JP4002469B2 - Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device - Google Patents

Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device Download PDF

Info

Publication number
JP4002469B2
JP4002469B2 JP2002146717A JP2002146717A JP4002469B2 JP 4002469 B2 JP4002469 B2 JP 4002469B2 JP 2002146717 A JP2002146717 A JP 2002146717A JP 2002146717 A JP2002146717 A JP 2002146717A JP 4002469 B2 JP4002469 B2 JP 4002469B2
Authority
JP
Japan
Prior art keywords
fine particles
indium
metal fine
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002146717A
Other languages
Japanese (ja)
Other versions
JP2003342602A (en
Inventor
迫 祐 二 俵
南 憲 金
井 俊 晴 平
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP2002146717A priority Critical patent/JP4002469B2/en
Priority to KR1020030029737A priority patent/KR100986628B1/en
Priority to CNB031367186A priority patent/CN1278805C/en
Publication of JP2003342602A publication Critical patent/JP2003342602A/en
Application granted granted Critical
Publication of JP4002469B2 publication Critical patent/JP4002469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Non-Insulated Conductors (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の技術分野】
本発明は、平均粒子径が2〜200nmの範囲にあるインジウム系金属微粒子および該微粒子が水および/または有機溶媒に分散してなるインジウム系金属微粒子分散ゾル、該インジウム系金属微粒子の製造方法、ならびにインジウム系金属微粒子を含む透明導電性被膜形成用塗布液、透明導電性被膜付基材、表示装置に関する。
【0002】
【発明の技術的背景】
従来より、陰極線管、蛍光表示管、液晶表示板などの表示パネルのような透明基材の表面の帯電防止および反射防止を目的として、これらの表面に帯電防止機能および反射防止機能を有する透明被膜を形成することが行われていた。
また、陰極線管などから電磁波が放出されること知られており、従来の帯電防止、反射防止に加えてこれらの電磁波および電磁波の放出に伴って形成される電磁場を遮蔽することが望まれていた。
【0003】
これらの電磁波などを遮蔽する方法の一つとして、陰極線管などの表示パネルの表面に電磁波遮断用の導電性被膜を形成する方法がある。帯電防止用導電性被膜であれば表面抵抗が少なくとも108Ω/□程度の表面抵抗を有していれば十分であるのに対し、電磁遮蔽用の導電性被膜では102〜104Ω/□のような低い表面抵抗を有することが必要であった。
【0004】
このように表面抵抗の低い導電性被膜を、従来のSbドープ酸化錫(ATO)またはSnドープ酸化インジウム(ITO)のような導電性酸化物を含む塗布液を用いて形成しようとすると、従来の帯電防止性被膜の場合よりも膜厚を厚くする必要があった。しかしながら、導電性被膜の膜厚は、10〜200nm程度にしないと反射防止効果は発現しないため、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物では、表面抵抗が低く、電磁波遮断性に優れるとともに、反射防止にも優れた導電性被膜を得ることが困難であるという問題があった。
【0005】
また、低表面抵抗の導電性被膜をAgなどの金属微粒子を含む導電性被膜形成用塗布液を用いて基材の表面に金属微粒子含有被膜を形成する方法が知られている。この方法では、金属微粒子含有被膜形成用塗布液として、コロイド状の金属微粒子が極性溶媒に分散したものが用いられている。このような塗布液では、コロイド状金属微粒子の分散性を向上させるために、金属微粒子表面がポリビニルアルコール、ポリビニルピロリドンまたはゼラチンなどの有機系安定剤で表面処理されている。
【0006】
また、金属微粒子は前記導電性酸化物と異なり本来光を透過しないために金属微粒子を用いて形成された導電性被膜は導電性被膜中の金属微粒子の密度や膜厚等に依存して透明性が低下する問題もあった。
さらに、金属微粒子を用いた場合は、特にAu、Ag、Pt、Pd等の貴金属微粒子、あるいはこれらの合金微粒子を用いた場合は高価であり、経済性の改良が求められている。
【0007】
このような状況のもと、上記した問題点をいずれも解消できる導電性微粒子について鋭意検討した結果、特定の粒子径を有するとともに単分散(非凝集)のインジウム系金属微粒子を用いることによって帯電防止性、電磁遮蔽性に優れるとともに、製造信頼性および経済性にも優れた透明導電性被膜を形成できるとともに、安価に製造できることを見いだし、本発明を完成するに至った。
【0008】
なお、従来のインジウム系金属微粒子は、金属微粒子が得られたとしても凝集粒子として得られ、再現性用に単分散した金属微粒子を得ることが困難であり、例えば透明導電性被膜等に用いても膜の基材との密着性や導電性も不充分となることがあった。さらに水分散媒中や水を含む分散媒中では他の卑金属と同様に水酸化物が混在し生成するという問題があった。
【0009】
【発明の目的】
本発明は、帯電防止性、電磁遮蔽性に優れ、製造信頼性および経済性にも優れた透明導電性被膜の形成に好適に用いることのできるインジウム系金属微粒子および分散ゾルおよびその製造方法、ならびにインジウム系金属微粒子を含む透明導電性被膜形成用塗布液、透明導電性被膜付基材、表示装置を提供することを目的としている。
【0010】
【発明の概要】
本発明に係るインジウム系金属微粒子分散ゾルは、平均粒子径が2〜200nmの範囲にあるインジウム系金属微粒子が、水および/または有機溶媒に分散してなることを特徴としている。
前記インジウム系金属微粒子は、インジウム金属単独、あるいは、インジウム金属とともにSb、Sn、Ag、Au、Zn、Cu、Bi、Cd、から選ばれる1種以上の金属成分を含むことが好ましい。
【0011】
本発明に係るインジウム系金属微粒子の製造方法は、インジウム化合物および有機安定化剤を含む混合アルコール溶液であって、溶媒中のアルコール含有量が40重量%以上である混合アルコール溶液に還元剤を加えることを特徴としている。前記アルコール溶液が、さらにSb、Sn、Ag、Au、Zn、Cu、Bi、Cdから選ばれる1種以上の金属の化合物を含むことが好ましい。
【0012】
本発明に係る透明導電性被膜形成用塗布液は、前記インジウム系金属微粒子と極性溶媒とからなることを特徴としている。該透明導電性被膜形成用塗布液は、さらに、導電性酸化物微粒子を含んでいてもよい。
本発明に係る透明導電性被膜付基材は、基材と、基材上の前記インジウム系金属微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなることを特徴としている。
【0013】
本発明に係る表示装置は、前記透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴としている。
【0014】
【発明の具体的説明】
以下、本発明について具体的に説明する。
インジウム系金属微粒子
インジウム系金属微粒子はインジウム金属単独のものから構成された粒子、またはインジウムにSb、Sn、Ag、Au、Zn、Cu、Bi、Cd、から選ばれる1種以上のインジウム以外の金属成分が含まれている粒子のいずれであってもよい。インジウム以外の金属成分が含まれている場合、インジウム系金属微粒子中に含まれるインジウム以外の金属成分の割合は50重量%以下、さらには30重量%以下であることが好ましい。
【0015】
インジウム系金属微粒子中のインジウム以外の金属成分の割合が50重量%を越えると、インジウム以外の金属成分の種類によっても異なるが、後述する低融点インジウム系金属微粒子による融着効果が得られないことがある。
なお、インジウム系金属微粒子がインジウム以外の金属成分を含む場合、インジウム系金属微粒子を構成する2種以上の金属は、固溶状態にある合金であっても、固溶状態に無い共晶体であってもよく、合金と共晶体が共存していてもよい。
【0016】
このようなインジウム系金属微粒子は、金属の酸化やイオン化が抑制されるため、インジウム系金属微粒子の粒子成長等が抑制され、インジウム系金属微粒子の耐腐食性が高く、導電性、光透過率の低下が小さいなど信頼性に優れている。
このようなインジウム系金属微粒子は平均粒子径が2〜200nm、好ましくは5〜100nmの範囲にある。
【0017】
平均粒子径が前記範囲の下限未満のインジウム系金属微粒子を用いて導電性被膜を形成した場合は、被膜中のインジウム系金属微粒子間の粒界抵抗が増大し、導電性粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。
平均粒径が前記範囲の上限を越えるとインジウム系金属微粒子を用いて被膜を形成すると、被膜中のインジウム系金属微粒子による光の吸収が大きくなり、導電性粒子層の光透過率が低下するとともにへーズが大きくなる。このため被膜付基材を、たとえば陰極線管の前面板として用いると、表示画像の解像度が低下することがある。
【0018】
このような本発明に係るインジウム系金属微粒子は、そのまま粉体として使用することも可能であるが、通常、水および/または有機溶媒に分散したゾルとして使用される。
本発明に用いる有機溶媒としてはメタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0019】
本発明に係るインジウム系金属微粒子分散ゾルのインジウム系金属微粒子の濃度は、後述する透明導電性被膜形成用塗布液に用いることができ、必要な性能を具備した透明導電性被膜が得られれば特に制限はないが、通常0.5〜20重量%、さらには1〜5重量%の範囲にあることが好ましい。インジウム系金属微粒子の濃度がこの範囲にあれば、インジウム系金属微粒子が単分散した安定なゾルが得られる。
【0020】
なお、インジウム系金属微粒子分散ゾルには、必要に応じて有機安定化剤が含まれていてもよい。このような有機安定化剤としてはゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ヒドロキシプロピルセルロース、ギ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、クエン酸、アスコルビン酸、イソアスコルビン酸、などのカルボン酸およびその塩、あるいはこれらの混合物、およびアセチルアセトン等のケトン類などが挙げられる。
【0021】
このような有機系安定化剤は、インジウム系金属微粒子1重量部に対し、0.005〜20重量部、好ましくは0.01〜15重量部含まれていればよい。有機系安定化剤の量が0.005重量部未満の場合は充分な分散性、安定性が得られないことがあり、20重量部を超えて高い場合はさらに安定性が向上することもなく、透明導電性被膜の導電性が阻害されることがある。
【0022】
このようなインジウム系金属微粒子は、従来の金属微粒子に比べて、単分散性が高く、酸化インジウム系微粒子に比べて、導電性が高いという特性を有している。
インジウム系金属微粒子の製造方法
つぎに、本発明に係るインジウム系金属微粒子の製造方法について説明する。
【0023】
本発明に係るインジウム系金属微粒子の製造方法は、インジウム化合物と有機安定化剤とを含みアルコール溶液に還元剤を加えて、インジウム化合物(及び必要に応じて含まれる、他の化合物)を還元することを特徴としている。
前記アルコール溶液には、さらにSb、Sn、Ag、Au、Zn、Cu、Bi、Cdを含む化合物から選ばれる1種以上の金属の化合物を含んでいてもよい。
【0024】
本発明に用いるインジウム化合物としては、用いるアルコールに溶解または分散することができれば特に制限はなく、たとえば硝酸インジウム、塩化インジウム、酢酸インジウム、ギ酸インジウム等が挙げられる。
またSb、Sn、Ag、Au、Zn、Cu、Bi、Cdを含む化合物としては、たとえば塩化アンチモン、塩化第1錫、硝酸銀、塩化金酸、塩化亜鉛、臭化亜鉛、塩化第2銅、硝酸ビスマス、塩化カドミウム等が挙げられる。
【0025】
アルコール溶液中のインジウム化合物の濃度はIn金属として0.05〜5.0重量%、さらには0.1〜2.0重量%の範囲にあることが好ましい。
インジウム化合物の濃度がInとして0.05重量%未満の場合は、収率が低下するとともに生産効率が低く、インジウム化合物の濃度がInとして5.0重量%を越えると、粗大粒子や凝集粒子が生成することがあり、目的の平均粒径のものが得られないことがある。
【0026】
また、インジウム化合物以外の化合物を含む場合も、合計の濃度が金属に換算して0.05〜5.0重量%、さらには0.1〜2.0重量%の範囲にあることが好ましい。
なお、インジウム化合物以外の化合物の量は、最終的に得られるインジウム系金属微粒子中のインジウム以外の金属成分の割合が50重量%以下、さらには30重量%以下となるように用いることが好ましい。
【0027】
本発明に用いるアルコールとしてはメタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコールおよびこれらの混合物が挙げられる。中でもメタノール、エタノールのアルコールは前記インジウム化合物、後述の還元剤を容易に溶解、分散できるので好ましい。さらに、必要に応じてN-メチル-2ピロリドン、炭酸プロピレン、ジオキサン(ジエチレンオキサイド)などの有機溶媒をインジウム化合物や還元剤を溶解する目的などに用いることもできる。
【0028】
なお、本発明のインジウム系金属微粒子の製造方法では、溶媒中のアルコール含有量が40重量%以上である混合アルコール溶媒が使用される。この溶媒にはアルコール以外に水が含まれていてもよい。このときの水の含有量は40重量%以下、さらには30重量%以下であることが好ましい。アルコール中の水の含有量が40重量%を越えると、インジウム水酸化物、インジウム以外の金属の水酸化物が生成し、導電性の高いインジウム系金属微粒子を得ることが困難となる。またアルコールの割合の低下とともにインジウム系金属微粒子の生成速度(還元速度)が低下する傾向がある。
【0029】
本発明に用いる有機安定化剤としては、前記したと同様の有機安定化剤を用いることができる。なかでも、アセチルアセトン等のケトン類は粒子表面への配位する能力がカルボン酸ほど強くないのでインジウム系金属微粒子の生成を阻害することがなく、得られるインジウム系金属微粒子を安定に分散させることができる。
【0030】
このときの有機安定化剤の使用量は、得られるインジウム系金属微粒子1重量部に対し、0.005〜20重量部、好ましくは0.01〜15重量部となるように含まれていればよい。有機系安定化剤の量が0.005重量部未満の場合はインジウム系金属微粒子の充分な分散性、安定性が得られないことがあり、20重量部を超えて高い場合は透明導電性被膜の導電性が阻害されることがある。
【0031】
つぎに、本発明に用いる還元剤としては、硫酸第1鉄等の第1鉄塩、塩化第1錫、塩化亜鉛、クエン酸3ナトリウム、酒石酸、L(+)−アスコルビン酸、イソ-アスコルビン酸、水素化ホウ素ナトリウム、次亜リン酸ナトリウムなどが挙げられる。なかでも水素化ホウ素ナトリウムは粗大粒子や凝集粒子が生成することなくインジウム系金属微粒子を高収率で得ることができる。
【0032】
このときの還元剤の使用量は、インジウム化合物とインジウム以外の他の化合物との合計1モル当たりに0.1〜5.0モル、さらには1.0〜3.0モルの範囲にあることが好ましい。このような範囲にあればインジウム系金属微粒子を高収率で得ることができる。
還元剤の使用量が合計の化合物1モル当たりに0.1モル未満の場合は、還元能が不充分なためにインジウム系金属微粒子の収率が低下し、またインジウム以外の化合物を含む場合、化合物の還元性によってはインジウム以外の金属を含むインジウム系金属微粒子が得られないことがある。
【0033】
還元剤の使用量が合計の化合物1モル当たりに5.0モルを越えてもさらに収率が向上することもなく、経済性が低下する。
このような還元剤を用いた還元条件としては、前記金属の化合物を還元しうる条件であれば特に制限されるものではなく、化合物が前記した濃度のアルコール溶液に還元剤を添加して、必要に応じて、加熱したり、撹拌すればよい。さらに必要に応じて熟成することによって粒子径がより均一なインジウム系金属微粒子がアルコール溶媒に分散したゾルを得ることができる。さらに、必要に応じてイオン交換樹脂、限外濾過膜等でイオン除去することもできる。イオン除去するとより安定なインジウム系金属微粒子の分散ゾルを得ることができる。このゾルからアルコール溶媒を乾燥等の方法で除去すれば、本発明に係るインジウム系金属微粒子が得られる。
【0034】
また、必要に応じて水で溶媒置換して水ゾルあるいはアルコール以外の他の有機溶媒に溶媒置換してオルガノゾルを得ることもできる。
なお、インジウム系金属微粒子を後述する塗布液に使用する際には、分散ゾルを一旦乾燥したのち使用してもよく、また、分散ゾルをそのまま使用してもよい。
【0035】
透明導電性被膜形成用塗布液
つぎに、本発明に係る透明導電性被膜形成用塗布液について説明する。
本発明に係る透明導電性被膜形成用塗布液は、前記したインジウム系金属微粒子と極性溶媒を含むことを特徴としている。
本発明で用いられる極性溶媒としては、
水;メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、ジメチルホルムアミド等のアミド類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0036】
このような透明導電性被膜形成用塗布液には、上記インジウム系金属微粒子以外に導電性酸化物微粒子が含まれていてもよい。
導電性酸化物微粒子としては、たとえば酸化錫、Sb、FまたはPが ドーピングざれた酸化錫、酸化インジウム、SnまたはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンなどが挙げられる。
【0037】
これらの導電性酸化物微粒子の平均粒径は、2〜200nm、好ましくは5〜150nmの範囲にあることが好ましい。
このような導電性酸化物微粒子を含有すると、インジウム系金属微粒子のみで透明導電性微粒子層を形成した場合と比較して、より透明性に優れた透明導電性微粒子層を形成することができる。また導電性酸化物微粒子を含有することによって、安価に透明導電性被膜付基材を製造することができる。
【0038】
このような導電性酸化物微粒子は、前記インジウム系金属微粒子1重量部当たり、9重量部以下の量で含まれていればよい。導電性酸化物微粒子が9重量部を超える場合は、導電性の低い導電性酸化物微粒子が多すぎて得られる透明導電性被膜の導電性が低下し電磁波遮蔽効果が低下することがある。また、導電性酸化物微粒子が9重量部を超える場合は、(すなわちインジウム系金属微粒子が少ない場合は)導電性酸化物微粒子の接点で形成されるネック部でインジウム系金属微粒子による融着・接合が不充分となり、導電性酸化物微粒子同士の粒界抵抗を減少させる効果が得られない。
【0039】
なお、上記において、導電性酸化物微粒子とインジウム系金属微粒子を併用する場合は、導電性酸化物微粒子の平均粒子径(DO)とインジウム系金属微粒子の平均粒子径(DM)との比(DM)/(DO)は1未満、さらには0.5以下であることが好ましい。この比が前記範囲にあれば、導電性酸化物微粒子の接点で形成されるネック部でインジウム系金属微粒子による融着・接合が効果的に起こる。
【0040】
なお、このような融着・接合は導電性被膜形成時にインジウム系金属微粒子の融点近い温度で、さらには融点より高温で、好ましくは概ね160〜250℃の温度範囲で加熱することによって行われる。
本発明に係る透明導電性被膜形成用塗布液には、被膜形成後の導電性微粒子のバインダーとして作用するマトリックス成分が含まれていてもよい。このようなマトリックス成分としては、シリカからなるものが好ましく、具体的には、アルコキシシランなどの有機ケイ素化合物の加水分解重縮合物またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物、あるいは塗料用樹脂などが挙げられる。このマトリックスは、前記複合金属微粒子1重量部当たり、0.01〜0.5重量部、好ましくは0.03〜0.3重量部の量で含まれていればよい。
【0041】
また、本発明のインジウム系金属微粒子の分散性を向上させるため、透明導電性被膜形成用塗布液中に有機系安定化剤が含まれていてもよい。このような有機系安定剤としては前記したと同様のものが挙げられる。
このような有機系安定化剤は、インジウム系金属微粒子1重量部に対し、0.005〜20重量部、好ましくは0.01〜15重量部含まれていればよい。有機系安定化剤の量が0.005重量部未満の場合は充分な分散性、安定性が得られず、20重量部を超えて高い場合は導電性が阻害されることがある。
【0042】
さらに、本発明の透明導電性被膜形成用塗布液には着色剤として微粒子カーボンおよび/またはチタンブラックが含まれていてもよい。さらに、染料、顔料が含まれていてもよい。このような着色剤が含まれているとコントラストに優れた表示装置を得ることができる。
このような本発明に係る塗布液は、前記したインジウム系金属微粒子または分散ゾル、溶媒、安定化剤を混合したのち、ミキサーなどで撹拌することで調製することができる。
また、前記したインジウム系金属微粒子分散ゾルをそのまま塗布液として使用することも可能であり、必要に応じて、溶媒を置換したり、濃度を調整したり、さらにはマトリックスなどの成分を添加したりすることで、塗布液を調製することができる。
【0043】
透明導電性被膜付基材
つぎに、本発明に係る透明導電性被膜付基材について具体的に説明する。
本発明に係る透明導電性被膜付基材では、ガラス、プラスチック、セラミックなどからなるフィルム、シートあるいはその他の成形体などの基材と、基材上の前記インジウム系金属微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなることを特徴としている。
[透明導電性微粒子層]
透明導電性微粒子層の膜厚は、約5〜200nm、好ましくは10〜150nmの範囲にあることが好ましく、この範囲の膜厚であれば電磁遮蔽効果に優れた透明導電性被膜付基材を得ることができる。
【0044】
このような透明導電性微粒子層には、必要に応じて、上記インジウム系金属微粒子以外の導電性酸化物微粒子、マトリックス成分、有機系安定剤を含んでいてもよく、具体的には、前記と同様のものが挙げられる。
このような透明導電性微粒子層は、上記透明導電性被膜形成用塗布液を基材上に塗布し・乾燥することによって形成することができる。
【0045】
透明導電性微粒子層を形成する方法としては、たとえば、透明導電性被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの方法で、基材上に塗布したのち、常温〜約90℃の範囲の温度で乾燥する。
透明導電性被膜形成用塗布液中に上記のようなマトリックス形成成分が含まれている場合には、マトリックス形成成分の硬化処理を行ってもよい。
【0046】
たとえば、透明導電性被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる被膜の硬度が高くなる。
[透明被膜]
本発明に係る透明導電性被膜付基材では、前記透明導電性微粒子層の上に、前記透明導電性微粒子層よりも屈折率の低い透明被膜が形成されている。
【0047】
形成される透明被膜の膜厚は、50〜300nm、好ましくは80〜200nmの範囲にあることが好ましい。
このような透明被膜は、たとえば、シリカ、チタニア、ジルコニアなどの無機酸化物、およびこれらの複合酸化物などから形成される。本発明では、透明被膜として、特に加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物からなるシリカ系被膜が好ましい。このような透明被膜が形成された透明導電性被膜付基材は、反射防止性能に優れている。
【0048】
前記透明被膜には、さらに平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあり屈折率が1.28〜1.42の範囲、好ましくは1.28〜1.40の範囲にある低屈折率粒子を含むことが望ましい。
使用される低屈折率粒子の平均粒子径は、形成される透明被膜の厚さに応じて適宜選択される。
【0049】
低屈折率粒子の屈折率が1.42以下であれば、得られる透明導電性被膜付基材は、ボトム反射率および視感反射率が低く、優れた反射防止性能を発揮することができる。
透明被膜中の低屈折率粒子の含有量は酸化物に換算して、10〜90重量%、好ましくは20〜80重量%の範囲にあることが望ましい。
【0050】
本発明に用いる低屈折率粒子としては、平均粒子径および屈折率が上記範囲にあれば特に制限はなく従来公知の粒子を用いることができる。たとえば本願出願人の出願による特開平7−133105号公報に開示した複合酸化物ゾル、WO00/37359号公報に開示した被覆層を有する多孔質の複合酸化物粒子は好適に用いることができる。
【0051】
さらに、上記透明被膜中には、必要に応じて、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、染料、顔料などの添加剤が含まれていてもよい。
透明被膜の形成方法としては、特に制限はなく、この透明被膜の材質に応じて、真空蒸発法、スパッタリング法、イオンプレーティング法などの乾式薄膜形成方法、あるいは上述したようなディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの湿式薄膜形成方法を採用することができる。
【0052】
上記透明被膜を湿式薄膜形成方法で形成する場合、従来公知の透明被膜形成用塗布液を用いることができる。このような透明被膜形成用塗布液としては、具体的に、シリカ、チタニア、ジルコニアなどの無機酸化物、またはこれらの複合酸化物を透明被膜形成成分として含む塗布液が用いられる。
本発明では、透明被膜形成用塗布液として加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸液を含むシリカ系透明被膜形成用塗布液が好ましく、このような塗布液から形成されるシリカ系被膜は、インジウム系金属微粒子含有の導電性微粒子層よりも屈折率が小さく、得られる透明導電性被膜付基材は反射防止性に優れている。
【0053】
表示装置
本発明に係る透明導電性被膜付基材は、帯電防止、電磁遮蔽に必要な概ね102〜104Ω/□の範囲の表面抵抗を有し、また透明性に優れるとともに可視光領域および近赤外領域で充分な反射防止性能を有し、表示装置の前面板として好適に用いられる。
【0054】
本発明に係る表示装置は、ブラウン管(CRT)、蛍光表示管(FIP)、プラズマディスプレイ(PDP)、液晶用ディスプレイ(LCD)などのような電気的に画像を表示する装置であり、上記のような透明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、前面板に画像が表示されると同時に前面板が帯電したり、電磁波が前面板から放出されるが、本発明に係る表示装置では、前面板が前記した概ね102〜104Ω/□の表面抵抗を有する透明導電性被膜付基材で構成されているので、このような帯電を防止したり、電磁波およびこの電磁波の放出に伴って生じる電磁場を効果的に遮蔽することができる。
【0055】
また、表示装置の前面板で反射光が生じると、この反射光によって表示画像が見にくくなるが、本発明に係る表示装置では、前面板が可視光領域および近赤外領域で充分な反射防止性能を有する透明導電性被膜付基材で構成されているので、このような反射光を効果的に防止することができる。
【0056】
【発明の効果】
本発明によれば、帯電防止性、電磁遮蔽性に優れるとともに、製造信頼性および経済性にも優れた透明導電性被膜を形成することが可能なインジウム系金属微粒子が提供される。このインジウム系金属微粒子は非常に安価に製造することができる。
【0057】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
本実施例および比較例で用いたインジウム系金属微粒子、インジウム系金属微粒子以外の導電性微粒子の組成等をまとめて表1に示す。
【0058】
【実施例1】
インジウム系金属微粒子 (P-1) 分散ゾルの調製
メタノール97.2重量部と有機安定化剤としてのアセチルアセトン1.2重量部との混合液に硝酸インジウム3水塩(In(NO3)3・3H2O)1.6重量部を溶解させた。ついで、チッソ雰囲気下で、濃度1.5重量%の水素化ホウ素ナトリウム水溶液22重量部を加え、20℃で30分間撹拌し、インジウム系金属微粒子分散液を調製した。
【0059】
得られた分散液は、遠心分離器によりエタノールを用いてデカンテーションを繰り返し、イオンや塩を低減させた。
ついで、最後に沈降したインジウム系金属微粒子を、濃度20重量%のアセチルアセトンのエタノール溶液に、該インジウム系金属微粒子1重量部に対して、エタノール溶液66.7重量部となるように分散させてインジウム系金属微粒子(P-1)の分散ゾルを調製した。
【0060】
得られたインジウム系金属微粒子(P-1)の性状を表1に示す。
【0061】
【実施例2】
インジウム系金属微粒子 (P-2) 分散ゾルの調製
実施例1において、メタノールの代わりにエタノールを用いた以外は同様にしてインジウム系金属微粒子分散液を調製した。
ついで、実施例1と同様にデカンテーション、分散等を行いインジウム系金属微粒子(P-2)の分散ゾルを調製した。
【0062】
得られたインジウム系金属微粒子(P-2)分散ゾルの性状を表1に示す。
【0063】
【実施例3】
インジウム系金属微粒子 (P-3) 分散ゾルの調製
メタノール91.5重量部と有機安定化剤としてのアセチルアセトン1.2重量部との混合液に硝酸インジウム3水塩(In(NO3)3・3H2O)1.6重量部と濃度5重量%の塩化第1スズのエタノール溶液5.7重量部を溶解させた。ついで、チッソ雰囲気下で、濃度1.5重量%の水素化ホウ素ナトリウム水溶液23重量部を加え、20℃で30分間撹拌し、インジウム系金属微粒子分散液を調製した。
【0064】
ついで、実施例1と同様にデカンテーション、分散等を行いインジウム系金属微粒子(P-3)分散ゾルを調製した。
得られたインジウム系金属微粒子(P-3)分散ゾルの性状を表1に示す。
【0065】
【実施例4】
インジウム系金属微粒子 (P-4) 分散ゾルの調製
メタノール91.5重量部と有機安定化剤としてのアセチルアセトン1.2重量部との混合液に硝酸インジウム3水塩(In(NO3)3・3H2O)1.6重量部と濃度2.5重量%の塩化亜鉛のエタノール溶液15重量部を溶解させた。ついで、チッソ雰囲気下で、濃度1.5重量%の水素化ホウ素ナトリウム水溶液23重量部を加え、20℃で30分間撹拌し、インジウム系金属微粒子分散液を調製した。
【0066】
ついで、実施例1と同様にデカンテーション、分散等を行いインジウム系金属微粒子(P-4)分散ゾルを調製した。
得られたインジウム系金属微粒子(P-4)分散ゾルの性状を表1に示す。
【0067】
【参考例1】
導電性酸化物微粒子 (P-5) 分散ゾルの調製
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、錫酸カリ ウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液 とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたスズ含有イン ジウム酸化物水和物の分散液からスズ含有イン ジウム酸化物水和物を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。この粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。
【0068】
これを濃度が30重量%となるようにエタノールに分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで0.5時間粉砕してゾルを調製した。ついで、エタノールを加えて表1に示す濃度の導電性酸化物微粒子(P-5)(Snドープ酸化インジウム微粒子:ITO微粒子)分散ゾルを調製した。
【0069】
得られた導電性酸化物微粒子(P-5)分散ゾルの性状を表1に示す。
【0070】
【参考例2】
導電性酸化物微粒子 (P-6) 分散ゾルの調製
塩化錫57.7gと塩化アンチモン7.0gとを水100gに溶解して溶液を調製した。調製した溶液を4時間かけて、90℃、攪拌下の純水1000gに添加して加水分解を行い、生成した沈殿を濾別・洗浄し、乾燥空気中、500℃で2時間焼成してアンチモンをドープした導電性酸化錫の粉末を得た。この粉末30gを水酸化カリウム水溶液(KOHとして3.0g含有)70gに加え、混合液を30℃に保持しながらサンドミルで、3時間粉砕してゾルを調製した。ついでこのゾルをイオン交換樹脂処理して、脱アルカリし、純水を加えて表1に示す濃度の導電性酸化物微粒子(P-6)(Sbドープ酸化錫微粒子:ATO微粒子)分散ゾルを調製した。
【0071】
得られた導電性酸化物微粒子(P-6)分散ゾルの性状を表1に示す。
【0072】
【比較例1】
インジウム系金属微粒子 (P-7) 分散ゾルの調製
メタノール36.2重量部と水61重量部と有機安定化剤としてのアセチルアセトン1.2重量部との混合液に硝酸インジウム3水塩(In(NO3)3・3H2O)1.6重量部を溶解させた。ついで、チッソ雰囲気下で、濃度1.5重量%の水素化ホウ素ナトリウム水溶液22重量部を加え、20℃で30分間撹拌し、インジウム系金属微粒子分散液を調製した。
【0073】
得られた分散液は、遠心分離器によりエタノールを用いてデカンテーションを繰り返し、イオンや塩を低減させた。
ついで、最後に沈降したインジウム系金属微粒子を、濃度20重量%のアセチルアセトンのエタノール溶液に、該インジウム系金属微粒子1重量部に対して、エタノール溶液66.7重量部となるように分散させてインジウム系金属微粒子(P-1)の分散ゾルを調製した。得られた金属微粒子は一部が水酸化物で、凝集していた。
【0074】
得られたインジウム系金属微粒子(P-7)の性状を表1に示す。
【0075】
【比較例2】
インジウム系金属微粒子 (P-8) 分散ゾルの調製
水98.4重量部に硝酸インジウム3水塩(In(NO3)3・3H2O)1.6重量部を溶解させた。ついで、チッソ雰囲気下で、濃度1.5重量%の水素化ホウ素ナトリウム水溶液22重量部を加え、20℃で30分間撹拌した。明らかに、インジウム水酸化物のヒドロゲルが生成し、インジウム系金属微粒子は得られなかった。
【0076】
【実施例5〜10、比較例3〜5】
透明導電性被膜形成用塗布液 (C-1) (C-9) の調製
上記で調製したインジウム系微粒子(P-1)〜(P-4)および(P-7)分散ゾルと導電性微粒子(P-5)および(P-6)の分散ゾルを表2に示す組成となるように、エタノール/イソプロピルグリコール/ジアセトンアルコール(81/16/3)の混合溶液と混合し、透明導電性被膜形成用塗布液(C-1)〜(C-9)を調製した。
【0077】
また、導電性微粒子(P-6)分散ゾルを表1に示す組成となるように、水/ブチルセロソルブ/N-メチル-2-ピロリドン(82/16/2)の混合溶液と混合し、透明導電性被膜形成用塗布液(C-8)を調製した。
透明導電性被膜付パネルガラスの製造
ブラウン管用パネルガラス(14")の表面を45℃で保持しながら、スピナー 法で150rpm、90秒の条件で上記調製した透明導電性被膜形成用塗布液(C-1)〜(C-8)を導電性微粒子層の厚さが表1に示す膜厚となるようにそれぞれ塗布し、乾燥した。
【0078】
次いで、このようにして形成された各透明導電性微粒子層上に、同じように、スピナー法で150rpm、90秒の条件で、下記のように別途調製した透明被膜形成用塗布液を透明被膜の厚さが100nmとなるように塗布・乾燥し、180℃で30分間焼成して透明導電性被膜付パネルガラスを得た。
透明被膜形成用塗布液の調製
別途エタノール42.9g、濃度35重量%の濃塩酸0.2gおよび純水35.5gを混合し、これに正珪酸メチル(SiO2濃度51重量%)21.4gを加えた後、60℃で2時間撹拌して正珪酸メチルの加水分解・熟成を行い、ついで、イソプロピルアルコール118.3gおよびメタノール/エタノール/イソプロピルグリコール/ジアセトンアルコール(17/67/12/4)873.1gを加えてSiO2濃度1重量%の透明被膜形成用塗布液を調製した。
【0079】
これらの透明導電性被膜付パネルガラスの表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘーズをへーズコンピューター(日本電色(株)製:3000A)で測定した。反射率は反射率計(大塚電子(株)製:MCPD-2000)を用いて測定し、ボトム反射率は波長400〜800nmの範囲で反射率が最も低い波長のでの反射率とし、視感反射率は波長400〜800nmの範囲における平均反射率として表示した。透過率は分光光度計(日本分光(株)製:UBest55)にて波長560nmにおける透過率を測定した。微粒子の粒子径は、微粒子の透過型電子顕微鏡写真(TEM)を撮影し、20個の粒子について粒子径を測定し、この平均値として表2に示した。
【0080】
【表1】

Figure 0004002469
【0081】
【表2】
Figure 0004002469
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an indium metal fine particle having an average particle diameter of 2 to 200 nm, an indium metal fine particle dispersed sol in which the fine particle is dispersed in water and / or an organic solvent, a method for producing the indium metal fine particle, In addition, the present invention relates to a coating liquid for forming a transparent conductive film containing indium-based metal fine particles, a substrate with a transparent conductive film, and a display device.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventionally, transparent coatings having antistatic and antireflection functions on the surfaces of transparent substrates such as cathode ray tubes, fluorescent display tubes, and liquid crystal display panels, for the purpose of antistatic and antireflection. It was done to form.
Further, it is known that electromagnetic waves are emitted from a cathode ray tube or the like, and in addition to conventional antistatic and antireflection, it has been desired to shield these electromagnetic waves and electromagnetic fields formed by the emission of electromagnetic waves. .
[0003]
One method of shielding these electromagnetic waves and the like is a method of forming a conductive film for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. If it is a conductive film for antistatic, the surface resistance is at least 108While it is sufficient to have a surface resistance of about Ω / □, it is 10 for a conductive coating for electromagnetic shielding.2-10FourIt was necessary to have a low surface resistance such as Ω / □.
[0004]
When the conductive film having a low surface resistance is formed using a coating solution containing a conductive oxide such as conventional Sb-doped tin oxide (ATO) or Sn-doped indium oxide (ITO), It was necessary to make the film thickness thicker than in the case of an antistatic coating. However, since the antireflection effect is not exhibited unless the film thickness of the conductive film is about 10 to 200 nm, the conventional conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide has a low surface resistance, There was a problem that it was difficult to obtain a conductive film that was excellent in electromagnetic wave shielding properties and also in antireflection.
[0005]
Also known is a method of forming a metal fine particle-containing film on the surface of a base material using a conductive film forming coating solution containing metal fine particles such as Ag as a low surface resistance conductive film. In this method, a coating solution in which colloidal metal fine particles are dispersed in a polar solvent is used as a coating solution for forming a coating containing metal fine particles. In such a coating solution, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is surface-treated with an organic stabilizer such as polyvinyl alcohol, polyvinyl pyrrolidone or gelatin.
[0006]
In addition, unlike the conductive oxide, the metal fine particles do not originally transmit light, so the conductive film formed using the metal fine particles is transparent depending on the density and film thickness of the metal fine particles in the conductive film. There was also a problem of lowering.
Further, when metal fine particles are used, especially when noble metal fine particles such as Au, Ag, Pt, Pd, or alloy fine particles thereof are used, they are expensive, and there is a demand for improvement in economic efficiency.
[0007]
Under such circumstances, as a result of intensive studies on conductive fine particles that can solve all of the above-mentioned problems, the use of monodispersed (non-aggregated) indium-based metal fine particles having a specific particle size It was found that a transparent conductive film having excellent properties and electromagnetic shielding properties as well as manufacturing reliability and economy can be formed and manufactured at low cost, and the present invention has been completed.
[0008]
Note that conventional indium-based metal fine particles are obtained as aggregated particles even if metal fine particles are obtained, and it is difficult to obtain monodispersed metal fine particles for reproducibility. For example, they are used for transparent conductive films and the like. However, the adhesion of the film to the base material and the electrical conductivity may be insufficient. Further, in the aqueous dispersion medium or in the dispersion medium containing water, there is a problem that hydroxides are mixed and formed in the same manner as other base metals.
[0009]
OBJECT OF THE INVENTION
The present invention provides an indium-based metal fine particle and a dispersed sol that can be suitably used for forming a transparent conductive film excellent in antistatic properties, electromagnetic shielding properties, production reliability and economy, and a method for producing the same, and It aims at providing the coating liquid for transparent conductive film formation containing an indium type metal microparticle, the base material with a transparent conductive film, and a display apparatus.
[0010]
SUMMARY OF THE INVENTION
The indium metal fine particle-dispersed sol according to the present invention is characterized in that indium metal fine particles having an average particle diameter in the range of 2 to 200 nm are dispersed in water and / or an organic solvent.
The indium metal fine particles preferably include indium metal alone or one or more metal components selected from Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd together with indium metal.
[0011]
The method for producing indium metal fine particles according to the present invention is a mixed alcohol solution containing an indium compound and an organic stabilizer, and the reducing agent is added to the mixed alcohol solution having an alcohol content of 40% by weight or more in the solvent. It is characterized by that. It is preferable that the alcohol solution further contains one or more kinds of metal compounds selected from Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd.
[0012]
The coating liquid for forming a transparent conductive film according to the present invention is characterized by comprising the indium metal fine particles and a polar solvent. The coating liquid for forming a transparent conductive film may further contain conductive oxide fine particles.
A substrate with a transparent conductive film according to the present invention is provided on a substrate, a transparent conductive fine particle layer containing the indium metal fine particles on the substrate, and the transparent conductive fine particle layer. It is characterized by comprising a transparent film having a refractive index lower than that of the fine particle layer.
[0013]
The display device according to the present invention includes a front plate made of the transparent conductive film-coated substrate, and the transparent conductive film is formed on the outer surface of the front plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
Indium metal fine particles
Indium-based metal fine particles are particles composed of indium metal alone, or indium contains one or more metal components other than indium selected from Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd. Any of the particles may be used. When a metal component other than indium is contained, the proportion of the metal component other than indium contained in the indium-based metal fine particles is preferably 50% by weight or less, and more preferably 30% by weight or less.
[0015]
If the proportion of the metal component other than indium in the indium metal fine particles exceeds 50% by weight, the fusion effect of the low melting point indium metal fine particles described later cannot be obtained, although it depends on the type of metal component other than indium. There is.
When the indium-based metal fine particles contain a metal component other than indium, two or more kinds of metals constituting the indium-based metal fine particles are eutectics that are not in a solid solution state even if they are alloys in a solid solution state. The alloy and the eutectic may coexist.
[0016]
Since such indium metal fine particles suppress metal oxidation and ionization, particle growth of the indium metal fine particles is suppressed, and the indium metal fine particles have high corrosion resistance, conductivity, and light transmittance. It has excellent reliability such as a small decrease.
Such indium metal fine particles have an average particle diameter in the range of 2 to 200 nm, preferably 5 to 100 nm.
[0017]
When the conductive coating is formed using indium-based metal fine particles whose average particle diameter is less than the lower limit of the above range, the grain boundary resistance between the indium-based metal fine particles in the coating increases, and the surface resistance of the conductive particle layer is reduced. Since it rapidly increases, it may not be possible to obtain a coating having a low resistance that can achieve the object of the present invention.
When the average particle diameter exceeds the upper limit of the above range, when a film is formed using indium metal fine particles, light absorption by the indium metal fine particles in the film increases, and the light transmittance of the conductive particle layer decreases. Haze increases. For this reason, when the coated substrate is used as, for example, a front plate of a cathode ray tube, the resolution of the displayed image may be lowered.
[0018]
Such indium metal fine particles according to the present invention can be used as a powder as it is, but are usually used as a sol dispersed in water and / or an organic solvent.
Examples of the organic solvent used in the present invention include methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, alcohols such as ethylene glycol and hexylene glycol; esters such as acetic acid methyl ester and acetic acid ethyl ester Ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone and acetoacetate It is done. These may be used singly or in combination of two or more.
[0019]
The concentration of indium metal fine particles in the indium metal fine particle-dispersed sol according to the present invention can be used in a coating liquid for forming a transparent conductive film, which will be described later, and particularly if a transparent conductive film having necessary performance is obtained. Although there is no restriction | limiting, Usually, it is 0.5 to 20 weight%, Furthermore, it is preferable to exist in the range of 1 to 5 weight%. If the concentration of the indium metal fine particles is within this range, a stable sol in which the indium metal fine particles are monodispersed can be obtained.
[0020]
In addition, the indium-based metal fine particle-dispersed sol may contain an organic stabilizer as necessary. Such organic stabilizers include gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, hydroxypropyl cellulose, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid Carboxylic acids such as phthalic acid, citric acid, ascorbic acid and isoascorbic acid and their salts, or mixtures thereof, and ketones such as acetylacetone.
[0021]
Such an organic stabilizer may be contained in an amount of 0.005 to 20 parts by weight, preferably 0.01 to 15 parts by weight with respect to 1 part by weight of the indium metal fine particles. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility and stability may not be obtained, and when it exceeds 20 parts by weight, the stability is not further improved. The conductivity of the transparent conductive film may be hindered.
[0022]
Such indium-based metal fine particles have the characteristics of higher monodispersibility than conventional metal fine particles and higher conductivity than indium oxide-based fine particles.
Method for producing indium metal fine particles
Next, a method for producing indium metal fine particles according to the present invention will be described.
[0023]
The method for producing indium-based metal fine particles according to the present invention reduces an indium compound (and other compounds included as necessary) by adding a reducing agent to an alcohol solution containing an indium compound and an organic stabilizer. It is characterized by that.
The alcohol solution may further contain one or more metal compounds selected from compounds containing Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd.
[0024]
The indium compound used in the present invention is not particularly limited as long as it can be dissolved or dispersed in the alcohol used, and examples thereof include indium nitrate, indium chloride, indium acetate, and indium formate.
The compounds containing Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd include, for example, antimony chloride, stannous chloride, silver nitrate, chloroauric acid, zinc chloride, zinc bromide, cupric chloride, nitric acid. Examples include bismuth and cadmium chloride.
[0025]
The concentration of the indium compound in the alcohol solution is preferably in the range of 0.05 to 5.0% by weight, more preferably 0.1 to 2.0% by weight as In metal.
When the concentration of indium compound is less than 0.05% by weight as In, the yield decreases and the production efficiency is low. When the concentration of indium compound exceeds 5.0% by weight as In, coarse particles and aggregated particles are formed. In some cases, the desired average particle size may not be obtained.
[0026]
Also, when a compound other than the indium compound is included, the total concentration is preferably in the range of 0.05 to 5.0% by weight, more preferably 0.1 to 2.0% by weight in terms of metal.
The amount of the compound other than the indium compound is preferably used so that the ratio of the metal component other than indium in the finally obtained indium-based metal fine particles is 50% by weight or less, and further 30% by weight or less.
[0027]
Examples of the alcohol used in the present invention include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol and hexylene glycol, and mixtures thereof. Of these, alcohols of methanol and ethanol are preferred because the indium compound and the reducing agent described below can be easily dissolved and dispersed. Further, if necessary, an organic solvent such as N-methyl-2pyrrolidone, propylene carbonate, dioxane (diethylene oxide) can be used for the purpose of dissolving the indium compound and the reducing agent.
[0028]
In the method for producing indium metal fine particles of the present invention, a mixed alcohol solvent having an alcohol content of 40% by weight or more is used. This solvent may contain water in addition to the alcohol. The water content at this time is preferably 40% by weight or less, and more preferably 30% by weight or less. When the content of water in the alcohol exceeds 40% by weight, indium hydroxide and a hydroxide of a metal other than indium are generated, and it becomes difficult to obtain highly conductive indium-based metal fine particles. In addition, the production rate (reduction rate) of the indium metal fine particles tends to decrease with a decrease in the proportion of alcohol.
[0029]
As the organic stabilizer used in the present invention, the same organic stabilizer as described above can be used. Among them, ketones such as acetylacetone are not as strong as the carboxylic acid to coordinate to the particle surface, so that the formation of indium metal fine particles is not hindered and the resulting indium metal fine particles can be stably dispersed. it can.
[0030]
The amount of the organic stabilizer used at this time may be 0.005 to 20 parts by weight, preferably 0.01 to 15 parts by weight, with respect to 1 part by weight of the indium-based metal fine particles obtained. Good. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility and stability of the indium metal fine particles may not be obtained. When the amount exceeds 20 parts by weight, the transparent conductive film Conductivity may be hindered.
[0031]
Next, as a reducing agent used in the present invention, ferrous salts such as ferrous sulfate, stannous chloride, zinc chloride, trisodium citrate, tartaric acid, L (+)-ascorbic acid, iso-ascorbic acid Sodium borohydride, sodium hypophosphite and the like. In particular, sodium borohydride can obtain indium metal fine particles in a high yield without generating coarse particles or aggregated particles.
[0032]
In this case, the amount of the reducing agent used is in the range of 0.1 to 5.0 moles, more preferably 1.0 to 3.0 moles per mole of the total of the indium compound and other compounds other than indium. Is preferred. Within such a range, indium-based metal fine particles can be obtained in high yield.
When the amount of the reducing agent used is less than 0.1 mole per mole of the total compound, the yield of indium metal fine particles decreases due to insufficient reducing ability, and when a compound other than indium is included, Depending on the reducing properties of the compound, indium-based metal fine particles containing a metal other than indium may not be obtained.
[0033]
Even if the amount of the reducing agent used exceeds 5.0 moles per mole of the total compound, the yield is not further improved and the economic efficiency is lowered.
The reducing condition using such a reducing agent is not particularly limited as long as it is a condition that can reduce the compound of the metal, and it is necessary to add the reducing agent to the alcohol solution having the above-mentioned concentration. Depending on the condition, it may be heated or stirred. Further, by aging as necessary, a sol in which indium metal fine particles having a more uniform particle diameter are dispersed in an alcohol solvent can be obtained. Furthermore, if necessary, ions can be removed with an ion exchange resin, an ultrafiltration membrane or the like. When ions are removed, a more stable dispersion sol of indium-based metal fine particles can be obtained. If the alcohol solvent is removed from the sol by a method such as drying, the indium metal fine particles according to the present invention can be obtained.
[0034]
Also, if necessary, the solvent can be replaced with water, and the solvent can be replaced with a water sol or another organic solvent other than alcohol to obtain an organosol.
When the indium metal fine particles are used in a coating solution described later, the dispersed sol may be used after being dried once, or the dispersed sol may be used as it is.
[0035]
Coating liquid for forming transparent conductive film
Next, the coating liquid for forming a transparent conductive film according to the present invention will be described.
The coating liquid for forming a transparent conductive film according to the present invention is characterized by containing the aforementioned indium metal fine particles and a polar solvent.
As the polar solvent used in the present invention,
Water; methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, alcohols such as ethylene glycol and hexylene glycol; esters such as methyl acetate and ethyl acetate; diethyl ether and ethylene Ethers such as glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, acetoacetate, amides such as dimethylformamide, etc. Can be mentioned. These may be used singly or in combination of two or more.
[0036]
Such a coating liquid for forming a transparent conductive film may contain conductive oxide fine particles in addition to the indium metal fine particles.
Examples of the conductive oxide fine particles include tin oxide, tin oxide doped with Sb, F or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, and low-order titanium oxide.
[0037]
These conductive oxide fine particles have an average particle diameter of 2 to 200 nm, preferably 5 to 150 nm.
When such conductive oxide fine particles are contained, it is possible to form a transparent conductive fine particle layer that is more excellent in transparency as compared with the case where the transparent conductive fine particle layer is formed only of indium metal fine particles. Moreover, a base material with a transparent conductive film can be manufactured at low cost by containing conductive oxide fine particles.
[0038]
Such conductive oxide fine particles may be contained in an amount of 9 parts by weight or less per 1 part by weight of the indium metal fine particles. When the amount of the conductive oxide fine particles exceeds 9 parts by weight, the conductivity of the transparent conductive film obtained when there are too many conductive oxide fine particles having low conductivity may be reduced, and the electromagnetic wave shielding effect may be reduced. Further, when the conductive oxide fine particles exceed 9 parts by weight (that is, when the amount of indium metal fine particles is small), fusion / bonding with the indium metal fine particles at the neck portion formed by the contact points of the conductive oxide fine particles. Is insufficient, and the effect of reducing the intergranular resistance between the conductive oxide fine particles cannot be obtained.
[0039]
In the above, when the conductive oxide fine particles and the indium metal fine particles are used in combination, the average particle diameter (DO) And the average particle diameter of indium-based metal fine particles (DM) (D)M) / (DO) Is preferably less than 1 and more preferably 0.5 or less. If this ratio is in the above range, fusion / bonding with indium metal fine particles occurs effectively at the neck formed by the contact of the conductive oxide fine particles.
[0040]
Such fusion / bonding is performed by heating at a temperature close to the melting point of the indium-based metal fine particles, further higher than the melting point, and preferably in a temperature range of approximately 160 to 250 ° C. when forming the conductive film.
The coating liquid for forming a transparent conductive film according to the present invention may contain a matrix component that acts as a binder for the conductive fine particles after the film is formed. Such a matrix component is preferably composed of silica. Specifically, a hydrolyzed polycondensate of an organosilicon compound such as alkoxysilane or an alkali metal silicate aqueous solution obtained by dealkalization is used. Examples include condensates and paint resins. This matrix may be contained in an amount of 0.01 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight, per 1 part by weight of the composite metal fine particles.
[0041]
In order to improve the dispersibility of the indium metal fine particles of the present invention, an organic stabilizer may be contained in the coating liquid for forming a transparent conductive film. Examples of such an organic stabilizer include the same ones as described above.
Such an organic stabilizer may be contained in an amount of 0.005 to 20 parts by weight, preferably 0.01 to 15 parts by weight with respect to 1 part by weight of the indium metal fine particles. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility and stability cannot be obtained, and when it exceeds 20 parts by weight, the conductivity may be inhibited.
[0042]
Furthermore, the coating liquid for forming a transparent conductive film of the present invention may contain fine particle carbon and / or titanium black as a colorant. Furthermore, dyes and pigments may be included. When such a colorant is contained, a display device having excellent contrast can be obtained.
Such a coating solution according to the present invention can be prepared by mixing the above-described indium metal fine particles or dispersion sol, a solvent, and a stabilizer, and then stirring the mixture with a mixer or the like.
The indium metal fine particle dispersed sol can be used as a coating solution as it is. If necessary, the solvent is replaced, the concentration is adjusted, and a component such as a matrix is added. By doing so, a coating liquid can be prepared.
[0043]
Base material with transparent conductive film
Next, the transparent conductive film-coated substrate according to the present invention will be specifically described.
In the base material with a transparent conductive film according to the present invention, a transparent conductive fine particle comprising a base material such as a film, sheet or other molded body made of glass, plastic, ceramic or the like, and the indium metal fine particles on the base material. And a transparent coating film provided on the transparent conductive fine particle layer and having a refractive index lower than that of the transparent conductive fine particle layer.
[Transparent conductive fine particle layer]
The film thickness of the transparent conductive fine particle layer is preferably in the range of about 5 to 200 nm, preferably 10 to 150 nm. If the film thickness is in this range, a substrate with a transparent conductive film excellent in electromagnetic shielding effect is obtained. Obtainable.
[0044]
Such a transparent conductive fine particle layer may contain conductive oxide fine particles other than the indium-based metal fine particles, a matrix component, and an organic stabilizer, if necessary. The same thing is mentioned.
Such a transparent conductive fine particle layer can be formed by applying and drying the transparent conductive film-forming coating solution on a substrate.
[0045]
As a method for forming the transparent conductive fine particle layer, for example, a coating solution for forming a transparent conductive film was applied on a substrate by a method such as a dipping method, a spinner method, a spray method, a roll coater method, or a flexographic printing method. Then, it dries at a temperature in the range of room temperature to about 90 ° C.
When the matrix-forming component as described above is contained in the coating liquid for forming a transparent conductive film, the matrix-forming component may be cured.
[0046]
For example, a film formed by applying a coating solution for forming a transparent conductive film is heated at 150 ° C. or higher at the time of drying or after drying, or an uncured film is irradiated with ultraviolet rays or electron beams having a wavelength shorter than that of visible light. X-rays, γ-rays or other electromagnetic waves may be irradiated or exposed to an active gas atmosphere such as ammonia. If it does in this way, hardening of a film formation ingredient will be accelerated and the hardness of the film obtained will become high.
[Transparent coating]
In the substrate with a transparent conductive film according to the present invention, a transparent film having a refractive index lower than that of the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.
[0047]
The film thickness of the formed transparent film is 50 to 300 nm, preferably 80 to 200 nm.
Such a transparent film is formed from, for example, inorganic oxides such as silica, titania and zirconia, and composite oxides thereof. In the present invention, a silica-based film made of a hydrolyzable polycondensate of a hydrolyzable organosilicon compound or a silicate polycondensate obtained by dealkalizing an alkali metal silicate aqueous solution is particularly preferable as the transparent film. The base material with a transparent conductive film on which such a transparent film is formed is excellent in antireflection performance.
[0048]
The transparent coating further has an average particle diameter in the range of 5 to 300 nm, preferably 10 to 200 nm, and a refractive index in the range of 1.28 to 1.42, preferably in the range of 1.28 to 1.40. It is desirable to include low refractive index particles.
The average particle diameter of the low refractive index particles used is appropriately selected according to the thickness of the formed transparent film.
[0049]
When the refractive index of the low refractive index particles is 1.42 or less, the obtained substrate with a transparent conductive film has low bottom reflectance and luminous reflectance, and can exhibit excellent antireflection performance.
The content of the low refractive index particles in the transparent coating is 10 to 90% by weight, preferably 20 to 80% by weight in terms of oxide.
[0050]
The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and refractive index are in the above ranges, and conventionally known particles can be used. For example, the composite oxide sol disclosed in JP-A-7-133105 filed by the applicant of the present application and the porous composite oxide particles having the coating layer disclosed in WO00 / 37359 can be suitably used.
[0051]
Furthermore, the transparent film may contain additives such as fine particles, dyes, and pigments made of a low refractive index material such as magnesium fluoride, if necessary.
The method for forming the transparent film is not particularly limited, and depending on the material of the transparent film, a dry thin film forming method such as a vacuum evaporation method, a sputtering method, or an ion plating method, or the dipping method or spinner method as described above. A wet thin film forming method such as a spray method, a roll coater method, or a flexographic printing method can be employed.
[0052]
When the transparent film is formed by a wet thin film forming method, a conventionally known coating liquid for forming a transparent film can be used. As such a coating liquid for forming a transparent film, specifically, a coating liquid containing an inorganic oxide such as silica, titania, zirconia, or a composite oxide thereof as a transparent film forming component is used.
In the present invention, a silica-based transparent film-forming coating containing a hydrolyzable polycondensate of a hydrolyzable organosilicon compound or a silicic acid solution obtained by dealkalizing an alkali metal silicate aqueous solution as a coating film for forming a transparent film The silica-based film formed from such a coating solution has a refractive index smaller than that of the conductive fine particle layer containing indium metal fine particles, and the obtained substrate with a transparent conductive film has excellent antireflection properties. ing.
[0053]
Display device
The substrate with a transparent conductive film according to the present invention generally has 10 necessary for antistatic and electromagnetic shielding.2-10FourIt has a surface resistance in the range of Ω / □, is excellent in transparency and has sufficient antireflection performance in the visible light region and near infrared region, and is suitably used as a front plate of a display device.
[0054]
The display device according to the present invention is a device that electrically displays an image such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like. A front plate made of a substrate with a transparent conductive film.
When a display device having a conventional front plate is operated, an image is displayed on the front plate, and at the same time, the front plate is charged or electromagnetic waves are emitted from the front plate. The face plate is approximately 10 as described above.2-10FourSince it is composed of a substrate with a transparent conductive film having a surface resistance of Ω / □, it is possible to prevent such charging or effectively shield electromagnetic waves and electromagnetic fields generated by the emission of these electromagnetic waves. it can.
[0055]
In addition, when reflected light is generated on the front plate of the display device, the display image is difficult to see due to the reflected light. In the display device according to the present invention, the front plate has sufficient antireflection performance in the visible light region and the near infrared region. Since it is comprised with the base material with a transparent conductive film which has this, such reflected light can be prevented effectively.
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in antistatic property and electromagnetic shielding property, the indium type metal microparticle which can form the transparent conductive film excellent also in manufacturing reliability and economical efficiency is provided. The indium metal fine particles can be manufactured at a very low cost.
[0057]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
Table 1 summarizes the compositions of the conductive fine particles other than the indium metal fine particles and the indium metal fine particles used in this example and the comparative example.
[0058]
[Example 1]
Indium metal fine particles (P-1) Preparation of dispersion sol
A mixed solution of 97.2 parts by weight of methanol and 1.2 parts by weight of acetylacetone as an organic stabilizer was mixed with indium nitrate trihydrate (In (NOThree)Three・ 3H2O) 1.6 parts by weight were dissolved. Next, 22 parts by weight of an aqueous sodium borohydride solution having a concentration of 1.5% by weight was added in a nitrogen atmosphere and stirred at 20 ° C. for 30 minutes to prepare an indium-based metal fine particle dispersion.
[0059]
The resulting dispersion was repeatedly decanted with ethanol using a centrifuge to reduce ions and salts.
Subsequently, the finally settled indium metal fine particles were dispersed in an ethanol solution of acetylacetone having a concentration of 20% by weight so as to be 66.7 parts by weight of the ethanol solution with respect to 1 part by weight of the indium metal fine particles. Dispersion sol of metallic fine particles (P-1) was prepared.
[0060]
Table 1 shows the properties of the obtained indium-based metal fine particles (P-1).
[0061]
[Example 2]
Indium metal fine particles (P-2) Preparation of dispersion sol
In Example 1, an indium metal fine particle dispersion was prepared in the same manner except that ethanol was used instead of methanol.
Subsequently, decantation, dispersion, and the like were performed in the same manner as in Example 1 to prepare a dispersion sol of indium metal fine particles (P-2).
[0062]
Table 1 shows the properties of the obtained indium metal fine particle (P-2) dispersion sol.
[0063]
[Example 3]
Indium metal fine particles (P-3) Preparation of dispersion sol
A mixed solution of 91.5 parts by weight of methanol and 1.2 parts by weight of acetylacetone as an organic stabilizer was added to indium nitrate trihydrate (In (NOThree)Three・ 3H2O) 1.6 parts by weight and 5.7 parts by weight of a stannous chloride ethanol solution having a concentration of 5% by weight were dissolved. Next, 23 parts by weight of an aqueous sodium borohydride solution having a concentration of 1.5% by weight was added in a nitrogen atmosphere and stirred at 20 ° C. for 30 minutes to prepare an indium-based metal fine particle dispersion.
[0064]
Next, decantation, dispersion, and the like were performed in the same manner as in Example 1 to prepare an indium metal fine particle (P-3) dispersion sol.
Table 1 shows the properties of the obtained indium metal fine particle (P-3) dispersion sol.
[0065]
[Example 4]
Indium metal fine particles (P-4) Preparation of dispersion sol
A mixed solution of 91.5 parts by weight of methanol and 1.2 parts by weight of acetylacetone as an organic stabilizer was added to indium nitrate trihydrate (In (NOThree)Three・ 3H2O) 1.6 parts by weight and 15 parts by weight of an ethanol solution of zinc chloride having a concentration of 2.5% by weight were dissolved. Next, 23 parts by weight of an aqueous sodium borohydride solution having a concentration of 1.5% by weight was added in a nitrogen atmosphere and stirred at 20 ° C. for 30 minutes to prepare an indium-based metal fine particle dispersion.
[0066]
Next, decantation, dispersion, and the like were performed in the same manner as in Example 1 to prepare an indium metal fine particle (P-4) dispersion sol.
Table 1 shows the properties of the obtained indium-based metal fine particle (P-4) dispersion sol.
[0067]
[Reference Example 1]
Conductive oxide fine particles (P-5) Preparation of dispersion sol
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a 10% strength by weight potassium hydroxide solution were prepared. The solution was added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The tin-containing indium oxide hydrate was filtered and washed from the obtained tin-containing indium oxide hydrate dispersion, and then dispersed again in water to obtain a metal oxide precursor having a solid content concentration of 10% by weight. A body hydroxide dispersion was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. This powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.
[0068]
This was dispersed in ethanol to a concentration of 30% by weight, adjusted to pH 3.5 with an aqueous nitric acid solution, and then pulverized with a sand mill for 0.5 hours while maintaining the mixed solution at 30 ° C. Was prepared. Subsequently, ethanol was added to prepare a dispersion sol of conductive oxide fine particles (P-5) (Sn-doped indium oxide fine particles: ITO fine particles) having the concentrations shown in Table 1.
[0069]
Table 1 shows the properties of the obtained conductive oxide fine particle (P-5) dispersed sol.
[0070]
[Reference Example 2]
Conductive oxide fine particles (P-6) Preparation of dispersion sol
A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of water. The prepared solution was added to 1000 g of pure water with stirring at 90 ° C. over 4 hours, followed by hydrolysis. The resulting precipitate was filtered and washed, and calcined in dry air at 500 ° C. for 2 hours to obtain antimony. A conductive tin oxide powder doped with was obtained. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g of KOH), and the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. to prepare a sol. Next, this sol is treated with an ion exchange resin, dealkalized, and pure water is added to prepare a conductive oxide fine particle (P-6) (Sb-doped tin oxide fine particle: ATO fine particle) dispersion sol having the concentration shown in Table 1. did.
[0071]
Table 1 shows the properties of the obtained conductive oxide fine particle (P-6) -dispersed sol.
[0072]
[Comparative Example 1]
Indium metal fine particles (P-7) Preparation of dispersion sol
A mixed solution of 36.2 parts by weight of methanol, 61 parts by weight of water and 1.2 parts by weight of acetylacetone as an organic stabilizer was added to indium nitrate trihydrate (In (NOThree)Three・ 3H2O) 1.6 parts by weight were dissolved. Next, 22 parts by weight of an aqueous sodium borohydride solution having a concentration of 1.5% by weight was added in a nitrogen atmosphere and stirred at 20 ° C. for 30 minutes to prepare an indium metal fine particle dispersion.
[0073]
The obtained dispersion was repeatedly decanted with ethanol using a centrifuge to reduce ions and salts.
Subsequently, the finally settled indium metal fine particles were dispersed in an ethanol solution of acetylacetone having a concentration of 20% by weight so as to be 66.7 parts by weight of the ethanol solution with respect to 1 part by weight of the indium metal fine particles. Dispersion sol of metallic fine particles (P-1) was prepared. Part of the obtained metal fine particles was hydroxide and aggregated.
[0074]
Table 1 shows the properties of the obtained indium metal fine particles (P-7).
[0075]
[Comparative Example 2]
Indium metal fine particles (P-8) Preparation of dispersion sol
Indium nitrate trihydrate (In (NOThree)Three・ 3H2O) 1.6 parts by weight were dissolved. Subsequently, 22 parts by weight of a sodium borohydride aqueous solution having a concentration of 1.5% by weight was added in a nitrogen atmosphere and stirred at 20 ° C. for 30 minutes. Apparently, a hydrogel of indium hydroxide was formed, and indium-based metal fine particles could not be obtained.
[0076]
Examples 5 to 10, Comparative Examples 3 to 5
Coating liquid for forming transparent conductive film (C-1) ~ (C-9) Preparation of
Table 2 shows the dispersion sols of the indium fine particles (P-1) to (P-4) and (P-7) and the conductive fine particles (P-5) and (P-6) prepared above. Then, it was mixed with a mixed solution of ethanol / isopropyl glycol / diacetone alcohol (81/16/3) to prepare coating liquids (C-1) to (C-9) for forming transparent conductive films.
[0077]
Further, the conductive fine particle (P-6) -dispersed sol was mixed with a mixed solution of water / butyl cellosolve / N-methyl-2-pyrrolidone (82/16/2) so as to have the composition shown in Table 1, and transparent conductive A coating solution for forming a conductive film (C-8) was prepared.
Manufacture of panel glass with transparent conductive coating
While maintaining the surface of the CRT panel glass (14 ″) at 45 ° C., the above-prepared coating liquids for forming transparent conductive films (C-1) to (C-8) by spinner method at 150 rpm for 90 seconds. Were applied so that the thickness of the conductive fine particle layer was as shown in Table 1, and dried.
[0078]
Then, on each transparent conductive fine particle layer formed in this manner, a transparent film-forming coating solution separately prepared as follows under the conditions of 150 rpm and 90 seconds by the spinner method is similarly applied. It was applied and dried to a thickness of 100 nm and baked at 180 ° C. for 30 minutes to obtain a panel glass with a transparent conductive film.
Preparation of coating solution for transparent film formation
Separately, 42.9 g of ethanol, 0.2 g of concentrated hydrochloric acid having a concentration of 35% by weight and 35.5 g of pure water were mixed, and this was mixed with normal methyl silicate (SiO 2).2After adding 21.4 g (concentration 51 wt%), the mixture was stirred at 60 ° C. for 2 hours to hydrolyze and ripen methyl silicate, and then 118.3 g of isopropyl alcohol and methanol / ethanol / isopropyl glycol / diacetone alcohol (17/67/12/4) Add 873.1g and add SiO2A coating solution for forming a transparent film having a concentration of 1% by weight was prepared.
[0079]
The surface resistance of the panel glass with a transparent conductive film was measured with a surface resistance meter (Mitsubishi Yuka Co., Ltd .: LORESTA), and the haze was measured with a haze computer (Nippon Denshoku Co., Ltd .: 3000A). . The reflectivity is measured using a reflectometer (manufactured by Otsuka Electronics Co., Ltd .: MCPD-2000), and the bottom reflectivity is the reflectivity at the lowest reflectivity in the wavelength range of 400 to 800 nm. The rate was expressed as an average reflectance in a wavelength range of 400 to 800 nm. The transmittance was measured at a wavelength of 560 nm with a spectrophotometer (manufactured by JASCO Corporation: UBest 55). The particle diameter of the fine particles is shown in Table 2 as an average value obtained by taking a transmission electron micrograph (TEM) of the fine particles and measuring the particle diameter of 20 particles.
[0080]
[Table 1]
Figure 0004002469
[0081]
[Table 2]
Figure 0004002469

Claims (7)

アルコール含有量が40質量%以上、水の含有量が30質量%以下の溶媒に、インジウム化合物、ケトン類、および還元剤を加えてインジウム化合物を還元することを特徴とする粒子径が2〜200nmのインジウム金属微粒子の製造方法。A particle size of 2 to 200 nm, wherein the indium compound is reduced by adding an indium compound, ketones, and a reducing agent to a solvent having an alcohol content of 40 % by mass or more and a water content of 30 % by mass or less. Of producing indium metal fine particles. アルコール含有量が40質量%以上、水の含有量が30質量%以下の溶媒に、インジウム化合物および、Sb、Sn、Ag、Au、Zn、Cu、Bi、Cdから選ばれる1種以上の化合物、ケトン類、および還元剤を加えてインジウム化合物およびSb、Sn、Ag、Au、Zn、Cu、Bi、Cdから選ばれる1種以上の化合物を還元することを特徴とする、インジウム金属成分およびSb、Sn、Ag、Au、Zn、Cu、Bi、Cdから選ばれる1種以上の金属成分からなる粒子径が2〜200nmのインジウム系金属微粒子の製造方法。In a solvent having an alcohol content of 40 % by mass or more and a water content of 30 % by mass or less, an indium compound and one or more compounds selected from Sb, Sn, Ag, Au, Zn, Cu, Bi, and Cd, Indium metal component and Sb, characterized by reducing ketones and indium compounds and one or more compounds selected from Sb, Sn, Ag, Au, Zn, Cu, Bi, Cd by adding a reducing agent, A method for producing indium-based metal fine particles having a particle diameter of 2 to 200 nm comprising one or more metal components selected from Sn, Ag, Au, Zn, Cu, Bi, and Cd. 請求項1または2に記載の方法で得られた金属微粒子が水および/または有機溶媒に分散してなることを特徴とする金属微粒子分散ゾル。  A metal fine particle-dispersed sol, wherein the metal fine particles obtained by the method according to claim 1 or 2 are dispersed in water and / or an organic solvent. 請求項1または2に記載の方法で得られた金属微粒子と極性溶媒とを含むことを特徴とする透明導電性被膜形成用塗布液。  A coating liquid for forming a transparent conductive film, comprising metal fine particles obtained by the method according to claim 1 and a polar solvent. さらに、導電性酸化物微粒子を含むことを特徴とする請求項4に記載の透明導電性被膜形成用塗布液。  Furthermore, the conductive oxide fine particle is contained, The coating liquid for transparent conductive film formation of Claim 4 characterized by the above-mentioned. 基材と、基材上の請求項1または2に記載の方法で得られた金属微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなることを特徴とする透明導電性被膜付基材。  A substrate, a transparent conductive fine particle layer containing metal fine particles obtained by the method according to claim 1 or 2 on the substrate, and provided on the transparent conductive fine particle layer, from the transparent conductive fine particle layer A substrate with a transparent conductive film, characterized by comprising a transparent film having a low refractive index. 請求項6に記載の透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴とする表示装置。  A display device comprising a front plate comprising the substrate with a transparent conductive film according to claim 6, wherein the transparent conductive film is formed on an outer surface of the front plate.
JP2002146717A 2002-05-21 2002-05-21 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device Expired - Lifetime JP4002469B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002146717A JP4002469B2 (en) 2002-05-21 2002-05-21 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
KR1020030029737A KR100986628B1 (en) 2002-05-21 2003-05-12 Indium derived metal particle and its preparation method and coating solution containing indium derived metal particle, substrate for coating, display device
CNB031367186A CN1278805C (en) 2002-05-21 2003-05-20 Indium series metal particle and mfg. method thereof, coating liquid containing same, base material with covering film and dispay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146717A JP4002469B2 (en) 2002-05-21 2002-05-21 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device

Publications (2)

Publication Number Publication Date
JP2003342602A JP2003342602A (en) 2003-12-03
JP4002469B2 true JP4002469B2 (en) 2007-10-31

Family

ID=29545148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146717A Expired - Lifetime JP4002469B2 (en) 2002-05-21 2002-05-21 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device

Country Status (3)

Country Link
JP (1) JP4002469B2 (en)
KR (1) KR100986628B1 (en)
CN (1) CN1278805C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814491B2 (en) * 2004-02-24 2011-11-16 株式会社アルバック Method for forming transparent conductive film and transparent electrode
JP4844805B2 (en) * 2005-05-20 2011-12-28 住友電気工業株式会社 Method for forming metal coating
CN102554261B (en) * 2005-11-10 2014-08-13 住友金属矿山株式会社 Indium nanowire, oxide nanowire, conductive oxide nanowire and manufacturing methods thereof
WO2008018747A1 (en) * 2006-08-08 2008-02-14 Lg Chem, Ltd. Compositions comprising electromagnetic shielding materials and the sheets using the same
JP5899623B2 (en) * 2011-02-10 2016-04-06 三菱マテリアル株式会社 Laminate for solder joint and joined body
KR20140097981A (en) * 2013-01-29 2014-08-07 주식회사 엘지화학 Method for Manufacturing Metal Nano Particle for Solar Cell, Ink Composition Comprising the Metal Nano Particle and Method for Manufacturing Thin Film Solar Cell Using the Same
KR101462997B1 (en) * 2013-04-26 2014-11-18 전자부품연구원 Recovery and reuse method of display panel material
US9761344B2 (en) 2013-07-19 2017-09-12 Lg Chem, Ltd. Core-shell nano particle for formation of transparent conductive film, and manufacturing method of transparent conductive film using the same
KR101606420B1 (en) 2013-08-01 2016-03-25 주식회사 엘지화학 Ink Composition for Preparation of Light Absorbing Layer of Solar Cell and Manufacturing Method of Solar Cell Thin Film Using the Same
CN103990810A (en) * 2014-05-30 2014-08-20 洛阳理工学院 Technology for preparing nanometer indium powder
CN106377019A (en) * 2015-07-31 2017-02-08 Ykk株式会社 Film forming device, zipper teeth chain belt manufacture method, and zipper teeth chain belt
US20230219135A1 (en) * 2022-01-08 2023-07-13 M4 Sciences, Llc Composite materials and composite manufacturing methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563236B2 (en) * 1996-09-26 2004-09-08 触媒化成工業株式会社 Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device

Also Published As

Publication number Publication date
KR20030041940A (en) 2003-05-27
KR100986628B1 (en) 2010-10-08
JP2003342602A (en) 2003-12-03
CN1278805C (en) 2006-10-11
CN1459348A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
US20040016914A1 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP5638935B2 (en) Metal fine particle dispersion, transparent conductive film forming coating liquid, and substrate with transparent conductive film
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JPH11228872A (en) Coating liquid for forming transparent electroconductive layer and its production
JP2004182929A (en) Coating liquid for forming transparent film, substrate with transparent film and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP2003073583A (en) Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term