JP4343520B2 - Coating liquid for forming transparent film, substrate with transparent film, and display device - Google Patents

Coating liquid for forming transparent film, substrate with transparent film, and display device Download PDF

Info

Publication number
JP4343520B2
JP4343520B2 JP2002353908A JP2002353908A JP4343520B2 JP 4343520 B2 JP4343520 B2 JP 4343520B2 JP 2002353908 A JP2002353908 A JP 2002353908A JP 2002353908 A JP2002353908 A JP 2002353908A JP 4343520 B2 JP4343520 B2 JP 4343520B2
Authority
JP
Japan
Prior art keywords
transparent
film
hydrolyzate
forming
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002353908A
Other languages
Japanese (ja)
Other versions
JP2004182929A (en
Inventor
沢 光 章 熊
田 政 幸 松
井 俊 晴 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2002353908A priority Critical patent/JP4343520B2/en
Publication of JP2004182929A publication Critical patent/JP2004182929A/en
Application granted granted Critical
Publication of JP4343520B2 publication Critical patent/JP4343520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の技術分野】
本発明は、均一な収縮が起こり、このためクラックが生成することなく、膜強度に優れ、膜表面への指紋や汚れが付着しにくく、付着しても容易に除去することができ、撥水性に優れた透明被膜の形成に好適に用いることのできる透明被膜形成用塗布液および該塗布液を用いて形成された透明被膜を有する透明導電性被膜付基材、該基材を備えた表示装置に関する。
【0002】
【発明の技術的背景】
従来より、陰極線管、蛍光表示管、液晶表示板などの表示パネルのような透明基材の表面の帯電防止および反射防止を目的として、これらの表面に帯電防止機能および反射防止機能を有する透明被膜を形成することが行われていた。
また、陰極線管などから電磁波が放出されること知られており、従来の帯電防止、反射防止に加えてこれらの電磁波および電磁波の放出に伴って形成される電磁場を遮蔽することが望まれている。
【0003】
これらの電磁波などを遮蔽する方法の一つとして、陰極線管などの表示パネルの表面に電磁波遮断用の導電性被膜を形成する方法がある。帯電防止用導電性被膜であれば表面抵抗が少なくとも108Ω/□程度の表面抵抗を有していれば十分であるのに対し、電磁遮蔽用の導電性被膜では102〜104Ω/□のような低い表面抵抗を有することが必要であった。
【0004】
このように表面抵抗の低い導電性被膜を、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物を含む塗布液を用いて形成しようとすると、従来の帯電防止性被膜の場合よりも膜厚を厚くする必要があった。しかしながら、導電性被膜の膜厚は、10〜200nm程度にしないと反射防止効果は発現しないため、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物では、表面抵抗が低く、電磁波遮断性に優れるとともに、反射防止にも優れた導電性被膜を得ることが困難であるという問題があった。
【0005】
また、低表面抵抗の導電性被膜を形成する方法の一つとして、Agなどの金属微粒子を含む導電性被膜形成用塗布液を用いて基材の表面に金属微粒子含有被膜を形成することが行われている。この方法では、金属微粒子含有被膜形成用塗布液として、コロイド状の金属微粒子が極性溶媒に分散したものが用いられている。このような塗布液では、コロイド状金属微粒子の分散性を向上させるために、金属微粒子表面がポリビニルアルコール、ポリビニルピロリドンまたはゼラチンなどの有機系安定剤で表面処理されている。しかしながら、このような金属微粒子含有被膜形成用塗布液を用いて形成された導電性被膜は、被膜中で金属微粒子同士が安定剤を介して接触するため、粒界抵抗が大きく、被膜の表面抵抗が低くならないことがあった。このため、製膜後、400℃程度の高温で焼成して安定剤を分解除去する必要があるが、安定剤の分解除去をするため高温で焼成すると、金属微粒子同士の融着や凝集が起こり、導電性被膜の透明性やへーズが低下するという問題があった。また、陰極線管などの場合は、高温に晒すと劣化してしまうという問題もあった。
【0006】
また、金属微粒子は前記導電性酸化物と異なり本来光を透過しないために金属微粒子を用いて形成された導電性被膜は導電性被膜中の金属微粒子の密度や膜厚等に依存して透明性が低下する問題もあった。
さらに従来のAg等の金属微粒子を含む透明導電性被膜では、耐塩水性や耐酸化性が低く、金属が酸化されたり、イオン化による粒子成長したり、また場合によっては腐食が発生することがあり、塗膜の導電性や光透過率が低下し、表示装置が信頼性を欠くという問題があった。
【0007】
このような問題点を解決するため、本願出願人等は、特定の構造を有する有機珪素化合物あるいはフッ素置換アルキル基含有シリコーン化合物を用いて得られる透明被膜は、スクラッチ強度、消しゴム強度、耐薬品性、耐熱水性等に優れていることを開示している。(特開2001−187864号公報(特許文献1)、特開2002−79616号公報(特許文献2))
しかしながら、透明被膜中の特定の構造を有する有機珪素化合物あるいはフッ素置換アルキル基含有シリコーン化合物の割合が増加するとスクラッチ強度等は向上するものの、消しゴム強度が低下するという欠点があるとともに、さらにこれら化合物は高価であることから経済性が低下してしまうという問題点があった。
【0008】
本発明者らは、透明被膜の消しゴム強度や耐薬品性等を向上させるために鋭意研究を重ねた結果、マトリックス前駆体がテトラアルコキシシランの加水分解物と、特定の有機ケイ素化合物とテトラアルコキシシランとの同時加水分解物とを含んでいると、耐薬品性に優れ、少なくしかも安価な特定の有機ケイ素化合物の使用量でスクラッチ強度、消しゴム強度、耐汚染性等が向上することを見出して本発明を完成するに至った。
【0009】
【特許文献1】
特開2001−187864号公報
【特許文献2】
特開2002−79616号公報
【0010】
【発明の目的】
本発明は、上記従来技術に伴う問題点を解消するためになされてものであり、耐薬品性に優れ、少なくしかも安価な特定の有機ケイ素化合物の使用量でスクラッチ強度、消しゴム強度、耐汚染性等が向上した透明被膜を形成することが可能な塗布液、および該透明被膜を有する透明導電性被膜付基材、該基材を備えた表示装置を提供することを目的としている。
【0011】
【発明の概要】
本発明に係る透明被膜形成用塗布液は、マトリックス前駆体が、
(i)テトラアルコキシシランの加水分解物と
(ii)テトラアルコキシシランと、下記式(1)〜(4)で表される有機ケイ素化合物から選ばれる少なくとも1種の化合物との同時加水分解物であり、該同時加水分解物中の下記式(1)〜(4)で表される有機ケイ素化合物の割合が固形分として2〜60重量%の範囲にある同時加水分解物とを含んでなり、マトリックス前駆体中の(ii)の割合が固形分として1〜30重量%の範囲にあることを特徴としている。
【0012】
【化2】

Figure 0004343520
【0013】
(式中、R1、R2は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、水素原子またはハロゲン原子を示す。Ra、Rbは、フッ素含有アルキル基を示す。R3〜R7は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、アルコキシ基、水素原子またはハロゲン原子を示す。
【0014】
Xは、-(CH2)n-、-(Ph)-(Phはベンゼン環)、-(CH2)n-(Ph)-、-(CH2)n-(Ph)-(CH2)n-、-(S)m-、-(CH2)n-(S)-(CH2)n-、-(CH2)n-(CF2)n-(CH2)n-を示し、mは1〜30の整数、nは1〜30の整数を示す。)
本発明では、前記マトリックス前駆体とともに、さらに屈折率が1.28〜1.42の範囲にあり、平均粒子径が5〜300nmの範囲にある低屈折率粒子を含んでいてもよい。
【0015】
本発明に係る透明導電性被膜付基材は、
基材と、基材上の導電性微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
該透明被膜が前記記載の透明被膜形成用塗布液を用いて形成されたことを特徴としている。
【0016】
本発明に係る表示装置は、前記透明導電性被膜付基材で構成された前面板を備え、透明被膜が該前面板の外表面に形成されていることを特徴としている。
【0017】
【発明の具体的説明】
以下、本発明について具体的に説明する。
透明被膜形成用塗布液
本発明に係る透明被膜形成用塗布液は、マトリックス前駆体が、
(i)テトラアルコキシシランの加水分解物と
(ii)テトラアルコキシシランと、特定の有機ケイ素化合物との同時加水分解物とを含んでなる。
[マトリックス前駆体]
(i) テトラアルコキシシランの加水分解物
かかる加水分解物(i)の調製に用いるテトラアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどが挙げられる。
【0018】
(i)テトラアルコキシシランの加水分解物は、テトラアルコキシシランを、例えば、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。このような加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよく、従来公知の加水分解物を用いることができる。これら加水分解物(またはその縮重合物)のポリスチレン換算の分子量が500〜20,000、特に好ましくは700〜10,000の範囲にあるものが好ましい。
【0019】
加水分解物(またはその縮重合物)のポリスチレン換算の分子量が500未満の場合は、透明被膜形成時に膜の収縮が大きく、基材との密着性が低下したり、クラックが発生して膜の強度が低下することがある。
加水分解物(またはその縮重合物)のポリスチレン換算の分子量が20,000を越えると、塗布液の安定性が短くなり、緻密で強度に優れた透明被膜が得られないことがある。
【0020】
(ii) 同時加水分解物
本発明では、テトラアルコキシシランと、下記式(1)〜(4)で表される有機ケイ素化合物から選ばれる少なくとも1種の化合物との同時加水分解物を含む。
【0021】
【化3】
Figure 0004343520
【0022】
(式中、R1、R2は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、水素原子またはハロゲン原子を示す。Ra、Rbは、フッ素含有アルキル基を示す。R3〜R7は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基(好適にはフッ化アルキル基を除く)、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、アルコキシ基、水素原子またはハロゲン原子を示す。
【0023】
Xは、-(CH2)n-、-(Ph)-(Phはベンゼン環)、-(CH2)n-(Ph)-、-(CH2)n-(Ph)-(CH2)n-、-(S)m-、-(CH2)n-(S)-(CH2)n-、-(CH2)n-(CF2)n-(CH2)n-を示し、mは1〜30の整数、nは1〜30の整数を示す。)
テトラアルコキシシランとしては前記同様のものが用いられる。なお、(ii)同時加水分解物で使用されるテトラアルコキシシランは、(i)で使用されたテトラアルコキシシランと同一であっても異なるものであってもよい。
【0024】
上記式(1)および(2)で表される有機ケイ素化合物(フッ素含有有機ケイ素化合物)としては、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、ヘプタデカトリフルオロデシルメチルジメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン、n-パーフルオロオクチルエチルトリエトキシシラン(以上式(1))、ビス(トリフルオロプロピルジメトキシシリル)ヘキサン(式(2))などが挙げられる。
【0025】
また、式(3)または式(4)で表される有機ケイ素化合物としては、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)プロパン、ビス(トリメトキシシリル)ブタン、(トリメトキシシリル)ペンタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリメトキシシリル)ヘプタン、ビス(トリメトキシシリル)オクタン、ビス(トリメトキシシリル)ノナン、ビス(トリメトキシシリル)デカン、ビス(トリメトキシシリル)ドデカン、ビス(トリメトキシシリル)ヘプタデカン、ビス(トリメトキシシリル)オクタデカン、ビス(トリエトキシシリル)ヘキサン、ビス(トリプロポキシシリル)ヘキサン、ビス(トリn-ブトキシシリル)ヘキサン、ビス(トリi-ブトキシシリル)ヘキサン、ビス(アリルジメトキシシリル)ヘキサン、ビス(ビニルジメトキシシリル)ヘキサン、ビス(アクリルジメトキシシリル)ヘキサン、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、1,4ビス(トリメトキシシリルエチル)ベンゼン(以上式(3))、ヘプタデカトリフルオロトリメトキシシラン(式(4))などが挙げられる。
【0026】
同時加水分解物(ii)は、テトラアルコキシシランと下記式(1)〜(4)で表される有機ケイ素化合物から選ばれる少なくとも1種の化合物との混合物を、水−アルコール混合溶媒中で酸触媒の存在下、加水分解することによって得ることができる。このような同時加水分解物は部分加水分解物であっても、加水分解物の縮重合物であってもよい。
【0027】
このうち、同時加水分解物(ii)は、ポリスチレン換算の分子量が500〜20,000、特に好ましくは700〜10,000の範囲にあるものが好ましい。
同時加水分解物(ii)のポリスチレン換算の分子量が500未満の場合は、透明被膜形成時に膜の収縮が大きく、基材との密着性が低下したり、クラックが発生して膜の強度が低下することがある。
【0028】
同時加水分解物(ii)のポリスチレン換算の分子量が20,000を越えると、塗布液の安定性が短くなり、緻密で強度に優れた透明被膜が得られないことがある。
同時加水分解物(ii)中の(1)〜(4)で表される有機ケイ素化合物の割合が固形分として2〜60重量%、さらには5〜50重量%の範囲にあることが好ましい。
【0029】
有機ケイ素化合物の割合が固形分として前記下限未満の場合は、実質的にテトラアルコキシシランの加水分解物からなる透明被膜と大差がなく、透明被膜の消しゴム強度およびスクラッチ強度に優れ、かつ耐薬品性や耐汚染性等に優れた透明被膜を得ることが困難である。
有機ケイ素化合物の割合が固形分として前記上限を越えると、テトラアルコキシシランの割合が少ないために、同時加水分解による共重合体を用いる効果が充分得られず、消しゴム強度およびスクラッチ強度に優れ、かつ耐薬品性や耐汚染性等に優れた透明被膜を得ることが困難である。
【0030】
マトリックス前駆体中の同時加水分解物(ii)の割合は、固形分として0.5〜50重量%、好ましくは1〜40重量%の範囲にある。
マトリックス前駆体中の(ii)の割合が固形分として前記下限未満の場合は透明被膜形成時に、水平方向の収縮が大きいためかクラックが生成することがあり、また下層の導電性微粒子層を含めた縦方向の収縮が小さいために、導電性の向上効果が不充分となったり、透明導電性被膜の硬度の向上効果が不充分となる。
【0031】
マトリックス前駆体中の同時加水分解物(ii)の割合が固形分として前記上限を越えると、前記水平方向および縦方向の収縮が減少するために導電性の向上効果が不充分となり、また膜硬度の向上効果も不充分となる。
マトリックス前駆体中の同時加水分解物(ii)の割合が固形分として前記範囲にあれば、前記水平方向および縦方向の収縮が適度に起こり、消しゴム強度、スクラッチ強度および導電性が向上する。
【0032】
なお、ここでいう導電性とは、下層に導電層がある場合(本発明の塗布液は、導電層表面の透明被膜として使用される)の導電層の導電性を言う。本発明に係る塗布液を用いて透明被膜を形成すると、透明被膜形成用のマトリックスの収縮によって、下層の導電層内の導電性粒子がより密着され、導電性が向上される思料される。
【0033】
このように、同時加水分解物(ii)をテトラアルコキシシランの加水分解物と混合してマトリックス前駆体として用いると、このように膜の収縮が均一に起こり、高い導電性向上効果および膜硬度向上効果が得られる理由は明確ではないものの、同時加水分解物では、テトラアルコキシシランと式(1)〜(4)で表される有機ケイ素化合物から選ばれる少なくとも1種の化合物との共重合体が生成しているものと考えられる。このため、膜形成時のマトリックス前駆体の縮重合が均一に起こるので水平方向および縦方向の収縮が適度に起こり、またテトラアルコキシシラン加水分解物とも強い結合力を有しているので、テトラアルコキシシラン加水分解物に由来する耐擦傷性が高く、基材との密着性等にも優れ、耐擦傷性が向上するものと考えられる。また、式(1)〜(4)で表される有機ケイ素化合物に由来する加水分解物が膜中均一に分散しており、この化合物によって基材と膜との密着性に優れるとともに、耐薬品性、耐汚染性等に優れた透明被膜を得ることができる。さらにマトリックス前駆体の縮重合による収縮時に下層の導電性微粒子層の導電性を向上させることができる。
[その他成分]
本発明に係る透明被膜形成用塗布液には、前記マトリックス前駆体が、溶媒に分散または溶解されてなる。
【0034】
溶媒としては、前記マトリックス前駆体が分解しないものであれば特に制限されるものではなく、水;メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソプロピルグリコールなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが例示される。
【0035】
これらは、マトリックス前駆体を調製したときに使用したものをそのまま使用してもよく、また、溶媒置換を行ってもよい。
本発明では、塗布液中のマトリックス前駆体としては、塗布液に流動性を付与し、かつ均一な被膜を形成できる程度であれば特に制限されるものではないが、具体的には0.5〜10重量%、好適には1〜5重量%の範囲にあることが望ましい。
【0036】
本発明に係る塗布液には、前記マトリックス前駆体とともに、低屈折率粒子を配合して用いることができる。このときの低屈折率粒子は、平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあり屈折率が1.28〜1.42、さらには1.28〜1.40の範囲にあることが好ましい。
低屈折率粒子の屈折率が1.42以下であれば、得られる透明導電性被膜付基材は、ボトム反射率および視感反射率が低く、優れた反射防止性能を発揮することができる。
【0037】
低屈折率粒子の使用量は、透明被膜中の低屈折率粒子の含有量が固形分に換算して、10〜90重量%、好ましくは20〜80重量%の範囲となるように用いることが望ましい。
このような低屈折率粒子としては、平均粒子径および屈折率が上記範囲にあれば特に制限はなく従来公知の粒子を用いることができる。例えば本願出願人の出願による特開平7−133105号公報に開示した複合酸化物ゾル、WO00/37359号公報に開示した被覆層を有する多孔質の複合酸化物粒子は好適に用いることができる。
【0038】
さらにまた、本発明の透明被膜形成用塗布液には、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、透明被膜の透明度および反射防止性能を阻害しない程度に少量の導電性微粒子および/または染料または顔料などの添加剤が含まれていてもよい。
このような透明被膜形成用塗布液を塗布して透明被膜を形成する場合、形成された透明被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる透明被膜の硬度が高くなる。
【0039】
透明導電性被膜付基材
次に、本発明に係る透明導電性被膜付基材について具体的に説明する。
本発明に係る透明導電性被膜付基材では、ガラス、プラスチック、セラミックなどからなるフィルム、シートあるいはその他の成形体などの基材上に、平均粒子径が1〜200nmの導電性微粒子からなる透明導電性微粒子層と、該透明導電性微粒子層上に該透明導電性微粒子層よりも屈折率が低い透明被膜が形成されている。
【0040】
[導電性微粒子]
本発明に用いる導電性微粒子としては、得られる透明導電性被膜の表面抵抗が概ね102〜108Ω/□の範囲にあれば特に制限はなく従来公知の導電性微粒子を用いることができる。
導電性微粒子としては、酸化錫、Sb、FまたはPがドーピングざれた酸化錫、酸化インジウム、SnまたはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンなどの酸化物系導電性微粒子が挙げられる。
【0041】
酸化物系導電性微粒子は、平均粒子径が1〜200nm、好ましくは2〜150nmの範囲にあることが好ましい。
平均粒子径が1nm未満の場合は、粒子が小さすぎて凝集する傾向があり、また粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。また、平均粒子径が200nmを越えると、粒子が大きいために粒子同士の接点が減少し充分な導電性が得られないことがあり。また膜強度や基材との密着性が低下したり、得られる透明導電性被膜のヘーズが高くなることがある。
【0042】
また、導電性微粒子として、従来公知の金属微粒子を用いることができ、この金属微粒子は単一成分からなる金属微粒子であってもよく、2種以上の金属成分を含む複合金属微粒子であってもよい。
具体的には、Au、Ag、Pd、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、Al、Ta、Sbなどの金属から選ばれる少なくとも1種または2種以上の金属からなる金属微粒子等が挙げられる。
【0043】
また、複合金属微粒子の好ましい2種以上の金属の組合せとしては、Au-Cu、Ag-Pt、Ag-Pd、Au-Pd、Au-Rh、Pt-Pd、Pt-Rh、Fe-Ni、Ni-Pd、Fe-Co、Cu-Co、Ru-Ag、Au-Cu-Ag、Ag-Cu-Pt、Ag-Cu-Pd、Ag-Au-Pd、Au-Rh-Pd、Ag-Pt-Pd、Ag-Pt-Rh、Fe-Ni-Pd、Fe-Co-Pd、Cu-Co-Pd などが挙げられる。
【0044】
金属微粒子の平均粒径は、1〜200nm、好ましくは2〜70nmの範囲にあることが望ましい。このような粒径の範囲にあると、形成された導電層は透明となる。また、金属微粒子の平均粒径が200nmを越えると、金属による光の吸収が大きくなり、粒子層の光透過率が低下するとともにへーズが大きくなる。このため被膜付基材を、たとえば陰極線管の前面板として用いると、表示画像の解像度が低下することがある。また、金属微粒子の平均粒径が1nm未満の場合には粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないこともある。
【0045】
[導電性微粒子層の形成]
導電性微粒子層は、導電性被膜形成用塗布液を使用して作製することができる。
導電性被膜形成用塗布液は、上記導電性微粒子と極性溶媒とを含んでいる。
導電性被膜形成用塗布液に用いられる極性溶媒としては、水;メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソプロピルグリコールなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0046】
なお、酸化物系導電性微粒子を含む塗布液を使用すると、帯電防止効果、電磁波遮蔽効果が発現する102〜108Ω/□程度の表面抵抗を有する透明導電性層を形成することができる。酸化物系導電性微粒子を使用して導電層を形成する場合、酸化物系導電性微粒子は、導電性被膜形成用塗布液中の酸化物系導電性微粒子の濃度が0.2〜5重量%、好ましくは1〜5重量%の量で含まれていることが望ましい。
【0047】
導電性被膜形成用塗布液中の酸化物系導電性微粒子の量が0.2重量%未満の場合は、得られる被膜の膜厚が薄くなり、このため充分な導電性が得られないことがある。また、酸化物系導電性微粒子が5重量%を越えると、膜厚が厚くなり、膜のヘーズが悪化するとともに外観も悪くなる。
また、金属微粒子を含む塗布液を使用すると、電磁波遮蔽効果が発現される102〜108Ω/□程度の表面抵抗を有する透明導電性層を形成することができる。金属微粒子を使用して電磁遮蔽用の導電層を形成する場合、金属微粒子は、導電性被膜形成用塗布液中の金属微粒子の濃度が0.05〜5重量%、好ましくは0.1〜2重量%の量で含まれていることが望ましい。
【0048】
導電性被膜形成用塗布液中の金属微粒子の量が、0.05重量%未満の場合は、得られる被膜の膜厚が薄くなり、このため充分な導電性が得られないことがある。また、金属微粒子が5重量%を越えると、膜厚が厚くなり、光透過率が低下して透明性が悪化するとともに外観も悪くなる。
さらに、導電性被膜形成用塗布液には、必要に応じて、着色剤、マトリックス前駆体、有機系安定剤等を含んでいてもよい。
【0049】
また着色剤としては、微粒子カーボンブラック、チタンブラック、染料、顔料などが挙げられ、このような着色剤が含まれているとコントラストに優れた表示装置を得ることができる。
さらに、導電性被膜形成用塗布液には、マトリックス前駆体が含まれていてもよい。このようなマトリックス前駆体としては、シリカからなるものが好ましく、具体的には、アルコキシシランなどの有機ケイ素化合物の加水分解縮重合物またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸縮重合物、あるいは塗料用樹脂などが挙げられる。このマトリックス形成成分は、固形分として導電性微粒子1重量部当たり、0.01〜0.5重量部、好ましくは0.03〜0.3重量部の量で含まれていればよい。このようなマトリックス前駆体は被膜形成後の導電性微粒子のバインダーとして作用する。
【0050】
有機系安定剤としては、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、クエン酸などの多価カルボン酸およびその塩、複素環化合物あるいはこれらの混合物などが挙げられる。
このような有機系安定剤は、特に金属微粒子を含む場合に有効で、金属微粒子1重量部に対し、0.005〜0.5重量部、好ましくは0.01〜0.2重量部含まれていればよい。有機系安定剤の量が0.005重量部未満の場合は充分な金属微粒子の分散性が得られず、0.5重量部を超えて高い場合は導電性が阻害されることがある。
【0051】
透明導電性微粒子層は、上記透明導電性被膜形成用塗布液を基材上に塗布し・乾燥して、透明導電性微粒子層を基材上に形成する。
透明導電性微粒子層を形成する方法としては、たとえば、透明導電性被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの方法で、基材上に塗布したのち、常温〜約90℃の範囲の温度で乾燥する。
【0052】
透明導電性被膜形成用塗布液中に上記のようなマトリックス前駆体が含まれている場合には、マトリックス前駆体の硬化処理を行ってもよい。
例えば、透明導電性被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる被膜の硬度が高くなる。
【0053】
上記のような方法によって形成された透明導電性微粒子層の膜厚は5〜200nm、さらには10〜150nmの範囲が望ましく、この範囲の膜厚であれば帯電防止性および電磁遮蔽性に優れた透明導電性被膜付基材を得ることができる。透明導電性微粒子層の膜厚が5nm未満の場合は、前記透明被膜形成用塗布液を用いて透明被膜を形成しても、透明導電性微粒子層の収縮余地が小さいために、前記した導電性の向上効果、膜硬度の向上効果が充分得られないことがある。
【0054】
透明導電性微粒子層の膜厚が200nmを越えると、光透過率が低下したり、膜にボイドができやすくなりヘーズが高くなることがある。
[透明被膜]
本発明に係る透明導電性被膜付基材では、前記透明導電性微粒子層の上に、前記透明導電性微粒子層よりも屈折率の低い透明被膜が形成されている。
【0055】
透明被膜の形成方法としては、前記透明被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの湿式薄膜形成方法を採用することができる。
このときの透明被膜の膜厚は、20〜300nm、好ましくは30〜200nmの範囲にあることが好ましい。
【0056】
透明被膜の膜厚が20nm未満の場合は、膜の強度や反射防止性能が劣ることがある。
透明被膜の膜厚が300nmを越えると、膜にクラックが発生したり、膜の強度が低下したりすることがあり、また膜が厚すぎて反射防止性能が不充分となることがある。
【0057】
表示装置
本発明に係る透明導電性被膜付基材は、帯電防止、電磁遮蔽に必要な概ね102〜108Ω/□の範囲の表面抵抗を有し、また透明性に優れるとともに可視光領域および近赤外領域で充分な反射防止性能を有し、表示装置の前面板として好適に用いられる。
【0058】
本発明に係る表示装置は、ブラウン管(CRT)、蛍光表示管(FIP)、プラズマディスプレイ(PDP)、液晶用ディスプレイ(LCD)などのような電気的に画像を表示する装置であり、上記のような透明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、透明導電性被膜の膜硬度、スクラッチ強度等が不充分であるために傷つきやすく、ヘーズが発生し易いために画面が見にくくなることがあった。
【0059】
本発明に係る表示装置では、前面板が前記したクラックが無く膜の強度に優れた透明導電性被膜付基材で構成されており、さらに油脂、指紋等が付着しにくく、このため油脂等のふき取り等必要としないので傷の発生もないので表示性能に優れるとともに、帯電を防止したり、電磁波およびこの電磁波の放出に伴って生じる電磁場を効果的に遮蔽することができる。
【0060】
また、表示装置の前面板で反射光が生じると、この反射光によって表示画像が見にくくなるが、本発明に係る表示装置では、前面板が可視光領域および近赤外領域で充分な反射防止性能を有する透明導電性被膜付基材で構成されているので、このような反射光を効果的に防止することができる。
【0061】
【発明の効果】
本発明によれば、マトリックス前駆体として、(i)テトラアルコキシシランの加水分解物と(ii)特定の同時加水分解物を含んでいるので、スクラッチ強度、耐水性、耐薬品性が向上された透明被膜を形成できる。また、単に、同時加水分解物の代わりに、式(1)〜(4)で表される有機ケイ素化合物のみの加水分解物を用いた場合に比べて、(i)テトラアルコキシシランの加水分解物と(ii)テトラアルコキシシランと特定の有機ケイ素化合物との同時加水分解物とが均一に分散するとともに均一に縮合(反応)しやすく、このためマトリックス前駆体の縮重合による収縮が均一に起こり、消しゴム強度、基材との密着性等にも優れ、さらにマトリックス前駆体の縮重合による収縮時に下層の導電性微粒子層の導電性を向上させることができる。(なお、テトラアルコキシシランの加水分解物と特定の有機ケイ素化合物とを単に混合しても、加水分解物の性質(アルキル基等の有無、縮合するOH基の量等が違いすぎて、均一な反応、収縮等が起きないことがり、このため強度、密着性、導電性等の向上効果が得られない)
また、本発明によればこのような透明被膜の形成に好適に用いることのできる透明被膜形成用塗布液およびかかる性能を有する透明被膜を有する透明導電性被膜付基材、該基材を備えた表示装置を提供することができる。
【0062】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0063】
【製造実施例】
a)導電性微粒子分散液の調製
本実施例および比較例で用いた導電性微粒子の分散液を以下のように調製した。
n ドープ酸化インジウム (ITO) 微粒子 (P-1) 分散液の調製
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたSnドープ酸化インジウム水和物分散液からSnドープ酸化インジウム水和物を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。
【0064】
これを濃度が30重量%となるようにエタノールに分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで0.5時間粉砕してゾルを調製した。ついで、エタノールを加えて濃度20重量%のSnドープ酸化インジウム微粒子(P-1)分散液を調製した。
得られた導電性金属酸化物粒子(P-1)については以下のように平均粒子径を測定し結果を表に示した。
【0065】
導電性微粒子についてはTEM写真を撮影し20個の粒子について粒子径を測定しこの平均値を平均粒子径として表に表示した。
b ドープ酸化錫 (ATO) 微粒子 (P-2) 分散液の調製
塩化錫57.7gと塩化アンチモン7.0gとをメタノール100gに溶解して溶液を調製した。調製した溶液を4時間かけて、90℃、攪拌下の純水1000gに添加して加水分解を行い、生成した沈殿を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。この粉末30gを水酸化カリウム水溶液(KOHとして3.0g含有)70gに加え、混合液を30℃に保持しながらサンドミルで、3時間粉砕してゾルを調製した。ついでこのゾルをイオン交換樹脂処理して、脱アルカリし、純水を加えて濃度20重量%のSbドープ酸化錫微粒子(P-2)分散液を調製した。平均粒子径を測定し結果を表に示した。
【0066】
銀パラジウム合金微粒子 (P-3) の分散液の調製
純水100gに、あらかじめクエン酸3ナトリウムを得られる合金微粒子1重量部当たり0.01重量部となるように加え、これに金属換算で濃度が10重量%となり、銀とパラジウムの重量比が8:2となるように硝酸銀および硝酸パラジウム水溶液を加え、さらに硝酸銀および硝酸パラジウムの合計モル数と等モル数の硫酸第一鉄の水溶液を添加し、窒素雰囲気下で1時間攪拌して銀パラジウム合金微粒子の分散液を得た。得られた分散液は遠心分離器により水洗して不純物を除去した後、水に分散させて濃度4重量%の銀パラジウム合金微粒子(P-3)の分散液を調製した。銀パラジウム合金微粒子の平均粒子径は8nmであった。
b)透明被膜形成用低屈折率粒子 (P-4) 分散液の調製
メチルメトキシシラン27.4gを濃度0.65重量%の水酸化ナトリウム水溶液872.6gに混合し室温で1時間撹拌して、CH3SiO3/2として1.5重量%の無色透明な部分加水分解物を調製した。
【0067】
ついで、種粒子として平均粒子径5nm、SiO2濃度20重量%のシリカゾル20gと純水380gとの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.5重量%の珪酸ナトリウム水溶液900gと、上記部分加水分解物の水溶液900gと、Al23として濃度0.5重量%のアルミン酸ナトリウム水溶液1800gとを6時間掛けて同時に添加した。その間、反応母液の温度を80℃に維持した。反応母液のpHは添加直後、12.7に上昇し、その後ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20重量%のメチル基含有SiO2・Al23複合酸化物微粒子(A-1)の分散液を得た。
【0068】
ついで、複合酸化物微粒子(A-1)の分散液250gに純水550gを加えて98℃に加温し、この温度を維持しながら、珪酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得た珪酸液(SiO2 濃度3.5重量%)1,000gを5時間で添加して、シリカで被覆したメチル基含有SiO2・Al23複合酸化物微粒子(B-1)の分散液を得た。ついで、限外濾過膜を用いて洗浄し、固形分濃度13重量%とした分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、微粒子からアルミニウムを除去する処理を行った。
【0069】
ついで、pH3.0の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜を用いて溶解したアルミニウム塩を洗浄除去すると共に、濃縮して固形分濃度13重量%のシリカで被覆したメチル基含有SiO2・Al23複合酸化物微粒子(C-1)の分散液を得た。
ついで、複合酸化物微粒子(C-1)の分散液1500gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2濃度28重量%)104gを添加し、前記シリカで被覆した。これをエバポレーターで固形分濃度5重量%まで濃縮した後、濃度15重量%のアンモニア水を加えてpH10とし、オートクレーブで180℃、2時間加熱処理し、ついで限外濾過膜で濃縮して固形分濃度10重量%のシリカで完全に被覆したメチル基含有SiO2・Al23複合酸化物微粒子(P-4)の分散液を得た。
【0070】
このシリカ被覆複合酸化物微粒子(P-4)のSiO2/Al23モル比は278、平均粒径は34nm、屈折率は1.36であった。
なお、粒子の屈折率は、次のようにして測定した。
(1)複合酸化物微粒子(D-1)の分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知である標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液(多くの場合はペースト状)が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
c)透明導電性被膜形成用塗布液 (C-1) (C-3) の調製
上記で得た微粒子(P-1)、(P-2)、(P-3)分散液とエタノール/n-プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(68:12:8:8:4重量比)の混合溶媒とを混合し導電性微粒子濃度が順次2.0重量%、2.0重量%、0.5重量%の透明導電性被膜形成用塗布液(C-1)、(C-2)、(C-3)を調製した。
d)マトリックス前駆体分散液の調製
テトラアルコキシシランの加水分解物 (M-1) の調製
テトラアルコキシシランとして正珪酸エチル(SiO2:28重量%)31.3g、
エタノール31.9gの混合溶液に、濃度61重量%の硝酸1.0gおよび純水31.9gの混合溶液を25℃で1時間攪拌して固形分(SiO2)濃度10重量%のテトラアルコキシシランの加水分解物(M-1)を調製した。
【0071】
テトラアルコキシシランと有機ケイ素化合物との同時加水分解物 (M-2) の調製
正珪酸エチル(SiO2:28重量%)17.4g、フッ素置換有機基含有有機ケイ素化合物としてヘプタデカトリフルオロトリメトキシシラン(信越化学(株)製:KBM-7803)を4.9g、エタノール590gの混合溶液に、濃度61重量%の硝酸1.0gおよび純水49.9gの混合溶液を50℃で12時間攪拌して固形分濃度1.5重量%のマテトラアルコキシシランと有機ケイ素化合物との同時加水分解物(M-2)を調製した。
【0072】
テトラアルコキシシランと有機ケイ素化合物との同時加水分解物 (M-3) の調製
上記同時加水分解物(M-2)の調製において、ヘプタデカトリフルオロトリメトキシシラン4.9gの代わりにトリフルオロプロピルトリメトキシシラン(信越化学(株)製:LS−1090)を4.9g用いた以外は同様にして固形分濃度1.5重量%のテトラアルコキシシランと有機ケイ素化合物との同時加水分解物(M-3)を調製した。
【0073】
テトラアルコキシシランと有機ケイ素化合物との同時加水分解物 (M-4) の調製
上記同時加水分解物(M-2)の調製において、ヘプタデカトリフルオロトリメトキシシラン4.9gの代わりにヘプタデカフルオロデシルトリメトキシシランを4.9g用いた以外は同様にして固形分濃度1.5重量%のテトラアルコキシシランと有機ケイ素化合物との同時加水分解物(M-4)を調製した。
【0074】
テトラアルコキシシランと有機ケイ素化合物との同時加水分解物 (M-5) の調製
上記同時加水分解物(M-2)の調製において、ヘプタデカトリフルオロトリメトキシシラン4.9gの代わりにビストリメトキシシリルヘキサン(東レダウシリコン(株)製:AY43−038)を4.9g用いた以外は同様にして固形分濃度1.5重量%のテトラアルコキシシランと有機ケイ素化合物との同時加水分解物(M-5)を調製した。
【0075】
有機ケイ素化合物の加水分解物 (M-6) の調製(比較例用)
有機ケイ素化合物としてヘプタデカトリフルオロトリメトキシシラン(信越化学(株)製:KBM−7803)を10gと、エタノール57.1gの混合溶液に、濃度61重量%の硝酸1.0gおよび純水31.9gの混合溶液を50℃で24時間攪拌して固形分濃度10重量%の有機ケイ素化合物の加水分解物(M-6)を調製した。
【0076】
有機ケイ素化合物の加水分解物 (M-7) の調製(比較例用)
有機ケイ素化合物としてビストリメトキシシリルヘキサン(東レダウシリコン(株)製:AY4−038)を10.0gと、エタノール57.1gの混合溶液に、濃度61重量%の硝酸1.0gおよび純水31.9gの混合溶液を50℃で24時間攪拌して固形分濃度10重量%の有機ケイ素化合物の加水分解物(M-6)を調製した。
【0077】
【実施例1】
透明被膜形成用塗布液 (B-1) の調製
製造実施例で得た加水分解物(M-1)11.4gと加水分解物(M-2)4gとを混合し、これにエタノール/n−プロパノール/エチルセロソルブ/イソプロピルグリコール/ジアセトンアルコール(72:12:6:6:4、重量比)の混合溶媒84.6gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(B-1)を調製した。
【0078】
透明導電性被膜付パネルガラスの製造
ブラウン管用パネルガラス(17")の表面を40℃で保持しながら、スピナー法で100rpm、90秒の条件で上記透明導電性被膜形成用塗布液(C-1)を塗布し乾燥した。このときの導電層の膜厚を測定し、結果を表に示した。
ついで、このようにして形成された透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表1に示した。
【0079】
これらの透明導電性被膜付基材の表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘーズをへーズコンピューター(日本電色(株)製:3000A)で測定した。反射率は反射率計(大塚電子(株)製:MCPD-2000)を用いて測定し、波長400〜700nmの範囲で反射率が最も低い波長のでの反射率をボトム反射率とし、波長400〜700nmの平均反射率を視感反射率として求めた。結果を表1に示す。
【0080】
また、消しゴム硬度、スクラッチ硬度および指紋付着性を評価した。結果を表1に示す。
消しゴム硬度
透明導電性被膜付基材の透明被膜上に消しゴム(ライオン(株)製:1K)をセットし、1±0.1Kgの荷重をかけ、約25mmのストロークで25往復させた。このとき発生する削り屑は、その都度高圧エアーで除去した。
【0081】
消しゴムを25往復させた後、1000ルックスの照明下で、透明被膜表面から45cm離れて表面の目視観察を行った。
A:引っ掻き傷が全く観察されない。
B:蛍光灯下で反射色が変化(紫色から赤色へ)。
C:蛍光灯下で反射色がなく傷が観察される。
【0082】
D:下地(基材)が見える。
スクラッチ硬度
透明導電性被膜付基材の透明被膜上に標準試験針((株)ロックウェル製:硬度HRC-60、φ0.5mm)をセットし、1±0.3Kgの荷重をかけ、30〜40mmのストロークで掃引した。掃引した後、1000ルックス照明下、被膜表面から45cm離れて表面の観察を行った。
【0083】
A:引っ掻き傷が全く観察されない。
B:断続的に筋条傷が観察される。
C:浅く連続した筋条傷が観察される。
D:明瞭に連続した筋条傷が観察される。
指紋付着性
透明導電性被膜付基材の透明被膜表面に指を強く押しつけて指紋を付着させた。ついで、乾いた布で2回および5回拭いた後、膜の色目変化を目し観察し、以下の基準で評価して結果を表に示した。
【0084】
◎:2回拭いた後、色の変化が認められない。(指紋が付着してないか、容易に除去できた。)
○:5回拭いた後、色の変化が認められない。(容易に除去できた。)
△:色の変化が僅かに認められる。
×:色の変化が明らかに認められる。(干渉色が認められる。)
【0085】
【実施例2】
透明被膜形成用塗布液 (B-2) の調製
製造実施例で得た加水分解物(M-1)9.6gと同時加水分解物(M-2)16gとを混合し、実施例1で用いた混合溶媒74.4gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(B-2)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-1)を塗布し乾燥した。
【0086】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0087】
【実施例3】
透明被膜形成用塗布液 (B-3) の調製
製造実施例で得た加水分解物(M-1)6.0gと同時加水分解物(M-2)40gとを混合し、実施例1で用いた混合溶媒54gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(B-3)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-1)を塗布し乾燥した。
【0088】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0089】
【実施例4】
透明被膜形成用塗布液 (B-4) の調製
製造実施例で得た加水分解物(M-1)6.0gと同時加水分解物(M-3)2.7gと透明被膜形成用低屈折率粒子(P-4)分散液1.6gとを混合し、実施例1で用いた混合溶媒89.7gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(B-4)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-3)を塗布し乾燥した。このときの導電層の膜厚を測定し、結果を表に示した。
【0090】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-4)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0091】
【実施例5】
透明被膜形成用塗布液 (B-5) の調製
製造実施例で得た加水分解物(M-1)7.2gと加水分解物(M-4)5.3gとを混合し、実施例1で用いた混合溶媒87.5gを加え、固形分濃度0.8重量%の透明被膜形成用塗布液(B-5)を調製した。
透明導電性被膜付パネルガラスの製造
実施例4と同様にして透明導電性被膜形成用塗布液(C-3)を塗布し乾燥した。
【0092】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-5)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0093】
【実施例6】
透明被膜形成用塗布液 (B-6) の調製
製造実施例で得た加水分解物(M-1)6.0gと加水分解物(M-5)2.7gと透明被膜形成用低屈折率粒子(P-4)分散液1.6gとを混合し、実施例1で用いた混合溶媒89.7gを加え、固形分濃度0.8重量%の透明被膜形成用塗布液(B-6)を調製した。
透明導電性被膜付パネルガラスの製造
実施例4と同様にして透明導電性被膜形成用塗布液(C-3)を塗布し乾燥した。
【0094】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-6)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0095】
【実施例7】
透明被膜形成用塗布液 (B-7) の調製
製造実施例で得た加水分解物(M-1)9.9gと加水分解物(M-2)7.3gとを混合し、実施例1で用いた混合溶媒82.8gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(B-7)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。このときの導電層の膜厚を測定し、結果を表に示した。
【0096】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-7)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0097】
【実施例8】
透明被膜形成用塗布液 (B-8) の調製
製造実施例で得た加水分解物(M-1)8.8gと加水分解物(M-3)7.3gと透明被膜形成用低屈折率粒子(P-4)分散液1.1gとを混合し、実施例1で用いた混合溶媒82.8gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(B-8)を調製した。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0098】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-8)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0099】
【実施例9】
透明被膜形成用塗布液 (B-9) の調製
製造実施例で得た加水分解物(M-1)6.6gと加水分解物(M-5)7.3と透明被膜形成用低屈折率粒子(P-4)分散液3.3とを混合し、実施例1で用いた混合溶媒82.8gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(B-9)を調製した。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0100】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-9)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0101】
【実施例10】
透明被膜形成用塗布液 (B-10) の調製
製造実施例で得た加水分解物(M-1)9.9gと加水分解物(M-2)3.7gと加水分解物(M-5)3.7gとを混合し、実施例1で用いた混合溶媒82.7gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(B-10)を調製した。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0102】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-10)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0103】
【実施例11】
透明被膜形成用塗布液 (B-11) の調製
製造実施例で得た加水分解物(M-1)7.7gと加水分解物(M-2)3.7gと加水分解物(M-5)3.7gと透明被膜形成用低屈折率粒子(P-4)分散液3.3gとを混合し、実施例1で用いた混合溶媒81.6gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(B-10)を調製した。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0104】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(B-10)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0105】
【比較例1】
透明被膜形成用塗布液 (RB-1) の調製
製造実施例で得た加水分解物(M-1)に実施例1で用いた混合溶媒を加えて希釈し、固形分濃度0.8重量%の透明被膜形成用塗布液(RB-1)として用いた。
透明導電性被膜付パネルガラスの製造
実施例4と同様にして透明導電性被膜形成用塗布液(C-3)を塗布し乾燥した。
【0106】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-1)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0107】
【比較例2】
透明被膜形成用塗布液 (RB-2) の調製
製造実施例で得た加水分解物(M-1)7.92gと加水分解物(M-2)0.53gとを混合し、実施例1で用いた混合溶媒91.55gを加え、固形分濃度0.8重量%の透明被膜形成用塗布液(RB-1)を調製した。
透明導電性被膜付パネルガラスの製造
実施例4と同様にして透明導電性被膜形成用塗布液(C-3)を塗布し乾燥した。
【0108】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-2)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0109】
【比較例3】
透明被膜形成用塗布液 (RB-3) の調製
製造実施例で得た加水分解物(M-2)58.7gと透明被膜形成用低屈折率粒子(P-4)分散液2.2gとを混合し、実施例1で用いた混合溶媒39.1gを加え、固形分濃度1.1重量%の透明被膜形成用塗布液(RB-3)を調製した。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0110】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-3)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0111】
【比較例4】
透明被膜形成用塗布液 (RB-4) の調製
製造実施例で得た加水分解物(M-5)に実施例1で用いた混合溶媒を加えて希釈し、固形分濃度1.1重量%の透明被膜形成用塗布液(RB-4)として用いた。
透明導電性被膜付パネルガラスの製造
実施例7と同様にして透明導電性被膜形成用塗布液(C-2)を塗布し乾燥した。
【0112】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-4)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0113】
【比較例5】
透明被膜形成用塗布液 (RB-5) の調製
製造実施例で得た加水分解物(M-1)11.7と加水分解物(M-6)0.3gとを混合し、実施例1で用いた混合溶媒88gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(RB-5)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-1)を塗布し乾燥した。
【0114】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-5)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0115】
【比較例6】
透明被膜形成用塗布液 (RB-6) の調製
製造実施例で得た加水分解物(M-1)11.7gと加水分解物(M-7)0.3gとを混合し、実施例1で用いた混合溶媒88gを加え、固形分濃度1.2重量%の透明被膜形成用塗布液(RB-6)を調製した。
透明導電性被膜付パネルガラスの製造
実施例1と同様にして透明導電性被膜形成用塗布液(C-1)を塗布し乾燥した。
【0116】
ついで、透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で透明被膜形成用塗布液(RB-6)を塗布・乾燥し、160℃で30分間焼成して透明導電性被膜付基材を得た。導電層と透明被膜の合計膜厚を測定し、結果を表に示した。
得られた透明導電性被膜付基材について表面抵抗、ヘーズ、透過率、ボトム反射率、視感反射率および消しゴム硬度、スクラッチ硬度、指紋付着性を評価した。結果を表1に示す。
【0117】
【表1】
Figure 0004343520
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, uniform shrinkage occurs, so that cracks are not generated, the film strength is excellent, fingerprints and dirt on the film surface are difficult to adhere, and even if attached, it can be easily removed, and the water repellency A coating solution for forming a transparent film that can be suitably used for forming an excellent transparent film, a substrate with a transparent conductive film having a transparent film formed using the coating solution, and a display device including the substrate About.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventionally, transparent coatings having antistatic and antireflection functions on the surfaces of transparent substrates such as cathode ray tubes, fluorescent display tubes, and liquid crystal display panels, for the purpose of antistatic and antireflection. It was done to form.
Further, it is known that electromagnetic waves are emitted from a cathode ray tube or the like, and in addition to conventional antistatic and antireflection, it is desired to shield these electromagnetic waves and the electromagnetic field formed with the emission of electromagnetic waves. .
[0003]
One method of shielding these electromagnetic waves and the like is a method of forming a conductive film for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. If it is a conductive film for antistatic, the surface resistance is at least 108While it is sufficient to have a surface resistance of about Ω / □, it is 10 for a conductive coating for electromagnetic shielding.2-10FourIt was necessary to have a low surface resistance such as Ω / □.
[0004]
When the conductive film having a low surface resistance is formed by using a coating solution containing a conductive oxide such as conventional Sb-doped tin oxide or Sn-doped indium oxide, It was necessary to increase the film thickness. However, since the antireflection effect is not manifested unless the film thickness of the conductive film is about 10 to 200 nm, the conventional conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide has a low surface resistance, There was a problem that it was difficult to obtain a conductive film that was excellent in electromagnetic wave shielding properties and also in antireflection.
[0005]
In addition, as one method for forming a conductive film having a low surface resistance, forming a coating film containing metal fine particles on the surface of a substrate using a coating solution for forming a conductive film containing fine metal particles such as Ag is performed. It has been broken. In this method, a coating solution in which colloidal metal fine particles are dispersed in a polar solvent is used as a coating solution for forming a coating containing metal fine particles. In such a coating solution, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is surface-treated with an organic stabilizer such as polyvinyl alcohol, polyvinyl pyrrolidone or gelatin. However, a conductive coating formed using such a coating solution for forming a coating containing metal fine particles has a large intergranular resistance because the metal fine particles come into contact with each other through a stabilizer in the coating. Sometimes did not go down. For this reason, after film formation, it is necessary to decompose and remove the stabilizer by baking at a high temperature of about 400 ° C. However, when the baking is carried out at a high temperature to decompose and remove the stabilizer, fusion and aggregation of metal fine particles occur. There has been a problem that the transparency and haze of the conductive film are lowered. In the case of a cathode ray tube or the like, there is a problem that the cathode ray tube deteriorates when exposed to a high temperature.
[0006]
In addition, unlike the conductive oxide, the metal fine particles do not originally transmit light, so the conductive film formed using the metal fine particles is transparent depending on the density and film thickness of the metal fine particles in the conductive film. There was also a problem of lowering.
Furthermore, in the conventional transparent conductive film containing fine metal particles such as Ag, salt water resistance and oxidation resistance are low, the metal is oxidized, particle growth due to ionization, and in some cases, corrosion may occur, There was a problem that the conductivity and light transmittance of the coating film were lowered, and the display device lacked reliability.
[0007]
In order to solve such problems, the applicants of the present application, the transparent film obtained by using an organosilicon compound having a specific structure or a fluorine-substituted alkyl group-containing silicone compound, scratch strength, eraser strength, chemical resistance It is disclosed that it is excellent in hot water resistance and the like. (JP 2001-187864 A (Patent Document 1), JP 2002-79616 A (Patent Document 2))
However, when the ratio of the organosilicon compound having a specific structure in the transparent film or the fluorine-substituted alkyl group-containing silicone compound is increased, the scratch strength and the like are improved, but there is a disadvantage that the eraser strength is lowered. There is a problem that the economy is lowered due to the high price.
[0008]
As a result of intensive studies to improve the eraser strength and chemical resistance of the transparent coating, the present inventors have found that the matrix precursor is a hydrolyzate of tetraalkoxysilane, a specific organosilicon compound, and tetraalkoxysilane. It is found that the use of a specific organosilicon compound, which is excellent in chemical resistance and low in cost, improves scratch strength, eraser strength, stain resistance, etc. The invention has been completed.
[0009]
[Patent Document 1]
JP 2001-187864 A
[Patent Document 2]
JP 2002-79616 A
[0010]
OBJECT OF THE INVENTION
The present invention has been made in order to eliminate the problems associated with the above-described conventional technology, and is excellent in chemical resistance, and is low in cost and can be used with a specific organosilicon compound at a low cost to provide scratch strength, eraser strength, and stain resistance. It is an object of the present invention to provide a coating liquid capable of forming a transparent film with improved properties, a substrate with a transparent conductive film having the transparent film, and a display device including the substrate.
[0011]
SUMMARY OF THE INVENTION
In the coating liquid for forming a transparent film according to the present invention, the matrix precursor is
(i) a tetraalkoxysilane hydrolyzate and
(ii) a simultaneous hydrolyzate of tetraalkoxysilane and at least one compound selected from organic silicon compounds represented by the following formulas (1) to (4), wherein the following formula in the simultaneous hydrolyzate: (1) to (4) comprising a hydrolyzate in which the proportion of the organosilicon compound represented by (4) is in the range of 2 to 60% by weight as a solid content, and the proportion of (ii) in the matrix precursor is It is characterized by being in the range of 1 to 30% by weight as solid content.
[0012]
[Chemical formula 2]
Figure 0004343520
[0013]
(Wherein R1, R2May be the same as or different from each other, and each represents an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, a hydrogen atom or a halogen atom. Ra, RbRepresents a fluorine-containing alkyl group. RThree~ R7May be the same as or different from each other and each represents an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, an alkoxy group, a hydrogen atom or a halogen atom.
[0014]
X is-(CH2)n-,-(Ph)-(Ph is a benzene ring),-(CH2)n-(Ph)-、-(CH2)n-(Ph)-(CH2)n-,-(S)m-,-(CH2)n-(S)-(CH2)n-,-(CH2)n-(CF2)n-(CH2)n-, M represents an integer of 1 to 30, and n represents an integer of 1 to 30. )
In the present invention, together with the matrix precursor, low refractive index particles having a refractive index in the range of 1.28 to 1.42 and an average particle diameter in the range of 5 to 300 nm may be included.
[0015]
The substrate with a transparent conductive film according to the present invention is
A transparent conductive material comprising a base material, a transparent conductive fine particle layer containing conductive fine particles on the base material, and a transparent coating film provided on the transparent conductive fine particle layer and having a refractive index lower than that of the transparent conductive fine particle layer A substrate with a conductive coating,
The transparent film is formed using the coating liquid for forming a transparent film described above.
[0016]
The display device according to the present invention includes a front plate made of the transparent conductive film-coated substrate, and the transparent film is formed on the outer surface of the front plate.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
Coating liquid for transparent film formation
In the coating liquid for forming a transparent film according to the present invention, the matrix precursor is
(i) a tetraalkoxysilane hydrolyzate and
(ii) comprising a tetrahydroalkoxysilane and a simultaneous hydrolyzate of a specific organosilicon compound.
[Matrix precursor]
(i) Hydrolyzate of tetraalkoxysilane
Examples of the tetraalkoxysilane used for preparing the hydrolyzate (i) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
[0018]
(i) The hydrolyzate of tetraalkoxysilane can be obtained by hydrolyzing tetraalkoxysilane in a water-alcohol mixed solvent in the presence of an acid catalyst. Such a hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate, and conventionally known hydrolysates can be used. These hydrolysates (or polycondensates thereof) preferably have a polystyrene equivalent molecular weight in the range of 500 to 20,000, particularly preferably in the range of 700 to 10,000.
[0019]
If the hydrolyzate (or its polycondensate) has a polystyrene-equivalent molecular weight of less than 500, the film shrinks greatly during the formation of the transparent film, the adhesion to the substrate decreases, cracks occur, and the film The strength may decrease.
When the molecular weight in terms of polystyrene of the hydrolyzate (or the condensation polymer thereof) exceeds 20,000, the stability of the coating solution is shortened, and a dense transparent film having excellent strength may not be obtained.
[0020]
(ii) Simultaneous hydrolyzate
The present invention includes a simultaneous hydrolyzate of tetraalkoxysilane and at least one compound selected from organic silicon compounds represented by the following formulas (1) to (4).
[0021]
[Chemical 3]
Figure 0004343520
[0022]
(Wherein R1, R2May be the same as or different from each other, and each represents an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, a hydrogen atom or a halogen atom. Ra, RbRepresents a fluorine-containing alkyl group. RThree~ R7May be the same as or different from each other, and may be an alkyl group, a halogenated alkyl group (preferably excluding a fluorinated alkyl group), an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, an alkoxy group, hydrogen An atom or a halogen atom is shown.
[0023]
X is-(CH2)n-,-(Ph)-(Ph is a benzene ring),-(CH2)n-(Ph)-、-(CH2)n-(Ph)-(CH2)n-,-(S)m-,-(CH2)n-(S)-(CH2)n-,-(CH2)n-(CF2)n-(CH2)n-, M represents an integer of 1 to 30, and n represents an integer of 1 to 30. )
As the tetraalkoxysilane, the same ones as described above are used. The tetraalkoxysilane used in (ii) the simultaneous hydrolyzate may be the same as or different from the tetraalkoxysilane used in (i).
[0024]
Examples of the organosilicon compounds represented by the above formulas (1) and (2) (fluorine-containing organosilicon compounds) include 3,3,3-trifluoropropyltrimethoxysilane and methyl-3,3,3-trifluoropropyl. Dimethoxysilane, heptadecatrifluorodecylmethyldimethoxysilane, heptadecatrifluorodecyltrimethoxysilane, n-perfluorooctylethyltriethoxysilane (formula (1) above), bis (trifluoropropyldimethoxysilyl) hexane (formula ( 2)).
[0025]
Examples of the organosilicon compound represented by formula (3) or formula (4) include bis (trimethoxysilyl) ethane, bis (trimethoxysilyl) propane, bis (trimethoxysilyl) butane, and (trimethoxysilyl). Pentane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) heptane, bis (trimethoxysilyl) octane, bis (trimethoxysilyl) nonane, bis (trimethoxysilyl) decane, bis (trimethoxysilyl) dodecane, Bis (trimethoxysilyl) heptadecane, bis (trimethoxysilyl) octadecane, bis (triethoxysilyl) hexane, bis (tripropoxysilyl) hexane, bis (tri-n-butoxysilyl) hexane, bis (tri-butoxysilyl) Hexane, bis (allyldimethoxysilyl) Xane, bis (vinyldimethoxysilyl) hexane, bis (acryldimethoxysilyl) hexane, bis (3-triethoxysilylpropyl) tetrasulfide, 1,4bis (trimethoxysilylethyl) benzene (formula (3) above), hepta Decatrifluorotrimethoxysilane (formula (4)) and the like can be mentioned.
[0026]
The simultaneous hydrolyzate (ii) is a mixture of tetraalkoxysilane and at least one compound selected from organic silicon compounds represented by the following formulas (1) to (4) in a water-alcohol mixed solvent. It can be obtained by hydrolysis in the presence of a catalyst. Such a simultaneous hydrolyzate may be a partial hydrolyzate or a condensation polymer of the hydrolyzate.
[0027]
Of these, the simultaneous hydrolyzate (ii) preferably has a polystyrene-equivalent molecular weight in the range of 500 to 20,000, particularly preferably in the range of 700 to 10,000.
When the molecular weight in terms of polystyrene of the simultaneous hydrolyzate (ii) is less than 500, the shrinkage of the film is large when forming a transparent film, the adhesion to the substrate is reduced, or cracks are generated and the film strength is lowered. There are things to do.
[0028]
When the molecular weight in terms of polystyrene of the simultaneous hydrolyzate (ii) exceeds 20,000, the stability of the coating solution is shortened, and a dense and excellent transparent film may not be obtained.
The proportion of the organosilicon compound represented by (1) to (4) in the simultaneous hydrolyzate (ii) is preferably in the range of 2 to 60% by weight, more preferably 5 to 50% by weight as the solid content.
[0029]
When the ratio of the organosilicon compound is less than the above lower limit as a solid content, it is not substantially different from a transparent coating composed of a hydrolyzate of tetraalkoxysilane, has excellent eraser strength and scratch strength, and has chemical resistance. It is difficult to obtain a transparent film having excellent resistance to contamination and the like.
When the ratio of the organosilicon compound exceeds the above upper limit as the solid content, since the ratio of tetraalkoxysilane is small, the effect of using the copolymer by simultaneous hydrolysis cannot be sufficiently obtained, and the eraser strength and scratch strength are excellent, and It is difficult to obtain a transparent film excellent in chemical resistance and stain resistance.
[0030]
The proportion of the simultaneous hydrolyzate (ii) in the matrix precursor is in the range of 0.5 to 50% by weight, preferably 1 to 40% by weight, as solid content.
When the ratio of (ii) in the matrix precursor is less than the lower limit as the solid content, cracks may be generated due to large horizontal shrinkage during the formation of the transparent film, and the conductive fine particle layer as a lower layer may be included. In addition, since the shrinkage in the vertical direction is small, the effect of improving the conductivity becomes insufficient, or the effect of improving the hardness of the transparent conductive film becomes insufficient.
[0031]
When the ratio of the simultaneous hydrolyzate (ii) in the matrix precursor exceeds the above upper limit as a solid content, the horizontal and vertical shrinkage decreases, so that the effect of improving the conductivity becomes insufficient, and the film hardness The improvement effect is also insufficient.
When the ratio of the simultaneous hydrolyzate (ii) in the matrix precursor is within the above range as a solid content, the horizontal and vertical shrinkage occurs appropriately, and the eraser strength, scratch strength, and conductivity are improved.
[0032]
In addition, electroconductivity here means the electroconductivity of the conductive layer when there is a conductive layer in the lower layer (the coating liquid of the present invention is used as a transparent film on the surface of the conductive layer). When a transparent film is formed using the coating liquid according to the present invention, it is considered that the conductive particles in the lower conductive layer are more closely adhered and the conductivity is improved by the shrinkage of the matrix for forming the transparent film.
[0033]
Thus, when the simultaneous hydrolyzate (ii) is mixed with the hydrolyzate of tetraalkoxysilane and used as a matrix precursor, the film shrinks uniformly as described above, resulting in high conductivity improvement effect and film hardness improvement. Although the reason why the effect is obtained is not clear, in the simultaneous hydrolyzate, a copolymer of tetraalkoxysilane and at least one compound selected from organic silicon compounds represented by formulas (1) to (4) is formed. It is thought that it is generating. For this reason, since the polycondensation of the matrix precursor during film formation occurs uniformly, the horizontal and vertical shrinkage occurs moderately, and the tetraalkoxysilane hydrolyzate has a strong binding force. It is considered that the scratch resistance derived from the silane hydrolyzate is high, the adhesion to the substrate is excellent, and the scratch resistance is improved. In addition, the hydrolyzate derived from the organosilicon compound represented by the formulas (1) to (4) is uniformly dispersed in the film, and this compound provides excellent adhesion between the substrate and the film, and also has chemical resistance. A transparent film having excellent properties and stain resistance can be obtained. Furthermore, the conductivity of the lower conductive fine particle layer can be improved when the matrix precursor is contracted by condensation polymerization.
[Other ingredients]
In the coating liquid for forming a transparent film according to the present invention, the matrix precursor is dispersed or dissolved in a solvent.
[0034]
The solvent is not particularly limited as long as the matrix precursor does not decompose. Water; methanol, ethanol, n-propyl alcohol, i-propyl alcohol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydro Alcohols such as furfuryl alcohol, ethylene glycol and hexylene glycol; esters such as acetic acid methyl ester and ethyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, Ethers such as diethylene glycol monoethyl ether and isopropyl glycol; acetone, methyl ethyl ketone, acetylacetone Such ketones such as acetoacetic acid esters are exemplified.
[0035]
These may be used as they are when the matrix precursor is prepared, or solvent substitution may be performed.
In the present invention, the matrix precursor in the coating solution is not particularly limited as long as it provides fluidity to the coating solution and can form a uniform film. It is desirable to be in the range of 10 to 10% by weight, preferably 1 to 5% by weight.
[0036]
The coating liquid according to the present invention can be used by blending low refractive index particles together with the matrix precursor. The low refractive index particles at this time have an average particle diameter of 5 to 300 nm, preferably 10 to 200 nm, and a refractive index of 1.28 to 1.42, and more preferably 1.28 to 1.40. It is preferable.
When the refractive index of the low refractive index particles is 1.42 or less, the obtained substrate with a transparent conductive film has low bottom reflectance and luminous reflectance, and can exhibit excellent antireflection performance.
[0037]
The amount of the low refractive index particles used is such that the content of the low refractive index particles in the transparent coating is in the range of 10 to 90% by weight, preferably 20 to 80% by weight in terms of solid content. desirable.
Such low refractive index particles are not particularly limited as long as the average particle diameter and refractive index are within the above ranges, and conventionally known particles can be used. For example, the composite oxide sol disclosed in JP-A-7-133105 filed by the applicant of the present application and the porous composite oxide particles having the coating layer disclosed in WO00 / 37359 can be suitably used.
[0038]
Furthermore, the coating liquid for forming a transparent film of the present invention includes a fine particle composed of a low refractive index material such as magnesium fluoride, a small amount of conductive fine particles to the extent that the transparency and antireflection performance of the transparent film are not impaired, and / or Or additives, such as dye or a pigment, may be contained.
When a transparent film is formed by applying such a coating solution for forming a transparent film, the formed transparent film is heated at 150 ° C. or higher at the time of drying or after drying, or is applied to an uncured film from visible light. Alternatively, it may be irradiated with electromagnetic waves such as ultraviolet rays having short wavelengths, electron beams, X-rays, γ rays, or exposed to an active gas atmosphere such as ammonia. If it does in this way, hardening of a film formation ingredient will be accelerated and the hardness of the transparent film obtained will become high.
[0039]
Base material with transparent conductive film
Next, the substrate with a transparent conductive film according to the present invention will be specifically described.
In the substrate with a transparent conductive film according to the present invention, a transparent particle composed of conductive fine particles having an average particle diameter of 1 to 200 nm on a substrate such as a film, sheet, or other molded body made of glass, plastic, ceramic, or the like. A conductive fine particle layer and a transparent film having a refractive index lower than that of the transparent conductive fine particle layer are formed on the transparent conductive fine particle layer.
[0040]
[Conductive fine particles]
As the conductive fine particles used in the present invention, the surface resistance of the transparent conductive film obtained is about 102-108There is no particular limitation as long as it is within the range of Ω / □, and conventionally known conductive fine particles can be used.
Examples of the conductive fine particles include oxide-based conductive fine particles such as tin oxide, tin oxide doped with Sb, F, or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, and low-order titanium oxide. Can be mentioned.
[0041]
The oxide-based conductive fine particles preferably have an average particle diameter in the range of 1 to 200 nm, preferably 2 to 150 nm.
When the average particle diameter is less than 1 nm, the particles tend to aggregate because they are too small, and the surface resistance of the particle layer rapidly increases, so that the coating has a low resistance value that can achieve the object of the present invention. May not be able to get. On the other hand, when the average particle diameter exceeds 200 nm, the particles are large, so that the contact between the particles decreases and sufficient conductivity may not be obtained. Moreover, film | membrane intensity | strength and adhesiveness with a base material may fall, or the haze of the transparent conductive film obtained may become high.
[0042]
Further, conventionally known metal fine particles can be used as the conductive fine particles. The metal fine particles may be metal fine particles composed of a single component or may be composite metal fine particles containing two or more metal components. Good.
Specifically, at least one or more selected from metals such as Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, Al, Ta, Sb, etc. Examples thereof include metal fine particles made of metal.
[0043]
Further, preferable combinations of two or more kinds of metal in the composite metal fine particles include Au-Cu, Ag-Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd, Pt-Rh, Fe-Ni, Ni. -Pd, Fe-Co, Cu-Co, Ru-Ag, Au-Cu-Ag, Ag-Cu-Pt, Ag-Cu-Pd, Ag-Au-Pd, Au-Rh-Pd, Ag-Pt-Pd Ag-Pt-Rh, Fe-Ni-Pd, Fe-Co-Pd, Cu-Co-Pd, and the like.
[0044]
The average particle size of the metal fine particles is desirably in the range of 1 to 200 nm, preferably 2 to 70 nm. When the particle diameter is in such a range, the formed conductive layer becomes transparent. On the other hand, when the average particle diameter of the metal fine particles exceeds 200 nm, light absorption by the metal increases, and the light transmittance of the particle layer decreases and haze increases. For this reason, when the coated substrate is used as, for example, a front plate of a cathode ray tube, the resolution of the displayed image may be lowered. In addition, when the average particle size of the metal fine particles is less than 1 nm, the surface resistance of the particle layer increases rapidly, so that it is not possible to obtain a film having a low resistance enough to achieve the object of the present invention. is there.
[0045]
[Formation of conductive fine particle layer]
The conductive fine particle layer can be produced using a coating liquid for forming a conductive film.
The coating liquid for forming a conductive film contains the conductive fine particles and a polar solvent.
The polar solvent used in the coating solution for forming the conductive film is water; methanol, ethanol, n-propyl alcohol, i-propyl alcohol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, Alcohols such as xylene glycol; esters such as methyl acetate and ethyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isopropyl glycol, etc. Ethers such as acetone, methyl ethyl ketone, acetylacetone, acetoacetate, etc. And the like. These may be used singly or in combination of two or more.
[0046]
When a coating solution containing oxide-based conductive fine particles is used, an antistatic effect and an electromagnetic wave shielding effect are exhibited.2-108A transparent conductive layer having a surface resistance of about Ω / □ can be formed. When the conductive layer is formed using oxide conductive fine particles, the oxide conductive fine particles have an oxide conductive fine particle concentration of 0.2 to 5% by weight in the coating liquid for forming a conductive film. , Preferably in an amount of 1 to 5% by weight.
[0047]
When the amount of oxide-based conductive fine particles in the coating liquid for forming a conductive film is less than 0.2% by weight, the film thickness of the resulting film becomes thin, and thus sufficient conductivity may not be obtained. is there. On the other hand, when the oxide-based conductive fine particles exceeds 5% by weight, the film thickness is increased, the haze of the film is deteriorated and the appearance is also deteriorated.
Further, when a coating solution containing metal fine particles is used, an electromagnetic wave shielding effect is exhibited.2-108A transparent conductive layer having a surface resistance of about Ω / □ can be formed. When forming a conductive layer for electromagnetic shielding using metal fine particles, the metal fine particles have a concentration of metal fine particles in the coating liquid for forming a conductive film of 0.05 to 5% by weight, preferably 0.1 to 2. It is desirable that it be contained in an amount of% by weight.
[0048]
When the amount of the metal fine particles in the coating liquid for forming a conductive film is less than 0.05% by weight, the film thickness of the obtained film becomes thin, so that sufficient conductivity may not be obtained. On the other hand, if the metal fine particle exceeds 5% by weight, the film thickness becomes thick, the light transmittance is lowered, the transparency is deteriorated and the appearance is also deteriorated.
Furthermore, the coating liquid for forming a conductive film may contain a colorant, a matrix precursor, an organic stabilizer, and the like as necessary.
[0049]
Examples of the colorant include fine-particle carbon black, titanium black, dye, pigment, and the like. When such a colorant is contained, a display device having excellent contrast can be obtained.
Further, the coating liquid for forming a conductive film may contain a matrix precursor. Such a matrix precursor is preferably made of silica, and specifically, silicic acid obtained by dealkalizing a hydrolytic polycondensation product of an organosilicon compound such as alkoxysilane or an alkali metal silicate aqueous solution. A condensation polymer, a resin for paints, etc. are mentioned. This matrix-forming component may be contained in an amount of 0.01 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight, based on 1 part by weight of conductive fine particles as a solid content. Such a matrix precursor acts as a binder for the conductive fine particles after film formation.
[0050]
Organic stabilizers include polyvalent carboxylic acids such as gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid and citric acid And a salt thereof, a heterocyclic compound or a mixture thereof.
Such an organic stabilizer is effective particularly when it contains metal fine particles, and is contained in an amount of 0.005 to 0.5 parts by weight, preferably 0.01 to 0.2 parts by weight, per 1 part by weight of the metal fine particles. It only has to be. When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility of the metal fine particles cannot be obtained, and when it exceeds 0.5 parts by weight, the conductivity may be inhibited.
[0051]
The transparent conductive fine particle layer is formed by applying the transparent conductive film-forming coating solution onto a substrate and drying it to form the transparent conductive fine particle layer on the substrate.
As a method for forming the transparent conductive fine particle layer, for example, a coating solution for forming a transparent conductive film was applied on a substrate by a method such as a dipping method, a spinner method, a spray method, a roll coater method, or a flexographic printing method. Then, it dries at a temperature in the range of room temperature to about 90 ° C.
[0052]
When the matrix precursor as described above is contained in the coating liquid for forming a transparent conductive film, the matrix precursor may be cured.
For example, a film formed by applying a coating solution for forming a transparent conductive film is heated at 150 ° C. or higher at the time of drying or after drying, or an uncured film is irradiated with ultraviolet rays or electron beams having a wavelength shorter than that of visible light. X-rays, γ-rays or other electromagnetic waves may be irradiated or exposed to an active gas atmosphere such as ammonia. If it does in this way, hardening of a film formation ingredient will be accelerated and the hardness of the film obtained will become high.
[0053]
The film thickness of the transparent conductive fine particle layer formed by the method as described above is preferably in the range of 5 to 200 nm, more preferably 10 to 150 nm. If the film thickness is in this range, the antistatic property and the electromagnetic shielding property are excellent. A substrate with a transparent conductive film can be obtained. When the film thickness of the transparent conductive fine particle layer is less than 5 nm, even if the transparent coating film is formed using the coating liquid for forming the transparent film, there is little room for shrinkage of the transparent conductive fine particle layer. The improvement effect of the film and the improvement effect of the film hardness may not be sufficiently obtained.
[0054]
When the film thickness of the transparent conductive fine particle layer exceeds 200 nm, the light transmittance may be reduced, or voids may be easily formed in the film, resulting in an increase in haze.
[Transparent coating]
In the substrate with a transparent conductive film according to the present invention, a transparent film having a refractive index lower than that of the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.
[0055]
As a method for forming the transparent film, a wet thin film forming method such as a dipping method, a spinner method, a spray method, a roll coater method, or a flexographic printing method can be employed for the transparent film forming coating solution.
The film thickness of the transparent coating at this time is preferably in the range of 20 to 300 nm, preferably 30 to 200 nm.
[0056]
When the film thickness of the transparent coating is less than 20 nm, the strength and antireflection performance of the film may be inferior.
When the film thickness of the transparent film exceeds 300 nm, cracks may occur in the film or the film strength may decrease, and the film may be too thick and the antireflection performance may be insufficient.
[0057]
Display device
The substrate with a transparent conductive film according to the present invention generally has 10 necessary for antistatic and electromagnetic shielding.2-108It has a surface resistance in the range of Ω / □, is excellent in transparency and has sufficient antireflection performance in the visible light region and near infrared region, and is suitably used as a front plate of a display device.
[0058]
The display device according to the present invention is a device that electrically displays an image such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like. A front plate made of a substrate with a transparent conductive film.
When a display device having a conventional front plate is operated, the transparent conductive film has insufficient film hardness, scratch strength, etc., and is easily damaged, and haze is likely to occur, which may make it difficult to see the screen. .
[0059]
In the display device according to the present invention, the front plate is composed of a substrate with a transparent conductive film having no film cracking and excellent in film strength, and moreover, oil, fingerprints, etc. are difficult to adhere, and therefore Since no wiping or the like is required, scratches are not generated, so that display performance is excellent, charging can be prevented, and electromagnetic waves and electromagnetic fields generated with the emission of the electromagnetic waves can be effectively shielded.
[0060]
In addition, when reflected light is generated on the front plate of the display device, the display image is difficult to see due to the reflected light. In the display device according to the present invention, the front plate has sufficient antireflection performance in the visible light region and the near infrared region. Since it is comprised with the base material with a transparent conductive film which has this, such reflected light can be prevented effectively.
[0061]
【The invention's effect】
According to the present invention, since the matrix precursor includes (i) a hydrolyzate of tetraalkoxysilane and (ii) a specific simultaneous hydrolyzate, scratch strength, water resistance, and chemical resistance are improved. A transparent film can be formed. In addition, compared to the case of using only a hydrolyzate of an organosilicon compound represented by formulas (1) to (4) instead of the simultaneous hydrolyzate, (i) a hydrolyzate of tetraalkoxysilane And (ii) a co-hydrolyzed product of tetraalkoxysilane and a specific organosilicon compound is uniformly dispersed and easily condensed (reacted), so that contraction due to condensation polymerization of the matrix precursor occurs uniformly, It also has excellent eraser strength, adhesion to the substrate, and the like, and can improve the conductivity of the lower conductive fine particle layer upon shrinkage due to condensation polymerization of the matrix precursor. (Note that even if a hydrolyzate of tetraalkoxysilane and a specific organosilicon compound are simply mixed, the properties of the hydrolyzate (the presence or absence of an alkyl group, the amount of OH groups to be condensed, etc. are too different, resulting in a uniform (Reactions, shrinkage, etc. may not occur. Therefore, improvement effects such as strength, adhesion, and conductivity cannot be obtained.)
Further, according to the present invention, a coating solution for forming a transparent film that can be suitably used for forming such a transparent film, a substrate with a transparent conductive film having a transparent film having such performance, and the substrate are provided. A display device can be provided.
[0062]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[0063]
[Production Examples]
a) Preparation of conductive fine particle dispersion
Dispersions of conductive fine particles used in the examples and comparative examples were prepared as follows.
S n Doped indium oxide (ITO) Fine particles (P-1) Preparation of dispersion
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a potassium hydroxide solution having a concentration of 10% by weight were prepared. Was added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. After filtering and washing Sn-doped indium oxide hydrate from the obtained Sn-doped indium oxide hydrate dispersion, it was again dispersed in water and a metal oxide precursor hydroxide dispersion having a solid content concentration of 10% by weight. A liquid was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.
[0064]
This was dispersed in ethanol to a concentration of 30% by weight, adjusted to pH 3.5 with an aqueous nitric acid solution, and then pulverized with a sand mill for 0.5 hours while maintaining the mixed solution at 30 ° C. Was prepared. Subsequently, ethanol was added to prepare a Sn-doped indium oxide fine particle (P-1) dispersion having a concentration of 20% by weight.
About the obtained electroconductive metal oxide particle (P-1), the average particle diameter was measured as follows and the result was shown in the table | surface.
[0065]
For the conductive fine particles, a TEM photograph was taken, the particle diameters of 20 particles were measured, and the average value was displayed in the table as the average particle diameter.
S b Doped tin oxide (ATO) Fine particles (P-2) Preparation of dispersion
A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of methanol. The prepared solution was added to 1000 g of pure water with stirring at 90 ° C. for 4 hours for hydrolysis, and the resulting precipitate was filtered and washed, and then dispersed again in water to obtain a solid content concentration of 10% by weight. A metal oxide precursor hydroxide dispersion was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g as KOH), and the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. to prepare a sol. Next, this sol was treated with an ion exchange resin, dealkalized, and pure water was added to prepare a dispersion of Sb-doped tin oxide fine particles (P-2) having a concentration of 20% by weight. The average particle size was measured and the results are shown in the table.
[0066]
Silver palladium alloy fine particles (P-3) Preparation of dispersion liquid
To 100 g of pure water, in addition to 0.01 part by weight per part by weight of alloy fine particles from which trisodium citrate can be obtained in advance, the concentration is 10% by weight in terms of metal, and the weight ratio of silver to palladium is 8 : Add silver nitrate and palladium nitrate aqueous solution so that it becomes 2, then add an aqueous solution of ferrous sulfate equivalent to the total number of moles of silver nitrate and palladium nitrate, and stir in a nitrogen atmosphere for 1 hour to obtain a silver palladium alloy A dispersion of fine particles was obtained. The obtained dispersion was washed with a centrifugal separator to remove impurities and then dispersed in water to prepare a dispersion of silver palladium alloy fine particles (P-3) having a concentration of 4% by weight. The average particle diameter of the silver palladium alloy fine particles was 8 nm.
b) Low refractive index particles for transparent film formation (P-4) Preparation of dispersion
27.4 g of methylmethoxysilane was mixed with 872.6 g of a 0.65% strength by weight aqueous sodium hydroxide solution and stirred at room temperature for 1 hour.ThreeSiO3/2A 1.5% by weight colorless and transparent partial hydrolyzate was prepared.
[0067]
Then, the average particle diameter as seed particles is 5 nm, SiO.2A mixture of 20 g of silica sol having a concentration of 20% by weight and 380 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor is 10.5 and the mother liquor contains SiO.2900 g of 1.5% by weight sodium silicate aqueous solution, 900 g of the aqueous solution of the partial hydrolyzate, Al2OThreeAs a solution, 1800 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight was simultaneously added over 6 hours. Meanwhile, the temperature of the reaction mother liquor was maintained at 80 ° C. The pH of the reaction mother liquor rose to 12.7 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution is cooled to room temperature, washed with an ultrafiltration membrane, and a methyl group-containing SiO2 having a solid content concentration of 20% by weight.2・ Al2OThreeA dispersion of composite oxide fine particles (A-1) was obtained.
[0068]
Next, 550 g of pure water was added to 250 g of the dispersion of composite oxide fine particles (A-1) and heated to 98 ° C., and the sodium silicate aqueous solution was dealkalized with a cation exchange resin while maintaining this temperature. Silicic acid solution (SiO2 (Concentration of 3.5% by weight) 1,000 g was added over 5 hours, and the silica-coated methyl group-containing SiO2・ Al2OThreeA dispersion of composite oxide fine particles (B-1) was obtained. Subsequently, 1125 g of pure water was added to 500 g of a dispersion having a solid content of 13% by weight, which was washed with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0. Then, a treatment for removing aluminum from the fine particles was performed.
[0069]
Next, while adding 10 L of hydrochloric acid aqueous solution of pH 3.0 and 5 L of pure water, the dissolved aluminum salt is washed and removed using an ultrafiltration membrane, and is concentrated and contains methyl groups coated with silica having a solid content concentration of 13% by weight. SiO2・ Al2OThreeA dispersion of composite oxide fine particles (C-1) was obtained.
Next, a mixture of 1500 g of the composite oxide fine particle (C-1) dispersion, 500 g of pure water, 1,750 g of ethanol and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C., and then ethyl silicate ( SiO2104 g) was added and coated with the silica. This is concentrated to 5 wt% solid content with an evaporator, then adjusted to pH 10 by adding ammonia water with a concentration of 15 wt%, heat-treated in an autoclave at 180 ° C for 2 hours, and then concentrated on an ultrafiltration membrane. Methyl group-containing SiO completely coated with 10% by weight silica2・ Al2OThreeA dispersion of composite oxide fine particles (P-4) was obtained.
[0070]
This silica-coated composite oxide fine particles (P-4)2/ Al2OThreeThe molar ratio was 278, the average particle size was 34 nm, and the refractive index was 1.36.
The refractive index of the particles was measured as follows.
(1) A dispersion of the composite oxide fine particles (D-1) is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) above is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid (in many cases, paste-like) becomes transparent is used as the refractive index of the fine particles.
c) Coating liquid for forming transparent conductive film (C-1) ~ (C-3) Preparation of
Fine particle (P-1), (P-2), (P-3) dispersion liquid obtained above and ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol (68: 12: 8: 8: 4 (Weight ratio) mixed solvent, and the conductive fine particle concentration coating liquid (C-1), (C-1), (C) having a conductive fine particle concentration of 2.0% by weight, 2.0% by weight, and 0.5% by weight in order. -2) and (C-3) were prepared.
d) Preparation of matrix precursor dispersion
Hydrolyzate of tetraalkoxysilane (M-1) Preparation of
Normal ethyl silicate (SiO) as tetraalkoxysilane2: 28% by weight) 31.3 g,
To a mixed solution of 31.9 g of ethanol, a mixed solution of 1.0 g of nitric acid having a concentration of 61% by weight and 31.9 g of pure water was stirred at 25 ° C. for 1 hour to obtain a solid content (SiO 22) A tetraalkoxysilane hydrolyzate (M-1) having a concentration of 10% by weight was prepared.
[0071]
Simultaneous hydrolyzate of tetraalkoxysilane and organosilicon compound (M-2) Preparation of
Normal ethyl silicate (SiO2: 28 wt%) 17.4 g, a mixed solution of 4.9 g of heptadecatrifluorotrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803) as a fluorine-substituted organic group-containing organosilicon compound, with a concentration of 61 A mixed solution of 1.0 g of nitric acid of 4% by weight and 49.9 g of pure water was stirred at 50 ° C. for 12 hours to simultaneously hydrolyze a hydrolyzate of a tetratetraalkoxysilane having a solid content concentration of 1.5% by weight and an organosilicon compound (M -2) was prepared.
[0072]
Simultaneous hydrolyzate of tetraalkoxysilane and organosilicon compound (M-3) Preparation of
In the preparation of the simultaneous hydrolyzate (M-2), 4.9 g of trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: LS-1090) was used instead of 4.9 g of heptadecatrifluorotrimethoxysilane. A hydrolyzate (M-3) of a tetraalkoxysilane and an organosilicon compound having a solid concentration of 1.5% by weight was prepared in the same manner.
[0073]
Simultaneous hydrolyzate of tetraalkoxysilane and organosilicon compound (M-4) Preparation of
In the preparation of the simultaneous hydrolyzate (M-2), the solid content concentration was 1.5 except that 4.9 g of heptadecafluorodecyltrimethoxysilane was used instead of 4.9 g of heptadecatrifluorotrimethoxysilane. A simultaneous hydrolyzate (M-4) of wt% tetraalkoxysilane and an organosilicon compound was prepared.
[0074]
Simultaneous hydrolyzate of tetraalkoxysilane and organosilicon compound (M-5) Preparation of
In the preparation of the simultaneous hydrolyzate (M-2), 4.9 g of bistrimethoxysilylhexane (manufactured by Toray Dow Silicon Co., Ltd .: AY43-038) was used instead of 4.9 g of heptadecatrifluorotrimethoxysilane. Prepared a hydrolyzate (M-5) of tetraalkoxysilane having a solid concentration of 1.5% by weight and an organosilicon compound in the same manner.
[0075]
Hydrolyzate of organosilicon compound (M-6) Preparation of(For comparative example)
A mixed solution of 10 g of heptadecatrifluorotrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-7803) as an organosilicon compound and 57.1 g of ethanol, 1.0 g of nitric acid with a concentration of 61% by weight and 31.9 g of pure water. The mixed solution was stirred at 50 ° C. for 24 hours to prepare an organosilicon compound hydrolyzate (M-6) having a solid concentration of 10% by weight.
[0076]
Hydrolyzate of organosilicon compound (M-7) Preparation of(For comparative example)
A mixed solution of 10.0 g of bistrimethoxysilylhexane (manufactured by Toray Dow Silicon Co., Ltd .: AY4-038) as an organosilicon compound and 57.1 g of ethanol, 1.0 g of nitric acid having a concentration of 61% by weight and 31. 1% of pure water. 9 g of the mixed solution was stirred at 50 ° C. for 24 hours to prepare a hydrolyzate (M-6) of an organosilicon compound having a solid concentration of 10% by weight.
[0077]
[Example 1]
Coating liquid for transparent film formation (B-1) Preparation of
11.4 g of the hydrolyzate (M-1) obtained in the production example and 4 g of the hydrolyzate (M-2) were mixed, and this was mixed with ethanol / n-propanol / ethyl cellosolve / isopropyl glycol / diacetone alcohol ( (72: 12: 6: 6: 4, weight ratio) was added to 84.6 g of a mixed solvent to prepare a coating solution (B-1) for forming a transparent film having a solid content concentration of 1.2% by weight.
[0078]
Manufacture of panel glass with transparent conductive coating
While maintaining the surface of the CRT panel glass (17 ") at 40 ° C., the transparent conductive film-forming coating solution (C-1) was applied and dried by a spinner method at 100 rpm for 90 seconds. The thickness of the conductive layer was measured, and the results are shown in the table.
Next, on the transparent conductive fine particle layer thus formed, the coating liquid for forming a transparent film (B-1) was similarly applied and dried at 100 rpm for 90 seconds by a spinner method, and the temperature was 160 ° C. Were baked for 30 minutes to obtain a substrate with a transparent conductive film. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in Table 1.
[0079]
The surface resistance of these substrates with transparent conductive films was measured with a surface resistance meter (Mitsubishi Yuka Co., Ltd .: LORESTA), and haze was measured with a haze computer (Nippon Denshoku Co., Ltd .: 3000A). . The reflectance is measured using a reflectance meter (manufactured by Otsuka Electronics Co., Ltd .: MCPD-2000). The reflectance at the wavelength having the lowest reflectance in the wavelength range of 400 to 700 nm is defined as the bottom reflectance. The average reflectance at 700 nm was determined as the luminous reflectance. The results are shown in Table 1.
[0080]
Also, the eraser hardness, scratch hardness and fingerprint adhesion were evaluated. The results are shown in Table 1.
Eraser hardness
An eraser (manufactured by Lion Co., Ltd .: 1K) was set on the transparent film of the substrate with the transparent conductive film, and a load of 1 ± 0.1 kg was applied, and 25 reciprocations were made with a stroke of about 25 mm. The shavings generated at this time were removed with high-pressure air each time.
[0081]
After the eraser was reciprocated 25 times, the surface was visually observed 45 cm away from the surface of the transparent film under illumination of 1000 lux.
A: No scratches are observed.
B: Reflection color changes under a fluorescent lamp (from purple to red).
C: There is no reflected color under a fluorescent lamp, and scratches are observed.
[0082]
D: The base (base material) is visible.
Scratch hardness
A standard test needle (manufactured by Rockwell Co., Ltd .: hardness HRC-60, φ0.5 mm) is set on the transparent coating of the substrate with a transparent conductive coating, a load of 1 ± 0.3 kg is applied, and a thickness of 30 to 40 mm is applied. Swept with a stroke. After sweeping, the surface was observed 45 cm away from the coating surface under 1000 lux illumination.
[0083]
A: No scratches are observed.
B: Streaks are observed intermittently.
C: Shallow continuous streak is observed.
D: A clear continuous striation is observed.
Fingerprint adhesion
Fingers were attached to the transparent coating surface of the transparent conductive coating-coated substrate by strongly pressing the finger. Next, after wiping twice and five times with a dry cloth, the color change of the film was observed and observed, and evaluated according to the following criteria, and the results are shown in the table.
[0084]
A: No change in color is observed after wiping twice. (Fingerprints were not attached or could be removed easily.)
○: No change in color is observed after wiping 5 times. (Easy to remove.)
Δ: Slight change in color is observed.
X: Color change is clearly recognized. (Interference color is recognized.)
[0085]
[Example 2]
Coating liquid for transparent film formation (B-2) Preparation of
9.6 g of the hydrolyzate (M-1) obtained in the production example and 16 g of the simultaneous hydrolyzate (M-2) were mixed, 74.4 g of the mixed solvent used in Example 1 was added, and the solid content concentration was added. A coating solution (B-2) for forming a transparent coating film of 1.2% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, the coating liquid for forming a transparent conductive film (C-1) was applied and dried.
[0086]
Next, on the transparent conductive fine particle layer, in the same manner, the coating liquid for forming a transparent film (B-2) is applied and dried by the spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0087]
[Example 3]
Coating liquid for transparent film formation (B-3) Preparation of
The hydrolyzate (M-1) 6.0 g obtained in the production example and 40 g of the simultaneous hydrolyzate (M-2) were mixed, 54 g of the mixed solvent used in Example 1 was added, and the solid content concentration was 1. A 2 wt% coating solution for forming a transparent film (B-3) was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, the coating liquid for forming a transparent conductive film (C-1) was applied and dried.
[0088]
Next, on the transparent conductive fine particle layer, the coating liquid for forming a transparent film (B-3) was similarly applied and dried by spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0089]
[Example 4]
Coating liquid for transparent film formation (B-4) Preparation of
6.0 g of the hydrolyzate (M-1) obtained in the production examples, 2.7 g of the simultaneous hydrolyzate (M-3), 1.6 g of a low refractive index particle (P-4) dispersion for forming a transparent film, 89.7 g of the mixed solvent used in Example 1 was added to prepare a coating solution (B-4) for forming a transparent film having a solid content concentration of 1.2% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, a coating liquid for forming a transparent conductive film (C-3) was applied and dried. The film thickness of the conductive layer at this time was measured, and the results are shown in the table.
[0090]
Then, on the transparent conductive fine particle layer, the coating liquid for forming a transparent film (B-4) was applied and dried by the spinner method under the conditions of 100 rpm and 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0091]
[Example 5]
Coating liquid for transparent film formation (B-5) Preparation of
7.2 g of the hydrolyzate (M-1) obtained in the production example and 5.3 g of the hydrolyzate (M-4) were mixed, 87.5 g of the mixed solvent used in Example 1 was added, and the solid content was added. A coating solution (B-5) for forming a transparent film having a concentration of 0.8% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 4, a coating liquid for forming a transparent conductive film (C-3) was applied and dried.
[0092]
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (B-5) was applied and dried by the spinner method under the conditions of 100 rpm and 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0093]
[Example 6]
Coating liquid for transparent film formation (B-6) Preparation of
6.0 g of hydrolyzate (M-1) obtained in the production example, 2.7 g of hydrolyzate (M-5), and 1.6 g of a low refractive index particle (P-4) dispersion for forming a transparent film. After mixing, 89.7 g of the mixed solvent used in Example 1 was added to prepare a coating solution (B-6) for forming a transparent film having a solid content concentration of 0.8% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 4, a coating liquid for forming a transparent conductive film (C-3) was applied and dried.
[0094]
Next, on the transparent conductive fine particle layer, the coating liquid for forming a transparent film (B-6) is applied and dried by the spinner method under the conditions of 100 rpm and 90 seconds in the same manner, and then baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0095]
[Example 7]
Coating liquid for transparent film formation (B-7) Preparation of
9.9 g of hydrolyzate (M-1) obtained in Production Example and 7.3 g of hydrolyzate (M-2) were mixed, 82.8 g of the mixed solvent used in Example 1 was added, and the solid content was A coating solution (B-7) for forming a transparent film having a concentration of 1.1% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, a coating liquid for forming a transparent conductive film (C-2) was applied and dried. The film thickness of the conductive layer at this time was measured, and the results are shown in the table.
[0096]
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (B-7) was applied and dried by the spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0097]
[Example 8]
Coating liquid for transparent film formation (B-8) Preparation of
8.8 g of the hydrolyzate (M-1) obtained in the production examples, 7.3 g of the hydrolyzate (M-3), and 1.1 g of a low refractive index particle (P-4) dispersion for forming a transparent film. After mixing, 82.8 g of the mixed solvent used in Example 1 was added to prepare a coating solution (B-8) for forming a transparent film having a solid concentration of 1.1% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0098]
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (B-8) was applied and dried under the conditions of 100 rpm and 90 seconds by the spinner method, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0099]
[Example 9]
Coating liquid for transparent film formation (B-9) Preparation of
6.6 g of hydrolyzate (M-1) obtained in the production example and 7.3 g of hydrolyzate (M-5)gAnd low refractive index particle (P-4) dispersion 3.3 for forming transparent filmgAnd 82.8 g of the mixed solvent used in Example 1 were added to prepare a coating solution (B-9) for forming a transparent film having a solid content of 1.1% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0100]
Next, on the transparent conductive fine particle layer, the coating liquid for forming a transparent film (B-9) was similarly applied and dried at 100 rpm for 90 seconds by a spinner method, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0101]
[Example 10]
Coating liquid for transparent film formation (B-10) Preparation of
9.9 g of the hydrolyzate (M-1) obtained in the production example, 3.7 g of the hydrolyzate (M-2) and 3.7 g of the hydrolyzate (M-5) were mixed. 82.7 g of the mixed solvent used was added to prepare a coating solution (B-10) for forming a transparent film having a solid concentration of 1.1% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0102]
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (B-10) was applied and dried by spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0103]
Example 11
Coating liquid for transparent film formation (B-11) Preparation of
7.7 g of hydrolyzate (M-1), 3.7 g of hydrolyzate (M-2), 3.7 g of hydrolyzate (M-5) and low refractive index particles for forming a transparent film obtained in the production examples (P-4) 3.3 g of the dispersion was mixed, 81.6 g of the mixed solvent used in Example 1 was added, and a coating liquid for forming a transparent film (B-10) having a solid content concentration of 1.1% by weight was added. Prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0104]
Next, on the transparent conductive fine particle layer, similarly, the coating liquid for forming a transparent film (B-10) was applied and dried by spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0105]
[Comparative Example 1]
Coating liquid for transparent film formation (RB-1) Preparation of
The hydrolyzate (M-1) obtained in the production example was diluted by adding the mixed solvent used in Example 1 to obtain a coating solution (RB-1) for forming a transparent film having a solid concentration of 0.8% by weight. Using.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 4, a coating liquid for forming a transparent conductive film (C-3) was applied and dried.
[0106]
Next, on the transparent conductive fine particle layer, the coating liquid for forming a transparent film (RB-1) was similarly applied and dried at 100 rpm for 90 seconds by the spinner method, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0107]
[Comparative Example 2]
Coating liquid for transparent film formation (RB-2) Preparation of
7.92 g of the hydrolyzate (M-1) obtained in the production example and 0.53 g of the hydrolyzate (M-2) were mixed, and 91.55 g of the mixed solvent used in Example 1 was added. A coating solution for forming a transparent film (RB-1) having a concentration of 0.8% by weight was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 4, a coating liquid for forming a transparent conductive film (C-3) was applied and dried.
[0108]
Next, on the transparent conductive fine particle layer, in the same manner, a coating liquid for forming a transparent film (RB-2) was applied and dried by spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0109]
[Comparative Example 3]
Coating liquid for transparent film formation (RB-3) Preparation of
The mixed solvent 39 used in Example 1 was prepared by mixing 58.7 g of the hydrolyzate (M-2) obtained in the production example and 2.2 g of the low refractive index particle (P-4) dispersion for forming a transparent film. 0.1 g was added to prepare a coating solution (RB-3) for forming a transparent film having a solid content concentration of 1.1% by weight.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0110]
Next, on the transparent conductive fine particle layer, in the same manner, a coating solution for forming a transparent film (RB-3) was applied and dried by a spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0111]
[Comparative Example 4]
Coating liquid for transparent film formation (RB-4) Preparation of
The hydrolyzate (M-5) obtained in the production example was diluted by adding the mixed solvent used in Example 1 to obtain a coating solution (RB-4) for forming a transparent film having a solid content concentration of 1.1% by weight. Using.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 7, the transparent conductive film-forming coating solution (C-2) was applied and dried.
[0112]
Next, on the transparent conductive fine particle layer, in the same manner, a coating solution for forming a transparent film (RB-4) was applied and dried by a spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0113]
[Comparative Example 5]
Coating liquid for transparent film formation (RB-5) Preparation of
Hydrolyzate (M-1) 11.7 obtained in Production ExamplegAnd 0.3 g of hydrolyzate (M-6) were mixed, 88 g of the mixed solvent used in Example 1 was added, and a coating solution for forming a transparent film (RB-5) having a solid content concentration of 1.2% by weight was added. Prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, the coating liquid for forming a transparent conductive film (C-1) was applied and dried.
[0114]
Next, on the transparent conductive fine particle layer, similarly, a coating liquid for forming a transparent film (RB-5) was applied and dried by a spinner method at 100 rpm for 90 seconds, and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0115]
[Comparative Example 6]
Coating liquid for transparent film formation (RB-6) Preparation of
11.7 g of the hydrolyzate (M-1) obtained in the production example and 0.3 g of the hydrolyzate (M-7) were mixed, 88 g of the mixed solvent used in Example 1 was added, and the solid content concentration was 1 A coating solution (RB-6) for forming 2% by weight of a transparent film was prepared.
Manufacture of panel glass with transparent conductive coating
In the same manner as in Example 1, the coating liquid for forming a transparent conductive film (C-1) was applied and dried.
[0116]
Next, on the transparent conductive fine particle layer, in the same manner, a coating solution for forming a transparent film (RB-6) was applied and dried at 100 rpm for 90 seconds by a spinner method and baked at 160 ° C. for 30 minutes to be transparent. A substrate with a conductive coating was obtained. The total film thickness of the conductive layer and the transparent film was measured, and the results are shown in the table.
The obtained substrate with a transparent conductive film was evaluated for surface resistance, haze, transmittance, bottom reflectance, luminous reflectance, eraser hardness, scratch hardness, and fingerprint adhesion. The results are shown in Table 1.
[0117]
[Table 1]
Figure 0004343520

Claims (4)

(i)テトラアルコキシシランの加水分解物と
(ii)テトラアルコキシシランと、下記式(1)〜(3)で表される有機ケイ素化合物から選ばれる少なくとも1種の化合物との同時加水分解物であり、該同時加水分解物中の下記式(1)〜(3)で表される有機ケイ素化合物の割合が固形分として2〜60重量%の範囲にある同時加水分解物とからなるマトリックス前駆体を含んでなり、
マトリックス前駆体中の(ii)の割合が固形分として5〜50重量%の範囲にあることを特徴とする透明被膜形成用塗布液。
Figure 0004343520
(式中、R1、R2は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、水素原子を示す。Ra、Rbは、フッ素含有アルキル基を示す。R3 6 は互いに同一であっても異なっていてもよく、アルキル基、ハロゲン化アルキル基、アリール基、アルキルアリール基、アリールアルキル基、アルケニル基、アルコキシ基、水素原子を示す。
Xは、-(CH2)n-、-(Ph)-(Phはベンゼン環)、-(CH2)n-(Ph)-、-(CH2)n-(Ph)-(CH2)n-、-(S)m-、-(CH2)n-(S)-(CH2)n-、-(CH2)n-(CF2)n-(CH2)n-を示し、mは1〜30の整数、nは1〜30の整数を示す。)
(i) a tetraalkoxysilane hydrolyzate and
(ii) a simultaneous hydrolyzate of tetraalkoxysilane and at least one compound selected from organic silicon compounds represented by the following formulas (1) to (3), wherein the following formula in the simultaneous hydrolyzate: (1) to (3) comprising a matrix precursor composed of a co-hydrolyzed product having a ratio of the organosilicon compound represented by (3) in the range of 2 to 60% by weight as a solid content,
A coating liquid for forming a transparent film, wherein the ratio of (ii) in the matrix precursor is in the range of 5 to 50% by weight as a solid content.
Figure 0004343520
(In formula, R < 1 >, R < 2 > may mutually be same or different, and shows an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, and a hydrogen atom. a and R b each represents a fluorine-containing alkyl group, and R 3 to R 6 may be the same as or different from each other, and may be an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, An alkenyl group, an alkoxy group, or a hydrogen atom is shown.
X is-(CH 2 ) n -,-(Ph)-(Ph is a benzene ring),-(CH 2 ) n- (Ph)-,-(CH 2 ) n- (Ph)-(CH 2 ) n -,-(S) m -,-(CH 2 ) n- (S)-(CH 2 ) n -,-(CH 2 ) n- (CF 2 ) n- (CH 2 ) n- m represents an integer of 1 to 30, and n represents an integer of 1 to 30. )
前記マトリックス前駆体とともに、さらに屈折率が1.28〜1.42の範囲にあり、平均粒子径が5〜300nmの範囲にある低屈折率粒子を含むことを特徴とする請求項1に記載の透明被膜形成用塗布液。  The low refractive index particles having a refractive index in the range of 1.28 to 1.42 and an average particle diameter in the range of 5 to 300 nm are included together with the matrix precursor. Coating liquid for forming a transparent film. 基材と、基材上の導電性微粒子を含む透明導電性微粒子層と、該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
該透明被膜が請求項1または2に記載の透明被膜形成用塗布液を用いて形成されたことを特徴とする透明導電性被膜付基材。
A transparent conductive material comprising a base material, a transparent conductive fine particle layer containing conductive fine particles on the base material, and a transparent coating film provided on the transparent conductive fine particle layer and having a refractive index lower than that of the transparent conductive fine particle layer A substrate with a conductive coating,
A substrate with a transparent conductive film, wherein the transparent film is formed using the coating liquid for forming a transparent film according to claim 1.
請求項3に記載の透明導電性被膜付基材で構成された前面板を備え、透明被膜が該前面板の外表面に形成されていることを特徴とする表示装置。  A display device comprising a front plate composed of the substrate with a transparent conductive film according to claim 3, wherein the transparent film is formed on an outer surface of the front plate.
JP2002353908A 2002-12-05 2002-12-05 Coating liquid for forming transparent film, substrate with transparent film, and display device Expired - Lifetime JP4343520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353908A JP4343520B2 (en) 2002-12-05 2002-12-05 Coating liquid for forming transparent film, substrate with transparent film, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353908A JP4343520B2 (en) 2002-12-05 2002-12-05 Coating liquid for forming transparent film, substrate with transparent film, and display device

Publications (2)

Publication Number Publication Date
JP2004182929A JP2004182929A (en) 2004-07-02
JP4343520B2 true JP4343520B2 (en) 2009-10-14

Family

ID=32755086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353908A Expired - Lifetime JP4343520B2 (en) 2002-12-05 2002-12-05 Coating liquid for forming transparent film, substrate with transparent film, and display device

Country Status (1)

Country Link
JP (1) JP4343520B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064649B2 (en) * 2003-08-28 2012-10-31 大日本印刷株式会社 Anti-reflection laminate
JP4710269B2 (en) * 2004-07-21 2011-06-29 凸版印刷株式会社 Antireflection laminated film and display medium using the same
JP2006047504A (en) * 2004-08-02 2006-02-16 Dainippon Printing Co Ltd Antireflective stack
JP2006308898A (en) * 2005-04-28 2006-11-09 Sumitomo Osaka Cement Co Ltd Low-reflectivity film, paint for forming the low-reflectivity film, and base material with the low-reflectivity film
JP2007038447A (en) * 2005-08-01 2007-02-15 Nippon Zeon Co Ltd Reflection preventing laminate, optical member, and liquid crystal display element
JP5357503B2 (en) * 2008-10-28 2013-12-04 パナソニック株式会社 Coating material composition and painted product
JP5600457B2 (en) * 2010-03-26 2014-10-01 パナソニック株式会社 Base material with transparent conductive film
WO2013042278A1 (en) * 2011-09-21 2013-03-28 パナソニック株式会社 Coating composition and coated article
JP2017048081A (en) * 2015-09-01 2017-03-09 日立化成株式会社 Aerogel and aerogel laminate
JP6647820B2 (en) * 2015-09-04 2020-02-14 日揮触媒化成株式会社 Coating solution for forming transparent film, method for producing coating solution for forming transparent film, substrate with transparent film, and method for manufacturing substrate with transparent film
WO2017188329A1 (en) * 2016-04-28 2017-11-02 住友化学株式会社 Composition
SG10201701978UA (en) * 2017-03-10 2018-10-30 Merck Patent Gmbh Coating composition containing metal particles

Also Published As

Publication number Publication date
JP2004182929A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
US7575803B2 (en) Inorganic compound particle and process for preparation thereof
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP3982967B2 (en) Transparent film-forming coating solution, transparent film-coated substrate and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2001064540A (en) Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP4837376B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP2003192994A (en) Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term