JP5187990B2 - Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device - Google Patents

Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device Download PDF

Info

Publication number
JP5187990B2
JP5187990B2 JP2000391340A JP2000391340A JP5187990B2 JP 5187990 B2 JP5187990 B2 JP 5187990B2 JP 2000391340 A JP2000391340 A JP 2000391340A JP 2000391340 A JP2000391340 A JP 2000391340A JP 5187990 B2 JP5187990 B2 JP 5187990B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive film
transparent conductive
conductive fine
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000391340A
Other languages
Japanese (ja)
Other versions
JP2002194248A (en
Inventor
沢 光 章 熊
井 千 尋 桜
井 俊 晴 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2000391340A priority Critical patent/JP5187990B2/en
Publication of JP2002194248A publication Critical patent/JP2002194248A/en
Application granted granted Critical
Publication of JP5187990B2 publication Critical patent/JP5187990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の技術分野】
本発明は、透明導電性被膜形成用塗布液、該塗布液を塗布・乾燥して得られる透明導電性被膜付基材および該基材を前面板として備えた表示装置に関し、さらに詳しくは、導電性が高く、帯電防止性、電磁遮蔽性、透明性、反射防止性等に優れた透明導電性被膜付基材を得ることが可能な塗布液、該基材および透明導電性被膜付基材で構成された前面板を備えた表示装置に関する。
【0002】
【発明の技術的背景】
従来より、陰極線管、蛍光表示管、液晶表示板などの表示パネルのような透明基材の表面の帯電防止および反射防止を目的として、これらの表面に帯電防止機能および反射防止機能を有する透明被膜を形成することが行われていた。
陰極線管などから放出される電磁波が人体に及ぼす影響が最近問題にされており、従来の帯電防止、反射防止に加えてこれらの電磁波および電磁波の放出に伴って形成される電磁場を遮蔽することが望まれている。
【0003】
これらの電磁波などを遮蔽する方法の一つとして、陰極線管などの表示パネルの表面に電磁波遮断用の導電性被膜を形成する方法がある。このような帯電防止用導電性被膜であれば表面抵抗が少なくとも107Ω/□程度の表面抵抗を、電磁遮蔽用の導電性被膜では102〜104Ω/□のような低い表面抵抗を有することが必要であった。
【0004】
このように表面抵抗の低い導電性被膜を、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物を含む塗布液を用いて形成しようとすると、従来の帯電防止性被膜の場合よりも膜厚を厚くする必要があった。しかしながら、導電性被膜の膜厚は、10〜200nm程度にしないと反射防止効果は発現しないため、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物では、表面抵抗が低く、電磁波遮断性に優れるとともに、反射防止にも優れた導電性被膜を得ることが困難であるという問題があった。
【0005】
また、低表面抵抗の導電性被膜を形成する方法の一つとして、Agなどの金属微粒子を含む導電性被膜形成用塗布液を用いて基材の表面に金属微粒子含有被膜を形成する方法がある。この方法では、金属微粒子含有被膜形成用塗布液として、コロイド状の金属微粒子が極性溶媒に分散したものが用いられている。このような塗布液では、コロイド状金属微粒子の分散性を向上させるために、金属微粒子表面がポリビニルアルコール、ポリビニルピロリドンまたはゼラチンなどの有機系安定剤で表面処理されている。しかしながら、このような金属微粒子含有被膜形成用塗布液を用いて形成された導電性被膜は、被膜中で金属微粒子同士が安定剤を介して接触するため、粒界抵抗が大きく、被膜の表面抵抗が低くならないことがあった。このため、成膜後、400℃程度の高温で焼成して安定剤を分解除去すると、特に粒子径分布が均一の金属微粒子を用いた場合は金属微粒子同士の融着や凝集が起こり、導電性被膜の透明性やへーズが低下するという問題があり、さらには、陰極線管などの場合は、高温に晒すことによって劣化してしまうという問題もあった。さらにまた、Ag等の金属微粒子を含む透明導電性被膜では、焼成時に、金属が酸化されたり、イオン化による粒子成長したり、また場合によっては腐食が発生することがあり、これによって塗膜の導電性や光透過率が低下し、表示装置が信頼性を欠くという問題があった。
【0006】
また、従来の透明導電性被膜のように、粒子径分布が均一な微粒子が用いられたものでは、細密充填したとしても粒子間隙が多く、かつ粒子の接点が点接触であるとともに、接点の数が少ないために、導電性が充分に発揮されない場合や再現性が得られないことがあった。さらに、粒子間隙が多いために導電性微粒子層上に形成する絶縁性の透明被膜成分が粒子間隙に進入して導電性を阻害することがあった。このため、たとえば膜の抵抗を低くするために膜厚を厚くすると透明性が低下するなどの問題点があった。
【0007】
【発明の目的】
本発明は、上記のような従来技術の問題点を解決し、低い表面抵抗を有し、帯電防止性、透明性、反射防止性、および電磁遮蔽性に優れるとともに、信頼性にも優れた透明導電性被膜を形成しうる透明導電性被膜形成用塗布液、透明導電性被膜付基材、該基材を前面板として備えた表示装置を提供することを目的としている。
【0008】
【発明の概要】
本発明に係る透明導電性被膜形成用塗布液は、
平均粒子径(PA)が2〜200nmの範囲にある導電性微粒子(A)と平均粒子径(PB)が1〜20nmの範囲にある導電性微粒子(B)との導電性微粒子混合物と、極性溶媒とからなり、
導電性微粒子(A)と(B)との平均粒子径の比PB/PAが、0.01〜0.5の範囲にあることを特徴としている。
【0009】
前記導電性微粒子(A)および(B)は、下記(i)〜(iii)から選ばれるものであることが好ましい。
(i)Au、Ag、Pd、Cu、Ni、Ru、Rh、Sn、In、Sb、Fe、Pt、Ti、Cr、Co、Al、Zn、Ta、Pb、Os、Irからなる群から選ばれる1種以上の元素の金属、
(ii)Sn、In、Sb、Ti、Ruからなる群から選ばれる1種以上の元素の酸化物または水酸化物、または
(iii)Sn、In、Sbからなる群から選ばれる1種以上の元素の酸化物に、酸化物を構成する元素とは異なる元素がドープされた異種元素ドープ酸化物。
【0010】
導電性微粒子(A)と導電性微粒子(B)との混合物の重量を100重量%としたときに、導電性微粒子(B)の割合が1〜30重量%の範囲にあることが好ましい。
本発明に係る透明導電性被膜付基材は、基材と、前記透明導電性被膜形成用塗布液を塗布、乾燥してなる透明導電性被膜とからなることを特徴としている。
【0011】
前記透明導電性被膜上には、さらに該透明導電性被膜よりも屈折率が低い透明被膜が設けられていることが好ましい。
前記透明導電性被膜は、透明導電性被膜形成用塗布液を基材に塗布、乾燥した後、化学的処理(酸処理)および/または100〜400℃の温度範囲で加熱処理して得られたものが好ましい。
【0012】
本発明に係る表示装置は、前記記載の透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴としている。
【0013】
【発明の具体的な説明】
以下、本発明に係る透明導電性被膜形成用塗布液およびその用途について具体的に説明する。
[透明導電性被膜形成用塗布液]
まず、本発明に係る透明導電性被膜形成用塗布液について説明する。
【0014】
本発明に係る透明導電性被膜形成用塗布液は、
平均粒子径(PA)が2〜200nmの範囲にある導電性微粒子(A)と平均粒子径(PB)が1〜20nmの範囲にある導電性微粒子(B)との導電性微粒子混合物と、極性溶媒とからる。
導電性微粒子(A)
導電性微粒子(A)の平均粒子径(PA)が2〜200nm、好ましくは2〜150nmの範囲にある導電性微粒子である。導電性微粒子(A)の平均粒子径が2nm未満の場合は、粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。
【0015】
導電性微粒子(A)の平均粒子径(PA)が200nmを越えると、被膜の形成性が低下したり、金属による光の吸収が大きくなり、粒子層の光透過率が低下するとともにヘーズが大きくなることがある。
導電性微粒子(B)
導電性微粒子(B)は、平均粒子径(PB)が1〜20nm、好ましくは1〜15nmの範囲にあり、かつ前記導電性微粒子(A)と(B)との平均粒子径の比PB/PAが、0.01〜0.5、好ましくは0.05〜0.4の範囲にあることを特徴としている。
【0016】
このような導電性微粒子(B)は、導電性微粒子(A)よりも大きさが非常に小さく、透明導電性被膜を形成する際、乾燥によって、図1に示されるように、前記導電性微粒子(A)同士が連結したネック部に、導電性微粒子(B)が付着、充填する。その結果、導電性微粒子(A)同士の接点が、付着・充填した導電性微粒子(B)を介することによって増大し、粒界抵抗が低下するため、導電層の表面抵抗を低下させることができる。
【0017】
平均粒子径(PB)が1nm未満の場合は、導電性微粒子(B)が付着・充填した粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を形成できないことがある。
また、導電性微粒子(B)の平均粒子径(PB)が20nmを越えると、透明導電性被膜を形成する際に、導電性微粒子(B)の表面に付着したり、導電性微粒子(A)同士のネック部分に付着しにくくなり、また付着しても付着する数が少なくなるため、接点の数が少なく、粒界抵抗を低下させる効果が得られないことがある。また、粒子径分布が均一の金属微粒子を用いた場合と、実質的に変わらなくなるので、導電性微粒子(A)および(B)同士がランダムに凝集したり、融着して、導電性被膜の透明性やへーズが低下することがある。
【0018】
導電性微粒子(A)と導電性微粒子(B)との平均粒子径の比PB/PAが0.01未満の場合は、ネック部に選択的に付着せず、導電性微粒子(A)の表面全体に付着しやすくなり、また、導電性微粒子(A)と導電性微粒子(B)との平均粒子径の比PB/PAが0.5を越えると、導電性微粒子(B)の粒子径が大きすぎてネック部に密に充填できなくなり、このため接点も増加せず、また融着も起こりにくくなるので、いずれも粒界抵抗を低下させて導電層の表面抵抗を低下させるという効果が得られないこともある。
【0019】
本発明に係る透明導電性被膜形成用塗布液中には、このような導電性微粒子(A)と(B)との混合物が分散している。なお、塗布液中では導電性微粒子(A)および(B)は、図1に示されるように凝集しているとは限らず、通常、個々に分散している。
導電性微粒子(A)と導電性微粒子(B)との混合物の重量を100重量%としたときに、導電性微粒子(B)の割合が1〜30重量%、5〜20重量%の範囲にあることが好ましい。このような範囲にあれば、透明導電性被膜を形成する際に導電性微粒子(A)同士が連結したネック部に導電性微粒子(B)が付着して接点が増大され、粒界抵抗が低下され、導電層の表面抵抗を低下させることができる。混合物中の導電性微粒子(B)の割合が1重量%未満の場合は、導電性微粒子(B)が少なすぎて、ネック部に付着する導電性微粒子(B)の量も少なくなるため、前記したような粒界抵抗を低下させ、導電層の表面抵抗を低下せせるという効果が得られないことがある。また、混合物中の導電性微粒子(B)の割合が20重量%を越えると、導電性微粒子(B)が多すぎて、ネック部以外に導電性微粒子(A)表面全体に付着するので本願でいう効果が充分得られず、導電層は導電性微粒子(B)のみを用いた場合と同程度の表面抵抗になる。
【0020】
このような導電性微粒子(A)および(B)は、下記(i)〜(iii)から選ばれるものであることが好ましい。
(i)Au、Ag、Pd、Cu、Ni、Ru、Rh、Sn、In、Sb、Fe、Pt、Ti、Cr、Co、Al、Zn、Ta、Pb、Os、Irからなる群から選ばれる1種以上の元素の金属、
(ii)Sn、In、Sb、Ti、Ruからなる群から選ばれる1種以上の元素の酸化物または水酸化物、または
(iii)Sn、In、Sbからなる群から選ばれる1種以上の元素の酸化物に、酸化物を構成する元素とは異なる元素がドープされた異種元素ドープ酸化物。
【0021】
導電性微粒子が金属微粒子の場合、1種の金属からなるものであっても2種以上の元素からなる複合金属からなるものであってもよい。複合金属微粒子である場合の好ましい金属の組合せとしては、Au-Cu、Ag-Pt、Ag-Pd、Au-Pd、Au-Rh、Pt-Pd、Pt-Rh、Fe-Ni、Ni-Pd、Fe-Co、Cu-Co、Ag-Ru、Au-Ru、Ru-Pd、Ru-Ni、Au-Cu-Ag、Ag-Cu-Pt、Ag-Cu-Pd、Ag-Au-Pd、Au-Rh-Pd、Au-Pd-Ru、Ag-Pt-Pd、Ag-Pt-Rh、Fe-Ni-Pd、Fe-Co-Pd、Cu-Co-Pd などが挙げられる。導電性微粒子を構成する2種以上の金属は、固溶状態にある合金であっても、固溶状態にない共晶体であってもよく、合金と共晶体が共存していてもよい。このような金属微粒子は、金属の酸化やイオン化あるいはイオンマイグレーションが抑制されるため、金属微粒子の粒子成長等が抑制され、金属微粒子の耐腐食性が高く、導電性、光透過率の低下が小さいなど信頼性に優れている。
【0022】
導電性微粒子が金属酸化物、または金属水酸化物(水和金属酸化物ということもある)、あるいは異種金属ドープ金属酸化物の好ましい例としては、たとえば酸化錫、Sb、FまたはPがドーピングされた酸化錫、酸化インジウム、SnまたはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンなどが挙げられる。
【0023】
導電性微粒子(A)および(B)は同一材料からなるものであっても、異なる材料からなるものであってもよい。また、導電性微粒子(A)が金属からなるものであって、導電性微粒子(B)が金属酸化物からなるものであってもよく、また導電性微粒子(A)が金属酸化物からなるものであって、導電性微粒子(B)が金属からなるものであってもよい。
【0024】
導電性微粒子(A)と導電性微粒子(B)とが異なる成分である場合、導電性微粒子(B)は導電性微粒子(A)よりも融点が低い成分であることが好ましく、また導電性が高い成分であることが好ましい。導電性微粒子(B)と導電性微粒子(A)とが異なる成分である場合、(B)−(A)の好ましい組み合わせは、Sb-Sn、Sn-In、In23-Sn、Pd-Ag、Au-Ag、Ru-Ag、Au-Ruなどが例示される。
【0025】
導電性微粒子(A)および(B)の混合物は、平均粒子径が2〜200nm、好ましくは2〜150nmの範囲にある。
混合物の平均粒子径が2nm未満の場合は、粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。このため被膜付基材を、たとえば陰極線管の前面板として用いると、表示画像の解像度が低下することがある。
【0026】
混合物の平均粒子径が200nmを越えると被膜の形成性が低下したり、金属などの導電性微粒子による光の吸収が大きくなり、粒子層の光透過率が低下するとともにヘーズが大きくなることがある。
なお、導電性微粒子(A)および(B)としていずれも金属微粒子を使用した場合、混合物の平均粒子径は2〜70nmの範囲にあることが望ましく、導電性微粒子(A)および(B)としていずれも金属酸化物微粒子を使用した場合、平均粒子径は2〜150nmの範囲にあることが望ましい。
【0027】
本発明で使用される導電性微粒子(A)および(B)は、たとえば以下のような公知の方法によって得ることができる(特開平10−188681号公報参照)。
(i)具体的には、アルコール・水混合溶媒中で、1種の金属塩を、あるいは2種以上の金属塩を同時にあるいは別々に還元することによって導電性微粒子を製造することができる。この方法では、必要に応じて還元剤を添加してもよく、還元剤としては、硫酸第1鉄、クエン酸3ナトリウム、酒石酸、水素化ホウ素ナトリウム、次亜リン酸ナトリウムなどが挙げられる。また、還元後の反応液(導電性微粒子生成液)を、圧力容器中で約100℃以上の温度で加熱処理してもよい。
【0028】
(ii)また、単一成分金属微粒子または合金微粒子の分散液に、金属微粒子または合金微粒子よりも標準水素電極電位が高い金属の微粒子またはイオンを存在させて、金属微粒子または/および合金微粒子上に標準水素電極電位が高い金属を析出させる方法によっても導電性微粒子を製造することができる。この方法では、得られた複合金属微粒子上に、さらに標準水素電極電位が高い金属を析出させてもよい。また、このような標準水素電極電位の最も高い金属は、複合金属微粒子表面層に多く存在していることが好ましい。このように、標準水素電極電位の最も高い金属が複合金属微粒子の表面層に多く存在すると、複合金属微粒子の酸化およびイオン化が抑えられ、イオンマイグレーション等による粒子成長の抑制が可能となる。さらに、このような複合金属微粒子は、耐腐食性が高いので、導電性、光透過率の低下を抑制することができる。
【0029】
上記(i)および(ii)の製造方法で得られる金属微粒子のうち、平均粒子径が2〜200nmの範囲のものは導電性微粒子(A)として使用し、平均粒子径が1〜20nmの範囲のものは導電性微粒子(B)として使用される。
また、酸化物系の導電性微粒子は公知の製造方法により得られたものを特に制限なく使用することが可能であり、また、必要に応じて、粉砕、分級などによる粒子径の調整を行ってもよい。
【0030】
本発明に用いる導電性微粒子の粒子径は、走査型電子顕微鏡(日本電子(株)製:JSM−5300型)により写真を撮影し、この画像の200個の粒子について画像解析装置(旭化成工業(株)製:IP-1000)を用いて測定する。
極性溶媒
本発明で用いられる極性溶媒としては、
水;メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0031】
本発明に係る透明導電性被膜形成用塗布液中に、前記導電性微粒子(A)および(B)が0.05〜10重量%、好ましくは0.1〜5重量%の範囲にあることが望ましい。
マトリックス形成成分
本発明に係る透明導電性被膜形成用塗布液には、形成後の透明導電性被膜のバインダーとして作用するマトリックス形成成分が含まれていてもよい。このようなマトリックス形成成分としては、酸化珪素前駆体、酸化チタン前駆体、酸化ジルコニウム前駆体、有機樹脂などが挙げられ、特に酸化珪素前駆体、有機樹脂が好ましい。有機珪素前駆体としては、アルコキシシランなどの有機ケイ素化合物を加水分解して得られるオリゴマー、重縮合物あるいはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物などが挙げられる。また有機樹脂としてはポリエチレン、ポリフェノール、エポキシ、ポリアミノ酸、ポリスチレンなどの塗料用樹脂が挙げられる。
【0032】
このマトリックス形成成分は、前記導電性微粒子(A)および(B)の混合物1重量部当たり、0.01〜0.5重量部、好ましくは0.1〜0.5重量部の量で含まれていることが望ましい。
有機系安定剤
また、透明導電性被膜形成用塗布液中には、導電性微粒子(A)および(B)の分散性を向上させるため、有機系安定剤が含まれていてもよい。
【0033】
有機系安定剤として具体的には、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、エチレンジアミン四酢酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、クエン酸などの多価カルボン酸およびその塩、セルロース誘導体、複素環化合物、界面活性剤あるいはこれらの混合物などが挙げられる。
【0034】
このような有機系安定剤は、導電性微粒子(A)および(B)の混合物1重量部に対し、0.005〜0.5重量部、好ましくは0.01〜0.5重量部含まれていればよい。有機系安定剤の量が0.005重量部未満の場合は充分な分散性が得られず、0.5重量部を越えて高い場合は、形成した透明導電性被膜の導電性が阻害されることがある。
【0035】
さらに、本発明に係る透明導電性被膜形成用塗布液には、必要に応じて、染料、着色顔料、微粒子カーボンなどの着色粒子が添加されていてもよい。着色粒子を添加すると、得られる透明導電性被膜付基材は可視光の広い波長領域において可視光の透過率が一定になるようにすることができる。
本発明に係る透明導電性被膜形成用塗布液中の固形分濃度(金属微粒子、金属微粒子以外の導電性微粒子、マトリックス形成成分、必要に応じて添加される染料、顔料などの添加量の総量)は、塗布液の流動性、塗布液中の粒状成分の分散性の点から、15重量%以下、好ましくは0.15〜5重量%の範囲にあることが好ましい。
【0036】
[透明導電性被膜付基材]
次に、本発明に係る透明導電性被膜付基材について具体的に説明する。
本発明に係る透明導電性被膜付基材は、基材と、基材上の透明導電性被膜と、必要に応じて該透明導電性被膜上の透明被膜とからなることを特徴としている。
基材
基材としては、ガラス、プラスチック、セラミックなどからなるフィルム、シートあるいはその他の成形体などが特に制限なく使用することができる。
【0037】
透明導電性被膜
透明導電性被膜は、前記透明導電性被膜形成用塗布液を塗布し、乾燥して得られたものである。
透明導電性被膜の膜厚は、5〜400nm、好ましくは10〜250nmの範囲にあることが好ましく、この範囲の膜厚であれば電磁遮蔽効果に優れた透明導電性被膜付基材を得ることができる。
【0038】
このような透明導電性被膜には、必要に応じて、可視光の広い波長領域において可視光の透過率が一定になるように、染料、着色顔料、微粒子カーボンなどの着色粒子が添加されていてもよい。
このような透明導電性被膜は、前記透明導電性被膜形成用塗布液を基材上に塗布し・乾燥したのち、必要に応じて化学的処理(酸処理)および/または加熱処理することによって形成することができる。
【0039】
前記透明導電性被膜形成用塗布液を塗布する方法としては、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの方法が挙げられる。また、乾燥温度は、溶媒が揮散する温度で行えばよく、通常、常温〜約90℃の範囲の温度で乾燥することが望ましい。
乾燥して溶媒を揮散させたのち、必要に応じて化学的処理を行ってもよい。化学的処理は、濃度が50〜20,000ppm、好ましくは100〜10,000ppmの範囲にある化学薬剤の水溶液に透明導電性被膜を形成した基材を浸漬したり、あるいは化学薬剤の水溶液を透明導電性被膜の表面に塗布するなどの方法によって行われる。
【0040】
化学薬剤としては、硝酸、塩酸、硫酸、酢酸、蟻酸などの酸、水酸化アンモニウム、4級アミン、水酸化ナトリウム、水酸化カリウムなどのアルカリが挙げられる。
化学薬剤の濃度が50ppm未満の場合は、濃度が低すぎて反応性が低く化学的融着が不充分であり、化学薬剤の濃度が20,000ppmを越えると、導電性微粒子の腐食が進行し、粒子層の表面抵抗が大きくなったりヘーズが大きくなることがある。
【0041】
本発明では、透明導電性被膜を乾燥したのち、加熱処理することが望ましい。
加熱処理は、導電性微粒子(B)の粒子径によっても異なるが、通常100〜400℃、好ましくは150〜300℃の温度で、0.5〜10時間、好ましくは1〜5時間行うことが望ましい。加熱は、真空下、窒素ガスなどの不活性ガス雰囲気下、空気や酸素ガスなどの酸化ガス雰囲気下、水素ガスなどの還元ガス雰囲気下で処理を行うことが望ましい。
【0042】
このような加熱処理によって、図2に示されるように、導電性微粒子(A)と(B)との融着が進行して、透明導電性被膜の表面抵抗が低くなり、透明導電性被膜自体の導電性を向上させることができる。なお加熱処理温度が100℃未満の場合は熱的融着が不充分な場合があり、融着による表面抵抗を低下させる効果が充分得られないことがある。また、加熱処理温度が400℃を越えると、膜にクラックができたり、基材によっては基材の軟化点を越える場合があり、またガラスからなる基材を使用した場合には基材ガラスからナトリウムが溶出して透明導電性被膜内に拡散し透明導電性被膜の表面抵抗が高くなることがある。
【0043】
透明導電性被膜形成用塗布液中に上記のようなマトリックス形成成分が含まれている場合には、マトリックス形成成分の硬化のために上記加熱処理による硬化処理が必用である。
透明被膜
本発明に係る透明導電性被膜付基材では、前記透明導電性被膜の上に、前記透明導電性被膜よりも屈折率の低い透明被膜が形成されていることが望ましい。透明被膜が形成された透明導電性被膜付基材は、反射防止性能に優れている。
【0044】
形成される透明被膜の膜厚は、50〜300nm、好ましくは80〜200nmの範囲にあることが望ましいこのような範囲の膜厚である透明被膜は、優れた反射防止性を発揮する。
このような透明被膜は、通常、シリカ、チタニア、ジルコニアなどの無機酸化物、およびこれらの複合酸化物などから形成される。透明被膜としては、加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物からなるシリカ系被膜が好ましく、特に加水分解性有機ケイ素化合物の加水分解重縮合物からなるシリカ系被膜が望ましい。
【0045】
加水分解性有機珪素化合物としては、特に下記一般式[1]で表されるアルコキシシランが挙げられる。
aSi(OR')4-a …[1]
(式中、Rはビニル基、アリール基、アクリル基、炭素数1〜8のアルキル基、水素原子またはハロゲン原子であり、R'はビニル基、アリール基、アクリル基、炭系数1〜8のアルキル基、−C24OCn2n+1(n=1〜4)または水素原子であり、aは0〜3の整数である。)
このようなアルコキシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラオクチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリイソプロポキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシランなどが挙げられる。
【0046】
また、加水分解性有機珪素化合物は、フッ素置換アルキル基含有アルコキシシランであってもよく、該フッ素置換アルキル基含有アルコキシシランとしては、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルトリクロロシラン、ヘプタデカフルオロデシルトリメトキシシランなどが例示される。
【0047】
これらのなかでも、前記加水分解性有機ケイ素化合物としてフッ素置換アルキル基含有加水分解性有機ケイ素化合物を用いると、下層の透明導電性被膜と透明被膜との密着性が高い上に、透明被膜自体が疎水性を有しているため、被膜付基材の耐薬品性を向上させることができるので、好適である。
また、このような透明被膜中には、本願出願人による特開平7−133105号に開示された屈折率が1.44以下の複合酸化物粒子が含まれていることが望ましい。このような複合酸化物粒子は、屈折率が低いため、形成される透明被膜の屈折率が低くなり、このため反射防止性能に優れた透明導電性被膜付基材を得ることができる。
【0048】
また、上記透明被膜中には、必要に応じて、フッ化マグネシウムなどの低屈折率材料で構成された微粒子などの添加剤が含まれていてもよい。さらにまた、透明被膜中には、透明被膜の透明度および反射防止性能を阻害しない程度に少量の導電性微粒子、染料、着色顔料、微粒子カーボンなどの添加剤が含まれていてもよい。
【0049】
透明被膜の形成方法としては、特に制限されるものではなく、形成される透明被膜の材質に応じて適宜選択される。具体的には、真空蒸発法、スパッタリング法、イオンプレーティング法などの乾式薄膜形成方法、あるいは上述したようなディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの湿式薄膜形成方法を採用することができる。
【0050】
上記透明被膜を湿式薄膜形成方法で形成する場合、公知の透明被膜形成用塗布液が使用される。
このような透明被膜形成用塗布液としては、具体的に、シリカ、チタニア、ジルコニアなどの無機酸化物前駆体、またはこれらの複合酸化物前駆体を透明被膜形成成分として含む塗布液が用いられ、特に、透明被膜形成用塗布液として前記したような加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸液を含むシリカ系透明被膜形成用塗布液が好ましい。
【0051】
たとえば、加水分解性有機ケイ素化合物がアルコキシシランの場合、アルコキシシランの1種または2種以上を、たとえば水−アルコール混合溶媒中で酸触媒の存在下、加水分解すると、アルコキシシランの加水分解重縮合物を含む透明被膜形成用塗布液が得られる。このような塗布液中に含まれる被膜形成成分の濃度は、酸化物換算で0.5〜20重量%であることが好ましい。
【0052】
また、このような透明被膜形成用塗布液には、前記したような屈折率が1.44以下の複合酸化物粒子が含まれていてもよく、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、少量の導電性微粒子、染料、着色顔料、微粒子カーボンなどの添加剤が含まれていてもよい。
本発明では、このような透明被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このような処理をすると、被膜形成成分の硬化が促進され、得られる透明被膜の硬度が高くなる。
【0053】
さらに、透明被膜形成用塗布液を塗布して被膜を形成する際に、透明導電性被膜を約40〜90℃に保持しながら透明被膜形成用塗布液を塗布して、前記のような処理を行うと、透明被膜の表面にリング状の凹凸が形成し、ギラツキの少ないアンチグレアの透明被膜付基材が得られる。
[表示装置]
本発明に係る透明導電性被膜付基材は、帯電防止や電磁遮蔽に必要な102〜1010Ω/□の範囲の表面抵抗を有し、かつ可視光領域および近赤外領域で充分な反射防止性能と防眩性を有している。このため、本発明に係る透明導電性被膜付基材は、表示装置の前面板として好適に用いられる。
【0054】
本発明に係る表示装置は、ブラウン管(CRT)、蛍光表示管(FIP)、プラズマディスプレイ(PDP)、液晶用ディスプレイ(LCD)などの電気的に画像を表示する装置であり、上記のような透明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置では、作動時に、基材が帯電して画像表示部分に埃が付着したり、前面板に画像が表示されると同時に電磁波が前面板から放出されることがあるが、本発明に係る表示装置では、たとえば、前面板が107〜1010Ω/□程度の表面抵抗を有する透明導電性被膜付基材で構成されている場合は効果的に帯電を防止することができ、前面板が102〜104Ω/□程度の表面抵抗を有する透明導電性被膜付基材で構成されている場合は、このような電磁波、および電磁波の放出に伴って生じる電磁場を効果的に遮蔽することができる。
【0055】
また、表示装置の前面板で反射光が生じると、この反射光によって表示画像が見にくくなるが、本発明に係る表示装置では、前面板が可視光領域および近赤外領域で充分な反射防止性能および防眩性を有する透明導電性被膜付基材で構成されているので、このような反射光を効果的に防止することができる。
さらに、ブラウン管の前面板が、本発明に係る透明導電性被膜付基材で構成され、この透明導電性被膜のうち、透明導電性被膜、その上に形成された透明被膜の少なくとも一方に少量の染料または顔料が含まれている場合には、これらの染料または顔料がそれぞれ固有な波長の光を吸収し、これによりブラウン管から放映される表示画像のコントラストを向上させることができる。
【0056】
【発明の効果】
本発明に係る透明導電性被膜形成用塗布液は、導電性微粒子として粒子径が異なり、粒子径の比が特定の範囲にある2種類の導電性微粒子が配合されている。
このような透明導電性被膜形成用塗布液を用いて得られる透明導電性被膜は、粒界抵抗が小さくいために、導電性に優れている。
【0057】
本発明に係る透明導電性被膜付基材は、基材上に上記優れた透明導電性被膜形成用塗布液を塗布して得られる透明導電性被膜の上に、該透明導電性被膜よりも屈折率が低い透明被膜が設けられているので反射防止性能に優れている。
本発明に係る表示装置は、上記透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されているので、反射(映り込み)および着色が弱く表示性に優れるとともに、帯電防止性能、電磁波遮蔽性能にも優れている。
【0058】
【実施例】
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
【0059】
【製造実施例】
a)導電性微粒子分散液の調製
本実施例および比較例で用いた導電性微粒子の分散液の組成を表1に示す。
▲1▼導電性微粒子(P-1,P-2,P-4,P-5,P-9,P-10,P-11,P-12)の分散液は、以下の方法で調製した。
【0060】
エタノール・水混合溶媒(エタノール90重量部/10重量部)に、あらかじめポリビニルアルコール(ただし導電性微粒子(P-1,P-2)の場合は、ポリビニルピロリドン)を金属1重量部当たり0.01重量部となるように加え、分散液中の金属微粒子の濃度が金属換算で2重量%であり、金属種が表1の重量比となるように、硝酸銀、硝酸パラジウム、硝酸インジウムおよび酢酸スズから選択して添加し、次いで還流器付フラスコで90℃、窒素雰囲気下、P-1では12時間、P-2では5時間、P-4では15時間、P-5では12時間、P-9では24時間、P-10では15時間、P-11では10時間、P-12では50時間それぞれ加熱して、金属微粒子の分散液を得た。
【0061】
各々加熱した後、還流を止め、加熱しながらエタノールを除去し、水を加えて表1に示す濃度に調製した。
▲2▼導電性微粒子(P-3)の分散液は、以下の方法で調製した。
純水100gに、あらかじめクエン酸3ナトリウムを金属1重量部当たり0.01重量部となるように加え、これに金属換算で濃度が10重量%となり、金属種が表1の重量比となるように硝酸銀および硝酸パラジウム水溶液を加え、さらに硝酸銀および硝酸パラジウムの合計モル数と等モル数の硫酸第一鉄の水溶液を添加し、ついで、窒素雰囲気下で1時間攪拌して金属微粒子の分散液を得た。得られた分散液は遠心分離器により水洗して不純物を除去した後、水に再分散させて表1に示す濃度の分散液を調製した。
【0062】
▲3▼Snドープ酸化インジウム微粒子(ITO;P-6,P-7)については、以下にして調製した。
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたSnドープ酸化イン ジウム水和物分散液からSnドープ酸化インジウム水和物を濾別・洗浄した後、 乾燥し、次いで空気中で350℃の温度で3時間焼成し、さらに空気中で600℃の温度で2時間焼成することによりSnドープ酸化インジウム微粒子を得た。これを濃度が30重量%となるように純水に分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで、3時間粉砕してゾルを調製した。次に、このゾルをイオン交換樹脂で処理して硝酸イオンを除去し、純水を加えて表1に示す濃度のSnドープ酸化インジウム微粒子(P-6)分散液を調製した。
【0063】
また、上記において、サンドミルで、5時間粉砕した以外はP-6と同様にして表1に示す濃度のSnドープ酸化インジウム微粒子(P-7)分散液を調製した。
▲4▼Sbドープ酸化錫微粒子(ATO;P-8)は、以下のようにして調製した。
塩化錫57.7gと塩化アンチモン7.0gとをメタノール100gに溶解して溶液を調製した。調製した溶液を4時間かけて、90℃、撹拌下の温水1000gに添加して加水分解を行い、精製した沈殿を濾別・洗浄し、乾燥空気中、500℃で2時間焼成してアンチモンをドープした導電性酸化錫の粉末を得た。この粉末30g水酸化カリウム水溶液(KOHとして3.0g含有)70gに加え、混合液を30℃に保持しながらサンドミルで、3時間粉砕してゾルを調製した。ついで、このゾルをイオン交換樹脂処理して脱アルカリし、純水を加えて表1に示す濃度のSbドープ酸化錫微粒子(P-8)分散液を調製した。
【0064】
【表1】

Figure 0005187990
【0065】
b)透明導電性被膜形成用塗布液の調製
上記で調製した導電性微粒子(P-1)〜(P-12)の分散液を導電性微粒子の配合割合が表2の割合となるように配合し、これに固形分が表2に示す濃度となるように水、t-ブタノール、ブチルセルソルブおよびN-メチル-2-ピロリドンから表2に示す透明導電性被膜形成用塗布液(C-1)〜(C-10)を調製した。
【0066】
【表2】
Figure 0005187990
【0067】
c)透明被膜形成用塗布液 (B-1 B-2) の調製
正珪酸エチル(SiO2:28重量%)50g、エタノール194.6g、濃硝酸1.4gおよび純水34gの混合溶液を室温で5時間攪拌してSiO2濃度5重量%のマトリックス形成成分を含む液(M)を調製した。
これに、エタノール/ブタノール/ジアセトンアルコール/イソプロパノール(2:1:1:5重量混合比)の混合溶媒を加え、SiO2濃度0.8重量%の透明被膜形成用塗布液(B-1)およびSiO2濃度1.1重量%の透明被膜形成用塗布液(B-2)を調製した。
【0068】
なお、本発明で使用される導電性被膜形成用塗布液および透明被膜形成用塗布液は両性イオン交換樹脂(三菱化学(株)製 ダイヤイオンSMNUPB)で脱イオン処理することにより、それぞれの塗布液中のイオン濃度が1000ppm以下になるように調整した。
【0069】
【実施例1〜9、比較例1〜4】
透明導電性被膜の形成
ブラウン管用パネルガラス(17インチ)の表面を40℃で保持しながら、スピナー法で100rpm、90秒の条件で上記透明導電性被膜形成用塗布液(C-1)〜(C-10)をそれぞれ塗布し、30℃で2分間乾燥した。ついで表3に示す化学的処理および/または加熱処理を行って透明導電性被膜を形成した。
【0070】
なお、化学的処理は、透明導電性被膜形成用塗布液をそれぞれ塗布し、乾燥したのち、再び表面の温度を40℃で保持しながら、スピナー法で100rpm、90秒の条件で、濃度10,000ppmの硝酸を塗布して化学的処理をした。
加熱処理は、窒素ガス雰囲気下または空気中、200℃で60分間行った。このときの導電層の厚みを触針式表面粗さ計((株)東京精密製:サーフコム)で測定した。結果を表3に示す。
【0071】
また、パネルガラスに透明導電性被膜(導電性微粒子層と透明被膜)を形成する前と形成した後において、波長560nmにおける透過率を分光光度計(日本分光(株)製:U-BEST)で測定した。透明導電性被膜形成前後の透過率差を表3に示す。
透明被膜の形成
次いで、このようにして形成された透明導電性被膜上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-1)または(B-2)を膜厚が表3に示す膜厚となるように塗布し、乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。
【0072】
透明導電性被膜付基材の評価
得られた透明導電性被膜付基材の表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)で測定した。また透明導電性被膜付基材のヘーズをへーズコンピューター(日本電色(株)製:3000A)で測定した。
透明導電性被膜付基材の反射率は反射率計(大塚電子(株)製:MCPD-2000)を用いて測定し、波長400〜700nmの範囲で反射率が最も低い波長のでの反射率(ボトム反射率)とし、これにより評価した。
【0073】
結果を表3に示す。
【0074】
【表3】
Figure 0005187990

【図面の簡単な説明】
【図1】 図1は、導電性微粒子(A)同士が連結したネック部における導電性微粒子(B)の付着を模式的に示す概略図である。
【図2】 図2は、導電性微粒子(A)同士が連結したネック部に付着した導電性微粒子(B)の融着を模式的に示す概略図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating solution for forming a transparent conductive film, a substrate with a transparent conductive film obtained by applying and drying the coating solution, and a display device including the substrate as a front plate. Coating liquid capable of obtaining a substrate with a transparent conductive film that is highly resistant and has excellent antistatic properties, electromagnetic shielding properties, transparency, antireflection properties, and the like, and the substrate and the substrate with a transparent conductive film The present invention relates to a display device including a configured front plate.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventionally, transparent coatings having antistatic and antireflection functions on the surfaces of transparent substrates such as cathode ray tubes, fluorescent display tubes, and liquid crystal display panels, for the purpose of antistatic and antireflection. It was done to form.
The influence of electromagnetic waves emitted from cathode ray tubes and the like on the human body has recently become a problem, and in addition to conventional antistatic and antireflection, these electromagnetic waves and the electromagnetic field formed with the emission of electromagnetic waves can be shielded. It is desired.
[0003]
One method of shielding these electromagnetic waves and the like is a method of forming a conductive film for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. Such an antistatic conductive coating has a surface resistance of at least 107A surface resistance of about Ω / □ is 10 for a conductive coating for electromagnetic shielding.2-10FourIt was necessary to have a low surface resistance such as Ω / □.
[0004]
When the conductive film having a low surface resistance is formed by using a coating solution containing a conductive oxide such as conventional Sb-doped tin oxide or Sn-doped indium oxide, It was necessary to increase the film thickness. However, since the antireflection effect is not exhibited unless the film thickness of the conductive film is about 10 to 200 nm, the conventional conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide has a low surface resistance, There was a problem that it was difficult to obtain a conductive film that was excellent in electromagnetic wave shielding properties and also in antireflection.
[0005]
Further, as one method for forming a conductive film having a low surface resistance, there is a method of forming a metal fine particle-containing film on the surface of a substrate using a coating liquid for forming a conductive film containing metal fine particles such as Ag. . In this method, a coating solution in which colloidal metal fine particles are dispersed in a polar solvent is used as a coating solution for forming a coating containing metal fine particles. In such a coating solution, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is surface-treated with an organic stabilizer such as polyvinyl alcohol, polyvinyl pyrrolidone or gelatin. However, a conductive coating formed using such a coating solution for forming a coating containing metal fine particles has a large intergranular resistance because the metal fine particles come into contact with each other through a stabilizer in the coating. Sometimes did not go down. For this reason, if the stabilizer is decomposed and removed by baking at a high temperature of about 400 ° C. after the film formation, particularly when metal fine particles having a uniform particle size distribution are used, fusion and aggregation of the metal fine particles occur, resulting in conductivity. There is a problem that transparency and haze of the coating film are lowered, and further, in the case of a cathode ray tube or the like, there is a problem that it is deteriorated by being exposed to a high temperature. Furthermore, in a transparent conductive film containing fine metal particles such as Ag, the metal may be oxidized, or particle growth may occur due to ionization, and corrosion may occur in some cases. As a result, there is a problem that the display device lacks reliability.
[0006]
In addition, in the case where fine particles having a uniform particle size distribution are used as in the case of a conventional transparent conductive film, there are many particle gaps even when densely packed, and the contact points of the particles are point contacts, and the number of contact points Therefore, there are cases where the conductivity is not sufficiently exhibited or reproducibility cannot be obtained. In addition, since there are many particle gaps, the insulating transparent film component formed on the conductive fine particle layer may enter the particle gap and impair the conductivity. For this reason, for example, when the film thickness is increased in order to reduce the resistance of the film, there is a problem that transparency is lowered.
[0007]
OBJECT OF THE INVENTION
The present invention solves the problems of the prior art as described above, has a low surface resistance, is excellent in antistatic properties, transparency, antireflection properties, and electromagnetic shielding properties, and also has excellent reliability. It aims at providing the coating liquid for transparent conductive film formation which can form a conductive film, the base material with a transparent conductive film, and the display apparatus provided with this base material as a front plate.
[0008]
Summary of the Invention
The coating liquid for forming a transparent conductive film according to the present invention is:
Average particle size (PA) Is in the range of 2 to 200 nm and the average particle size (PB) Consists of a conductive fine particle mixture with conductive fine particles (B) in the range of 1 to 20 nm, and a polar solvent,
Ratio P of average particle diameter of conductive fine particles (A) and (B)B/ PAIs in the range of 0.01 to 0.5.
[0009]
The conductive fine particles (A) and (B) are preferably selected from the following (i) to (iii).
(i) selected from the group consisting of Au, Ag, Pd, Cu, Ni, Ru, Rh, Sn, In, Sb, Fe, Pt, Ti, Cr, Co, Al, Zn, Ta, Pb, Os, Ir One or more elemental metals,
(ii) an oxide or hydroxide of one or more elements selected from the group consisting of Sn, In, Sb, Ti, Ru, or
(iii) A hetero-element-doped oxide in which an oxide of one or more elements selected from the group consisting of Sn, In, and Sb is doped with an element different from the element constituting the oxide.
[0010]
When the weight of the mixture of the conductive fine particles (A) and the conductive fine particles (B) is 100% by weight, the proportion of the conductive fine particles (B) is preferably in the range of 1 to 30% by weight.
The substrate with a transparent conductive film according to the present invention is characterized by comprising a substrate and a transparent conductive film formed by applying and drying the coating liquid for forming a transparent conductive film.
[0011]
It is preferable that a transparent film having a refractive index lower than that of the transparent conductive film is further provided on the transparent conductive film.
The transparent conductive film was obtained by applying a coating solution for forming a transparent conductive film to a substrate, drying it, and then performing chemical treatment (acid treatment) and / or heat treatment in a temperature range of 100 to 400 ° C. Those are preferred.
[0012]
The display device according to the present invention includes a front plate composed of the above-described substrate with a transparent conductive film, and the transparent conductive film is formed on the outer surface of the front plate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the coating liquid for forming a transparent conductive film according to the present invention and its application will be specifically described.
[Coating liquid for forming transparent conductive film]
First, the coating liquid for forming a transparent conductive film according to the present invention will be described.
[0014]
The coating liquid for forming a transparent conductive film according to the present invention is:
Average particle size (PA) Is in the range of 2 to 200 nm and the average particle size (PB) Consists of a conductive fine particle mixture with conductive fine particles (B) in the range of 1 to 20 nm and a polar solvent.
Conductive fine particles (A)
Average particle diameter of conductive fine particles (A) (PA) In the range of 2 to 200 nm, preferably 2 to 150 nm. When the average particle diameter of the conductive fine particles (A) is less than 2 nm, the surface resistance of the particle layer is rapidly increased, so that a coating having a low resistance that can achieve the object of the present invention cannot be obtained. Sometimes.
[0015]
Average particle diameter of conductive fine particles (A) (PA) Exceeds 200 nm, the film formability is reduced, the light absorption by the metal is increased, the light transmittance of the particle layer is decreased, and haze may be increased.
Conductive fine particles (B)
The conductive fine particles (B) have an average particle diameter (PB) In the range of 1 to 20 nm, preferably 1 to 15 nm, and the ratio P of the average particle diameter of the conductive fine particles (A) and (B).B/ PAIs in the range of 0.01 to 0.5, preferably 0.05 to 0.4.
[0016]
Such conductive fine particles (B) are much smaller in size than the conductive fine particles (A), and when the transparent conductive film is formed, the conductive fine particles are dried as shown in FIG. (A) Conductive fine particles (B) adhere to and fill the neck portion where the two are connected. As a result, the contact between the conductive fine particles (A) increases through the attached and filled conductive fine particles (B), and the grain boundary resistance decreases, so that the surface resistance of the conductive layer can be reduced. .
[0017]
Average particle size (PB) Is less than 1 nm, the surface resistance of the particle layer on which the conductive fine particles (B) are adhered and filled rapidly increases, so that it is not possible to form a film having a low resistance value that can achieve the object of the present invention. Sometimes.
Further, the average particle diameter (PB) Exceeding 20 nm, when forming a transparent conductive film, it becomes difficult to adhere to the surface of the conductive fine particles (B), or to the neck portion between the conductive fine particles (A), and to adhere Since the number of adhering particles decreases, the number of contacts is small and the effect of lowering the grain boundary resistance may not be obtained. In addition, since the metal fine particles having a uniform particle size distribution are not substantially different from each other, the conductive fine particles (A) and (B) are randomly aggregated or fused to form a conductive film. Transparency and haze may be reduced.
[0018]
Ratio P of average particle diameter of conductive fine particles (A) and conductive fine particles (B)B/ PAIs less than 0.01, it does not adhere selectively to the neck portion, and tends to adhere to the entire surface of the conductive fine particles (A), and the conductive fine particles (A) and the conductive fine particles (B) The average particle diameter ratio PB/ PAIf the particle size exceeds 0.5, the particle size of the conductive fine particles (B) is too large to be densely filled in the neck portion, so that the number of contacts does not increase and fusion does not easily occur. The effect of reducing the surface resistance of the conductive layer by reducing the field resistance may not be obtained.
[0019]
In the coating liquid for forming a transparent conductive film according to the present invention, a mixture of such conductive fine particles (A) and (B) is dispersed. In the coating solution, the conductive fine particles (A) and (B) are not necessarily aggregated as shown in FIG. 1 and are usually dispersed individually.
When the weight of the mixture of the conductive fine particles (A) and the conductive fine particles (B) is 100% by weight, the proportion of the conductive fine particles (B) is in the range of 1 to 30% by weight and 5 to 20% by weight. Preferably there is. If it exists in such a range, when forming a transparent conductive film, conductive fine particles (B) will adhere to the neck part which conductive fine particles (A) connected, and a contact will be increased and grain boundary resistance will fall. Thus, the surface resistance of the conductive layer can be reduced. When the proportion of the conductive fine particles (B) in the mixture is less than 1% by weight, the amount of the conductive fine particles (B) adhering to the neck portion is reduced because the amount of the conductive fine particles (B) is too small. The effect of lowering the grain boundary resistance and reducing the surface resistance of the conductive layer may not be obtained. In addition, when the proportion of the conductive fine particles (B) in the mixture exceeds 20% by weight, the conductive fine particles (B) are too much and adhere to the entire surface of the conductive fine particles (A) other than the neck portion. This effect cannot be obtained sufficiently, and the conductive layer has a surface resistance comparable to that obtained when only the conductive fine particles (B) are used.
[0020]
Such conductive fine particles (A) and (B) are preferably selected from the following (i) to (iii).
(i) selected from the group consisting of Au, Ag, Pd, Cu, Ni, Ru, Rh, Sn, In, Sb, Fe, Pt, Ti, Cr, Co, Al, Zn, Ta, Pb, Os, Ir One or more elemental metals,
(ii) an oxide or hydroxide of one or more elements selected from the group consisting of Sn, In, Sb, Ti, Ru, or
(iii) A hetero-element-doped oxide in which an oxide of one or more elements selected from the group consisting of Sn, In, and Sb is doped with an element different from the element constituting the oxide.
[0021]
When the conductive fine particles are metal fine particles, they may be composed of one metal or a complex metal composed of two or more elements. Preferred metal combinations in the case of composite metal fine particles include Au-Cu, Ag-Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd, Pt-Rh, Fe-Ni, Ni-Pd, Fe-Co, Cu-Co, Ag-Ru, Au-Ru, Ru-Pd, Ru-Ni, Au-Cu-Ag, Ag-Cu-Pt, Ag-Cu-Pd, Ag-Au-Pd, Au- Rh-Pd, Au-Pd-Ru, Ag-Pt-Pd, Ag-Pt-Rh, Fe-Ni-Pd, Fe-Co-Pd, Cu-Co-Pd and the like. The two or more metals constituting the conductive fine particles may be an alloy in a solid solution state, an eutectic that is not in a solid solution state, or the alloy and the eutectic may coexist. Since such metal fine particles suppress metal oxidation, ionization, or ion migration, the growth of metal fine particles is suppressed, the metal fine particles have high corrosion resistance, and the decrease in conductivity and light transmittance is small. Etc. Excellent reliability.
[0022]
Preferred examples of the conductive fine particles that are a metal oxide, a metal hydroxide (sometimes referred to as a hydrated metal oxide), or a different metal-doped metal oxide include, for example, tin oxide, Sb, F, or P. Examples thereof include tin oxide, indium oxide, indium oxide doped with Sn or F, antimony oxide, and low-order titanium oxide.
[0023]
The conductive fine particles (A) and (B) may be made of the same material or different materials. The conductive fine particles (A) may be made of a metal, and the conductive fine particles (B) may be made of a metal oxide. The conductive fine particles (A) may be made of a metal oxide. And electroconductive fine particles (B) may consist of a metal.
[0024]
When the conductive fine particles (A) and the conductive fine particles (B) are different components, the conductive fine particles (B) are preferably components having a melting point lower than that of the conductive fine particles (A). A high component is preferable. When the conductive fine particles (B) and the conductive fine particles (A) are different components, preferred combinations of (B)-(A) are Sb—Sn, Sn—In, In2OThree-Sn, Pd-Ag, Au-Ag, Ru-Ag, Au-Ru and the like are exemplified.
[0025]
The mixture of the conductive fine particles (A) and (B) has an average particle diameter of 2 to 200 nm, preferably 2 to 150 nm.
When the average particle size of the mixture is less than 2 nm, the surface resistance of the particle layer increases rapidly, so that it may not be possible to obtain a film having a low resistance value that can achieve the object of the present invention. For this reason, when the coated substrate is used as, for example, a front plate of a cathode ray tube, the resolution of the displayed image may be lowered.
[0026]
When the average particle diameter of the mixture exceeds 200 nm, the film formability may be reduced, or light absorption by conductive fine particles such as metal may be increased, resulting in a decrease in light transmittance of the particle layer and an increase in haze. .
In addition, when metal fine particles are both used as the conductive fine particles (A) and (B), the average particle diameter of the mixture is desirably in the range of 2 to 70 nm, and the conductive fine particles (A) and (B) In any case, when metal oxide fine particles are used, the average particle diameter is desirably in the range of 2 to 150 nm.
[0027]
The conductive fine particles (A) and (B) used in the present invention can be obtained, for example, by the following known method (see JP-A-10-188681).
(i) Specifically, conductive fine particles can be produced by reducing one metal salt or two or more metal salts simultaneously or separately in an alcohol / water mixed solvent. In this method, a reducing agent may be added as necessary. Examples of the reducing agent include ferrous sulfate, trisodium citrate, tartaric acid, sodium borohydride, sodium hypophosphite, and the like. Further, the reduced reaction liquid (conductive fine particle production liquid) may be heat-treated at a temperature of about 100 ° C. or higher in a pressure vessel.
[0028]
(ii) In addition, metal fine particles or ions having a higher standard hydrogen electrode potential than the metal fine particles or alloy fine particles are present in the dispersion of single component metal fine particles or alloy fine particles, and the metal fine particles or / and alloy fine particles are placed on the fine particles. Conductive fine particles can also be produced by a method of depositing a metal having a high standard hydrogen electrode potential. In this method, a metal having a higher standard hydrogen electrode potential may be deposited on the obtained composite metal fine particles. Further, it is preferable that a large amount of the metal having the highest standard hydrogen electrode potential exists in the surface layer of the composite metal fine particles. Thus, when a metal having the highest standard hydrogen electrode potential is present in the surface layer of the composite metal fine particles, oxidation and ionization of the composite metal fine particles can be suppressed, and particle growth due to ion migration or the like can be suppressed. Furthermore, since such composite metal fine particles have high corrosion resistance, it is possible to suppress a decrease in conductivity and light transmittance.
[0029]
Among the metal fine particles obtained by the production methods (i) and (ii) above, those having an average particle size in the range of 2 to 200 nm are used as the conductive fine particles (A), and the average particle size is in the range of 1 to 20 nm. Are used as conductive fine particles (B).
In addition, oxide-based conductive fine particles obtained by a known production method can be used without particular limitation, and if necessary, the particle diameter can be adjusted by pulverization, classification, etc. Also good.
[0030]
The particle size of the conductive fine particles used in the present invention was measured with a scanning electron microscope (manufactured by JEOL Ltd .: JSM-5300 type), and an image analyzer (Asahi Chemical Industry ( Measured using IP-1000).
Polar solvent
As the polar solvent used in the present invention,
Water; methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, alcohols such as ethylene glycol and hexylene glycol; esters such as methyl acetate and ethyl acetate; diethyl ether and ethylene Examples include ethers such as glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone and acetoacetate. These may be used singly or in combination of two or more.
[0031]
In the coating liquid for forming a transparent conductive film according to the present invention, the conductive fine particles (A) and (B) may be in the range of 0.05 to 10% by weight, preferably 0.1 to 5% by weight. desirable.
Matrix forming component
The coating liquid for forming a transparent conductive film according to the present invention may contain a matrix-forming component that acts as a binder for the transparent conductive film after formation. Examples of such a matrix forming component include a silicon oxide precursor, a titanium oxide precursor, a zirconium oxide precursor, an organic resin, and the like, and a silicon oxide precursor and an organic resin are particularly preferable. Examples of the organosilicon precursor include an oligomer obtained by hydrolyzing an organosilicon compound such as alkoxysilane, a polycondensate, or a silicate polycondensate obtained by dealkalizing an aqueous alkali metal silicate solution. Examples of the organic resin include coating resins such as polyethylene, polyphenol, epoxy, polyamino acid, and polystyrene.
[0032]
This matrix-forming component is contained in an amount of 0.01 to 0.5 parts by weight, preferably 0.1 to 0.5 parts by weight per part by weight of the mixture of the conductive fine particles (A) and (B). It is desirable that
Organic stabilizer
Moreover, in order to improve the dispersibility of electroconductive fine particles (A) and (B), the organic type stabilizer may be contained in the coating liquid for transparent conductive film formation.
[0033]
Specific examples of organic stabilizers include gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, ethylenediaminetetraacetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, Examples thereof include polyvalent carboxylic acids such as phthalic acid and citric acid and salts thereof, cellulose derivatives, heterocyclic compounds, surfactants, and mixtures thereof.
[0034]
Such an organic stabilizer is contained in an amount of 0.005 to 0.5 parts by weight, preferably 0.01 to 0.5 parts by weight per 1 part by weight of the mixture of the conductive fine particles (A) and (B). It only has to be. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility cannot be obtained, and when it exceeds 0.5 parts by weight, the conductivity of the formed transparent conductive film is inhibited. Sometimes.
[0035]
Furthermore, in the coating liquid for forming a transparent conductive film according to the present invention, colored particles such as dyes, colored pigments, and fine carbon particles may be added as necessary. When colored particles are added, the resulting transparent conductive film-coated substrate can have a constant visible light transmittance in a wide wavelength region of visible light.
Solid content concentration in coating liquid for forming transparent conductive film according to the present invention (total amount of metal fine particles, conductive fine particles other than metal fine particles, matrix forming components, dyes and pigments added as required) Is preferably 15% by weight or less, preferably 0.15 to 5% by weight, from the viewpoint of the fluidity of the coating liquid and the dispersibility of the particulate component in the coating liquid.
[0036]
[Base material with transparent conductive film]
Next, the substrate with a transparent conductive film according to the present invention will be specifically described.
The base material with a transparent conductive film according to the present invention is characterized by comprising a base material, a transparent conductive film on the base material, and a transparent film on the transparent conductive film as required.
Base material
As the substrate, a film, sheet or other molded body made of glass, plastic, ceramic or the like can be used without particular limitation.
[0037]
Transparent conductive coating
The transparent conductive film is obtained by applying the coating liquid for forming a transparent conductive film and drying it.
The film thickness of the transparent conductive film is preferably in the range of 5 to 400 nm, and preferably in the range of 10 to 250 nm. If the film thickness is in this range, a substrate with a transparent conductive film excellent in electromagnetic shielding effect is obtained. Can do.
[0038]
In such a transparent conductive film, coloring particles such as dyes, coloring pigments, and fine carbon particles are added as necessary so that the visible light transmittance is constant in a wide wavelength region of visible light. Also good.
Such a transparent conductive film is formed by applying the transparent conductive film-forming coating solution onto a substrate and drying it, followed by chemical treatment (acid treatment) and / or heat treatment as necessary. can do.
[0039]
Examples of the method for applying the coating liquid for forming the transparent conductive film include a dipping method, a spinner method, a spray method, a roll coater method, and a flexographic printing method. Moreover, what is necessary is just to perform the drying temperature at the temperature which a solvent volatilizes, and it is desirable normally to dry at the temperature of the range of normal temperature-about 90 degreeC.
After drying and volatilization of the solvent, chemical treatment may be performed as necessary. The chemical treatment is performed by immersing the base material on which the transparent conductive film is formed in an aqueous solution of a chemical agent having a concentration in the range of 50 to 20,000 ppm, preferably 100 to 10,000 ppm, or transparent the aqueous solution of the chemical agent. It is performed by a method such as applying to the surface of the conductive coating.
[0040]
Examples of the chemical agent include acids such as nitric acid, hydrochloric acid, sulfuric acid, acetic acid and formic acid, and alkalis such as ammonium hydroxide, quaternary amine, sodium hydroxide and potassium hydroxide.
If the concentration of the chemical agent is less than 50 ppm, the concentration is too low and the reactivity is low and chemical fusion is insufficient. If the concentration of the chemical agent exceeds 20,000 ppm, the corrosion of the conductive fine particles proceeds. In some cases, the surface resistance of the particle layer increases or haze increases.
[0041]
In the present invention, it is desirable to heat-treat after drying the transparent conductive film.
The heat treatment varies depending on the particle diameter of the conductive fine particles (B), but is usually 100 to 400 ° C., preferably 150 to 300 ° C., for 0.5 to 10 hours, preferably 1 to 5 hours. desirable. The heating is preferably performed in a vacuum, under an inert gas atmosphere such as nitrogen gas, under an oxidizing gas atmosphere such as air or oxygen gas, or under a reducing gas atmosphere such as hydrogen gas.
[0042]
By such heat treatment, as shown in FIG. 2, the fusion of the conductive fine particles (A) and (B) proceeds, the surface resistance of the transparent conductive film is lowered, and the transparent conductive film itself The electrical conductivity of can be improved. When the heat treatment temperature is less than 100 ° C., thermal fusion may be insufficient, and the effect of reducing surface resistance due to fusion may not be sufficiently obtained. When the heat treatment temperature exceeds 400 ° C., the film may crack, or depending on the base material, the softening point of the base material may be exceeded. Sodium may elute and diffuse into the transparent conductive film, increasing the surface resistance of the transparent conductive film.
[0043]
When the matrix-forming component as described above is contained in the coating liquid for forming a transparent conductive film, the curing treatment by the heat treatment is necessary for curing the matrix-forming component.
Transparent coating
In the substrate with a transparent conductive film according to the present invention, it is desirable that a transparent film having a refractive index lower than that of the transparent conductive film is formed on the transparent conductive film. A substrate with a transparent conductive film on which a transparent film is formed is excellent in antireflection performance.
[0044]
The film thickness of the formed transparent film is preferably in the range of 50 to 300 nm, and preferably in the range of 80 to 200 nm. The transparent film having such a film thickness exhibits excellent antireflection properties.
Such a transparent film is usually formed from inorganic oxides such as silica, titania and zirconia, and composite oxides thereof. As the transparent film, a hydrolytic polycondensate of a hydrolyzable organosilicon compound or a silica-based film made of a silicic acid polycondensate obtained by dealkalizing an alkali metal silicate aqueous solution is preferable. A silica-based film made of a hydrolyzed polycondensate of a silicon compound is desirable.
[0045]
Examples of the hydrolyzable organosilicon compound include alkoxysilanes represented by the following general formula [1].
RaSi (OR ')4-a            ... [1]
(In the formula, R is a vinyl group, an aryl group, an acrylic group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R ′ is a vinyl group, an aryl group, an acrylic group, or a carbon system having 1 to 8 carbon atoms. An alkyl group, -C2HFourOCnH2n + 1(N = 1 to 4) or a hydrogen atom, and a is an integer of 0 to 3. )
Such alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, Examples include vinyltrimethoxysilane, phenyltrimethoxysilane, and dimethyldimethoxysilane.
[0046]
The hydrolyzable organosilicon compound may be a fluorine-substituted alkyl group-containing alkoxysilane. Examples of the fluorine-substituted alkyl group-containing alkoxysilane include heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecyltrichlorosilane, hepta Examples include decafluorodecyltrimethoxysilane.
[0047]
Among these, when a hydrolyzable organosilicon compound containing a fluorine-substituted alkyl group is used as the hydrolyzable organosilicon compound, the adhesion between the lower transparent conductive film and the transparent film is high, and the transparent film itself is Since it has hydrophobicity, the chemical resistance of the coated substrate can be improved, which is preferable.
Further, it is desirable that such a transparent coating contains composite oxide particles having a refractive index of 1.44 or less disclosed in Japanese Patent Application Laid-Open No. 7-133105 filed by the present applicant. Since such a complex oxide particle has a low refractive index, the refractive index of the formed transparent film is low, and thus a substrate with a transparent conductive film excellent in antireflection performance can be obtained.
[0048]
The transparent film may contain additives such as fine particles made of a low refractive index material such as magnesium fluoride, if necessary. Furthermore, the transparent film may contain a small amount of additives such as conductive fine particles, dyes, color pigments, and fine carbon particles so as not to impair the transparency and antireflection performance of the transparent film.
[0049]
The method for forming the transparent film is not particularly limited, and is appropriately selected according to the material of the transparent film to be formed. Specifically, dry thin film forming methods such as vacuum evaporation, sputtering, and ion plating, or wet thin film forming methods such as dipping, spinner, spray, roll coater, and flexographic printing as described above. Can be adopted.
[0050]
When forming the transparent film by a wet thin film forming method, a known coating liquid for forming a transparent film is used.
As such a coating liquid for forming a transparent film, specifically, a coating liquid containing an inorganic oxide precursor such as silica, titania, zirconia, or a composite oxide precursor thereof as a transparent film forming component is used. In particular, the formation of a silica-based transparent film containing a hydrolyzable polycondensate of a hydrolyzable organosilicon compound or a silicic acid solution obtained by dealkalizing an alkali metal silicate aqueous solution as a coating liquid for forming a transparent film The coating liquid for use is preferred.
[0051]
For example, when the hydrolyzable organosilicon compound is alkoxysilane, hydrolysis of polyalkoxysilane is carried out by hydrolyzing one or more alkoxysilanes in the presence of an acid catalyst in a water-alcohol mixed solvent. A coating liquid for forming a transparent film containing the product can be obtained. It is preferable that the density | concentration of the film formation component contained in such a coating liquid is 0.5 to 20 weight% in conversion of an oxide.
[0052]
Further, such a coating liquid for forming a transparent film may contain composite oxide particles having a refractive index of 1.44 or less as described above, and is composed of a low refractive index material such as magnesium fluoride. In addition, additives such as fine particles, small amounts of conductive fine particles, dyes, coloring pigments, and fine particle carbon may be contained.
In the present invention, a film formed by applying such a coating solution for forming a transparent film is heated at 150 ° C. or higher at the time of drying or after drying, or ultraviolet light having a wavelength shorter than that of visible light is applied to an uncured film. Further, electromagnetic waves such as electron beams, X-rays and γ-rays may be irradiated or exposed to an active gas atmosphere such as ammonia. When such treatment is performed, curing of the film-forming component is promoted, and the hardness of the resulting transparent film is increased.
[0053]
Further, when forming the film by applying the coating liquid for forming the transparent film, the coating liquid for forming the transparent film is applied while maintaining the transparent conductive film at about 40 to 90 ° C. When it does, the ring-shaped unevenness | corrugation will form in the surface of a transparent film, and the base material with a transparent film of an anti-glare with few glare will be obtained.
[Display device]
The substrate with a transparent conductive film according to the present invention is required for antistatic and electromagnetic shielding.2-10TenIt has a surface resistance in the range of Ω / □, and has sufficient antireflection performance and antiglare properties in the visible light region and near infrared region. For this reason, the base material with a transparent conductive film which concerns on this invention is used suitably as a front plate of a display apparatus.
[0054]
The display device according to the present invention is a device that electrically displays an image, such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like as described above. A front plate made of a substrate with a conductive coating is provided.
In a display device having a conventional front plate, during operation, the base material is charged and dust adheres to the image display part, or an image is displayed on the front plate and at the same time, electromagnetic waves are emitted from the front plate. In the display device according to the present invention, for example, the front plate is 107-10TenWhen it is composed of a substrate with a transparent conductive film having a surface resistance of about Ω / □, charging can be effectively prevented, and the front plate is 102-10FourIn the case of a substrate with a transparent conductive film having a surface resistance of about Ω / □, it is possible to effectively shield such electromagnetic waves and electromagnetic fields generated with the emission of electromagnetic waves.
[0055]
In addition, when reflected light is generated on the front plate of the display device, the display image is difficult to see due to the reflected light. In the display device according to the present invention, the front plate has sufficient antireflection performance in the visible light region and the near infrared region. And since it is comprised with the base material with a transparent conductive film which has anti-glare property, such reflected light can be prevented effectively.
Furthermore, the front plate of the cathode ray tube is composed of a substrate with a transparent conductive film according to the present invention, and a small amount of at least one of the transparent conductive film and the transparent film formed thereon is included in the transparent conductive film. When dyes or pigments are contained, these dyes or pigments each absorb light having a specific wavelength, thereby improving the contrast of a display image broadcast from the cathode ray tube.
[0056]
【Effect of the invention】
The coating liquid for forming a transparent conductive film according to the present invention contains two kinds of conductive fine particles having different particle diameters as the conductive fine particles and having a ratio of the particle diameters in a specific range.
A transparent conductive film obtained using such a coating liquid for forming a transparent conductive film has excellent conductivity because of its low grain boundary resistance.
[0057]
The substrate with a transparent conductive film according to the present invention is more refracted than the transparent conductive film on the transparent conductive film obtained by applying the above-described excellent coating solution for forming a transparent conductive film on the substrate. Since a transparent coating having a low rate is provided, the antireflection performance is excellent.
The display device according to the present invention includes a front plate composed of the substrate with the transparent conductive film, and the transparent conductive film is formed on the outer surface of the front plate, so that reflection (reflection) and coloring are performed. In addition to being weak and excellent in display properties, it is also excellent in antistatic performance and electromagnetic wave shielding performance.
[0058]
【Example】
Hereinafter, although an example explains, the present invention is not limited by these examples.
[0059]
[Production Examples]
a) Preparation of conductive fine particle dispersion
Table 1 shows the composition of the dispersion of conductive fine particles used in Examples and Comparative Examples.
(1) A dispersion of conductive fine particles (P-1, P-2, P-4, P-5, P-9, P-10, P-11, P-12) was prepared by the following method. .
[0060]
Polyvinyl alcohol (in the case of conductive fine particles (P-1, P-2), polyvinyl pyrrolidone) is added to an ethanol / water mixed solvent (ethanol 90 parts / 10 parts by weight) in advance to 0.01 parts per part by weight of metal. In addition to being in parts by weight, the concentration of the metal fine particles in the dispersion is 2% by weight in terms of metal and the metal species is in the weight ratio shown in Table 1 from silver nitrate, palladium nitrate, indium nitrate and tin acetate. Select and add, then at 90 ° C in a flask with reflux, under nitrogen atmosphere, 12 hours for P-1, 5 hours for P-2, 15 hours for P-4, 12 hours for P-5, P-9 Was heated for 24 hours, P-10 for 15 hours, P-11 for 10 hours, and P-12 for 50 hours to obtain a dispersion of metal fine particles.
[0061]
After each heating, the reflux was stopped, ethanol was removed while heating, and water was added to prepare the concentrations shown in Table 1.
(2) A dispersion of conductive fine particles (P-3) was prepared by the following method.
To 100 g of pure water, trisodium citrate is added in advance so as to be 0.01 part by weight per 1 part by weight of metal, so that the concentration in terms of metal is 10% by weight and the metal species has the weight ratio shown in Table 1. A silver nitrate and palladium nitrate aqueous solution is added to the mixture, and an aqueous solution of ferrous sulfate having the same number of moles of silver nitrate and palladium nitrate as the total number of moles of silver nitrate and palladium nitrate is added. Obtained. The obtained dispersion was washed with water by a centrifugal separator to remove impurities, and then redispersed in water to prepare a dispersion having the concentration shown in Table 1.
[0062]
(3) Sn-doped indium oxide fine particles (ITO; P-6, P-7) were prepared as follows.
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a potassium hydroxide solution having a concentration of 10% by weight were prepared. Was added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The Sn-doped indium oxide hydrate dispersion obtained is filtered and washed with Sn-doped indium oxide hydrate, dried, then calcined in air at a temperature of 350 ° C. for 3 hours, and further in air. By baking at a temperature of 600 ° C. for 2 hours, Sn-doped indium oxide fine particles were obtained. This was dispersed in pure water so as to have a concentration of 30% by weight, adjusted to pH 3.5 with a nitric acid aqueous solution, and then pulverized with a sand mill for 3 hours while maintaining the mixed solution at 30 ° C. Was prepared. Next, this sol was treated with an ion exchange resin to remove nitrate ions, and pure water was added to prepare a Sn-doped indium oxide fine particle (P-6) dispersion having the concentrations shown in Table 1.
[0063]
Further, Sn-doped indium oxide fine particle (P-7) dispersions having the concentrations shown in Table 1 were prepared in the same manner as P-6 except that the above was pulverized with a sand mill for 5 hours.
(4) Sb-doped tin oxide fine particles (ATO; P-8) were prepared as follows.
A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of methanol. The prepared solution is hydrolyzed by adding it to 1000 g of hot water with stirring at 90 ° C. over 4 hours, and the purified precipitate is filtered and washed, and calcined in dry air at 500 ° C. for 2 hours to remove antimony. A doped conductive tin oxide powder was obtained. A sol was prepared by adding 30 g of this powder to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g of KOH) and pulverizing the mixture with a sand mill for 3 hours while maintaining the mixture at 30 ° C. Next, this sol was treated with an ion exchange resin to dealkali, and pure water was added to prepare a Sb-doped tin oxide fine particle (P-8) dispersion having the concentrations shown in Table 1.
[0064]
[Table 1]
Figure 0005187990
[0065]
b) Preparation of coating solution for forming transparent conductive film
The dispersions of the conductive fine particles (P-1) to (P-12) prepared above are blended so that the blending ratio of the conductive fine particles is the ratio shown in Table 2, and the solid content is the concentration shown in Table 2 Then, coating solutions (C-1) to (C-10) for forming transparent conductive films shown in Table 2 were prepared from water, t-butanol, butyl cellosolve and N-methyl-2-pyrrolidone.
[0066]
[Table 2]
Figure 0005187990
[0067]
c) Coating liquid for forming transparent film (B-1 , B-2) Preparation of
Normal ethyl silicate (SiO2: 28 wt%) 50 g of ethanol, 194.6 g of ethanol, 1.4 g of concentrated nitric acid, and 34 g of pure water were stirred at room temperature for 5 hours, and SiO 22A liquid (M) containing a matrix-forming component having a concentration of 5% by weight was prepared.
To this was added a mixed solvent of ethanol / butanol / diacetone alcohol / isopropanol (2: 1: 1: 5 weight mixing ratio), and SiO 22Coating solution (B-1) for forming transparent film having a concentration of 0.8% by weight and SiO2A coating solution (B-2) for forming a transparent film having a concentration of 1.1% by weight was prepared.
[0068]
In addition, the coating liquid for forming a conductive film and the coating liquid for forming a transparent film used in the present invention are subjected to deionization treatment with an amphoteric ion exchange resin (Diaion SMNUPB, manufactured by Mitsubishi Chemical Corporation), thereby applying each coating liquid. The inside ion concentration was adjusted to 1000 ppm or less.
[0069]
Examples 1-9, Comparative Examples 1-4
Formation of transparent conductive film
While maintaining the surface of the cathode ray tube panel glass (17 inches) at 40 ° C., the above-mentioned coating liquids for forming transparent conductive films (C-1) to (C-10) are respectively applied with a spinner method at 100 rpm for 90 seconds. It was applied and dried at 30 ° C. for 2 minutes. Then, a chemical treatment and / or a heat treatment shown in Table 3 were performed to form a transparent conductive film.
[0070]
The chemical treatment is performed by applying a coating solution for forming a transparent conductive film, drying, and holding the surface temperature at 40 ° C. again, while maintaining the surface temperature at 40 ° C. under a condition of 100 rpm and 90 seconds by a spinner method. 000 ppm nitric acid was applied for chemical treatment.
The heat treatment was performed in a nitrogen gas atmosphere or in air at 200 ° C. for 60 minutes. The thickness of the conductive layer at this time was measured with a stylus type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd .: Surfcom). The results are shown in Table 3.
[0071]
Moreover, before and after forming the transparent conductive film (conductive fine particle layer and transparent film) on the panel glass, the transmittance at a wavelength of 560 nm is measured with a spectrophotometer (manufactured by JASCO Corporation: U-BEST). It was measured. Table 3 shows the difference in transmittance before and after the formation of the transparent conductive film.
Formation of transparent film
Next, on the transparent conductive film thus formed, the coating liquid for forming a transparent film (B-1) or (B-2) is similarly formed by the spinner method under the conditions of 100 rpm and 90 seconds. Was applied so as to have the film thickness shown in Table 3, dried, and baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film.
[0072]
Evaluation of substrates with transparent conductive coating
The surface resistance of the obtained substrate with a transparent conductive film was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd .: LORESTA). The haze of the substrate with a transparent conductive film was measured with a haze computer (Nippon Denshoku Co., Ltd .: 3000A).
The reflectivity of the substrate with a transparent conductive film is measured using a reflectometer (manufactured by Otsuka Electronics Co., Ltd .: MCPD-2000), and the reflectivity at the lowest wavelength in the wavelength range of 400 to 700 nm ( (Bottom reflectance).
[0073]
The results are shown in Table 3.
[0074]
[Table 3]
Figure 0005187990

[Brief description of the drawings]
FIG. 1 is a schematic view schematically showing adhesion of conductive fine particles (B) at a neck portion where conductive fine particles (A) are connected to each other.
FIG. 2 is a schematic view schematically showing fusion of conductive fine particles (B) attached to a neck portion where conductive fine particles (A) are connected to each other.

Claims (6)

平均粒子径(PA)が2〜200nmの範囲にある導電性微粒子(A)と平均粒子径(PB)が1〜20nmの範囲にある導電性微粒子(B)との導電性微粒子混合物と、極性溶媒とからなり、
導電性微粒子(A)と(B)との平均粒子径の比PB/PAが、0.01〜0.5の範囲にあり、
導電性微粒子(A)と導電性微粒子(B)との混合物の重量を100重量%としたときに、導電性微粒子(B)の割合が5〜20重量%の範囲にあり、
導電性微粒子(A)が金属の場合、導電性微粒子(B)も金属からなり、導電性微粒子(A)が金属酸化物の場合、導電性微粒子(B)も金属酸化物からなるものである(ただし、導電性微粒子がカーボンの場合を除外する)ことを特徴とする透明導電性被膜形成用塗布液。
A conductive fine particle mixture of conductive fine particles (A) having an average particle diameter (P A ) in the range of 2 to 200 nm and conductive fine particles (B) having an average particle diameter (P B ) in the range of 1 to 20 nm; Consisting of a polar solvent,
The ratio P B / P A of the mean particle diameter of the conductive fine particles (A) and (B) is in the range of 0.01 to 0.5,
When the weight of the mixture of the conductive fine particles (A) and the conductive fine particles (B) is 100% by weight, the proportion of the conductive fine particles (B) is in the range of 5 to 20% by weight,
When the conductive fine particles (A) are a metal, the conductive fine particles (B) are also made of a metal. When the conductive fine particles (A) are a metal oxide, the conductive fine particles (B) are also made of a metal oxide. (However, the case where the conductive fine particles are carbon is excluded ) A coating liquid for forming a transparent conductive film, characterized in that it is carbon .
導電性微粒子(A)および(B)が、下記(i)〜(iii)から選ばれるものであることを特徴とする請求項1に記載の透明導電性被膜形成用塗布液;
(i)Au、Ag、Pd、Cu、Ni、Ru、Rh、Sn、In、Sb、Fe、Pt、Ti、Cr、Co、Al、Zn、Ta、Pb、Os、Irからなる群から選ばれる1種以上の元素の金属、
(ii)Sn、In、Sb、Ti、Ruからなる群から選ばれる1種以上の元素の酸化物または水酸化物、
(iii)Sn、In、Sbからなる群から選ばれる1種以上の元素の酸化物に、酸化物を構成する元素とは異なる元素がドープされた異種元素ドープ酸化物。
The coating liquid for forming a transparent conductive film according to claim 1, wherein the conductive fine particles (A) and (B) are selected from the following (i) to (iii):
(i) selected from the group consisting of Au, Ag, Pd, Cu, Ni, Ru, Rh, Sn, In, Sb, Fe, Pt, Ti, Cr, Co, Al, Zn, Ta, Pb, Os, Ir One or more elemental metals,
(ii) an oxide or hydroxide of one or more elements selected from the group consisting of Sn, In, Sb, Ti, Ru;
(iii) A hetero-element-doped oxide in which an oxide of one or more elements selected from the group consisting of Sn, In, and Sb is doped with an element different from the element constituting the oxide.
基材と、
基材上に、請求項1または2に記載の透明導電性被膜形成用塗布液を塗布、乾燥してなる透明導電性被膜と
からなることを特徴とする透明導電性被膜付基材。
A substrate;
A transparent conductive film-coated substrate comprising: a transparent conductive film formed by applying and drying the transparent conductive film-forming coating solution according to claim 1 or 2 on a substrate.
さらに前記透明導電性被膜上に、該透明導電性被膜よりも屈折率が低い透明被膜が設けられていることを特徴とする請求項3に記載の透明導電性被膜付基材。  The substrate with a transparent conductive film according to claim 3, further comprising a transparent film having a refractive index lower than that of the transparent conductive film on the transparent conductive film. 前記透明導電性被膜が、透明導電性被膜形成用塗布液を基材に塗布、乾燥した後、化学的処理および/または100〜400℃の温度範囲で加熱処理して得られたものであることを特徴とする請求項3または4に記載の透明導電性被膜付基材。  The transparent conductive film is obtained by applying a coating liquid for forming a transparent conductive film on a substrate and drying, followed by chemical treatment and / or heat treatment in a temperature range of 100 to 400 ° C. The base material with a transparent conductive film of Claim 3 or 4 characterized by these. 請求項3〜5のいずれかに記載の透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴とする表示装置。  A display device comprising a front plate comprising the substrate with a transparent conductive film according to claim 3, wherein the transparent conductive film is formed on the outer surface of the front plate. .
JP2000391340A 2000-12-22 2000-12-22 Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device Expired - Lifetime JP5187990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391340A JP5187990B2 (en) 2000-12-22 2000-12-22 Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391340A JP5187990B2 (en) 2000-12-22 2000-12-22 Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device

Publications (2)

Publication Number Publication Date
JP2002194248A JP2002194248A (en) 2002-07-10
JP5187990B2 true JP5187990B2 (en) 2013-04-24

Family

ID=18857500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391340A Expired - Lifetime JP5187990B2 (en) 2000-12-22 2000-12-22 Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device

Country Status (1)

Country Link
JP (1) JP5187990B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367428A (en) * 2001-06-04 2002-12-20 Asahi Glass Co Ltd Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP4373996B2 (en) * 2006-06-09 2009-11-25 三菱マテリアル電子化成株式会社 Conductive anti-glare film forming composition, conductive anti-glare film and display
KR101000436B1 (en) 2006-06-09 2010-12-13 미쓰비시마테리알덴시카세이가부시키가이샤 Composition for transparent electroconductive film formation, transparent electroconductive film, and display
JP4872620B2 (en) * 2006-11-17 2012-02-08 Tdk株式会社 Method for producing transparent conductive film
JP2013028115A (en) * 2011-07-29 2013-02-07 Toda Kogyo Corp Method for producing molded article, and molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG42911A1 (en) * 1990-11-21 1997-10-17 Catalysts & Chem Ind Co Coating solution for forming transparent conductive coating process for preparing same conductive substrateprocess for preparing same and (see file for full title)
JP3302186B2 (en) * 1994-09-01 2002-07-15 触媒化成工業株式会社 Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JPH09286936A (en) * 1996-04-22 1997-11-04 Sumitomo Metal Mining Co Ltd Applying solution for forming transparent conductive film, transparent conductive film using the same and its formation
JP3563236B2 (en) * 1996-09-26 2004-09-08 触媒化成工業株式会社 Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JPH1135855A (en) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device
JP3501942B2 (en) * 1998-05-11 2004-03-02 住友大阪セメント株式会社 Paint for forming transparent conductive film, transparent conductive film, and display device

Also Published As

Publication number Publication date
JP2002194248A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
US20040016914A1 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP5638935B2 (en) Metal fine particle dispersion, transparent conductive film forming coating liquid, and substrate with transparent conductive film
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP2003073583A (en) Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5187990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term