JP5250294B2 - 燃料電池システムの起動方法および燃料電池システム - Google Patents

燃料電池システムの起動方法および燃料電池システム Download PDF

Info

Publication number
JP5250294B2
JP5250294B2 JP2008105537A JP2008105537A JP5250294B2 JP 5250294 B2 JP5250294 B2 JP 5250294B2 JP 2008105537 A JP2008105537 A JP 2008105537A JP 2008105537 A JP2008105537 A JP 2008105537A JP 5250294 B2 JP5250294 B2 JP 5250294B2
Authority
JP
Japan
Prior art keywords
anode gas
fuel cell
circulation path
valve
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008105537A
Other languages
English (en)
Other versions
JP2009259518A (ja
Inventor
裕嗣 松本
順司 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008105537A priority Critical patent/JP5250294B2/ja
Publication of JP2009259518A publication Critical patent/JP2009259518A/ja
Application granted granted Critical
Publication of JP5250294B2 publication Critical patent/JP5250294B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムの起動方法および燃料電池システムに関するものである。
従来から、例えば車両に搭載される燃料電池には、固体高分子電解質膜をアノード電極およびカソード電極で両側から挟んで膜電極構造体(MEA:Membrane Electrode Assembly)を形成し、この膜電極構造体の両側に一対のセパレータを配置して平板状の単位燃料電池(以下、単位セルという。)を構成し、この単位セルを複数積層して燃料電池スタック(以下、燃料電池という。)とするものが知られている。このような燃料電池では、アノード電極とセパレータとの間に燃料ガスとして水素ガスを供給するとともに、カソード電極とセパレータとの間に酸化剤ガスとして空気を供給する。これにより、アノード電極で触媒反応により発生した水素イオンが、固体高分子電解質膜を透過してカソード電極まで移動し、カソード電極で空気中の酸素と電気化学反応を起こし、発電が行われる。なお、この発電に伴って、燃料電池内部で水が生成される。
このような燃料電池を備える燃料電池システムでは、発電停止から長い時間が経過すると、カソード電極側から空気が固体高分子電解質膜を介してアノード電極側へ侵入することで、アノード電極側に発電に関与しないガス(主に窒素ガス)が滞留することがある。このような滞留ガスが存在していると、次の燃料電池の起動時に、アノード電極側の水素の分圧が下がった状態となる。このため、燃料電池の起動時に、アノード電極側の配管系統を閉回路にした状態で、アノード電極側に水素を強制的に供給し、水素圧力が所定値(大気を吸い込まない値)以上に上昇したらパージ弁を開弁して水素置換する方法が提案されている(例えば、特許文献1参照)。
特開2007−128902号公報
ところで、特許文献1の燃料電池システムの起動時の水素パージ方法では、起動パージ中も水素ガスの供給を行いながらパージ弁を開弁している。そのため、アノード電極側の配管においてエゼクタを設け、アノードオフガスを循環してアノードガスとして再利用可能な構成にしたシステムでは、エゼクタにより空気(滞留ガス)がアノード配管経路内を循環してしまう。このため、アノード配管経路内から空気(滞留ガス)を完全に排出し、配管内部の水素濃度(圧力)を上昇させるには多くの時間を必要としていた。
そこで、本発明は、上記事情を鑑みてなされたものであり、燃料電池の起動時にアノード電極側に滞留しているカソードガスなどを効率的に排出することができる燃料電池システムの起動方法および燃料電池システムを提供するものである。
上記の課題を解決するために、請求項1に記載した発明は、アノードガスおよびカソードガスを供給して発電を行う燃料電池(例えば、実施形態における燃料電池11)と、前記アノードガスを供給するアノードガス供給手段(例えば、実施形態における水素タンク30)と、前記アノードガスと前記燃料電池より排出されたアノードオフガスとを混合循環させるエゼクタ(例えば、実施形態におけるエゼクタ26)が設けられたアノードガス循環経路(例えば、実施形態におけるアノードガス循環経路40)と、前記アノードガス供給手段と前記アノードガス循環経路との間に設けられた遮断弁(例えば、実施形態における電磁弁25)と、前記アノードガス循環経路から分岐されたアノードガス流通経路(例えば、実施形態におけるガス排出配管37)と、前記アノードガス流通経路に設けられたパージ弁(例えば、実施形態におけるパージ弁28)と、を備えた燃料電池システム(例えば、実施形態における燃料電池システム10)の起動方法において、前記燃料電池の起動信号を検出する起動信号検出ステップと、前記遮断弁を開弁する遮断弁第一開弁ステップと、前記アノードガス循環経路内の圧力が、前記アノードガス循環経路内に残っている不純ガスを前記アノードガス流通経路に排出可能な圧力になった際に、前記遮断弁を閉弁してアノードガス供給中断制御を行うとともに、前記パージ弁を開弁して前記アノードガス循環経路内のガスを前記アノードガス流通経路に排出するガス排出ステップと、前記パージ弁の開弁状態を所定時間保持した後に、前記パージ弁を閉弁するパージ弁閉弁ステップと、前記パージ弁の閉弁後に前記遮断弁を開弁する遮断弁第二開弁ステップと、前記燃料電池のセル電圧が所定値以上の場合に発電開始を許可する発電許可ステップと、を有することを特徴としている。
請求項に記載した発明は、前記パージ弁閉弁ステップでは、前記アノードガス循環経路内の圧力が大気圧以下となる前に前記パージ弁を閉弁することを特徴としている。
請求項に記載した発明は、前記遮断弁第一開弁ステップの前に、前記燃料電池のソーク時間を検出するソーク時間検出ステップを有し、前記ソーク時間が所定時間より短い場合には、前記アノードガス供給中断制御を行わないことを特徴としている。
請求項に記載した発明は、前記遮断弁第一開弁ステップの前に、前記燃料電池がソーク状態の間に掃気を行ったか否かを検出する掃気経験検出ステップを有し、前記掃気を行った場合には、前記アノードガス供給中断制御を行うことを特徴としている。
請求項に記載した発明は、前記遮断弁第一開弁ステップの前に、前記燃料電池がソーク状態の間に掃気を行ったか否かを検出する掃気経験検出ステップを有し、前記掃気を行っておらず、かつ、前記ソーク時間が所定時間より短い場合には前記アノードガス供給中断制御を行わないことを特徴としている。
請求項に記載した発明は、アノードガスおよびカソードガスを供給して発電を行う燃料電池と、前記アノードガスを供給するアノードガス供給手段と、前記アノードガスと前記燃料電池より排出されたアノードオフガスとを混合循環させるエゼクタが設けられたアノードガス循環経路と、前記アノードガス供給手段と前記アノードガス循環経路との間に設けられた遮断弁と、前記アノードガス循環経路から分岐されたアノードガス流通経路に設けられたパージ弁と、前記遮断弁および前記パージ弁の開閉制御を行う制御部(例えば、実施形態における制御装置45)と、を備えた燃料電池システムにおいて、前記制御部は、前記燃料電池の起動時に、前記遮断弁を開弁し、前記アノードガス循環経路内の圧力が、前記アノードガス循環経路内に残っている不純ガスを前記アノードガス流通経路に排出可能な圧力になった際に、前記遮断弁を閉弁してアノードガス供給中断制御を行うとともに、前記パージ弁を開弁して前記アノードガス循環経路内のガスを前記アノードガス流通経路に排出し、前記パージ弁の開弁状態を所定時間保持した後に、前記パージ弁を閉弁し、前記パージ弁の閉弁後に前記遮断弁を開弁し、前記燃料電池のセル電圧が所定値以上の場合に発電開始を許可するように構成されていることを特徴としている。
請求項1に記載した発明によれば、燃料電池の起動パージ中にアノードガス(水素ガス)の供給を遮断することで、エゼクタによる滞留ガス(カソードガス)の循環が回避される。したがって、アノードガス循環経路内の滞留ガスをスムーズにパージ弁を介して外部へ排出させることができる。結果として、短時間でアノードガス循環経路内の滞留ガスをアノードガスへ置換することができるとともに、燃料電池が起動した直後から安定した発電を行うことができる効果がある。また、燃料電池の起動直後のアノードガス循環経路内の水素濃度が高い分、スタックIVが向上し、燃費を向上させることができる効果がある。
また、パージ弁を開弁すると大気との圧力差のみでアノードガス循環経路内の滞留ガスのパージを行うことができるため、滞留ガスを排出させるための特別な装置を必要とせず、簡易な構成で確実にアノードガスへ置換することができる効果がある。
請求項に記載した発明によれば、パージ弁を開弁中に大気側からアノードガス循環経路内へ空気が逆流して流入するのを防止することができる効果がある。
請求項に記載した発明によれば、ソーク時間が所定時間以下の場合には、アノードガス循環経路内の水素濃度は高いまま保持されているため、アノードガス供給中断制御を実行しなくても短時間で燃料電池を起動させることができる。したがって、必要の無い動作を省略することで、効率よく燃料電池を起動させることができる効果がある。
請求項に記載した発明によれば、燃料電池がソーク状態であった間に掃気を行っているとアノードガス循環経路内は掃気ガス(空気)で置換されているため、アノードガス循環経路内の水素濃度は低下(略0%)した状態となっている。したがって、アノードガス供給中断制御を実行することにより、掃気を行った場合でも短時間で発電を開始することができる効果がある。
請求項に記載した発明によれば、燃料電池がソーク状態であった間に掃気を行っておらず、かつ、ソーク時間が所定時間より短ければアノードガス循環経路内の水素濃度は高いまま保持されているため、アノードガス供給中断制御を実行しなくても短時間で燃料電池を起動させることができる。
請求項に記載した発明によれば、燃料電池の起動パージ中にアノードガス供給手段からのアノードガス(水素ガス)の供給を遮断弁を閉じて遮断することにより、エゼクタによる滞留ガス(カソードガス)の循環が回避される。したがって、アノードガス循環経路内の滞留ガスをスムーズにパージ弁を介して外部へ排出させることができる。結果として、短時間でアノードガス循環経路内の滞留ガスをアノードガスへ置換することができるとともに、燃料電池が起動した直後から安定した発電を行うことができる効果がある。また、燃料電池の起動直後のアノードガス循環経路内の水素濃度が高い分、スタックIVが向上し、燃費を向上させることができる効果がある。
また、パージ弁を開弁すると大気との圧力差のみでアノードガス循環経路内の滞留ガスのパージを行うことができるため、滞留ガスを排出させるための特別な装置を必要とせず、簡易な構成で確実にアノードガスへ置換することができる効果がある。
次に、本発明の実施形態を図1〜図7に基づいて説明する。なお、本実施形態では燃料電池システムを車両に搭載した場合の説明をする。
(燃料電池システム)
図1は燃料電池システムの概略構成図である。
図1に示すように、燃料電池システム10の燃料電池11は、水素ガスなどの燃料ガス(アノードガス)と空気などの酸化剤ガス(カソードガス)との電気化学反応により発電を行う固体高分子膜型燃料電池である。燃料電池11に形成された燃料ガス供給用連通孔13(燃料ガス流路21の入口側)には燃料ガス供給配管23が連結され、その上流端部には水素タンク30が接続されている。また、燃料電池11に形成された酸化剤ガス供給用連通孔15(酸化剤ガス流路22の入口側)には酸化剤ガス供給配管24が連結され、その上流端部にはエアコンプレッサ33が接続されている。なお、燃料電池11に形成されたアノードオフガス排出用連通孔14(燃料ガス流路21の出口側)にはアノードオフガス排出配管35が連結され、カソードオフガス排出用連通孔16(酸化剤ガス流路22の出口側)にはカソードオフガス排出配管36が連結されている。なお、燃料電池11には出力電圧を検出する電圧計55が取り付けられている。
水素タンク30から燃料ガス供給配管23に供給された水素ガスは、レギュレータ(不図示)により減圧された後、エゼクタ26を通り、燃料電池11の燃料ガス流路21に供給される。また、水素タンク30の下流側近傍には、電磁駆動式の電磁弁25が設けられており、水素タンク30からの水素ガスの供給を遮断することができるように構成されている。なお、燃料ガス供給配管23には圧力計41が設けられており、燃料ガス供給配管23内の圧力を検出できるようになっている。
また、アノードオフガス排出配管35は途中で分岐しており、一方はガス排出配管37となり、希釈ボックス31に接続され、その後、車外へと排気されるようになっており、他方はアノードオフガスリタン配管38となり、エゼクタ26に接続され、燃料電池11を通過してきたアノードオフガスを再度燃料電池11のアノードガスとして再利用できるように構成されている。ここで、エゼクタ26は配管内にガスなどが流れることで生じる負圧を利用して別の系統の配管内のガスなどを引き込むように構成されたものである。なお、ガス排出配管37には電磁駆動式のパージ弁28が設けられている。また、燃料ガス供給配管23、燃料ガス流路21、アノードオフガス排出配管35およびアノードオフガスリタン配管38で構成されるループ配管経路をアノードガス循環経路40(エゼクタ26も含む)と呼ぶ。
一方、空気はエアコンプレッサ33によって加圧され、酸化剤ガス供給配管24を通過した後、燃料電池11の酸化剤ガス流路22に供給される。この空気中の酸素が酸化剤として発電に供された後、燃料電池11からカソードオフガスとしてカソードオフガス排出配管36に排出される。カソードオフガス排出配管36は水素希釈システム31に接続され、その後、車外へと排気される。なお、カソードオフガス排出配管36には背圧弁34が設けられている。
また、エアコンプレッサ33の下流側の酸化剤ガス供給配管24において、配管が分岐され掃気ガス導入配管51の一端が接続されている。掃気ガス導入配管51は、燃料ガス供給配管23におけるイジェクタ26と燃料電池11との間に他端が接続されている。つまり、空気を燃料電池11の燃料ガス流路21に供給できるようになっている。なお、掃気ガス導入配管51には電磁駆動式の電磁弁52が設けられており、エアコンプレッサ33からの空気の供給を遮断できるように構成されている。
ここで、燃料電池11には、制御装置(ECU)45が設けられている。制御装置45では、例えば圧力計41からの検出結果(センサ出力)が伝達され、その検出結果に基づいて、燃料電池システム10の遮断弁25およびパージ弁28の開閉制御を行い、アノードガス循環経路40内のパージを実行できるように構成されている。
図2は制御装置45の概略ブロック図である。図2に示すように、制御装置45は、燃料電池システム10のアノードガス循環経路40内の水素ガスの圧力と予め設定されている第一所定圧力値および第二所定圧力値とを比較するアノードガス循環経路圧力判定部61と、パージ弁28を開弁してから所定時間経過したか否かを判定するパージ弁状態検出部62と、燃料電池システム10がソーク状態(システムが停止している状態)にあるか否かを検出するソーク状態検出部63と、燃料電池システム10の停止時にその内部を掃気したか否かを検出する掃気経験検出部64と、燃料電池11の出力電圧とモータなどの電力消費デバイス50への供給を開始可能な発電許可閾値電圧とを比較する燃料電池電圧判定部65と、を有している。
なお、第一所定圧力値はアノードガス循環経路40内に残っているガス(空気含)を確実に車外へ排出することができる圧力値であり、第二所定圧力値はパージ弁28を開弁してアノードガス循環経路40内のガス(空気含)を車外に排出している最中に、外部の空気がアノードガス循環経路40内に逆流するのを確実に防止することができる圧力値である。
また、制御装置(ECU)45は、燃料電池11に要求される出力に応じて、電磁弁25を制御して水素タンク30から所定量の水素ガスを燃料電池11に供給するとともに、パージ弁28を制御して、アノードオフガスの排出量を調整できるように構成されている。さらに、制御装置45は、燃料電池11に要求される出力に応じて、エアコンプレッサ33を駆動して所定量の空気を燃料電池11に供給するとともに、背圧弁34を制御して酸化剤ガス流路22への空気の供給圧力を調整できるように構成されている。
また、燃料電池システム10は、停止時に燃料電池11の内部を掃気する掃気手段を有している。掃気手段により燃料電池11内に発生した滞留ガス(窒素ガス)を排出してアノードガス循環経路40内を空気で置換することができるようになっている。なお、掃気手段が実行されるか否かは、例えばソーク時間により決定するようにすればよい。
そして、燃料電池11で発電された電力(電流)はモータなどの電力消費デバイス50へ供給されるように構成されている。
(燃料電池システムの起動方法(その1))
次に、燃料電池システム10の起動方法について説明する。
図3は燃料電池システム10の起動方法のフローチャートである。
図3に示すように、S1では、制御装置45が燃料電池システム10の起動信号であるイグニッションスイッチ(不図示)からのオン信号を検出する(起動信号検出ステップ)と、電磁弁25を開放させて水素タンク30に貯蔵されている水素ガスを、燃料ガス供給配管23を介して燃料電池11の燃料ガス流路21に供給する(遮断弁第一開弁ステップ)。
S2では、アノードガス循環経路40に設けた圧力計41により配管内の圧力を検出し、アノードガス循環経路圧力判定部61において、その圧力(水素圧力)と所定の圧力(第一所定圧力)とを比較する。そして、水素圧力が第一所定圧力以下の場合にはこの工程(S2)を繰り返し、水素圧力が第一所定圧力より大きくなればS3へ進む。
S3では、アノードガス循環経路40内に残っている滞留ガス(空気含)を車外へ確実に排出できる圧力になったと判断し、電磁弁25を閉弁するとともにパージ弁28を開弁して(ガス排出ステップ)、S4へ進む。
S4では、パージ弁状態検出部62において、パージ弁28を開弁してから予め設定されている所定時間を経過したか否かを判定し、所定時間経過前であればS5へ進み、所定時間経過したと判断したらS6へ進む。なお、この所定時間とはパージ弁28を開弁した後、アノードガス循環経路40内の滞留ガスを車外に排出するのに通常必要とする時間である。
S5では、パージ弁28を開弁した後で所定時間経過前におけるアノードガス循環経路40内の圧力を圧力計41により検出し、アノードガス循環経路圧力判定部61において、その圧力(水素圧力)と第二所定圧力とを比較する。そして、水素圧力が第二所定圧力以下の場合にはS4へ戻り、水素圧力が第二所定圧力より大きくなれば、パージ弁28を開弁した後所定時間経過前であっても、S6へすすむ。このようにすることで、外部の空気がアノードガス循環経路40内に逆流して流入するのを防止できる。つまり、第二所定圧力は大気圧より若干高めの圧力値に設定しておけばよい。
S6では、アノードガス循環経路40内の滞留ガスが全て車外へ排出されたと判断して、パージ弁28を閉弁する(パージ弁閉弁ステップ)とともに、電磁弁25を再び開弁してアノードガス循環経路40に水素ガスを供給開始して(遮断弁第二開弁ステップ)、S7へ進む。ここで、パージ弁28を開弁してアノードガス循環経路40内の滞留ガスを車外へ排出中に、電磁弁25を閉弁して水素ガスの供給を遮断しているため、エゼクタ26が機能せず、アノードガス循環経路40内のガスは確実にガス排出配管37から希釈ボックス31に導かれ、その後車外へと排気される。
S7では、アノードガス循環経路40内が水素ガスに置換されたと判断し、燃料ガス流路21には水素ガスを、酸化剤ガス流路22には空気を供給開始して燃料電池11の発電を開始する。そして、燃料電池11のセル電圧値を電圧計55で検出し、そのセル電圧値が電力負荷デバイス50への発電を許可できる電圧値(閾値電圧値)になっているか否かを燃料電池電圧判定部65において判定する。そして、燃料電池11のセル電圧値が閾値電圧値より小さい場合にはこの工程(S7)を繰り返し、閾値電圧値以上になった場合にはS8へ進む。
S8では、燃料電池11のセル電圧値が、電力負荷デバイス50へ電力を供給してもよい電圧値になったと判断し、発電を開始して(発電許可ステップ)処理を終了する。
図4は、アノードガス循環経路40内の水素圧力、水素濃度、および電磁弁25とパージ弁28の関係を示すタイムチャートである。図4に示すように、アノードガス循環経路40内の水素濃度は、燃料電池システム10が起動すると徐々に高くなるが、その過程で電磁弁25を一旦閉弁し、パージ弁28のみを開弁するステップを入れてアノードガス循環経路40内の滞留ガスを一気に車外へと排出することにより、アノードガス循環経路40内の水素濃度を早期に高めることができる。したがって、燃料電池11の発電開始許可を短時間(時間t)にすることができる。
一方、図5は、従来方式の場合のタイムチャートである。図5に示すように、アノードガス循環経路40内の水素濃度は、燃料電池システム10が起動すると徐々に高くなるが、その過程で電磁弁25およびパージ弁28をともに開弁してパージを行っているため、アノードガス循環経路40内の滞留ガスがエゼクタ26を介して循環してしまう。そのため、アノードガス循環経路40内の水素濃度の上昇率が悪くなり、水素濃度が略100%になるまでの時間が本実施形態よりも長くなる。したがって、燃料電池11の発電開始許可が長時間(時間t)となってしまうのである。
(燃料電池システムの起動方法(その2))
次に、燃料電池システム10の起動方法についての別の態様を説明する。なお、上述した燃料電池システムの起動方法(その1)と同じ構成の部分は同じステップ番号を付して説明を省略する。
図6は燃料電池システム10の起動方法のフローチャートである。
図6に示すように、S21では、制御装置45が燃料電池システム10の起動信号であるイグニッションスイッチ(不図示)からのオン信号を検出したときに、ソーク状態検出部63において、燃料電池システム10が停止してから起動するまでのソーク時間を検出し(ソーク時間検出ステップ)、S22へ進む。
S22では、S21で検出したソーク時間と予め設定されている所定時間(第一所定時間)とを比較する。そして、ソーク時間が第一所定時間より長かった場合には、S1へ進み、上述した燃料電池システムの起動方法(その1)と同じフローチャートに沿ってアノードガス循環経路40内のパージを行う。一方、ソーク時間が第一所定時間以下であった場合にはS23へ進む。なお、第一所定時間としては例えば1時間程度で設定する。
S23では、ソーク時間が短いため、アノードガス循環経路40内の滞留ガス量は少なく、水素ガスがまだ多量に残っていると判断し、電磁弁25を開弁するとともに、パージ弁28を開弁して、S24へ進む。
S24では、パージ弁状態検出部62において、パージ弁28を開弁してから予め設定されている所定時間(第二所定時間)を経過したか否かを判定し、第二所定時間経過前であればS24を繰り返し、第二所定時間経過したと判断したらS25へ進む。なお、この所定時間とはパージ弁28を開弁した後、アノードガス循環経路40内の滞留ガスを車外に排出するのに通常必要とする時間である。
S25では、アノードガス循環経路40内の滞留ガスは車外へ排出されたと判断し、パージ弁28を閉弁して、S7へ進む。
S7以降は、上述した燃料電池システムの起動方法(その1)と同じフローチャートに沿って発電許可を行い、処理を終了する。
このように構成することで、ソーク時間が短い場合のパージ処理の工程を簡素化することにより起動時間を短縮することができるとともに、燃費の向上を図ることができる。一方、ソーク時間が長い場合には、アノードガス循環経路40内は滞留ガスが多量に蓄積されているため、上述したS1〜S8の処理を実行して、パージを確実、かつ、短時間で実行することができるようになっている。
(燃料電池システムの起動方法(その3))
次に、燃料電池システム10の起動方法についてのさらに別の態様を説明する。なお、上述した燃料電池システムの起動方法(その1)と同じ構成の部分は同じステップ番号を付して説明を省略する。
図7は燃料電池システム10の起動方法のフローチャートである。
図7に示すように、S31では、制御装置45が燃料電池システム10の起動信号であるイグニッションスイッチ(不図示)からのオン信号を検出したときに、掃気経験検出部64において、燃料電池システム10が停止してから起動するまでの間に掃気を実行したか否かを検出し(掃気経験検出ステップ)、S32へ進む。なお、アノードガス循環経路40内の掃気とは、電磁弁52を開弁するとともにエアコンプレッサ33を起動して、空気を掃気ガス導入配管51よりアノードガス循環経路40内へと導入し、アノードガス循環経路40内を空気で置換することをいう。
S32では、S31で検出した掃気経験の有無を判定する。そして、掃気経験が有る場合には、S1へ進み、上述した燃料電池システムの起動方法(その1)と同じフローチャートに沿ってアノードガス循環経路40内のパージを行う。一方、掃気経験が無かった場合にはS21へ進む。
S21では、ソーク状態検出部63において、燃料電池システム10が停止してから起動するまでのソーク時間を検出し(ソーク時間検出ステップ)、S22へ進む。
S22では、S21で検出したソーク時間と予め設定されている所定時間(第一所定時間)とを比較する。そして、ソーク時間が第一所定時間より長かった場合には、S1へ進み、ソーク時間が第一所定時間以下であった場合にはS33へ進む。
S33では、掃気経験が無かったため、アノードガス循環経路40内の滞留ガス量は少なく、水素ガスがまだ多量に残っていると判断し、電磁弁25を開弁するとともに、パージ弁28を開弁して、S34へ進む。
S34では、パージ弁状態検出部62において、パージ弁28を開弁してから予め設定されている所定時間(第三所定時間)を経過したか否かを判定し、第三所定時間経過前であればS34を繰り返し、第三所定時間経過したと判断したらS35へ進む。なお、この所定時間とはパージ弁28を開弁した後、アノードガス循環経路40内の滞留ガスを車外に排出するのに通常必要とする時間である。
S35では、アノードガス循環経路40内の滞留ガスは車外へ排出されたと判断し、パージ弁28を閉弁して、S7へ進む。
S7以降は、上述した燃料電池システムの起動方法(その1)と同じフローチャートに沿って発電許可を行い、処理を終了する。
このように構成することで、掃気経験が無い場合のパージ処理の工程を簡素化することにより起動時間を短縮することができるとともに、燃費の向上を図ることができる。一方、掃気経験が有った場合には、アノードガス循環経路40内は空気に置換されているため、上述したS1〜S8の処理を実行して、パージを確実、かつ、短時間で実行することができるようになっている。また、掃気経験が無い場合でも、ソーク時間が第一所定時間より長い場合にはアノードガス循環経路40内の水素濃度は低下しているため、アノードガス供給中断制御を行うようにすることで、パージを短時間で実行することができる。
本実施形態によれば、燃料電池11の起動パージ中にアノードガス(水素ガス)の供給を電磁弁25を閉弁して遮断することで、エゼクタ26による滞留ガス(カソードガス)の循環が回避される。したがって、アノードガス循環経路40内の滞留ガスをスムーズにパージ弁28を介して外部へ排出させることができる。結果として、短時間でアノードガス循環経路40内の滞留ガスをアノードガスへ置換することができるとともに、燃料電池11が起動した直後から安定した発電を行うことができる。また、燃料電池11の起動直後のアノードガス循環経路40内の水素濃度が高い分、スタックIVが向上し、燃費を向上させることができる。
また、アノード循環経路40内の圧力が第一所定圧力より大きくなった場合にパージを開始することにより、パージ弁28を開弁したときに大気との圧力差のみでアノードガス循環経路40内の滞留ガスのパージを行うことができる。したがって、滞留ガスを排出させるための特別な装置を必要とせず、簡易な構成で確実にアノードガスへ置換することができる。
また、アノード循環経路40内の圧力が第二所定圧力より小さくなった場合にパージ弁28を閉弁させることにより、パージ弁28を開弁中に大気側からアノードガス循環経路40内へ空気が逆流して流入するのを防止することができる。
さらに、ソーク時間が第一所定時間以下の場合には、アノードガス循環経路40内の水素濃度は高いまま保持されていると判断可能であるため、アノードガス供給中断制御を実行しなくても短時間で燃料電池11を起動させることができる。したがって、必要の無い動作を省略することで、効率よく燃料電池11を起動させることができる。逆に、ソーク時間が第一所定時間より長い場合には、アノードガス供給中断制御を確実に実行することにより、ソーク時間が長い場合でも短時間で発電を開始することができる。
そして、燃料電池11がソーク状態であった間に掃気を行っているとアノードガス循環経路40内は掃気ガス(空気)で置換されているため、アノードガス循環経路40内の水素濃度は低下(略0%)した状態となっている。したがって、アノードガス供給中断制御を確実に実行することにより、掃気を行った場合でも短時間で発電を開始することができる。
尚、本発明の技術範囲は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や構成などはほんの一例に過ぎず、適宜変更が可能である。
例えば、本実施形態において、ソーク時間のみを検出する場合、並びに、掃気経験およびソーク時間を検出する場合のシステムについて説明したが、掃気経験のみを検出する方法を採用してもよい。
本発明の実施形態における燃料電池システムの概略構成図である。 本発明の実施形態における制御部の概略ブロック図である。 本発明の実施形態における燃料電池システムの起動方法(その1)を示すフローチャートである。 本発明の実施形態におけるアノードガス循環経路の水素濃度、水素圧力、および電磁弁とパージ弁の関係を示すタイムチャートである。 従来のアノードガス循環経路の水素濃度、水素圧力、および電磁弁とパージ弁の関係を示すタイムチャートである。 本発明の実施形態における燃料電池システムの起動方法(その2)を示すフローチャートである。 本発明の実施形態における燃料電池システムの起動方法(その3)を示すフローチャートである。
符号の説明
10…燃料電池システム 11…燃料電池 25…電磁弁(遮断弁) 26…エゼクタ 28…パージ弁 30…水素タンク(アノードガス供給手段) 37…ガス排出配管(アノードガス流通経路) 40…アノードガス循環経路 45…制御装置(制御部)

Claims (6)

  1. アノードガスおよびカソードガスを供給して発電を行う燃料電池と、前記アノードガスを供給するアノードガス供給手段と、前記アノードガスと前記燃料電池より排出されたアノードオフガスとを混合循環させるエゼクタが設けられたアノードガス循環経路と、前記アノードガス供給手段と前記アノードガス循環経路との間に設けられた遮断弁と、前記アノードガス循環経路から分岐されたアノードガス流通経路と、前記アノードガス流通経路に設けられたパージ弁と、を備えた燃料電池システムの起動方法において、
    前記燃料電池の起動信号を検出する起動信号検出ステップと、
    前記遮断弁を開弁する遮断弁第一開弁ステップと、
    前記アノードガス循環経路内の圧力が、前記アノードガス循環経路内に残っている不純ガスを前記アノードガス流通経路に排出可能な圧力になった際に、前記遮断弁を閉弁してアノードガス供給中断制御を行うとともに、前記パージ弁を開弁して前記アノードガス循環経路内のガスを前記アノードガス流通経路に排出するガス排出ステップと、
    前記パージ弁の開弁状態を所定時間保持した後に、前記パージ弁を閉弁するパージ弁閉弁ステップと、
    前記パージ弁の閉弁後に前記遮断弁を開弁する遮断弁第二開弁ステップと、
    前記燃料電池のセル電圧が所定値以上の場合に発電開始を許可する発電許可ステップと、を有することを特徴とする燃料電池システムの起動方法。
  2. 前記パージ弁閉弁ステップでは、前記アノードガス循環経路内の圧力が大気圧以下となる前に前記パージ弁を閉弁することを特徴とする請求項1に記載の燃料電池システムの起動方法。
  3. 前記遮断弁第一開弁ステップの前に、前記燃料電池のソーク時間を検出するソーク時間検出ステップを有し、
    前記ソーク時間が所定時間より短い場合には、前記アノードガス供給中断制御を行わないことを特徴とする請求項1または2に記載の燃料電池システムの起動方法。
  4. 前記遮断弁第一開弁ステップの前に、前記燃料電池がソーク状態の間に掃気を行ったか否かを検出する掃気経験検出ステップを有し、
    前記掃気を行った場合には、前記アノードガス供給中断制御を行うことを特徴とする請求項1〜の何れかに記載の燃料電池システムの起動方法。
  5. 前記遮断弁第一開弁ステップの前に、前記燃料電池がソーク状態の間に掃気を行ったか否かを検出する掃気経験検出ステップを有し、
    前記掃気を行っておらず、かつ、前記ソーク時間が所定時間より短い場合には前記アノードガス供給中断制御を行わないことを特徴とする請求項に記載の燃料電池システムの起動方法。
  6. アノードガスおよびカソードガスを供給して発電を行う燃料電池と、
    前記アノードガスを供給するアノードガス供給手段と、
    前記アノードガスと前記燃料電池より排出されたアノードオフガスとを混合循環させるエゼクタが設けられたアノードガス循環経路と、
    前記アノードガス供給手段と前記アノードガス循環経路との間に設けられた遮断弁と、
    前記アノードガス循環経路から分岐されたアノードガス流通経路に設けられたパージ弁と、
    前記遮断弁および前記パージ弁の開閉制御を行う制御部と、を備えた燃料電池システムにおいて、
    前記制御部は、
    前記燃料電池の起動時に、前記遮断弁を開弁し、
    前記アノードガス循環経路内の圧力が、前記アノードガス循環経路内に残っている不純ガスを前記アノードガス流通経路に排出可能な圧力になった際に、前記遮断弁を閉弁してアノードガス供給中断制御を行うとともに、前記パージ弁を開弁して前記アノードガス循環経路内のガスを前記アノードガス流通経路に排出し、
    前記パージ弁の開弁状態を所定時間保持した後に、前記パージ弁を閉弁し、
    前記パージ弁の閉弁後に前記遮断弁を開弁し、
    前記燃料電池のセル電圧が所定値以上の場合に発電開始を許可するように構成されていることを特徴とする燃料電池システム。
JP2008105537A 2008-04-15 2008-04-15 燃料電池システムの起動方法および燃料電池システム Active JP5250294B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105537A JP5250294B2 (ja) 2008-04-15 2008-04-15 燃料電池システムの起動方法および燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105537A JP5250294B2 (ja) 2008-04-15 2008-04-15 燃料電池システムの起動方法および燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009259518A JP2009259518A (ja) 2009-11-05
JP5250294B2 true JP5250294B2 (ja) 2013-07-31

Family

ID=41386702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105537A Active JP5250294B2 (ja) 2008-04-15 2008-04-15 燃料電池システムの起動方法および燃料電池システム

Country Status (1)

Country Link
JP (1) JP5250294B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762068B2 (ja) * 2011-03-16 2015-08-12 三菱日立パワーシステムズ株式会社 燃料電池・ガスタービンコンバインド発電システム及びその燃料電池の起動方法
JP7131463B2 (ja) * 2019-04-02 2022-09-06 トヨタ自動車株式会社 燃料電池システム
JP7442563B2 (ja) * 2022-03-30 2024-03-04 本田技研工業株式会社 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959106B2 (ja) * 2002-11-29 2012-06-20 本田技研工業株式会社 燃料電池システムの起動方法
JP4784062B2 (ja) * 2004-10-12 2011-09-28 トヨタ自動車株式会社 燃料電池システム、および、その制御装置
JP2006120532A (ja) * 2004-10-22 2006-05-11 Nissan Motor Co Ltd 燃料電池システム
JP4847724B2 (ja) * 2005-07-27 2011-12-28 本田技研工業株式会社 燃料電池システム
JP4825125B2 (ja) * 2006-12-27 2011-11-30 本田技研工業株式会社 燃料電池システムの起動時の水素パージ方法
JP5350601B2 (ja) * 2007-04-04 2013-11-27 本田技研工業株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2009259518A (ja) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4804507B2 (ja) 燃料電池システム及びその制御方法
JP2011508947A (ja) 起動時の燃料電池セルのカソードにおける水素の燃焼
US8691460B2 (en) Method of stopping operation of fuel cell system
JP5350601B2 (ja) 燃料電池システム
JP2007080723A (ja) 燃料電池システム、排出水素濃度維持方法
US9070916B2 (en) Method for controlling fuel cell system
JP4887408B2 (ja) 燃料電池システム
JP2004193107A (ja) 燃料電池システムの起動方法
JP4732407B2 (ja) 燃料電池システムの発電停止方法
JP2005032652A (ja) 燃料電池システム
JP5250294B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP4028363B2 (ja) 燃料電池システムの発電停止方法
JP4498845B2 (ja) 燃料電池の排出ガス処理装置
JP2010108756A (ja) 燃料電池システムおよび燃料電池システムのパージ制御方法
JP4747183B2 (ja) 燃料電池システムおよび燃料電池システムの掃気方法
JP2006120532A (ja) 燃料電池システム
JP5735606B2 (ja) 燃料電池システムの停止保管方法
JP2007128902A (ja) 燃料電池システムの起動時の水素パージ方法
KR101637642B1 (ko) 연료전지 시스템의 연료극 운전제어 장치 및 방법
JP2010170926A (ja) 燃料電池システムの掃気処理装置および掃気処理方法
JP2009146656A (ja) 燃料電池システム
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法
JP2009104986A (ja) 燃料電池システム及びその掃気方法
JP4627486B2 (ja) 燃料電池システムおよび燃料電池の制御方法
JP2006286482A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3