersion method described above.

第2の水分散方法において使用する水溶性多糖は、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース等が例示できる。   Examples of the water-soluble polysaccharide used in the second water dispersion method include carboxymethyl cellulose (CMC) and hydroxyethyl cellulose.

水溶性多糖の使用量は、カーボンナノチューブ100質量部に対し、100質量部以上とするが、150質量部以上とすることが好ましい。水溶性多糖の使用量に上限はないが、粘度の上昇を抑制する観点から10000質量部までとすることが好ましい。   The amount of water-soluble polysaccharide used is 100 parts by mass or more, preferably 150 parts by mass or more, with respect to 100 parts by mass of the carbon nanotubes. Although there is no upper limit to the amount of water-soluble polysaccharide used, it is preferably up to 10000 parts by mass from the viewpoint of suppressing an increase in viscosity.

(第3の水分散方法)
本発明第3の水分散方法は、無機塩の結晶と、水溶性糖類と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加するカーボンナノチューブの水分散方法である。
(Third water dispersion method)
The third water dispersion method of the present invention is a method of adding water to a crushed mixture obtained by crushing inorganic salt crystals, water-soluble saccharides, carbon nanotubes, and a nonionic or anionic surfactant. This is a water dispersion method.

界面活性剤の種類、使用量は上述した第1の水分散方法と同様である。   The kind and amount of the surfactant used are the same as in the first water dispersion method described above.

第3の水分散方法において使用する水溶性糖類は、結晶性糖類と非晶性糖類の両方を含む。結晶性糖類としては第1の水分散方法において例示した単糖及び少糖を、非晶性糖類としては、第2の水分散方法において例示した多糖や市販の上白糖(主成分としてショ糖を含む)を挙げることができる。第3の水分散方法において使用する水溶性糖類としては、水に溶解する糖類であればその結晶性や形態を制限することなく公知の糖類を使用できる。   The water-soluble saccharide used in the third water dispersion method includes both crystalline saccharide and amorphous saccharide. As the crystalline saccharide, the monosaccharide and oligosaccharide exemplified in the first water dispersion method are used. As the amorphous saccharide, the polysaccharide exemplified in the second water dispersion method and the commercially available white saccharide (sucrose as the main component) are used. Include). As the water-soluble saccharide used in the third water dispersion method, a known saccharide can be used without limiting its crystallinity and form as long as it is a saccharide that dissolves in water.

水溶性糖類の使用量は、カーボンナノチューブ100質量部に対し、100質量部以上とするが、150質量部以上とすることが好ましい。水溶性多糖の使用量に特に上限はないが、水溶性糖類の溶解度の観点から実際に添加できる量は10000質量部までである。   The amount of water-soluble saccharide used is 100 parts by mass or more, preferably 150 parts by mass or more, with respect to 100 parts by mass of the carbon nanotubes. Although there is no upper limit in particular in the usage-amount of water-soluble polysaccharide, the quantity which can be actually added from a viewpoint of the solubility of water-soluble saccharide is to 10000 mass parts.

無機塩としては結晶性のものが使用でき、例えば、KBr、NaCl等を挙げることができる。   As the inorganic salt, a crystalline one can be used, and examples thereof include KBr and NaCl.

無機塩の使用量は、カーボンナノチューブ100質量部に対し、100質量部以上とするが、150質量部以上とすることが好ましい。無機塩の使用量に特に上限はないが、溶解度等の観点から実際に使用できる無機塩の量は10000質量部までである。   The amount of the inorganic salt used is 100 parts by mass or more with respect to 100 parts by mass of the carbon nanotubes, but is preferably 150 parts by mass or more. Although there is no upper limit in particular in the usage-amount of inorganic salt, the quantity of the inorganic salt which can actually be used from viewpoints of solubility etc. is to 10000 mass parts.

本発明においては、カーボンナノチューブと、上述した界面活性剤と、上記第1〜第3の水分散方法に応じて適宜選択した糖類と、必要により無機塩とを擂潰し、これらの擂潰混合物に水を添加することにより分散性の良好なカーボンナノチューブ水分散液を得ることができる。擂潰は公知の擂潰機で最終的にこれらの成分が混合した擂潰混合物が得られるように行えばよく、各成分を擂潰する順序は特に問わないが、第1の水分散方法と第3の水分散方法においては、最初にカーボンナノチューブと単糖若しくは少糖の結晶又は無機塩とを擂潰した後、他の成分を加えて擂潰することが作業効率の観点から望ましい。   In the present invention, carbon nanotubes, the above-mentioned surfactant, sugars appropriately selected according to the first to third water dispersion methods, and inorganic salts as necessary are crushed, and these crushed mixtures are made. By adding water, an aqueous dispersion of carbon nanotubes with good dispersibility can be obtained. The crushing may be performed by a known crusher so that a final crushing mixture obtained by mixing these components is obtained, and the order of crushing each component is not particularly limited, but the first water dispersion method and In the third water dispersion method, it is desirable from the viewpoint of work efficiency to first crush the carbon nanotube and the monosaccharide or oligosaccharide crystal or inorganic salt, and then add other components.

擂潰条件は特に制限がないが、市販の擂潰機を使用して通常の条件で15〜120分、好ましくは30〜60分擂潰する方法が例示できる。   The crushing conditions are not particularly limited, and examples thereof include a method of crushing for 15 to 120 minutes, preferably 30 to 60 minutes under normal conditions using a commercially available crusher.

本発明により調製できるカーボンナノチューブ水分散液におけるカーボンナノチューブの濃度の上限値は、使用する糖や界面活性剤の種類、添加量等の条件により異なるが、およそ5g/L程度である。   The upper limit of the carbon nanotube concentration in the carbon nanotube aqueous dispersion that can be prepared according to the present invention is about 5 g / L, although it depends on conditions such as the type and amount of sugar and surfactant used.

実施例1
1gの砂糖(市販品、非晶性)を攪拌擂潰機(石川工場製)で約10分間擂り潰した。更に、多層、外径分布40〜90nmのカーボンナノチューブ(株式会社物産ナノテク研究所製、XNRI MWNT−7)0.05gとKBr1gとを加え、30分間擂潰した。その後、2gの非イオン界面活性剤(HCO−40、日光ケミカルズ社製)を加え、30分間擂潰した。この擂潰混合物にカーボンナノチューブの濃度が250mg/Lとなるようにイオン交換水を加え、カーボンナノチューブ水分散液を調製した。
Example 1
1 g of sugar (commercial product, amorphous) was crushed for about 10 minutes with a stirring crusher (Ishikawa Factory). Furthermore, 0.05 g of multi-walled carbon nanotubes having an outer diameter distribution of 40 to 90 nm (manufactured by Nanotechnology Laboratories, Inc., XNRI MWNT-7) and 1 g of KBr were added and crushed for 30 minutes. Thereafter, 2 g of a nonionic surfactant (HCO-40, manufactured by Nikko Chemicals) was added and crushed for 30 minutes. Ion exchange water was added to the crushed mixture so that the concentration of carbon nanotubes was 250 mg / L to prepare a carbon nanotube aqueous dispersion.

使用した界面活性剤HCO−40は、硬化ヒマシ油エチレンオキサイド(EO)40モル付加物である。HCO−40の化学構造を下記式(1)に示す。   The surfactant HCO-40 used is a hardened castor oil ethylene oxide (EO) 40 mole adduct. The chemical structure of HCO-40 is shown in the following formula (1).

Figure 0004965300
Figure 0004965300

実施例2〜11、比較例1〜5
砂糖、KBr、又は界面活性剤HCO−40に代えて表1に示す糖類、塩類、界面活性剤を組み合わせて使用した以外は実施例1と同様にカーボンナノチューブ水分散液を調製した。なお、使用した糖類、界面活性剤の詳細は以下に示すとおりである。
Examples 2-11, Comparative Examples 1-5
A carbon nanotube aqueous dispersion was prepared in the same manner as in Example 1 except that sugar, KBr, or surfactant HCO-40 was used in combination with saccharides, salts, and surfactants shown in Table 1. Details of the saccharides and surfactants used are as shown below.

[糖類]
CMC:カルボキシメチルセルロース、重量平均分子量 約10000
[界面活性剤]
HCO−10(日光ケミカルズ社製、非イオン界面活性剤):上記式(1)において(l、m、n)及び(x、y、z)がそれぞれその総和の平均値が10となる数を示す非イオン界面活性剤である。
HCO−100(日光ケミカルズ社製、非イオン界面活性剤):上記式(1)において(l、m、n)及び(x、y、z)がそれぞれその総和の平均値が100となる数を示す非イオン界面活性剤である。
Tween−80:和光純薬工業社製、非イオン界面活性剤
SDS:ドデシルスルホン酸ナトリウム(和光純薬工業社製、陰イオン界面活性剤)
TDAB:テトラ−n−デシルアンモニウムブロミド(東京化成工業社製、陽イオン界面活性剤)
[Sugar]
CMC: Carboxymethylcellulose, weight average molecular weight of about 10,000
[Surfactant]
HCO-10 (manufactured by Nikko Chemicals Co., Ltd., nonionic surfactant): In the above formula (1), (l, m, n) and (x, y, z) are the numbers at which the average value of the sum is 10, respectively. It is a nonionic surfactant shown.
HCO-100 (manufactured by Nikko Chemicals Co., Ltd., nonionic surfactant): In the above formula (1), (l, m, n) and (x, y, z) are the numbers at which the average value of the sum is 100, respectively. It is a nonionic surfactant shown.
Tween-80: manufactured by Wako Pure Chemical Industries, Ltd., nonionic surfactant SDS: sodium dodecyl sulfonate (manufactured by Wako Pure Chemical Industries, Ltd., anionic surfactant)
TDAB: Tetra-n-decylammonium bromide (Tokyo Chemical Industry Co., Ltd., cationic surfactant)

Figure 0004965300
Figure 0004965300

〔分散性評価〕
実施例1〜11及び比較例1〜5で得られたカーボンナノチューブ水分散液の分散性を、0.15kPa、120℃、20分間の圧熱処理前後について評価した。分散性の評価は、カーボンナノチューブ水分散液を調製後20時間経過したときに目視により行い、カーボンナノチューブの若干の析出があるものの、水中で均一分散が観察された場合を良好、明らかな析出が観察された場合を不良と判定した。結果を表1に示す。
(Dispersibility evaluation)
The dispersibility of the aqueous carbon nanotube dispersions obtained in Examples 1 to 11 and Comparative Examples 1 to 5 was evaluated before and after the pressure heat treatment at 0.15 kPa, 120 ° C. for 20 minutes. The evaluation of dispersibility was carried out visually when 20 hours had elapsed after the preparation of the aqueous dispersion of carbon nanotubes. Although there was some precipitation of carbon nanotubes, good and clear precipitation was observed when uniform dispersion was observed in water. When observed, it was determined to be defective. The results are shown in Table 1.

その結果、表1に示すように圧熱処理前に良好な分散性であった実施例1〜11のカーボンナノチューブ水分散液は、圧熱処理後も良好な分散性であり、圧熱処理前に不良の分散性であった比較例1〜5のカーボンナノチューブ水分散液は、圧熱処理後も不良の分散性であった。   As a result, as shown in Table 1, the carbon nanotube aqueous dispersions of Examples 1 to 11, which had good dispersibility before the pressure heat treatment, had good dispersibility after the pressure heat treatment, and were poor before the pressure heat treatment. The carbon nanotube aqueous dispersions of Comparative Examples 1 to 5, which were dispersible, had poor dispersibility even after the pressure heat treatment.

実施例1〜11で得られたフラーレン水分散液を135℃、120℃、80℃、50℃で加熱し、一晩静置後、析出の有無を確認した。なお、圧熱処理時間については10、20、60分で検討した。   The fullerene aqueous dispersions obtained in Examples 1 to 11 were heated at 135 ° C., 120 ° C., 80 ° C., and 50 ° C., and allowed to stand overnight. The pressure heat treatment time was examined at 10, 20, and 60 minutes.

その結果、圧熱処理温度135℃、120℃、80℃、50℃、圧熱処理時間10、20、60分の何れの条件でも析出はなく、良好な分散性であった。   As a result, there was no precipitation under the conditions of the pressure heat treatment temperatures of 135 ° C., 120 ° C., 80 ° C., 50 ° C. and the pressure heat treatment time of 10, 20, 60 minutes, and the dispersibility was good.

〔粒度分布測定〕
実施例2及び10で得られたカーボンナノチューブ水分散液中のカーボンナノチューブの粒度分布及びメディアン径を光回折法[レーザー回折粒度分析計(島津製作所社製、SALD−7000)]により測定した。光回折法を用いメディアン径を測定した結果を図1(実施例2)及び図2(実施例10)に示す。
(Particle size distribution measurement)
The particle size distribution and median diameter of the carbon nanotubes in the carbon nanotube aqueous dispersions obtained in Examples 2 and 10 were measured by a light diffraction method [Laser diffraction particle size analyzer (manufactured by Shimadzu Corporation, SALD-7000)]. The results of measuring the median diameter using the optical diffraction method are shown in FIG. 1 (Example 2) and FIG. 2 (Example 10).

カーボンナノチューブのメディアン径は、実施例2で157nm、実施例10で288nmであった。また、上記実施例2及び10で得られたカーボンナノチューブ水分散液について、0.15kPa、120℃、20分間で圧熱処理を実施したところ、そのメディアン径は、実施例2で247nm、実施例10で162nmであった。   The median diameter of the carbon nanotubes was 157 nm in Example 2 and 288 nm in Example 10. Moreover, when the carbon nanotube aqueous dispersion obtained in Examples 2 and 10 was subjected to pressure heat treatment at 0.15 kPa, 120 ° C. for 20 minutes, the median diameter was 247 nm in Example 2, and Example 10 It was 162 nm.

実施例12
1gのNaClと1gの砂糖(市販品、非晶性)を攪拌擂潰機(石川工場製)で約10分間擂り潰した。更に、カーボンナノチューブ(株式会社物産ナノテク研究所製、XNRI MWNT−7)0.05gを加え、30分間擂潰した。その後、1gの非イオン界面活性剤(HCO−40、日光ケミカルズ社製)を加え、30分間擂潰した。この擂潰混合物にカーボンナノチューブの濃度が250mg/Lとなるようにイオン交換水を加え、カーボンナノチューブ水分散液を調製した。得られた分散液の分散性を評価したところ、分散性は良好であった。また、0.15kPa、120℃、20分間で圧熱処理後の水分散液の分散性も良好であった。
Example 12
1 g of NaCl and 1 g of sugar (commercial product, amorphous) were crushed for about 10 minutes with a stirring crusher (manufactured by Ishikawa Factory). Furthermore, 0.05 g of carbon nanotubes (XNRI MWNT-7, manufactured by Bussan Nanotech Laboratory Co., Ltd.) was added and crushed for 30 minutes. Thereafter, 1 g of a nonionic surfactant (HCO-40, manufactured by Nikko Chemicals) was added and crushed for 30 minutes. Ion exchange water was added to the crushed mixture so that the concentration of carbon nanotubes was 250 mg / L to prepare a carbon nanotube aqueous dispersion. When the dispersibility of the obtained dispersion was evaluated, the dispersibility was good. Moreover, the dispersibility of the aqueous dispersion after the pressure heat treatment at 0.15 kPa and 120 ° C. for 20 minutes was also good.

比較例6
1gのNaClを攪拌擂潰機(石川工場製)で約10分間擂り潰した。更に、カーボンナノチューブ(株式会社物産ナノテク研究所製、XNRI MWNT−7)0.05gを加え、30分間擂潰した。その後、1gの非イオン界面活性剤(HCO−40、日光ケミカルズ社製)を加え、30分間擂潰した。この擂潰混合物にカーボンナノチューブの濃度が250mg/Lとなるようにイオン交換水を加え、カーボンナノチューブ水分散液を調製した。得られた分散液の分散性を評価したところ、カーボンナノチューブの明らかな析出が観察された。
Comparative Example 6
1 g of NaCl was crushed for about 10 minutes with a stirring crusher (Ishikawa Factory). Furthermore, 0.05 g of carbon nanotubes (XNRI MWNT-7, manufactured by Bussan Nanotech Laboratory Co., Ltd.) was added and crushed for 30 minutes. Thereafter, 1 g of a nonionic surfactant (HCO-40, manufactured by Nikko Chemicals) was added and crushed for 30 minutes. Ion exchange water was added to the crushed mixture so that the concentration of carbon nanotubes was 250 mg / L to prepare a carbon nanotube aqueous dispersion. When the dispersibility of the obtained dispersion liquid was evaluated, clear precipitation of carbon nanotubes was observed.

試験例1(急性毒性試験)
実施例10で得られたカーボンナノチューブ水分散液を使用して生体毒性試験を行った。
Test Example 1 (Acute toxicity test)
A biotoxicity test was conducted using the carbon nanotube aqueous dispersion obtained in Example 10.

カーボンナノチューブ水分散液で満たした水槽に1濃度区あたりヒメダカ3尾を入れた。カーボンナノチューブ水分散液への曝露は半止水式とし、24時間ごとに換水した。カーボンナノチューブ水分散液への曝露時間96時間とした。LC50値を測定したところ、>90.0mg/Lであった。 Three medaka fish were placed per concentration group in a water tank filled with the carbon nanotube aqueous dispersion. The exposure to the carbon nanotube aqueous dispersion was semi-static, and the water was changed every 24 hours. The exposure time to the carbon nanotube aqueous dispersion was 96 hours. The LC 50 value was measured and was> 90.0 mg / L.

実施例13〜24及び比較例7〜12
多層、外径分布40〜90nmのカーボンナノチューブの代わりに単層、外径分布1〜2nmのカーボンナノチューブ(和光純薬工業株式会社製)を用いた以外は、実施例1〜12及び比較例1〜6と同様にカーボンナノチューブ水分散液の分散性の試験を行った。その結果、分散性は、多層、外径分布40〜90nmのカーボンナノチューブの場合と同様に、実施例1〜12と同じ条件では良好、比較例1〜6と同じ条件では不良であった。
Examples 13-24 and Comparative Examples 7-12
Examples 1 to 12 and Comparative Example 1 except that a single-walled carbon nanotube having an outer diameter distribution of 1 to 2 nm (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the multi-walled carbon nanotube having an outer diameter distribution of 40 to 90 nm. The dispersibility of the carbon nanotube aqueous dispersion was tested in the same manner as in. As a result, the dispersibility was good under the same conditions as in Examples 1 to 12 and poor under the same conditions as in Comparative Examples 1 to 6, as in the case of carbon nanotubes having a multilayer and outer diameter distribution of 40 to 90 nm.

実施例25〜36及び比較例13〜18
多層、外径分布40〜90nmのカーボンナノチューブの代わりに多層、外径分布3〜20nmのカーボンナノチューブ(和光純薬工業株式会社製)を用いた以外は、実施例1〜12及び比較例1〜6と同様にカーボンナノチューブ水分散液の分散性の試験を行った。その結果、分散性は、多層、外径分布40〜90nmのカーボンナノチューブの場合と同様に、実施例1〜12と同じ条件では良好、比較例1〜6と同じ条件では不良であった。
Examples 25-36 and Comparative Examples 13-18
Examples 1 to 12 and Comparative Examples 1 to 12 were used except that carbon nanotubes having a multi-layered outer diameter distribution of 40 to 90 nm and carbon nanotubes having a outer-diameter distribution of 3 to 20 nm (manufactured by Wako Pure Chemical Industries, Ltd.) were used. The dispersibility of the carbon nanotube aqueous dispersion was tested in the same manner as in FIG. As a result, the dispersibility was good under the same conditions as in Examples 1 to 12 and poor under the same conditions as in Comparative Examples 1 to 6, as in the case of carbon nanotubes having a multilayer and outer diameter distribution of 40 to 90 nm.

実施例37〜48及び比較例19〜24
多層、外径分布40〜90nmのカーボンナノチューブの代わりに多層、外径分布85〜200nmのカーボンナノチューブ(和光純薬工業株式会社製)を用いた以外は、実施例1〜12及び比較例1〜6と同様にカーボンナノチューブ水分散液の分散性の試験を行った。その結果、分散性は、多層、外径分布40〜90nmのカーボンナノチューブの場合と同様に、実施例1〜12と同じ条件では良好、比較例1〜6と同じ条件では不良であった。
Examples 37-48 and Comparative Examples 19-24
Examples 1 to 12 and Comparative Examples 1 to 1 were used except that carbon nanotubes having a multi-layered outer diameter distribution of 40 to 90 nm and carbon nanotubes having a outer-diameter distribution of 85 to 200 nm (manufactured by Wako Pure Chemical Industries, Ltd.) were used. The dispersibility of the carbon nanotube aqueous dispersion was tested in the same manner as in FIG. As a result, the dispersibility was good under the same conditions as in Examples 1 to 12 and poor under the same conditions as in Comparative Examples 1 to 6, as in the case of carbon nanotubes having a multilayer and outer diameter distribution of 40 to 90 nm.

実施例2で得たカーボンナノチューブ水分散液におけるカーボンナノチューブの粒度分布を示すグラフである。6 is a graph showing the particle size distribution of carbon nanotubes in the carbon nanotube aqueous dispersion obtained in Example 2. FIG. 実施例10で得たカーボンナノチューブ水分散液におけるカーボンナノチューブの粒度分布を示すグラフである。6 is a graph showing the particle size distribution of carbon nanotubes in an aqueous carbon nanotube dispersion obtained in Example 10. FIG.

Claims (8)

単糖又は少糖の結晶と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。 A water dispersion method for carbon nanotubes, comprising adding water to a crushed mixture obtained by crushing monosaccharide or oligosaccharide crystals, carbon nanotubes, and a nonionic or anionic surfactant. 単糖又は少糖が、ショ糖又はグルコースである請求項1に記載のカーボンナノチューブの水分散方法。 The method for dispersing carbon nanotubes in water according to claim 1, wherein the monosaccharide or oligosaccharide is sucrose or glucose. 界面活性剤が、ポリオキシエチレン硬化ヒマシ油又はポリオキシエチレンソルビタン脂肪酸エステルである請求項1に記載のカーボンナノチューブの水分散方法。 The method for dispersing carbon nanotubes in water according to claim 1, wherein the surfactant is polyoxyethylene hydrogenated castor oil or polyoxyethylene sorbitan fatty acid ester. 水溶性多糖と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。 A method of dispersing carbon nanotubes in water, comprising adding water to a crushed mixture obtained by crushing a water-soluble polysaccharide, carbon nanotubes, and a nonionic or anionic surfactant. 無機塩の結晶と、水溶性糖類と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加することを特徴とするカーボンナノチューブの水分散方法。 A water dispersion method for carbon nanotubes, comprising adding water to a crushed mixture obtained by crushing inorganic salt crystals, water-soluble saccharides, carbon nanotubes, and a nonionic or anionic surfactant. 無機塩がKBr又はNaClである請求項5に記載のカーボンナノチューブの水分散方法。 The method for dispersing water in carbon nanotubes according to claim 5, wherein the inorganic salt is KBr or NaCl. 水溶性糖類が、ショ糖、グルコース、又はカルボキシメチルセルロースである請求項5に記載のカーボンナノチューブの水分散方法。 The method for dispersing water in carbon nanotubes according to claim 5, wherein the water-soluble saccharide is sucrose, glucose, or carboxymethylcellulose. 界面活性剤が、ポリオキシエチレン硬化ヒマシ油又はポリオキシエチレンソルビタン脂肪酸エステルである請求項5に記載のカーボンナノチューブの水分散方法。 The method for dispersing water in carbon nanotubes according to claim 5, wherein the surfactant is polyoxyethylene hydrogenated castor oil or polyoxyethylene sorbitan fatty acid ester.
JP2007075855A 2007-03-23 2007-03-23 Water dispersion method of carbon nanotube Active JP4965300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075855A JP4965300B2 (en) 2007-03-23 2007-03-23 Water dispersion method of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075855A JP4965300B2 (en) 2007-03-23 2007-03-23 Water dispersion method of carbon nanotube

Publications (2)

Publication Number Publication Date
JP2008230935A JP2008230935A (en) 2008-10-02
JP4965300B2 true JP4965300B2 (en) 2012-07-04

Family

ID=39904185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075855A Active JP4965300B2 (en) 2007-03-23 2007-03-23 Water dispersion method of carbon nanotube

Country Status (1)

Country Link
JP (1) JP4965300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010614A (en) * 2017-04-24 2017-08-04 苏州纳磐新材料科技有限公司 Aqueous liquid dispersion of carbon nanomaterial and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261367B2 (en) * 2008-12-26 2013-08-14 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
JP5585325B2 (en) * 2010-09-08 2014-09-10 東レ株式会社 Carbon nanotube aqueous dispersion
JP5390001B2 (en) * 2011-09-29 2014-01-15 Kj特殊紙株式会社 Carbon nanotube aqueous dispersion and composite sheet obtained using the same
JP6079138B2 (en) * 2012-02-23 2017-02-15 東レ株式会社 Carbon nanotube dispersion
KR20150028780A (en) * 2012-06-26 2015-03-16 도레이 카부시키가이샤 Dispersion liquid of carbon nanotube-containing composition and conductive molded body
CN104936895A (en) 2013-01-24 2015-09-23 日本瑞翁株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650819B2 (en) * 2002-07-15 2005-05-25 独立行政法人産業技術総合研究所 Cutting method of carbon nanotube
JP2006063307A (en) * 2004-07-27 2006-03-09 Ezaki Glico Co Ltd Carbon nanotube-containing solution, film, and fiber
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
JP4528223B2 (en) * 2005-07-25 2010-08-18 本田技研工業株式会社 Heat transport fluid
JP4695944B2 (en) * 2005-08-31 2011-06-08 一般財団法人 化学物質評価研究機構 Method for producing fullerene aqueous dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010614A (en) * 2017-04-24 2017-08-04 苏州纳磐新材料科技有限公司 Aqueous liquid dispersion of carbon nanomaterial and preparation method thereof

Also Published As

Publication number Publication date
JP2008230935A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4965300B2 (en) Water dispersion method of carbon nanotube
Surudžić et al. Physico–chemical and mechanical properties and antibacterial activity of silver/poly (vinyl alcohol)/graphene nanocomposites obtained by electrochemical method
Kharissova et al. Dispersion of carbon nanotubes in water and non-aqueous solvents
Owoseni et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization
EP2904056B1 (en) Suspension containing graphene, method for the production thereof, graphene flakes and use
Lee et al. Concomitant crystallization of glycine on patterned substrates: The effect of pH on the polymorphic outcome
JP6231032B2 (en) Method for producing cellulose porous particles and cellulose porous particles
Haywood et al. New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS
PT912633E (en) ADDITIVATION OF CELLULOSE NANOFIBRILLAS WITH CARBOXILATE CELLULOSE WITH LOW DEGREE OF REPLACEMENT
JP5466245B2 (en) Method for controlling the dispersibility and barrier properties of dry nanocrystalline cellulose in solutions of various pH and ionic strength
Ojo et al. Stoppers and skins on clay nanotubes help stabilize oil-in-water emulsions and modulate the release of encapsulated surfactants
CN103788402B (en) A kind of carbon quantum dot/hectorite emulsion-stabilizing system and prepare the method for paraffin wax emulsions
JP2007169120A (en) Method for dispersing carbon nanotube
JP2003238126A (en) Hydrophilic dispersion fluid of carbon nanotube and its manufacturing method
WO2018087542A1 (en) Cyrene and ternary mixtures of cyrene for the enhanced use of dispersion and solvation
Lai et al. Impact of casting conditions on PVDF/nanoclay nanocomposite membrane properties
JP5032089B2 (en) Method of dispersing fullerenes in water
Wang et al. The use of anionic gum arabic as a dispersant for multi-walled carbon nanotubes in an aqueous solution
US20200087149A1 (en) Method for the synthesis of nanofluids
Abreu et al. Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picture
JP4695944B2 (en) Method for producing fullerene aqueous dispersion
TWI352067B (en) Process for producing acidic aqueous alumina sol
Zhang et al. Faceted fatty acid vesicles formed from single-tailed perfluorinated surfactants
JP5610460B2 (en) Nanoparticle dispersible in water and method for producing nanoparticle dispersion
Ma et al. Controllable self-assemblies of sodium benzoate in different solvent environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4965300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250