JP5230713B2 - 電池用活物質、非水電解質電池及び電池パック - Google Patents

電池用活物質、非水電解質電池及び電池パック Download PDF

Info

Publication number
JP5230713B2
JP5230713B2 JP2010244658A JP2010244658A JP5230713B2 JP 5230713 B2 JP5230713 B2 JP 5230713B2 JP 2010244658 A JP2010244658 A JP 2010244658A JP 2010244658 A JP2010244658 A JP 2010244658A JP 5230713 B2 JP5230713 B2 JP 5230713B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
active material
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010244658A
Other languages
English (en)
Other versions
JP2012099287A (ja
Inventor
康宏 原田
則雄 高見
浩貴 稲垣
頼司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010244658A priority Critical patent/JP5230713B2/ja
Priority to US13/281,968 priority patent/US9515319B2/en
Priority to CN201510218076.6A priority patent/CN104953106B/zh
Priority to EP11187075.4A priority patent/EP2448054B1/en
Priority to EP13191910.2A priority patent/EP2696430B1/en
Priority to CN201110336136.6A priority patent/CN102544466B/zh
Publication of JP2012099287A publication Critical patent/JP2012099287A/ja
Application granted granted Critical
Publication of JP5230713B2 publication Critical patent/JP5230713B2/ja
Priority to US15/341,667 priority patent/US10490813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明の実施形態は電池用活物質、それを用いた非水電解質電池及び電池パックに関する。
近年、高エネルギー密度電池として、リチウムイオン二次電池のような非水電解質電池の研究開発が盛んに進められている。非水電解質電池は、ハイブリッド自動車や、電気自動車、携帯電話基地局の無停電電源用などの電源として期待されている。そのため、非水電解質電池は、急速充放電特性、長期信頼性のような他の特性を有することも要求されている。例えば、急速充放電が可能な非水電解質電池は、充電時間が大幅に短縮されるだけでなく、ハイブリッド自動車等の動力性能の向上や動力の回生エネルギーの効率的な回収も可能である。
急速充放電を可能にするためには、電子及びリチウムイオンが正極と負極の間を速やかに移動できることが必要である。カーボン系負極を用いた電池は、急速充放電を繰り返すと、電極上に金属リチウムのデンドライト析出が生じ、内部短絡による発熱や発火の虞があった。
そこで、炭素質物の代わりに金属複合酸化物を負極に用いた電池が開発された。特に、チタン酸化物を負極に用いた電池は、安定的な急速充放電が可能であり、カーボン系負極に比べて寿命も長いという特性を有する。
しかしながら、チタン酸化物は炭素質物に比べて金属リチウムに対する電位が高い(貴である)。その上、チタン酸化物は、重量あたりの容量が低い。このため、チタン酸化物を負極に用いた電池は、エネルギー密度が低いという問題がある。
例えば、チタン酸化物の電極電位は、金属リチウム基準で約1.5Vであり、カーボン系負極の電位に比べて高い(貴である)。チタン酸化物の電位は、リチウムを電気化学的に挿入脱離する際のTi3+とTi4+の間での酸化還元反応に起因するものであるため、電気化学的に制約されている。また、1.5V程度の高い電極電位においてリチウムイオンの急速充放電が安定的に行えるという事実もある。従って、エネルギー密度を向上させるために電極電位を低下させることは実質的に困難である。
一方、単位重量当たりの容量については、二酸化チタン(アナターゼ型)の理論容量は165 mAh/g程度であり、Li4Ti5O12のようなリチウムチタン複合酸化物の理論容量も180 mAh/g程度である。一方、一般的な黒鉛系電極材料の理論容量は385 mAh/g以上である。従って、チタン酸化物の容量密度はカーボン系負極のものと比較して著しく低い。これは、チタン酸化物の結晶構造中に、リチウムを吸蔵する等価なサイトが少ないことや、構造中でリチウムが安定化し易いため、実質的な容量が低下することによるものである。
特開2010−80188号公報 特開2009−21102号公報
Journal of Solid State Chemistry 53, pp144-147 (1984) M. GASPERIN, Journal of Solid State Chemistry 53, pp144-147 (1984) I. Beharouak and K. Amine, Electrochemistry Communications, 5, 435 (2003)
優れた急速充放電性能とより高いエネルギー密度を有する電池用活物質、該活物質を用いた非水電解質電池、及び該電池を含む電池パックを提供することを目的とする。
一つの態様において、TiNb 2 O 7 で表される単斜晶型複合酸化物を含Cu−Kα線源を用いた粉末X線回折の回折図において、2θ=26°±0.5°に最も強度の高いピークが現われ、且つ、2θ=44°±1°に2本のピークが現れ、それら2本のピークの強度比(I H /I L )が1.37以下であり、ここで、I H は高角側のピークであり、I L は低角側のピークである電池用活物質が提供される。
他の態様において、上記の電池用活物質を含む負極と、正極と、非水電解質とを含む非水電解質電池が提供される。
他の態様において、上記非水電解質電池を含む電池パックが提供される。
単斜晶型TiNb2O7の結晶構造を示す模式図。 図1の結晶構造を他の方向から見た模式図。 第2実施形態に係る扁平型非水電解質電池の断面図。 図3のA部の拡大断面図。 第2実施形態に係る他の扁平型非水電解質電池を模式的に示す部分切欠斜視図。 図5のB部の拡大断面図。 第3実施形態に係る電池パックの分解斜視図。 図7の電池パックの電気回路を示すブロック図。 実施例1で合成した単斜晶型複合酸化物の粉末X線回折図。 実施例2で合成した単斜晶型複合酸化物の粉末X線回折図。 比較例で合成した複合酸化物の粉末X線回折図。 実施例1、2及び比較例について得られた初回充放電曲線。
(第1実施形態)
第1実施形態に係る電池用活物質は、LixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物を含む。ここで、前記M1はZr、Si及びSnから成る群から選択される少なくとも1つであり、前記M2はV、Ta及びBiから成る群から選択される少なくとも1つである。
このような単斜晶型複合酸化物は、1.5V(対Li/Li+)程度のリチウム吸蔵電位を有することにより安定した繰り返し急速充放電が可能である。
LixTi1-yM1yNb2-zM2zO7±δで表される単斜晶型複合酸化物の例として、単斜晶型TiNb2O7の結晶構造の模式図を図1及び2に示す。
図1に示すように、単斜晶型TiNb2O7の結晶構造は、金属イオン101と酸化物イオン102が骨格構造部分103を構成している。なお、金属イオン101には、NbイオンとTiイオンがNb:Ti=2:1の比でランダムに配置されている。この骨格構造部分103が三次元的に交互に配置されることで、骨格構造部分103同士の間に空隙部分104が存在する。この空隙部分104がリチウムイオンのホストとなる。
図1において、領域105及び領域106は、[100]方向と[010]方向に2次元的なチャネルを有する部分である。それぞれ図2に示すように、単斜晶型TiNb2O7の結晶構造には、[001]方向に空隙部分107が存在する。この空隙部分107は、リチウムイオンの導電に有利なトンネル構造を有しており、領域105と領域106とを繋ぐ[001]方向の導電経路となる。この導電経路が存在することによって、リチウムイオンは領域105と領域106を行き来することが可能となる。
このように、単斜晶型複合酸化物の結晶構造は、リチウムイオンの等価的な挿入空間が大きく且つ構造的に安定であり、さらに、リチウムイオンの拡散が速い2次元的なチャネルを有する領域とそれらを繋ぐ[001]方向の導電経路が存在することによって、挿入空間へのリチウムイオンの挿入脱離性が向上すると共に、リチウムイオンの挿入脱離空間が実効的に増加する。これにより、高い容量と高いレート性能を提供することが可能である。
なお、本実施形態で示す結晶の面指数は、空間群C2/mの対称性を持ち、非特許文献1(Journal of Solid State Chemistry 53, pp144-147 (1984))に記載の原子座標に基づいて指数付けを行った場合のものである。
またさらに、本実施形態のLixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物は、Ti、Zr、Si及びSnから選択される4価のカチオンに加えて、さらに、Nb、V、Ta及びBiから選択される5価のカチオンを含むものである。
リチウムイオンが空隙部分104に挿入されると、骨格を構成する金属イオン101が3価に還元され、これによって結晶の電気的中性が保たれる。本実施形態の単斜晶型複合酸化物では、4価のカチオンが4価から3価へ還元されるだけでなく、5価カチオンも5価から3価へと還元される。このため、4価カチオンだけを含む化合物に比べて、活物質重量あたりの還元価数が大きい。それ故、多くのリチウムイオンが挿入されても結晶の電気的中性を保つことが可能である。このため、4価カチオンだけを含む酸化チタンのような化合物に比べて、エネルギー密度を高めることができる。その結果、本実施形態の単斜晶型複合酸化物の理論容量は387 mAh/g程度であり、これはスピネル構造を有するチタン酸化物の2倍以上の値である。
本実施形態のLixTi1-yM1yNb2-zM2zO7±δは化学式あたり、1つの4価のカチオンと2つの5価のカチオンを有するため、理論上、層間に最大5つのリチウムイオンを挿入することが可能である。このため、式LixTi1-yM1yNb2-zM2zO7±δにおいて、xは0以上5以下である。また、δは単斜晶型複合酸化物の還元状態によって変動する。δが−0.3を超えると、相分離する恐れがある。一方、δ=+0.3までは測定誤差の範囲である。
本実施形態における単斜晶型複合酸化物は、Ti及びNbを含むことが好ましく、TiNb2O7であることがより好ましい。これは、単斜晶型複合酸化物の式において、y=0であり、z=0であるとき、即ち、4価のカチオンがTi4+であり、5価のカチオンがNb5+である酸化物である。これは、リチウムイオンの導電に理想的な結晶格子を提供できるため、より一層の急速充放電性能の向上と電極容量の向上を図ることが可能になる。
さらに、本実施形態の単斜晶型複合酸化物は、Cu−Kα線源を用いた粉末X線回折の回折図において、2θ=26°±0.5°に最も強度の高いピークが現われ、且つ、2θ=44°±1°に2本のピークが現れ、それら2本のピークの強度比(IH/IL)が1未満であることが好ましい。ここで、IHは高角側のピークであり、ILは低角側のピークである。
2θ=26°±0.5°に現れるピークは、主に(0 0 3)面のピークであると考えられる。2θ=26°±0.5°に現れるピークが最も強度の高いピークである場合、結晶構造中で(0 0 3)面の結晶子サイズが大きいことが推察され、[001]方向に結晶子が成長しているものと解釈できる。上述したように、[001]方向は、上下の2次元チャネルを結ぶ唯一のパスであることから、この部分が成長していることにより、挿入空間へのリチウムイオンの挿入脱離性が向上すると共に、リチウムイオンの挿入脱離空間が実効的に増加する。これにより、高い充放電容量と高いレート性能を提供することが可能である。また、リチウムイオンの挿入脱離性が高いことからリチウムの損失も少なく、優れた充放電効率を提供することも可能である。
なお、2θ=26°±0.5°の範囲に(1 1 1)面のピークが現れる場合もあると考えられるが、(0 0 3)面のピークと(1 1 1)面は、面間隔が近いことからピークを分離することは困難である場合が多い。
また、2θ=44°±1°に現れる2本のピークは、低角側のピークが(0 0 5)面のピークであり、高角側のピークが(−10 0 3)面のピークであると考えられる。
ピーク強度比(IH/IL)が1未満であると、リチウムイオン導電性が高く、容量が高い複合酸化物が得られる。好ましくは、ピーク強度比(IH/IL)は1.0未満であり、より好ましくは0.5以下である。なお、2本のピークが現れる範囲は2θ=44°±1.0°の範囲であることがより好ましい。
<粒子径及びBET比表面積>
本実施形態における複合酸化物の平均粒子径は、特に制限されず、所望の電池特性に応じて変化させることができる。さらに、本実施形態における複合酸化物のBET比表面積は特に制限されないが、5m2/g以上、200 m2/g未満であることが好ましい。
比表面積が5 m2/g以上であれば、電解液との接触面積を確保することができ、良好な放電レート特性が得られやすく、また充電時間を短縮できる。一方、比表面積が200 m2/g未満であれば、電解液との反応性が高くなり過ぎず、寿命特性を向上させることができる。また、後述する電極の製造に用いる、活物質を含むスラリーの塗工性を良好なものにすることができる。
ここで、比表面積の測定は、粉体粒子表面に吸着占有面積が既知である分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法を用いる。最も良く利用されるのが不活性気体の低温低湿物理吸着によるBET法であり、単分子層吸着理論であるLangmuir理論を多分子層吸着に拡張した、比表面積の計算方法として最も有名な理論である。これにより求められた比表面積のことをBET比表面積と称する。
<製造方法>
本実施形態の単斜晶型複合酸化物は、以下の方法により製造することができる。
まず、Ti、Zr、Si及びSnから成る群から選択される少なくとも1つを含む酸化物または塩、及び、Nb、V、Ta及びBiから成る群から選択される少なくとも1つを含む酸化物又は塩を、LixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物となるようなモル比で混合する。上記の塩は、炭酸塩及び硝酸塩のような、比較的低温で分解して酸化物を生じる塩であることが好ましい。
次に、得られた混合物を粉砕し、できるだけ均一になるように混合した後、焼成する。焼成は、1000〜1500℃の温度範囲で、延べ10〜40時間行う。
焼成温度を高くし、1300〜1500℃の範囲にすることにより、結晶性が向上し、Cu−Kα線源を用いた粉末X線回折の回折図において、2θ=26°±0.5°に最も強度の高いピークが現われ、且つ、2θ=44°±1°に2本のピークが現れ、それら2本のピークの強度比(IH/IL)が1未満である単斜晶型複合酸化物を得ることができる。
上記のように合成された単斜晶型複合酸化物は、充電することによりリチウムイオンが挿入される。或いは、合成原料に炭酸リチウムのようなリチウムを含む化合物を用いることにより、予めリチウムを含む単斜晶型複合酸化物を得ることもできる。
<粉末X線回折測定>
活物質の粉末X線回折測定は、次のように行う。まず、対象試料を平均粒子径が5μm程度となるまで粉砕する。平均粒子径はレーザー回折法によって求めることができる。粉砕した試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填する。このとき、試料が十分にホルダー部分に充填されるように留意する。また、試料の充填不足によりひび割れ、空隙等がないように注意する。次いで、外部から別のガラス板を使い、充分に押し付けて平滑化する。充填量の過不足により、ホルダーの基準面より凹凸が生じることのないように注意する。次いで、試料が充填されたガラス板を粉末X線回折装置に設置し、Cu−Kα線を用いて回折パターンを取得する。
なお、試料の配向性が高い場合は、試料の充填の仕方によってピークの位置がずれたり、強度比が変化したりする可能性がある。そのような試料は、ペレットの形状にして測定する。ペレットは、例えば直径10mm、厚さ2mmの圧粉体であってよい。該圧粉体は、試料に約250 MPaの圧力を15分間かけて製作することができる。得られたペレットをX線回折装置に設置し、その表面を測定する。このような方法で測定することにより、オペレータによる測定結果の違いを排除し、再現性を高くすることができる。
電極に含まれる活物質について粉末X線回折測定を行う場合は、例えば以下のように行うことができる。
活物質の結晶状態を把握するために、単斜晶型化合物からリチウムイオンが完全に離脱した状態にする。例えば負極として使う場合、電池を完全に放電状態にする。但し、放電状態でも残留したリチウムイオンが存在することがある。
次に、アルゴンを充填したグローブボックス中で電池を分解し、適切な溶媒で洗浄する。例えばエチルメチルカーボネートなどを用いると良い。洗浄した電極を、粉末X線回折装置のホルダーの面積と同程度切り出し、直接ガラスホルダーに貼り付けて測定してもよい。このとき、電極基板の金属箔の種類に応じてあらかじめXRDを測定しておき、どの位置に基板由来のピークが現れるかを把握しておく。また、導電助剤やバインダーといった合剤のピークの有無もあらかじめ把握しておく。基板のピークと活物質のピークが重なる場合、基板から活物質を剥離して測定することが望ましい。これは、ピーク強度を定量的に測定する際、重なったピークを分離するためである。もちろん、これらを事前に把握できているのであれば、この操作は省略することができる。電極を物理的に剥離しても良いが、溶媒中で超音波をかけると剥離しやすい。このようにして回収した電極を測定することで、活物質の粉末X線回折測定を行うことができる。
このようにして得られた粉末X線回折の結果を、リートベルト法によって解析を行った。リートベルト法では、あらかじめ推定した結晶構造モデルから計算された回折パターンを実測値と全フィッティングして、結晶構造に関するパラメータ(格子定数、原子座標、占有率等)を精密化することができ、合成した材料の結晶構造の特徴を調べることができる。
以上の実施形態によれば、優れた繰り返し急速充放電性能を有し、且つ、高いエネルギー密度を有する電池用活物質を提供することができる。
(第2実施形態)
第2実施形態では、上記第1実施形態における電池用活物質を含む負極と、正極と、非水電解質と、セパレータと、外装部材を含む非水電解質電池が提供される。
以下、負極、正極、非水電解質、セパレータ、外装部材について詳細に説明する。
1)負極
負極は、集電体と、負極層(負極活物質含有層)とを含む。負極層は、集電体の片面若しくは両面に形成され、活物質と、任意に導電剤及び結着剤を含む。
負極活物質には、第1実施形態で説明したLixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物が用いられる。ここで、M1はZr、Si及びSnから成る群から選択される少なくとも1つであり、M2はV、Ta及びBiから成る群から選択される少なくとも1つである。
このような負極活物質を用いた負極は、優れた急速充放電性能を有し、且つ、高いエネルギー密度を有する非水電解質電池用を提供することが可能である。
また、上記のLixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物は、Cu−Kα線源を用いた粉末X線回折の回折図において、2θ=26°±0.5°に最も強度の高いピークが現われ、且つ、2θ=44°±1°に2本のピークIH及びILが現れ、それら2本のピークの強度比(IH/IL)が1未満である単斜晶型複合酸化物を用いることが好ましい。ここで、IHは高角側のピークであり、ILは低角側のピークである。上記の条件を満たす単斜晶型複合酸化物はより高い結晶性を有するため、このような負極活物質を用いた負極は、より優れた急速充放電性能を有し、且つ、より高いエネルギー密度を有する非水電解質電池用を提供することが可能である。
負極活物質には、LixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物を単独で用いてもよいが、他の活物質を混合して用いてもよい。他の活物質の例には、アナターゼ構造を有する二酸化チタン(TiO2)、ラムスデライト構造を有するチタン酸リチウム(例えばLi2Ti3O7)、スピネル構造を有するチタン酸リチウム(例えばLi4Ti5O12)が含まれる。
導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例には、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が含まれる。
結着剤は、分散された負極活物質の間隙を埋め、また、活物質と集電体を結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、及びスチレンブタジェンゴムが含まれる。
負極層中の活物質、導電剤及び結着剤は、それぞれ68質量%以上96質量%以下、2質量%以上30質量%以下及び2質量%以上30質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層の集電性能を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極層と集電体の結着性が十分で、優れたサイクル特性を期待できる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
集電体は、負極活物質のリチウムの吸蔵及び放出電位において電気化学的に安定である材料が用いられる。集電体は、銅、ニッケル、ステンレス又はアルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される一以上の元素を含むアルミニウム合金から作られることが好ましい。集電体の厚さは5〜20μmであることが好ましい。このような厚さを有する集電体は、負極の強度と軽量化のバランスをとることができる。
負極は、例えば負極活物質、結着剤および導電剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、負極層を形成した後、プレスを施すことにより作製される。負極はまた、負極活物質、結着剤及び導電剤をペレット状に形成して負極層とし、これを集電体上に配置することにより作製されてもよい。
2)正極
正極は、集電体と、正極層(正極活物質含有層)とを含む。正極層は、集電体の片面若しくは両面に形成され、活物質と、任意に導電剤及び結着剤を含む。
活物質は、例えば、酸化物又は硫化物を用いることができる。酸化物及び硫化物の例には、リチウムを吸蔵する二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn2O4またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoyO2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-yO2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiyO4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO4)3)、バナジウム酸化物(例えばV2O5)、及び、リチウムニッケルコバルトマンガン複合酸化物が含まれる。上記の式において、0<x≦1であり、0<y≦1である。活物質として、これらの化合物を単独で用いてもよく、或いは、複数の化合物を組合せて用いてもよい。
より好ましい活物質の例には、正極電圧が高いリチウムマンガン複合酸化物(例えばLixMn2O4)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoyO2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiyO4)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-yO2)、リチウムリン酸鉄(例えばLixFePO4)、及び、リチウムニッケルコバルトマンガン複合酸化物が含まれる。上記の式において、0<x≦1であり、0<y≦1である。
電池の非水電解質として常温溶融塩を用いる場合に、好ましい活物質の例には、リチウムリン酸鉄、LixVPO4F(0≦x≦1)、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、及び、リチウムニッケルコバルト複合酸化物が含まれる。これらの化合物は常温溶融塩との反応性が低いため、サイクル寿命を向上させることができる。
正極活物質の一次粒径は、100nm以上1μm以下であることが好ましい。一次粒径が100nm以上の正極活物質は、工業生産上の取り扱いが容易である。一次粒径が1μm以下の正極活物質は、リチウムイオンの固体内拡散をスムーズに進行させることが可能である。
活物質の比表面積は、0.1m2/g以上10m2/g以下であることが好ましい。0.1m2/g以上の比表面積を有する正極活物質は、リチウムイオンの吸蔵・放出サイトを十分に確保できる。10m2/g以下の比表面積を有する正極活物質は、工業生産の上で取り扱い易く、かつ良好な充放電サイクル性能を確保できる。
結着剤は、活物質と集電体を結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムが含まれる。
導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために必要に応じて配合される。導電剤の例には、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が含まれる。
正極層において、活物質及び結着剤はそれぞれ80質量%以上98質量%以下、2質量%以上20質量%以下の割合で配合することが好ましい。
結着剤は、2質量%以上の量にすることにより十分な電極強度が得られる。また、20質量%以下にすることにより電極の絶縁体の配合量を減少させ、内部抵抗を減少できる。
導電剤を加える場合には、活物質、結着剤及び導電剤はそれぞれ77質量%以上95質量%以下、2質量%以上20質量%以下、及び3質量%以上15質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。また、15質量%以下にすることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。
集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される一以上の元素を含むアルミニウム合金箔であることが好ましい。
アルミニウム箔またはアルミニウム合金箔の厚さは、5μm以上20μm以下、より好ましくは15μm以下にすることが望ましい。アルミニウム箔の純度は99質量%以上が好ましい。アルミニウム箔またはアルミニウム合金箔に含まれる鉄、銅、ニッケル、クロムなどの遷移金属の含有量は、1質量%以下にすることが好ましい。
正極は、例えば活物質、結着剤及び必要に応じて配合される導電剤を適当な溶媒に懸濁してスラリーを調製し、このスラリーを正極集電体に塗布し、乾燥して正極層を形成した後、プレスを施すことにより作製される。正極はまた、活物質、結着剤及び必要に応じて配合される導電剤をペレット状に形成して正極層とし、これを集電体上に配置することにより作製されてもよい。
3)非水電解質
非水電解質は、例えば、電解質を有機溶媒に溶解することにより調製される液状非水電解質、又は、液状電解質と高分子材料を複合化したゲル状非水電解質であってよい。
液状非水電解質は、電解質を0.5モル/L以上2.5モル/L以下の濃度で有機溶媒に溶解したものであることが好ましい。
電解質の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、及びビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]のようなリチウム塩、及び、これらの混合物が含まれる。電解質は高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。
有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトキシエタン(DEE)のような鎖状エーテル;γ-ブチロラクトン(GBL)、アセトニトリル(AN)、及びスルホラン(SL)が含まれる。これらの有機溶媒は、単独で、又は混合溶媒として用いることができる。
高分子材料の例には、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)が含まれる。
また或いは、非水電解質には、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。
常温溶融塩(イオン性融体)は、有機物カチオンとアニオンの組合せからなる有機塩の内、常温(15〜25℃)で液体として存在しうる化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、有機溶媒に溶解させることで液体となる常温溶融塩が含まれる。一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
高分子固体電解質は、電解質を高分子材料に溶解し、固体化することによって調製される。
無機固体電解質は、リチウムイオン伝導性を有する固体物質である。
4)セパレータ
セパレータは、例えば、ポリエチレン、ポリプロピレン、セルロース、またはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、または、合成樹脂製不織布から形成されてよい。中でも、ポリエチレン又はポリプロピレンから形成された多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能であるため、安全性を向上できる。
5)外装部材
外装部材は、厚さ0.5mm以下のラミネートフィルムまたは厚さ1mm以下の金属製容器が用いることができる。ラミネートフィルムの厚さは0.2mm以下であることがより好ましい。金属製容器は、厚さ0.5mm以下であることがより好ましく、厚さ0.2mm以下であることがさらに好ましい。
外装部材の形状は、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等であってよい。外装部材は、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装部材、二輪乃至四輪の自動車等に積載される大型電池用外装部材であってよい。
ラミネートフィルムは、樹脂層間に金属層が介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔であることが好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属を含む場合、その含有量は1質量%以下にすることが好ましい。
6)非水電解質二次電池
次に、第2実施形態に係る非水電解質電池を、図面を参照してより具体的に説明する。図3は、扁平型非水電解質二次電池の断面図である。図4は図3のA部の拡大断面図である。なお、各図は実施形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる点があるが、これらは以下の説明と公知の技術を参酌して適宜設計変更することができる。
扁平状の捲回電極群1は、2枚の樹脂層の間に金属層を介在したラミネートフィルムからなる袋状外装部材2内に収納されている。扁平状の捲回電極群1は、図4に示すように、外側から負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。
負極3は、負極集電体3aと負極層3bとを含む。負極層3bには、上記の負極活物質が含まれる。最外殻の負極3は、図4に示すように負極集電体3aの内面側の片面のみに負極層3bを形成した構成を有する。その他の負極3は、負極集電体3aの両面に負極層3bが形成されている。
正極5は、正極集電体5aの両面に正極層5bが形成されている。
図3に示すように、捲回電極群1の外周端近傍において、負極端子6が最外殻の負極3の負極集電体3aに接続され、正極端子7が内側の正極5の正極集電体5aに接続されている。これらの負極端子6および正極端子7は、袋状外装部材2の開口部から外部に延出されている。例えば液状非水電解質は、袋状外装部材2の開口部から注入される。袋状外装部材2の開口部を負極端子6および正極端子7を挟んでヒートシールすることにより捲回電極群1および液状非水電解質が完全密封される。
負極端子6は、上述の負極活物質のLi吸蔵放出電位において電気化学的に安定であり、かつ導電性を有する材料から形成されることができる。具体的には、銅、ニッケル、ステンレスまたはアルミニウムが挙げられる。負極端子6は、負極集電体3aとの接触抵抗を低減するために、負極集電体3aと同様の材料から形成されることが好ましい。
正極端子7は、例えば、リチウムイオン金属に対する電位が3V以上5V以下の範囲における電気的安定性と導電性とを有する材料から形成されることができる。具体的には、アルミニウム又はMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金から形成される。正極端子7は、正極集電体5aとの接触抵抗を低減するために、正極集電体5aと同様の材料から形成されることが好ましい。
第2実施形態に係る非水電解質電池は、前述した図2および図3に示す構成のものに限らず、例えば図5および図6に示す構成の電池であってもよい。図5は、第2実施形態に係る別の扁平型非水電解質二次電池を模式的に示す部分切欠斜視図であり、図6は図5のB部の拡大断面図である。
積層型電極群11は、2枚の樹脂フィルムの間に金属層を介在したラミネートフィルムからなる外装部材12内に収納されている。積層型電極群11は、図6に示すように正極13と負極14とをその間にセパレータ15を介在させながら交互に積層した構造を有する。正極13は複数枚存在し、それぞれが集電体13aと、集電体13aの両面に担持された正極活物質含有層13bとを備える。負極14は複数枚存在し、それぞれが負極集電体14aと、負極集電体14aの両面に担持された負極活物質含有層14bとを備える。各負極14の負極集電体14aは、一辺が負極14から突出している。突出した負極集電体14aは、帯状の負極端子16に電気的に接続されている。帯状の負極端子16の先端は、外装部材11から外部に引き出されている。また、図示しないが、正極13の正極集電体13aは、負極集電体14aの突出辺と反対側に位置する辺が正極13から突出している。正極13から突出した正極集電体13aは、帯状の正極端子17に電気的に接続されている。帯状の正極端子17の先端は、負極端子16とは反対側に位置し、外装部材11の辺から外部に引き出されている。
以上の実施形態によれば、優れた繰り返し急速充放電性能を有し、且つ、高いエネルギー密度を有する非水電解質電池用を提供することが可能である。
(第3実施形態)
次に、第3実施形態に係る電池パックについて、図面を参照して説明する。電池パックは、上記第2実施形態に係る非水電解質電池(単電池)を1個又は複数有する。複数の単電池を含む場合、各単電池は、電気的に直列もしくは並列に接続して配置される。
図7及び図8に、電池パック20の一例を示す。この電池パック20は、図3に示した構造を有する扁平型電池21を複数含む。図7は電池パック20の分解斜視図であり、図8は図7の電池パック20の電気回路を示すブロック図である。
複数の単電池21は、外部に延出した負極端子6及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図8に示すように互いに電気的に直列に接続されている。
プリント配線基板24は、負極端子6および正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図8に示すようにサーミスタ25、保護回路26および外部機器への通電用端子27が搭載されている。なお、プリント配線基板24が組電池23と対向する面には、組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子6に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29,31は、プリント配線基板24に形成された配線32,33を通して保護回路26に接続されている。
サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34aおよびマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図7および図8の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
正極端子7および負極端子6が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。
図7、図8では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。あるいは、直列接続と並列接続を組合せてもよい。組み上がった電池パックをさらに直列又は並列に接続することもできる。
また、電池パックの態様は用途により適宜変更される。本実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
以上の実施形態によれば、優れた繰り返し急速充放電性能を有し、且つ、高いエネルギー密度を有する電池パックを提供することが可能である。
以下、実施例に基づいて上記実施形態をさらに詳細に説明する。なお、合成した単斜晶型複合酸化物の結晶相の同定及び結晶構造の推定は、Cu-Kα線を用いた粉末X線回折法によって行った。また、生成物の組成をICP法により分析し、目的物が得られていることを確認した。
<実施例1>
(合成)
一般式LixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物のうち、x=0、y=0、z=0となるTiNb2O7を合成した。出発原料として、市販の酸化物試薬Nb2O5とTiO2を用いた。これらの粉末を、モル比で1:1になるように秤量し、乳鉢で混合した。次に、電気炉に入れ、1250℃で延べ20時間焼成した。ここで用いた合成方法は、非特許文献2(M. GASPERIN, Journal of Solid State Chemistry 53, pp144-147 (1984))に記載された方法に基づくものである。
(粉末X線回折測定)
得られた試料について、以下のように粉末X線回折測定を行った。まず、試料を平均粒子径が10μm程度となるまで粉砕した。粉砕した試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填した。次いで、外部から別のガラス板を使い、充分に押し付けて平滑化した。次いで、試料が充填されたガラス板を粉末X線回折装置に設置し、Cu−Kα線を用いて回折パターンを取得した。
その結果、図9に示す回折図が得られ、リートベルト法による結晶構造解析結果から、合成した試料が目的とする単斜晶型の結晶を有することが確認された。
また、図9に示したように、2θ=23.96°に最も強度の高いピークが現われ、且つ、2θ=44°±1°の範囲に2本のピークが現れた。この2本のピークは、詳細には、2θ=44.06°における低角度側のピークと、2θ=44.46°における高角度側のピークである。低角度側のピークの強度(IL)と高角度側のピークの強度(IH)のピーク強度比(IH/IL)は1.37であった。
(電極の作製)
上記で合成した単斜晶型複合酸化物に、導電剤としてアセチレンブラックを、該酸化物に対して10重量部の割合で混合した。この混合物をNMP(N-メチル-2-ピロリドン)中に分散し、結着剤として、ポリフッ化ビニリデン(PVdF)を該酸化物に対して10重両部割合で混合して、電極スラリーを作製した。このスラリーを、ブレードを用いて、アルミ箔から成る集電体上に塗布した。これを真空下、130℃で12時間乾燥し、電極を得た。
<実施例2>
(合成)
一般式LixTi1-yM1yNb2-zM2zO7±δ(0≦x≦5、0≦y≦1、0≦z≦2、0≦δ≦0.3)で表される単斜晶型複合酸化物のうち、x=0、y=0、z=0となるTiNb2O7を合成した。出発原料として、市販の酸化物試薬Nb2O5とTiO2を用いた。これらの粉末を、モル比で1:1になるように秤量し、乳鉢で混合した。次に、電気炉に入れ、1400℃で延べ20時間焼成した。
(粉末X線回折測定)
得られた試料について、実施例1と同様に粉末X線回折測定を行った。その結果、図10に示す回折図が得られ、同様にリートベルト法による解析結果から、合成した試料が目的とする単斜晶型の結晶を有することが確認された。
また、図10に示したように、2θ=26.14°に最も強度の高いピークが現われ、且つ、2θ=44°±1°の範囲に2本のピークが現れた。この2本のピークは、詳細には、2θ=44.12°における低角度側のピークと、2θ=44.52°における高角度側のピークである。低角度側のピークの強度(IL)と高角度側のピークの強度(IH)のピーク強度比(IH/IL)は0.32であった。
(電極の作製)
上記で合成した単斜晶型複合酸化物を用いて、実施例1と同様に電極を作製した。
<比較例>
(合成)
比較例として、式LiSr0.5Ti3O7で表される複合酸化物を合成した。この複合酸化物は、カチオンとして4価及び2価のカチオンを含むものである。結晶中の4価のカチオンはTiであり、2価のカチオンはSrである。この複合酸化物は、非特許文献3(I. Beharouak and K. Amine, Electrochemistry Communications, 5, 435 (2003))に記載されているものである。
出発原料として、市販の試薬Li2CO3、SrCO3、及びTiO2を用いた。これらの粉末を、目的の組成となるモル比で秤量し、乳鉢で混合した。次に、電気炉に入れ、1250℃で延べ20時間焼成した。
(粉末X線回折測定)
得られた試料について、実施例1と同様に粉末X線回折測定を行った。その結果、図11に示す回折図が得られた。得られた回折図の特徴が、非特許文献3に記載された化合物の回折図の特徴と一致したことから、目的とする複合酸化物が得られていることが推察された。更に、非特許文献3の情報からリートベルト解析を行った結果、目的とする複合酸化物が得られていることを確認した。また、図11に示すように、最も強度の高いピークは2θ=46°付近に現われた。2θ=44°±1°の範囲に2本のピークは現れなかった。
(電極の作製)
上記で合成した複合酸化物を用いて、実施例1と同様に電極を作製した。
<電気化学的測定>
実施例1,2及び比較例のそれぞれの電極と、対極として金属リチウム箔と、非水電解質を用いて、電気化学測定セルを作製した。非水電解質として、エチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比1:1)中に六フッ化リン酸リチウムを1Mの濃度で溶解させたものを用いた。
実施例1,2及び比較例のそれぞれの測定セルについて、室温で充放電試験を行った。充放電試験は、金属リチウム電極基準で1.0V〜3.0Vの電位範囲で、充放電電流値を0.2C(時間放電率)として行った。但し、比較例については結晶構造を保護するために、1.0V〜2.0Vの電位範囲で測定を行った。
次に、50サイクル繰り返し充放電を行い(充電/放電で1サイクルとする)、50サイクル後の放電容量維持率を調べた。充放電は、金属リチウム電極基準で、実施例は1.0V〜3.0V、比較例は1.0V〜2.0Vの電位範囲で、電流値を1C(時間放電率)とし、室温(25℃)で行った。50回後の放電容量維持率を確認するため、再び0.2C(時間放電率)で充放電を行い、初回放電容量を100%として容量維持率を算出した。
また、レート性能の指標として、0.2C放電容量と1.0C放電容量の比を算出した。
<結果>
結果を表1に示す。
実施例1、2及び比較例について得られた初回充放電曲線を図12に示した。また、充放電試験の結果を表1に示した。
Figure 0005230713
表1及び図12に示したように、結晶構造中に4価のカチオンと5価のカチオンを含む複合酸化物を用いた実施例1及び2は、結晶構造中に2価のカチオンと4価のカチオンを含む複合酸化物を用いた比較例に比べて、初回放電容量及び初回充放電効率が高かった。また、50サイクル後の放電容量維持率と充放電効率も高く、安定的に充放電が可能であることが示された。また、1C/0.2C容量比が高いことからレート性能も高いことが示された。このように、4価のカチオンと5価のカチオンを含む複合酸化物が優れた性能を有するのは、酸化物イオンの電子雲を5価カチオンが引き付けるためLiと酸化物イオンの電子的な相関が薄れ、かつ、Liの挿入に伴って5価のカチオンが還元されることによるものと考えられる。
さらに、実施例2は、図10に示したように(0 0 3)面のピークと考えられる2θ=26±0.5°に最も強度が高いピークが現われ、その線幅もシャープであることから、[001]方向の結晶子がよく成長していると考えられる。また、2θ=44°±1°の範囲に現れる2本のピークの強度比(IH/IL)が0.32であった。このような実施例2は、ピーク強度比が1.37であった実施例1と比べて、充放電容量、充放電効率、容量維持率、及びレート性能の何れも高かった。
このことから、2θ=26±0.5°に最強度ピークが現われ、2θ=44°±1°の範囲に現れる2本のピークの強度比(IH/IL)が1未満である単斜晶型複合酸化物は、さらに優れた性能を有するものと考えられる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,11…電極群、2,12…外装部材、3,14…負極、4,15…セパレータ、5,13…正極、6,16…負極端子、7,17…正極端子、20…電池パック、21…単電池、24…プリント配線基板、25…サーミスタ、26…保護回路、37…収納容器、101…金属イオン、102…酸化物イオン、103…骨格構造部分、104…空隙部分、105、106…領域、107…空隙部分。

Claims (3)

  1. TiNb 2 O 7 で表される単斜晶型複合酸化物を含
    Cu−Kα線源を用いた粉末X線回折の回折図において、2θ=26°±0.5°に最も強度の高いピークが現われ、且つ、2θ=44°±1°に2本のピークが現れ、それら2本のピークの強度比(I H /I L )が1.37以下であり、ここで、I H は高角側のピークであり、I L は低角側のピークである、電池用活物質。
  2. 請求項に記載の電池用活物質を含む負極と、
    正極と、
    非水電解質と、
    を含むことを特徴とする非水電解質電池。
  3. 請求項に記載の非水電解質電池を含むことを特徴とする電池パック。
JP2010244658A 2010-10-29 2010-10-29 電池用活物質、非水電解質電池及び電池パック Active JP5230713B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010244658A JP5230713B2 (ja) 2010-10-29 2010-10-29 電池用活物質、非水電解質電池及び電池パック
US13/281,968 US9515319B2 (en) 2010-10-29 2011-10-26 Battery active material, nonaqueous electrolyte battery and battery pack
EP11187075.4A EP2448054B1 (en) 2010-10-29 2011-10-28 Battery active material, nonaqueous electrolyte battery and battery pack
EP13191910.2A EP2696430B1 (en) 2010-10-29 2011-10-28 Negative electrode for battery, nonaqueous electrolyte battery and battery pack
CN201510218076.6A CN104953106B (zh) 2010-10-29 2011-10-28 电池用活性物质、非水电解质电池及电池包
CN201110336136.6A CN102544466B (zh) 2010-10-29 2011-10-28 电池用活性物质、非水电解质电池及电池包
US15/341,667 US10490813B2 (en) 2010-10-29 2016-11-02 Battery active material, nonaqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244658A JP5230713B2 (ja) 2010-10-29 2010-10-29 電池用活物質、非水電解質電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013055381A Division JP5694411B2 (ja) 2013-03-18 2013-03-18 電池用負極、非水電解質電池及び電池パック

Publications (2)

Publication Number Publication Date
JP2012099287A JP2012099287A (ja) 2012-05-24
JP5230713B2 true JP5230713B2 (ja) 2013-07-10

Family

ID=45420541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244658A Active JP5230713B2 (ja) 2010-10-29 2010-10-29 電池用活物質、非水電解質電池及び電池パック

Country Status (4)

Country Link
US (2) US9515319B2 (ja)
EP (2) EP2448054B1 (ja)
JP (1) JP5230713B2 (ja)
CN (2) CN104953106B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911223A1 (en) 2014-02-24 2015-08-26 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535787A (ja) * 2010-07-30 2013-09-12 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 酸化ニオブ組成物およびその使用方法
JP5649492B2 (ja) 2011-03-22 2015-01-07 株式会社東芝 電池用活物質、非水電解質電池及び電池パック
JP5793442B2 (ja) 2012-02-09 2015-10-14 株式会社東芝 電池用活物質、非水電解質電池及び電池パック
JP5694245B2 (ja) * 2012-07-12 2015-04-01 株式会社東芝 活物質、非水電解質電池および電池パック
JP5694254B2 (ja) 2012-08-07 2015-04-01 株式会社東芝 活物質、非水電解質電池および電池パック
US10096826B2 (en) * 2012-10-26 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and method of producing active material
JP5924237B2 (ja) 2012-11-08 2016-05-25 ソニー株式会社 リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6076926B2 (ja) 2013-03-25 2017-02-08 株式会社東芝 電池用活物質、非水電解質電池、電池パック及び自動車
JP6316383B2 (ja) * 2013-03-26 2018-04-25 株式会社東芝 電池用活物質、非水電解質電池、電池パック及び自動車
JP6046069B2 (ja) * 2013-03-26 2016-12-14 株式会社東芝 電池用活物質、非水電解質電池、電池パック及び自動車
JP6076928B2 (ja) * 2013-03-26 2017-02-08 株式会社東芝 電池用活物質材料、非水電解質電池、電池パック及び自動車
EP2784858B1 (en) * 2013-03-27 2015-08-19 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
US9373841B2 (en) 2013-03-27 2016-06-21 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
JP6193184B2 (ja) * 2013-07-08 2017-09-06 株式会社東芝 非水電解質二次電池用負極活物質、非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池、電池パック及び車
JP6382649B2 (ja) * 2013-09-20 2018-08-29 株式会社東芝 非水電解質二次電池用負極活物質材料、非水電解質電池、電池パック及び車両
JP6275593B2 (ja) * 2013-09-24 2018-02-07 株式会社東芝 リチウムイオン二次電池用負極活物質材料及びその製造方法、リチウムイオン二次電池、電池パック、並びに自動車
JP6302385B2 (ja) 2013-11-08 2018-03-28 株式会社東芝 非水電解質二次電池用負極活物質の製造方法
JP6315998B2 (ja) * 2014-01-17 2018-04-25 株式会社東芝 負極及び非水電解質電池
WO2015138019A1 (en) * 2014-03-12 2015-09-17 Imra America,Inc. Negative electrode active material for energy storage devices and method for making the same
EP3121878B1 (en) 2014-03-18 2019-01-16 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
JP5908650B2 (ja) * 2014-03-18 2016-04-26 株式会社東芝 電池用活物質、非水電解質電池及び電池パック
JP6289995B2 (ja) * 2014-05-13 2018-03-07 株式会社東芝 負極、負極の製造方法、及び非水電解質電池
JP6293606B2 (ja) * 2014-07-30 2018-03-14 株式会社東芝 複合体、複合体の製造方法、非水電解質電池用活物質材料、及び非水電解質電池
JP6334308B2 (ja) 2014-07-31 2018-05-30 株式会社東芝 非水電解質電池、電池パック、及び車
JP2016033898A (ja) * 2014-07-31 2016-03-10 株式会社東芝 非水電解質電池及び電池パック
WO2016038716A1 (ja) * 2014-09-11 2016-03-17 株式会社東芝 非水電解質二次電池およびそれを備えた電池パック
JP2015111585A (ja) * 2015-01-30 2015-06-18 株式会社東芝 活物質、非水電解質電池および電池パック
JP2016171023A (ja) * 2015-03-13 2016-09-23 株式会社東芝 電池用活物質、非水電解質電池、及び電池パック
JP6125555B2 (ja) 2015-03-18 2017-05-10 株式会社東芝 電池用活物質の製造方法
CN105047989B (zh) * 2015-07-09 2017-07-11 山东玉皇新能源科技有限公司 一种钙钛矿型固体电解质锂镧钛氧化合物的电化学制备方法
JP6767100B2 (ja) * 2015-09-14 2020-10-14 株式会社東芝 電池用活物質、電極、非水電解質電池、電池パック、及び自動車
JP6259433B2 (ja) * 2015-09-14 2018-01-10 太平洋セメント株式会社 二次電池用負極活物質の製造方法
JP6523113B2 (ja) * 2015-09-14 2019-05-29 株式会社東芝 電極、非水電解質電池、電池パック、および自動車
JP6505561B2 (ja) 2015-09-16 2019-04-24 株式会社東芝 電池用活物質、非水電解質電池及び電池パック
JP6523892B2 (ja) * 2015-09-16 2019-06-05 株式会社東芝 電極、非水電解質電池、電池パック及び車
JP6538500B2 (ja) 2015-09-16 2019-07-03 株式会社東芝 非水電解質電池、電池パック、及び車
JP6570934B2 (ja) * 2015-09-16 2019-09-04 株式会社東芝 電池用活物質、電極、非水電解質電池、電池パック及び車
KR101950086B1 (ko) 2016-03-15 2019-02-19 가부시끼가이샤 도시바 비수전해질 전지, 전지 팩 및 차량
JP6577396B2 (ja) * 2016-03-16 2019-09-18 株式会社東芝 活物質、電極、非水電解質電池、電池パック、及び車両
JP6132945B2 (ja) * 2016-03-17 2017-05-24 株式会社東芝 電池パック及び自動車
JP6659643B2 (ja) 2017-09-20 2020-03-04 株式会社東芝 活物質、活物質複合材料、電極、二次電池、電池パック及び車両
US11223035B2 (en) 2017-11-27 2022-01-11 Global Graphene Group, Inc. Graphene-enabled niobium-based composite metal oxide as an anode active material for a lithium-ion battery
US11037738B2 (en) 2018-02-13 2021-06-15 Nanotek Instruments Group, Llc Hybrid supercapacitor containing a niobium composite metal oxide as an anode active material
JP6980587B2 (ja) * 2018-03-23 2021-12-15 株式会社東芝 電極、二次電池、電池パック、及び車両
JP6892407B2 (ja) * 2018-03-23 2021-06-23 株式会社東芝 電極、二次電池、電池パック、及び車両
JP7000223B2 (ja) * 2018-03-26 2022-01-19 株式会社東芝 活物質、活物質複合材料、電極、二次電池、電池パック及び車両
WO2019187132A1 (ja) * 2018-03-30 2019-10-03 株式会社 東芝 電極複合体、電池及び電池パック
FR3080957B1 (fr) 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
GB202013576D0 (en) 2020-08-28 2020-10-14 Echion Tech Limited Active electrode material
JP2023501778A (ja) 2019-10-18 2023-01-19 エチオン テクノロジーズ リミテッド 活電極材料
FR3109023B1 (fr) * 2020-04-06 2022-06-03 Accumulateurs Fixes Matière active anodique pour élément électrochimique lithium-ion
JP2021190250A (ja) * 2020-05-28 2021-12-13 株式会社東芝 電極材料、電極、二次電池、電池パック、及び車両
JP7289018B1 (ja) 2020-06-03 2023-06-08 エチオン テクノロジーズ リミテッド 活電極材料
JP7330150B2 (ja) 2020-09-14 2023-08-21 株式会社東芝 電極、二次電池、電池パック及び車両
EP4227447A1 (en) 2020-10-09 2023-08-16 National Institute Of Advanced Industrial Science and Technology Composite oxide with novel crystal structure, and all-solid-state lithium ion secondary battery using said composite oxide as solid electrolyte
EP4059892B1 (en) 2021-03-17 2023-12-13 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN114005978B (zh) * 2021-12-30 2022-03-15 蜂巢能源科技股份有限公司 一种无钴正极材料及其制备方法和应用
CN114614018B (zh) * 2022-03-25 2022-11-25 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) 一种锂离子电池负极材料及其制备方法和锂离子二次电池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527842B1 (fr) * 1982-06-01 1992-02-07 Western Electric Co Element de pile ou d'accumulateur non aqueux utilisant une electrode positive en oxydes metalliques melanges
DE3680249D1 (de) * 1985-05-10 1991-08-22 Asahi Chemical Ind Sekundaerbatterie.
JP3625680B2 (ja) 1999-03-25 2005-03-02 三洋電機株式会社 リチウム二次電池
JP4643791B2 (ja) 2000-03-27 2011-03-02 富士フイルム株式会社 光電変換素子の製造方法、および太陽電池
JP2002260599A (ja) 2001-03-02 2002-09-13 Toshiba Battery Co Ltd 扁平形非水電解液電池
JP4702510B2 (ja) 2001-09-05 2011-06-15 信越化学工業株式会社 リチウム含有酸化珪素粉末及びその製造方法
JP2003282162A (ja) 2002-03-22 2003-10-03 Toto Ltd 金属酸化物半導体分散液組成物およびそれを用いた色素増感型光半導体電極
JP2003282161A (ja) 2002-03-22 2003-10-03 Toto Ltd 金属酸化物半導体分散液組成物およびそれを用いた色素増感型光半導体電極
JP2005135775A (ja) 2003-10-30 2005-05-26 Yuasa Corp リチウムイオン二次電池
JP2006040826A (ja) 2004-07-30 2006-02-09 Hitachi Maxell Ltd コイン形電池
FR2874603B1 (fr) 2004-08-31 2006-11-17 Commissariat Energie Atomique Compose pulverulent d'oxyde mixte de titane et de lithium dense, procede de fabrication d'un tel compose et electrode comportant un tel compose
TWI313614B (en) 2006-05-11 2009-08-21 An infrared ray generator
JP4602306B2 (ja) * 2006-09-29 2010-12-22 株式会社東芝 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP2009021102A (ja) 2007-07-12 2009-01-29 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP5178111B2 (ja) 2007-09-26 2013-04-10 株式会社東芝 非水電解質電池およびパック電池
JP2010080188A (ja) 2008-09-25 2010-04-08 Sony Corp 二次電池
WO2010052950A1 (ja) 2008-11-04 2010-05-14 国立大学法人岩手大学 不定比チタン化合物、その炭素複合体、それら化合物の製造方法、及びそれら化合物を含むリチウムイオン二次電池用負極活物質、並びにそれを用いたリチウムイオン二次電池
JP2010225302A (ja) 2009-03-19 2010-10-07 Hitachi Maxell Ltd 扁平形電池
JP2010287496A (ja) * 2009-06-12 2010-12-24 Mitsubishi Chemicals Corp 非水電解質二次電池用負極材、非水電解質二次電池用負極及びそれを用いた非水電解質二次電池
CN101648147B (zh) 2009-08-28 2012-10-17 南京工业大学 一种介孔复合氧化钛及其制备方法
JP5450159B2 (ja) 2010-02-25 2014-03-26 チタン工業株式会社 電極用酸化チタン系化合物及びそれを用いたリチウム二次電池
US8510270B2 (en) 2010-07-27 2013-08-13 Oracle International Corporation MYSQL database heterogeneous log based replication
JP2013535787A (ja) 2010-07-30 2013-09-12 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 酸化ニオブ組成物およびその使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911223A1 (en) 2014-02-24 2015-08-26 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
US9806339B2 (en) 2014-02-24 2017-10-31 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same

Also Published As

Publication number Publication date
EP2448054B1 (en) 2013-12-11
JP2012099287A (ja) 2012-05-24
CN102544466B (zh) 2015-06-03
EP2696430B1 (en) 2017-06-28
EP2696430A1 (en) 2014-02-12
US20170077512A1 (en) 2017-03-16
EP2448054A1 (en) 2012-05-02
CN104953106B (zh) 2018-01-23
US20120107692A1 (en) 2012-05-03
CN102544466A (zh) 2012-07-04
US10490813B2 (en) 2019-11-26
CN104953106A (zh) 2015-09-30
US9515319B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP5230713B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP5649492B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP5793442B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP6092073B2 (ja) 電池用活物質、非水電解質電池、電池パック及び自動車
JP5908650B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP6096817B2 (ja) 非水電解質二次電池および電池パック
JP6189177B2 (ja) 活物質、非水電解質電池、電池パック及び自動車
JP5694254B2 (ja) 活物質、非水電解質電池および電池パック
JP6092329B2 (ja) 非水電解質電池用負極活物質、非水電解質電池及び電池パック
JP5908649B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP2016177974A (ja) 電極、非水電解質電池及び電池パック
JP5925845B2 (ja) 電池用活物質、非水電解質電池及び電池パック
JP2017054695A (ja) 電池用活物質、非水電解質電池及び電池パック
JP5694411B2 (ja) 電池用負極、非水電解質電池及び電池パック
JP2015111585A (ja) 活物質、非水電解質電池および電池パック
JP6266481B2 (ja) リチウムイオン二次電池用活物質、リチウムイオン二次電池、電池パック及び車
JP5833176B2 (ja) 非水電解質電池及び電池パック
JP6132945B2 (ja) 電池パック及び自動車
JP2015046400A (ja) 電池用活物質、非水電解質電池及び電池パック

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5230713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151